JP2005332859A - Light emitting diode and method for manufacturing the same - Google Patents

Light emitting diode and method for manufacturing the same Download PDF

Info

Publication number
JP2005332859A
JP2005332859A JP2004147542A JP2004147542A JP2005332859A JP 2005332859 A JP2005332859 A JP 2005332859A JP 2004147542 A JP2004147542 A JP 2004147542A JP 2004147542 A JP2004147542 A JP 2004147542A JP 2005332859 A JP2005332859 A JP 2005332859A
Authority
JP
Japan
Prior art keywords
thin film
emitting diode
light emitting
led
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004147542A
Other languages
Japanese (ja)
Other versions
JP4624719B2 (en
Inventor
Hideo Tamamura
英雄 玉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2004147542A priority Critical patent/JP4624719B2/en
Priority to US11/587,969 priority patent/US20070222365A1/en
Priority to PCT/JP2005/009287 priority patent/WO2005112136A1/en
Priority to KR1020067022475A priority patent/KR20070013289A/en
Priority to TW094115914A priority patent/TWI278130B/en
Publication of JP2005332859A publication Critical patent/JP2005332859A/en
Application granted granted Critical
Publication of JP4624719B2 publication Critical patent/JP4624719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently manufacture a light emitting diode that generates less uneven color and is low in cost. <P>SOLUTION: The light emitting diode converts light emission wavelength of a GaN LED as a primary light emission source by using one kind or several kinds of luminescent materials. In the method for manufacturing such the light emitting diode, when a thin film made mainly of a fluorescent material is attached onto the light pick-up surface of an LED as a primary light emitting source, a fluorescent thin film on the side surface of an LED chip is formed in a state where a two or more LED chips are aggregated. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、LEDディスプレー、バックライト光源、信号機、および各種インジケーターなどに利用される発光ダイオードに関係し、特に第1次の発光源であるLEDが発生する光の波長を変換して、第2次の発光波長を発光するフォトルミネッセンス蛍光体を備えた発光ダイオードに関する   The present invention relates to a light emitting diode used in an LED display, a backlight light source, a traffic light, and various indicators, and in particular, converts a wavelength of light generated by an LED as a primary light emitting source to generate a second light source. LIGHT EMITTING DIODE WITH PHOTOLENSIVE FLUORESCENT LIGHT EMITTING NEXT EMISSION

LED(発光ダイオード)は小型、省電力消費、長寿命などの特性より、種々の幅広い用途に使用されている。
これは第1次の発光源であるLEDの発光波長を、1種類、又は数種類の蛍光材料を用いて波長変換し第2次の発光波長にすることにより、任意の色調の発光ダイオードを得る事ができるからである。
つまり第1次の発光源であるLEDの発光波長は1種類でも、1種類、又は数種類の蛍光材料により、数種類の波長を持った第2次の光に変換することにより、任意の色調の光を得ることができ、従って安価で安定した発光が得られ、これを利用して上記のような幅広い用途に使用されている。
LEDs (light-emitting diodes) are used in a wide variety of applications due to their characteristics such as small size, low power consumption and long life.
This is to obtain a light emitting diode of any color tone by converting the light emission wavelength of the LED as the primary light emission source into a secondary light emission wavelength by using one or several kinds of fluorescent materials. Because you can.
In other words, even if there is only one type of light emission wavelength of the LED as the primary light source, light of any color tone can be obtained by converting it to secondary light having several types of wavelengths using one or several fluorescent materials. Therefore, inexpensive and stable light emission can be obtained, and this is used for a wide range of applications as described above.

この発光ダイオードの蛍光体のマウント方法の代表例は、例えば特許文献1に記載されている。この発明によれば、発光チップの発光をカップの底面においた発光素子全体を樹脂で封止する発光タ゛イオート゛で、前記樹脂はカップ内部を充填する第1の樹脂と、第1の樹脂を包囲する第2の樹脂よりなり、第1の樹脂には波長変換する蛍光物質、または1部吸収するフイルター物質が含有されていることを特徴とすると記されている。
しかし、一般的に常温で液状で熱硬化する透光性樹脂に蛍光体を混合し波長変換する方法は、下記のような問題がある。
1)樹脂と蛍光体との比重がことなるので、液状の樹脂に蛍光体を混合すると、熱硬化するまでの時間に、液状樹脂と蛍光体の比重差のために蛍光体が沈降し、熱硬化した状態まで均一な混合状態を維持することが困難であり、発光ダイオードの色調の均一性を悪化させる。
2) 発光ダイオードの色調を向上させる目的で1種類以上の異なった蛍光体をもちいることが一般的である。この場合には、数種類の蛍光体間の比重が異なり沈降速度に違いがでる問題が加わり、一段と樹脂との混合、分散状態、沈降速度が不均一に成り易くなり、熱硬化した状態まで均一な混合状態を維持することが一段と困難になるので、いっそう発光ダイオードの色調の均一性を悪化させる。
A typical example of a method for mounting the phosphor of the light emitting diode is described in Patent Document 1, for example. According to the present invention, the light emitting die auto seals the entire light emitting element with the light emitted from the light emitting chip on the bottom surface of the cup, and the resin surrounds the first resin filling the inside of the cup and the first resin. It is described that it is composed of a second resin, and the first resin contains a fluorescent substance that converts wavelength or a filter substance that absorbs part of the first resin.
However, generally, the method of converting the wavelength by mixing a phosphor with a translucent resin that is liquid and thermosetting at room temperature has the following problems.
1) Since the specific gravity of the resin and the phosphor is different, when the phosphor is mixed with the liquid resin, the phosphor settles down due to the difference in specific gravity between the liquid resin and the phosphor during the time until thermosetting. It is difficult to maintain a uniform mixed state up to the cured state, which deteriorates the color tone uniformity of the light emitting diode.
2) In general, one or more different phosphors are used for the purpose of improving the color tone of the light emitting diode. In this case, there is a problem that the specific gravity between several kinds of phosphors is different and the sedimentation speed is different. Since it becomes more difficult to maintain the mixed state, the color tone uniformity of the light emitting diode is further deteriorated.

3)一般的に第1次の発光源であるLEDの波長は、蛍光体で波長変換された第2次の発光波長より短波長である。また、一般的に使われている透光性樹脂は短波長の光を吸収すると、透光性が劣化する性質がある。従って、蛍光体で波長変換した第2次の発光波長より、発光源であるLEDの第1次の発光波長は短波長であることが多いので、蛍光体と透光性樹脂を混練した状態では、LEDの第1次の発光波長である短波長光が透光性樹脂を1部透過することになるので、透光性樹脂の劣化を防止することが難しい
4)樹脂と蛍光体の混練中、及び、LEDチップとの樹脂と蛍光体を混練した材料で封止中、に空気を巻き込やすく、歩留まりが悪化し、またこれを防止するには高価な機器が必要になり、製造コストが上昇する
また特許文献2には、BN結晶よりなるLEDに粒径限定した蛍光体層を結晶層の接合面につけることを提案しているが、本特許の対象は主としてGaN系半導体で対象が異なり、かつ1種類又は数種類の蛍光体の使用により演色性の良い白色系の光を取り出し、かつ光取り出し面の大部分を具体的な方法を提案して覆うことに特徴がある。
特開平7−99345号公報 特開平2−91980号公報
3) Generally, the wavelength of the LED, which is the primary emission source, is shorter than the secondary emission wavelength that has been wavelength-converted by the phosphor. Moreover, the translucent resin generally used has the property that translucency deteriorates when light of a short wavelength is absorbed. Therefore, the primary emission wavelength of the LED, which is the light source, is often shorter than the secondary emission wavelength that has been wavelength-converted by the phosphor, so in a state where the phosphor and the translucent resin are kneaded. It is difficult to prevent deterioration of the translucent resin because the short wavelength light, which is the primary emission wavelength of the LED, passes through a part of the translucent resin.
4) Air is easily entrapped during resin and phosphor kneading and sealing with a material kneaded resin and phosphor with LED chip, resulting in poor yield and expensive to prevent this. In addition, Patent Document 2 proposes that a phosphor layer having a grain size limited to an LED made of BN crystal is attached to the bonding surface of the crystal layer. The target is mainly GaN-based semiconductors, and the target is different, and by using one or several kinds of phosphors, white light with good color rendering properties is extracted, and most of the light extraction surface is covered by proposing a specific method There is a special feature.
JP-A-7-99345 Japanese Patent Laid-Open No. 2-91980

本発明は上記の問題を解決し、色ムラを解決し安価で安定した色調が得られる発光ダイオード及びその成形方法を提供するものである。   The present invention solves the above-described problems, and provides a light-emitting diode capable of solving color unevenness and obtaining an inexpensive and stable color tone and a molding method thereof.

本発明者は、上記課題を解決するために、鋭意研究を重ねた結果、本発明を完成させた。すなわち本発明は以下に関する。
(1)第1次の発光源であるGaN系のLEDの発光波長を、1種類、又は数種類の蛍光材料を用いて波長変換し第2次の発光波長を発光する発光ダイオードの製造方法において、第1次の発光源であるLEDの光取り出し面に、主として蛍光材料からなる薄膜をつけるのに際して、LEDチップの側面部分の蛍光体薄膜を、LEDのチップを2個以上集合させた状態で形成することを特徴とする発行ダイオードの製造方法。
(2)第1次の発光波長が、第2の発光波長より短いことを特徴とする(1)に記載の発光ダイオードの製造方法。
(3)第1次の発光源であるLEDがGaN系で、LEDの基板がサファイア、又はSiCであることを特徴とする(1)または(2)に記載の発光ダイオードの製造方法。
The present inventor completed the present invention as a result of intensive studies in order to solve the above problems. That is, the present invention relates to the following.
(1) In a method of manufacturing a light emitting diode that emits a secondary light emission wavelength by converting the light emission wavelength of a GaN-based LED, which is a primary light emission source, using one or several types of fluorescent materials, When attaching a thin film mainly made of a fluorescent material to the light extraction surface of the LED, which is the primary light source, the phosphor thin film on the side surface of the LED chip is formed in a state where two or more LED chips are assembled. A method for manufacturing a light emitting diode.
(2) The method for producing a light-emitting diode according to (1), wherein the primary emission wavelength is shorter than the second emission wavelength.
(3) The method for producing a light-emitting diode according to (1) or (2), wherein the LED as the primary light-emitting source is GaN-based and the substrate of the LED is sapphire or SiC.

(4)第1次の発光源であるLEDがGaN系のLEDであり、第2の発光色が白色系の色であることを特徴とする(1)〜(3)の何れか1項に記載の発光ダイオードの製造方法。
(5)主として蛍光材料からなる薄膜の膜厚が、100ミクロン以下であることを特徴とする(1)〜(4)の何れか1項に記載の発光ダイオードの製造方法。
(6)主として蛍光材料からなる薄膜の膜厚が、50ミクロン以下であることを特徴とする(1)〜(5)の何れか1項に記載の発光ダイオードの製造方法。
(7)主として蛍光材料からなる薄膜の膜厚が、25ミクロン以下であることを特徴とする(1)〜(6)の何れか1項に記載の発光ダイオードの製造方法。
(8)主として蛍光材料からなる薄膜は、薄膜中の蛍光体重量百分率が70%以上であることを特徴とする(1)〜(7)の何れか1項に記載の発光ダイオードの製造方法。
(9)主として蛍光材料からなる薄膜は、薄膜中の蛍光体重量百分率が85%以上であることを特徴とする(1)〜(8)の何れか1項に記載の発光ダイオードの製造方法。
(10)(1)〜(9)の何れか1項に記載の発光ダイオードの製造方法で製造された発光ダイオード。
(4) The LED as the primary light emission source is a GaN-based LED, and the second light emission color is a white color. Any one of (1) to (3) The manufacturing method of the light emitting diode of description.
(5) The method for producing a light-emitting diode according to any one of (1) to (4), wherein the thickness of the thin film mainly made of a fluorescent material is 100 microns or less.
(6) The method for producing a light-emitting diode according to any one of (1) to (5), wherein the thickness of the thin film mainly made of a fluorescent material is 50 microns or less.
(7) The method for producing a light-emitting diode according to any one of (1) to (6), wherein the thickness of the thin film mainly made of a fluorescent material is 25 microns or less.
(8) The method for producing a light-emitting diode according to any one of (1) to (7), wherein the thin film mainly made of a fluorescent material has a phosphor weight percentage in the thin film of 70% or more.
(9) The method for producing a light-emitting diode according to any one of (1) to (8), wherein the thin film mainly made of a fluorescent material has a phosphor weight percentage in the thin film of 85% or more.
(10) A light-emitting diode manufactured by the method for manufacturing a light-emitting diode according to any one of (1) to (9).

本発明により、色ムラが少なく、かつ安価な発光ダイオードを提供できる。   According to the present invention, an inexpensive light emitting diode with little color unevenness can be provided.

従来の発光ダイオードでは、樹脂の中に蛍光材料を混入させることにより製造するため、樹脂と蛍光材料との比重差により蛍光材料が沈降し、色むらが生ずる等の問題が生じていた。そこで本発明者は、第1次の発光源であるLEDチップの発光面に樹脂を用いずに、直接蛍光材料の薄膜をつける事により、これらの問題を解決するものである。
薄膜の作りかたは、塗布、印刷、蒸着、スパッタリング、その他、適当な方法を選択することができる。
また蛍光材料は、LEDに直接薄膜をつける目的で、各種の添加剤を加えて作業がしやすい状態にすることは当然である。
Since the conventional light emitting diode is manufactured by mixing a fluorescent material in a resin, there is a problem that the fluorescent material is settled due to a difference in specific gravity between the resin and the fluorescent material, resulting in uneven color. Therefore, the present inventor solves these problems by directly attaching a thin film of a fluorescent material without using a resin on the light emitting surface of the LED chip as the primary light emitting source.
As a method for forming the thin film, an appropriate method such as coating, printing, vapor deposition, sputtering, or the like can be selected.
In addition, for the purpose of directly attaching a thin film to the LED, it is natural to add various additives to make the fluorescent material easy to work.

これにより、上記の問題は下記のように解決することができる。
1)樹脂と蛍光体との比重が異なっても、樹脂に混練する工程が無い。従って、樹脂と蛍光体の比重差による沈降する問題はないので、第1次の発光源であるLEDの発光面につけた蛍光体の薄膜を通り波長変換された第2次の発光波長は均一になり、従って出来た発光ダイオードの色調は均一になる。
2)数種類の蛍光体を混合して用いても、樹脂による混練工程がないので数種類の蛍光体の比重差の影響は受けない。従って数種類の蛍光体を混合しても、出来た発光ダイオードの色調は均一になる。
3) 第1次の発光源であるLEDの発光面に直接蛍光体の薄膜をつけるのであるので、LEDの第1次の発光波長である短波長光が透光性樹脂を透過することは無いので、透光性樹脂の劣化はおきない。
4)樹脂と蛍光体の混練工程が無いので、空気の巻き込みの問題は起きない。従って、歩留まりが向上し悪化し、また空気巻き込み防止のための高価な機器が不必要になり、製造コストが減少する
Thereby, the above problem can be solved as follows.
1) Even if the specific gravity of the resin and the phosphor is different, there is no step of kneading the resin. Therefore, there is no problem of sedimentation due to the difference in specific gravity between the resin and the phosphor, so the secondary emission wavelength that has been wavelength-converted through the phosphor thin film attached to the light emitting surface of the LED, which is the primary emission source, is uniform. Therefore, the color tone of the resulting light emitting diode becomes uniform.
2) Even if several types of phosphors are mixed and used, there is no kneading step using a resin, so there is no influence of the specific gravity difference of several types of phosphors. Therefore, even if several kinds of phosphors are mixed, the color tone of the resulting light emitting diode becomes uniform.
3) Since the phosphor thin film is directly attached to the light emitting surface of the LED as the primary light emitting source, the short wavelength light that is the primary light emitting wavelength of the LED does not pass through the translucent resin. Therefore, the translucent resin does not deteriorate.
4) Since there is no resin and phosphor kneading step, the problem of air entrainment does not occur. Therefore, the yield is improved and deteriorated, and expensive equipment for preventing air entrainment is unnecessary, and the manufacturing cost is reduced.

従って本発明により、色ムラのない安価な発光ダイオードを供給することができる
しかし、LEDチップは大変小さく、かつ多量に生産するので、効率的な生産方法が求められる。この解決方法として、本発明者は発光ダイオード及びその形成方法において、第1次の発光源であるGaN系のLEDの発光波長を、1種類、又は数種類の蛍光材料を用いて波長変換し第2次の発光波長を発光する発光ダイオードにおいて、第1次の発光源であるLEDの発光取り出し面に、主として蛍光材料からなる薄膜をLEDウエハー又は集合したチップの状態で、つけることにより波長変換して第2次の発光波長を発光させることを特徴とする、発光ダイオード及び成形方法を提案した
これは個々に切断したLEDチップの状態で、蛍光体薄膜をつけるのは、その成形工程より、種々の機器を要して高価なものになるので、LEDウエハーの状態又は集合したチップの状態で波長変換用蛍光体薄膜を作成するもので、望ましくはLEDウエハーの状態で作成するのが望ましい。
Therefore, according to the present invention, an inexpensive light-emitting diode with no color unevenness can be supplied. However, since LED chips are very small and produced in large quantities, an efficient production method is required. As a solution to this problem, the present inventor used a light emitting diode and a method for forming the light emitting diode to convert the light emission wavelength of a GaN-based LED, which is a primary light emitting source, using one or several kinds of fluorescent materials, In a light emitting diode that emits the next emission wavelength, wavelength conversion is performed by attaching a thin film mainly made of a fluorescent material on the LED light emission surface of the LED, which is the primary emission source, in the state of an LED wafer or an assembled chip. Proposed a light emitting diode and a molding method characterized by emitting a secondary emission wavelength. This is a state of individually cut LED chips. Since the equipment is expensive and expensive, the phosphor thin film for wavelength conversion is prepared in the state of the LED wafer or the assembled chip, and it is desirable to prepare it in the state of the LED wafer. Arbitrariness.

一般的なGaN系のLEDの製造工程を参考までに記述する。なお、具体的な方法は技術の種類により異なり、本特許はこの工程に束縛されるものではない。
1)サファイアウエハーを用意する
2)MOCVD法でサファイアウエハーの上に種々のエピタキシャル薄膜層を作成する
3)マスクを付けて、エッチング法により不要部分を除去する
4)P,Nの電極をスパッタ法や蒸着法により作成する
5)サファイア面にテープを取り付ける
6)各LEDチップの大きさに切断又は半切断する
7)各LEDチップの電気特性をチェックし、選品、グレード分けする。
8)電極架台(ステム)にLEDチップを装着し電線を取り付ける
9)樹脂で露出したLEDチップの部分を封止する。
A general GaN LED manufacturing process is described for reference. The specific method varies depending on the type of technology, and this patent is not restricted to this process.
1) Prepare a sapphire wafer
2) Create various epitaxial thin film layers on sapphire wafer by MOCVD method
3) Attach a mask and remove unnecessary parts by etching.
4) Create P and N electrodes by sputtering or vapor deposition
5) Attach the tape to the sapphire surface
6) Cut or semi-cut into the size of each LED chip
7) Check the electrical characteristics of each LED chip, select and grade.
8) Attach the LED chip to the electrode base (stem) and attach the wire
9) Seal the exposed LED chip part with resin.

上記の工程の中でウエハーの到達温度が蛍光材料の物性に変化を与えない温度範囲内の工程で蛍光材料の薄膜作成の工程を入れるのが望ましく、上記の工程では3)から6)の工程内にいれるのが効率的であるが、集合したチップの状態で蛍光体の薄膜を付けてもかまわない。
サファイア基板のGaN系のLEDの場合で、サファイア面より、光を取り出すフリップチップ型は光の取り出し効率が高いので、本方法は一段と有利な発光ダイオードを作成する事になる。
光の取り出し効率を上げるには、全ての光取り出し面に蛍光体膜を作成し、出来るだけ多くの光を蛍光体膜で波長変換することが望ましい。しかし一般的に、蛍光体層は絶縁膜である場合が多いので、蛍光体薄膜層があると電極の導通が取れない問題が発生することになる。
Among the above steps, it is desirable to include the step of creating a thin film of fluorescent material in a step within the temperature range where the temperature reached by the wafer does not change the physical properties of the fluorescent material. In the above step, steps 3) to 6) It is efficient to put it inside, but a phosphor thin film may be attached in the assembled chip state.
In the case of a GaN-based LED on a sapphire substrate, the flip-chip type that extracts light from the sapphire surface has higher light extraction efficiency, so this method creates a more advantageous light-emitting diode.
In order to increase the light extraction efficiency, it is desirable to form a phosphor film on all light extraction surfaces and to convert the wavelength of as much light as possible with the phosphor film. However, in general, since the phosphor layer is often an insulating film, the phosphor thin film layer causes a problem that the electrodes cannot be electrically connected.

光取り出し面より電極を取らないタイプのLEDは問題にならないが、光取り出し面に電極を取るタイプのLEDは大きな問題になる。また、光の取り出し効率を1段と高めるためには、光を取り出す可能性のある全ての発光面より光を取り出したほうが効果的であり、この点より電極部分を除いた全ての面に蛍光体膜を取り付ける方法を確立しておいた方が望ましい。
電極を取り出す部分のみ蛍光体膜を除去し、他の光取り出し面を一般的に絶縁体である蛍光体薄膜層をとりつける方法として、第1次の発光源であるGaN系のLEDの発光波長を、1種類、又は数種類の蛍光材料を用いて波長変換し第2次の発光波長を発光する発光ダイオードにおいて、第1次の発光源であるLEDの光取り出し面に、主として蛍光材料からなる薄膜をLEDウエハー又は集合したチップの状態でつけることにより波長変換して第2次の発光波長を発光させることを特徴とする、発光ダイオードで、蛍光体薄膜のうち、蛍光薄膜層の絶縁性のために、電極部分の導通妨害を防ぐ目的で、蛍光体薄膜層の1部分をマスキング又はエッチング、又はマスキングとエッチングを組み合わせることにより作成するものである。
LEDs that do not take electrodes from the light extraction surface are not a problem, but LEDs that take electrodes on the light extraction surface are a major problem. In addition, in order to further increase the light extraction efficiency, it is more effective to extract light from all the light emitting surfaces that may extract light. From this point, all surfaces except the electrode part are fluorescent. It is desirable to establish a method for attaching the body membrane.
As a method of removing the phosphor film only at the part where the electrode is taken out and attaching the phosphor thin film layer, which is generally an insulator, to the other light extraction surface, the emission wavelength of the GaN-based LED as the primary emission source In a light emitting diode that emits a secondary emission wavelength by converting the wavelength using one or several types of fluorescent materials, a thin film mainly made of a fluorescent material is formed on the light extraction surface of the LED that is the primary emission source. A light emitting diode characterized in that it emits a secondary emission wavelength by attaching it in the state of an LED wafer or an assembled chip for the insulating property of the phosphor thin film layer among the phosphor thin films. In order to prevent conduction interruption of the electrode portion, one portion of the phosphor thin film layer is formed by masking or etching, or by combining masking and etching.

上記の記述について以下に詳しく説明する。
第1次の発光源であるLEDの作り方は、同じ面に電極をとる方法と、異なる面に電極をとる方法に分けられる。
同じ面に電極をとる方法は、図1に示すように、エピタキシャル薄膜層の同じ側に電極を取り付ける方法で、最上部エピタキシャル薄膜層と、エピタキシャル薄膜層の一部をエッチングして、エピタキシャル薄膜層の上部層の1部を取り除き、下部層を出して、P又はN電極を取り付ける。
蛍光体薄膜層をつける場合は、一般的に蛍光体層は絶縁性を持っているものが多いので、この電極部分の導通が必要な部分のみの導通を確保し、他の部分は蛍光体薄膜層で覆う必要がある。
The above description will be described in detail below.
The method of manufacturing the LED, which is the primary light emitting source, can be divided into a method of taking electrodes on the same surface and a method of taking electrodes on different surfaces.
As shown in FIG. 1, the method of taking electrodes on the same surface is a method of attaching electrodes to the same side of the epitaxial thin film layer. Remove one part of the upper layer, put out the lower layer, and attach the P or N electrode.
When attaching a phosphor thin film layer, the phosphor layer generally has an insulating property, so that only the part where conduction is necessary for this electrode part is secured, and the other part is a phosphor thin film. It is necessary to cover with a layer.

この本特許はこの解決策として、蛍光体薄膜のうち電極部分の導通を確保するために妨害となる蛍光体薄膜層の1部分をマスキング又はエッチングして作成し、又はマスキングとエッチングを組み合わせて、電極部分の導通を確保し、電極部分以外は蛍光体薄膜層とすること目的としている。
蛍光体薄膜のうち電極部分の導通を確保するために妨害となる蛍光体薄膜層の1部分をマスキング又はエッチングして作成し、電極部分の導通を確保する本発明による代表的な方法を記述する。
As a solution to this problem, this patent is created by masking or etching one portion of the phosphor thin film layer that interferes with the electrode portion of the phosphor thin film, or combining masking and etching. The purpose is to ensure the conduction of the electrode portion and to form a phosphor thin film layer other than the electrode portion.
A representative method according to the present invention is described in which one portion of the phosphor thin film layer that interferes with the electrode portion of the phosphor thin film is masked or etched to ensure the electrode portion conduction. .

なお、この方法は種々の組み合わせが可能であり、具体的な方法は技術の種類により異なるので、本特許は下記の方法に束縛されるものではない。
1)最終のエピタキシャル薄膜層の上に蛍光体薄膜層を取り付け、P又はN電極に必要なエピタキシャル薄膜層の上の蛍光体薄膜層、又は蛍光体薄膜層とエピタキシャル薄膜層の1部をエッチング除去して、P又はN電極に必要な部分のエピタキシャル薄膜層を取り出し電極を取り付ける。
2)蛍光体薄膜層を取り付ける時に、P又はN電極に必要なエピタキシャル薄膜層をマスキングして蛍光体薄膜層が除きやすい状態にして、その上に蛍光体薄膜を取り付ける。その後に、P又はN電極に必要な部分の蛍光体薄膜層、又は蛍光体薄膜層とエピタキシャル薄膜層のマスキングを取り除いて、P又はN電極に必要なエピタキシャル薄膜層を取り出し電極を取り付ける。
Note that various combinations of this method are possible, and the specific method varies depending on the type of technology. Therefore, this patent is not limited to the following method.
1) A phosphor thin film layer is attached on the final epitaxial thin film layer, and a phosphor thin film layer on the epitaxial thin film layer necessary for the P or N electrode, or a part of the phosphor thin film layer and the epitaxial thin film layer is etched away. Then, an epitaxial thin film layer necessary for the P or N electrode is taken out and attached.
2) When attaching the phosphor thin film layer, mask the epitaxial thin film layer necessary for the P or N electrode so that the phosphor thin film layer can be easily removed, and attach the phosphor thin film thereon. Thereafter, the portion of the phosphor thin film layer necessary for the P or N electrode or the masking of the phosphor thin film layer and the epitaxial thin film layer is removed, and the epitaxial thin film layer necessary for the P or N electrode is taken out and attached.

本発明により電極取り出し部分を除いて、蛍光体薄膜層のついたチップを安価に多量に生成することができ、また色ムラの少ない発光ダイオードやその応用製品を作ることができる。
これによりLEDチップの上面と下面の蛍光体薄膜層の着け方は解決したが、LEDチップの側面の蛍光体薄膜層の効率的な取り付け方はが未解決である。
一般的にLEDチップの側面は数百ミクロンであり、この小さな面に蛍光体薄膜を効率的につける方法はない。
According to the present invention, a chip having a phosphor thin film layer can be produced in a large amount at a low cost except for an electrode extraction portion, and a light emitting diode with little color unevenness and its application product can be produced.
As a result, the method of attaching the phosphor thin film layers on the upper and lower surfaces of the LED chip has been solved, but the efficient method of attaching the phosphor thin film layers on the side surfaces of the LED chip has not been solved.
Generally, the side surface of an LED chip is several hundred microns, and there is no method for efficiently attaching a phosphor thin film to this small surface.

そこで本発明者はこの問題の解決方法として本特許に記述した下記の方法で解決する方法を見出したものである。
すなわち、第1次の発光源であるLEDの発光波長を、1種類、又は数種類の蛍光材料を用いて波長変換し第2次の発光波長を発光する発光ダイオードにおいて、第1次の発光源であるLEDの発光面に、主として蛍光材料からなる薄膜をつけることにより波長変換して第2次の発光波長を発光させることを特徴とする、発光ダイオードで、蛍光体薄膜層のうちLEDチップの側面の蛍光体薄膜を、LEDのチップを2個以上集合させた状態で蛍光体薄膜層をつけることを特徴とする発行ダイオード
一般的にLEDチップの側面は数百ミクロンであり、この小さな面に蛍光体薄膜を効率的につける方法は、従来の方法の例えば、塗布、スプレー、スパッター等の方法で着けても、極めて効率が悪く高価になることは自明である。
Accordingly, the present inventor has found a method for solving this problem by the following method described in this patent.
That is, in the light-emitting diode that emits the secondary emission wavelength by converting the emission wavelength of the LED, which is the primary emission source, using one or several kinds of fluorescent materials, the primary emission source A light emitting diode that emits a secondary emission wavelength by attaching a thin film mainly made of a fluorescent material to a light emitting surface of an LED, and is a side surface of an LED chip in a phosphor thin film layer. Issuing diodes characterized in that two or more LED chips are assembled and a phosphor thin film layer is attached in a state in which two or more LED chips are assembled. Generally, the side of an LED chip is several hundred microns, and this small surface is fluorescent. It is obvious that the method for efficiently applying the thin body film is very inefficient and expensive even if it is applied by a conventional method such as coating, spraying, or sputtering.

本発明者は種々考えた結果、下記の方法を採用することにより簡単に解決できることを見出したものである。
一般的なGaN系のLEDの製造工程を参考までに記述すると、下記のとうりである。なお、具体的な方法は技術の種類により異なり、本特許はこの工程に束縛されるものではない。
1)サファイアウエハーを用意する
2)MOCVD法でサファイアウエハーの上に種々のエピタキシャル薄膜層を作成する
3)マスクを付けて、エッチング法により不要部分を除去する
4)P,Nの電極をスパッタ法や蒸着法により作成する
5)サファイア面にテープを取り付ける
6)各LEDチップの大きさに切断又は半切断する
7)各LEDチップの電気特性をチェックし、選品、グレード分けする。
8)電極架台(ステム)にLEDチップを装着し電線を取り付ける
9)樹脂で露出したLEDチップの部分を封止する。
As a result of various considerations, the present inventor has found that it can be easily solved by adopting the following method.
For reference, the manufacturing process of a general GaN-based LED is as follows. The specific method varies depending on the type of technology, and this patent is not restricted to this process.
1) Prepare a sapphire wafer
2) Create various epitaxial thin film layers on sapphire wafer by MOCVD method
3) Attach a mask and remove unnecessary parts by etching.
4) Create P and N electrodes by sputtering or vapor deposition
5) Attach the tape to the sapphire surface
6) Cut or semi-cut into the size of each LED chip
7) Check the electrical characteristics of each LED chip, select and grade.
8) Attach the LED chip to the electrode base (stem) and attach the wire
9) Seal the exposed LED chip part with resin.

上記の工程7)の工程で各LEDチップはバラバラになるので、8)の工程の電極架台(ステム)にLEDチップを装着し電線を取り付ける前に、LEDチップを重ね合わせ、望ましくは数10個より数万個を重ね合わせることにより、四角柱状のLEDチップの集合体ができる。
この状態で四角柱状になったLEDチップの側面に蛍光体膜を取り付けることは比較的簡単にかつ安価につけることができる。
この四角柱状のLEDチップの側面は、LEDチップの切断面であるので、きれいな4つの面が出なくとも、1つの面をそろえて蛍光体薄膜層を作成し、次に、次の面ののみをそろえる等の操作を4回繰り返すことのより、簡単に進めることができる。
もちろんLEDチップ切断面がきれいに揃うように切断して、4つの面を一度に蛍光体薄膜層を作成してもかまわない。
本発明により、フリップチップ型のLEDもフェイスアップ型のLEDも、LEDチップの側面もあわせて、蛍光体薄膜層のついたチップを安価に多量に生成することができ、また色ムラの少ない発光ダイオードやその応用製品を作ることができる。
Since each LED chip is separated in the above step 7), the LED chips are stacked on the electrode mount (stem) in the step 8) before attaching the electric wires, and preferably several tens of them. By superimposing tens of thousands of LED chips, an assembly of quadrangular prism-shaped LED chips can be formed.
In this state, it is relatively easy and inexpensive to attach the phosphor film to the side surface of the LED chip that has a quadrangular prism shape.
The side surface of this square prismatic LED chip is the cut surface of the LED chip, so even if four clean surfaces do not appear, create a phosphor thin film layer by aligning one surface, then only the next surface It is possible to easily proceed by repeating the operations such as aligning four times.
Of course, it is also possible to cut the LED chips so that the cut surfaces are neatly aligned and to form the phosphor thin film layer on the four surfaces at once.
According to the present invention, a flip chip type LED, a face-up type LED, and a side face of the LED chip can be combined to produce a large number of chips with a phosphor thin film layer at low cost, and light emission with less color unevenness. Diodes and their applications can be made.

(実施例1)
サファイア基板を用いたGaN系の発光ダイオードで同じ面にP,N電極をとる方法の作成工程に本発明の方法を適用した。
1)サファイアウエハーを用意する
2)MOCVD法でサファイアウエハーの上に種々のエピタキシャル薄膜層を作成する
3)マスクを付けて、エッチング法により不要部分を除去する
4)P,Nの電極をスパッタ法や蒸着法により作成する
5)サファイア面にテープを取り付ける
6)各LEDチップの大きさに切断又は半切断する
7)各LEDチップの電気特性をチェックし、選品、グレード分けする。
8)電極架台(ステム)にLEDチップを装着し電線を取り付ける
9)樹脂で露出したLEDチップの部分を封止する。
上記の工程7)の工程で各LEDチップはバラバラになるので、8)の工程の電極架台(ステム)にLEDチップを装着し電線を取り付ける前に、LEDチップを重ね合わせLEDチップの側面に蛍光体薄膜を作成した。
本実施例により、LEDチップの側面も含めてきれいに蛍光体層が作成された。
(実施例2)
(Example 1)
The method of the present invention was applied to the preparation process of a method of taking P and N electrodes on the same surface in a GaN-based light emitting diode using a sapphire substrate.
1) Prepare a sapphire wafer
2) Create various epitaxial thin film layers on sapphire wafer by MOCVD method
3) Attach a mask and remove unnecessary parts by etching.
4) Create P and N electrodes by sputtering or vapor deposition
5) Attach the tape to the sapphire surface
6) Cut or semi-cut into the size of each LED chip
7) Check the electrical characteristics of each LED chip, select and grade.
8) Attach the LED chip to the electrode base (stem) and attach the wire
9) Seal the exposed LED chip part with resin.
Since each LED chip is separated in the above step 7), before mounting the LED chip on the electrode mount (stem) in step 8) and attaching the electric wire, the LED chips are stacked and fluorescent on the side of the LED chip. A body thin film was prepared.
According to this example, the phosphor layer was neatly formed including the side surface of the LED chip.
(Example 2)

SiC基板又はサファイア基板を用いたGaN系の発光ダイオードの異なる面に電極を取る方法の作業工程に本発明の方法を適用した
実施例1とほぼ同じくLEDチップがバラバラになる時点と、電極架台(ステム)にLEDチップを装着し電線を取り付ける前に、新たにLEDチップを重ね合わせLEDチップの側面に蛍光体薄膜を作成した。
本実施例により、LEDチップの側面も含めてきれいに蛍光体層が作成された。
The method of applying the method of the present invention to the working process of placing electrodes on different surfaces of a GaN-based light emitting diode using a SiC substrate or a sapphire substrate. Before attaching the LED chip to the stem and attaching the wires, a new LED chip was stacked and a phosphor thin film was created on the side of the LED chip.
According to this example, the phosphor layer was neatly formed including the side surface of the LED chip.

本発明により色むらのない、安価で高効率で波長変換が可能な発光ダイオードが効率よく製造できる。   According to the present invention, an inexpensive, highly efficient light-emitting diode capable of wavelength conversion without color unevenness can be efficiently manufactured.

実施例1における、GaN系の同じ面に電極をとるタイプのLEDの概要図であり、LEDチップの上面と、下面に蛍光体層を取り付け、側面が蛍光体層がついていない図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram of the type of LED which takes an electrode on the same surface of GaN type in Example 1, and is the figure which attached the fluorescent substance layer to the upper surface of an LED chip, and a lower surface, and has no fluorescent substance layer on the side. 図1のLEDチップを四角柱状に重ねあわせた断面図で、そのLEDチップの1面を揃えて、蛍光体層をつけた図である。FIG. 2 is a cross-sectional view in which the LED chips of FIG. 1 are stacked in a quadrangular prism shape, with one surface of the LED chips aligned and a phosphor layer attached. 図2の操作を4回繰り返し、4つのLEDチップの側面が蛍光体薄膜層の取り付けが完了した断面図である。FIG. 3 is a cross-sectional view in which the operation of FIG. 2 is repeated four times, and the side surfaces of four LED chips are completely attached to the phosphor thin film layer. 実施例2のSiC又はSiC基板の異なった面に電極をとるタイプのLEDでウエハー基板面とエピタキシャル面の電極取り出し面に蛍光体膜をつけ、側面には蛍光体層がついていない図である。FIG. 5 is a view of a type of LED having electrodes on different surfaces of the SiC or SiC substrate of Example 2 with a phosphor film on the wafer substrate surface and an epitaxial electrode extraction surface, and no phosphor layer on the side surface. 図2の操作を4回繰り返し4つのLEDチップの側面が蛍光体薄膜層の取り付けが完了した断面図である。4 is a cross-sectional view in which the operation of FIG. 2 is repeated four times and the side surfaces of four LED chips are completely attached to the phosphor thin film layer.

符号の説明Explanation of symbols

1 電極
2 電極
3 蛍光体薄膜
4 エピタキシャル層
5 基板(サファイア、又はSiC)
6 LEDチップ
1 electrode 2 electrode 3 phosphor thin film 4 epitaxial layer 5 substrate (sapphire or SiC)
6 LED chip

Claims (10)

第1次の発光源であるGaN系のLEDの発光波長を、1種類、又は数種類の蛍光材料を用いて波長変換し第2次の発光波長を発光する発光ダイオードの製造方法において、第1次の発光源であるLEDの光取り出し面に、主として蛍光材料からなる薄膜をつけるのに際して、LEDチップの側面部分の蛍光体薄膜を、LEDのチップを2個以上集合させた状態で形成することを特徴とする発行ダイオードの製造方法。 In a method for manufacturing a light emitting diode that emits a secondary emission wavelength by converting the emission wavelength of a GaN-based LED, which is a primary emission source, using one or several types of fluorescent materials, When a thin film mainly made of a fluorescent material is attached to the light extraction surface of the LED, which is the light source, the phosphor thin film on the side surface of the LED chip is formed in a state in which two or more LED chips are assembled. A manufacturing method of a characteristic issuing diode. 第1次の発光波長が、第2の発光波長より短いことを特徴とする請求項1に記載の発光ダイオードの製造方法。 2. The method for producing a light emitting diode according to claim 1, wherein the first emission wavelength is shorter than the second emission wavelength. 第1次の発光源であるLEDがGaN系で、LEDの基板がサファイア、又はSiCであることを特徴とする請求項1または2に記載の発光ダイオードの製造方法。 3. The method of manufacturing a light emitting diode according to claim 1, wherein the LED as the first light emitting source is a GaN-based LED and the substrate of the LED is sapphire or SiC. 第1次の発光源であるLEDがGaN系のLEDであり、第2の発光色が白色系の色であることを特徴とする請求項1〜3の何れか1項に記載の発光ダイオードの製造方法。 4. The light emitting diode according to claim 1, wherein the LED that is the first light emitting source is a GaN-based LED, and the second light emitting color is a white color. 5. Production method. 主として蛍光材料からなる薄膜の膜厚が、100ミクロン以下であることを特徴とする請求項1〜4の何れか1項に記載の発光ダイオードの製造方法。 The method for manufacturing a light-emitting diode according to any one of claims 1 to 4, wherein the thickness of the thin film mainly made of a fluorescent material is 100 microns or less. 主として蛍光材料からなる薄膜の膜厚が、50ミクロン以下であることを特徴とする請求項1〜5の何れか1項に記載の発光ダイオードの製造方法。 6. The method of manufacturing a light emitting diode according to claim 1, wherein the thickness of the thin film mainly made of a fluorescent material is 50 microns or less. 主として蛍光材料からなる薄膜の膜厚が、25ミクロン以下であることを特徴とする請求項1〜6の何れか1項に記載の発光ダイオードの製造方法。 The method for producing a light-emitting diode according to any one of claims 1 to 6, wherein the thickness of the thin film mainly made of a fluorescent material is 25 microns or less. 主として蛍光材料からなる薄膜は、薄膜中の蛍光体重量百分率が70%以上であることを特徴とする請求項1〜7の何れか1項に記載の発光ダイオードの製造方法。 The method for producing a light-emitting diode according to any one of claims 1 to 7, wherein the thin film mainly made of a fluorescent material has a phosphor weight percentage of 70% or more in the thin film. 主として蛍光材料からなる薄膜は、薄膜中の蛍光体重量百分率が85%以上であることを特徴とする請求項1〜8の何れか1項に記載の発光ダイオードの製造方法。 The method for producing a light-emitting diode according to any one of claims 1 to 8, wherein the thin film mainly made of a fluorescent material has a phosphor weight percentage in the thin film of 85% or more. 請求項1〜9の何れか1項に記載の発光ダイオードの製造方法で製造された発光ダイオード。
The light emitting diode manufactured with the manufacturing method of the light emitting diode of any one of Claims 1-9.
JP2004147542A 2004-05-18 2004-05-18 Light emitting diode manufacturing method and light emitting diode Expired - Fee Related JP4624719B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004147542A JP4624719B2 (en) 2004-05-18 2004-05-18 Light emitting diode manufacturing method and light emitting diode
US11/587,969 US20070222365A1 (en) 2004-05-18 2005-05-16 Light-Emitting Diode and Method of Manufacturing the Same
PCT/JP2005/009287 WO2005112136A1 (en) 2004-05-18 2005-05-16 Light-emitting diode and method of manufacturing the same
KR1020067022475A KR20070013289A (en) 2004-05-18 2005-05-16 Light-emitting diode and method of manufacturing the same
TW094115914A TWI278130B (en) 2004-05-18 2005-05-17 Light-emitting diode and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004147542A JP4624719B2 (en) 2004-05-18 2004-05-18 Light emitting diode manufacturing method and light emitting diode

Publications (2)

Publication Number Publication Date
JP2005332859A true JP2005332859A (en) 2005-12-02
JP4624719B2 JP4624719B2 (en) 2011-02-02

Family

ID=35487313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004147542A Expired - Fee Related JP4624719B2 (en) 2004-05-18 2004-05-18 Light emitting diode manufacturing method and light emitting diode

Country Status (1)

Country Link
JP (1) JP4624719B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101144634B1 (en) * 2007-01-25 2012-05-08 서울반도체 주식회사 Phosphor light emitting diode and method for manufacturing the same
KR101202172B1 (en) * 2012-01-12 2012-11-15 서울반도체 주식회사 Phosphor light emitting diode and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163397A (en) * 1997-11-25 1999-06-18 Matsushita Electric Works Ltd Led element and its manufacture
JPH11307816A (en) * 1998-04-24 1999-11-05 Citizen Electronics Co Ltd Package structure for chip semiconductor and its manufacture
JP2000208822A (en) * 1999-01-11 2000-07-28 Matsushita Electronics Industry Corp Semiconductor light-emitting device
JP2002151747A (en) * 2001-09-03 2002-05-24 Nichia Chem Ind Ltd Light emitting diode and its forming method
JP2002344070A (en) * 2001-05-14 2002-11-29 Furukawa Electric Co Ltd:The Device for holding laser bar
WO2005112136A1 (en) * 2004-05-18 2005-11-24 Showa Denko K.K. Light-emitting diode and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163397A (en) * 1997-11-25 1999-06-18 Matsushita Electric Works Ltd Led element and its manufacture
JPH11307816A (en) * 1998-04-24 1999-11-05 Citizen Electronics Co Ltd Package structure for chip semiconductor and its manufacture
JP2000208822A (en) * 1999-01-11 2000-07-28 Matsushita Electronics Industry Corp Semiconductor light-emitting device
JP2002344070A (en) * 2001-05-14 2002-11-29 Furukawa Electric Co Ltd:The Device for holding laser bar
JP2002151747A (en) * 2001-09-03 2002-05-24 Nichia Chem Ind Ltd Light emitting diode and its forming method
WO2005112136A1 (en) * 2004-05-18 2005-11-24 Showa Denko K.K. Light-emitting diode and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101144634B1 (en) * 2007-01-25 2012-05-08 서울반도체 주식회사 Phosphor light emitting diode and method for manufacturing the same
KR101202172B1 (en) * 2012-01-12 2012-11-15 서울반도체 주식회사 Phosphor light emitting diode and method for manufacturing the same

Also Published As

Publication number Publication date
JP4624719B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
US6744196B1 (en) Thin film LED
JP5101650B2 (en) Semiconductor light emitting device and manufacturing method thereof
US6841802B2 (en) Thin film light emitting diode
US8597963B2 (en) Manufacture of light emitting devices with phosphor wavelength conversion
JP6248431B2 (en) Manufacturing method of semiconductor light emitting device
JP6435258B2 (en) Light emitting device having wavelength conversion side coating
CN1697208A (en) Generation of whitelight source,whitelight luminous element and its mfg.method
JP2007242856A (en) Chip-type semiconductor light emitting device
KR20070013289A (en) Light-emitting diode and method of manufacturing the same
JP2015008329A (en) Semiconductor light emitting device and manufacturing method of the same
TWI441351B (en) White light emitting diode chip and manufacturing method thereof
JP6212989B2 (en) Light emitting device and manufacturing method thereof
JP2007067183A (en) Led package with compound semiconductor light emitting device
US9312457B2 (en) Light emitting device and method for manufacturing the same
JP4624719B2 (en) Light emitting diode manufacturing method and light emitting diode
TW201301570A (en) Multi-color light emitting diode and manufacturing method thereof
CN112038457B (en) Flip red light LED chip and manufacturing method thereof
JP6432654B2 (en) Semiconductor light emitting device
JP2005332858A (en) Light emitting diode and method for manufacturing the same
JP5455854B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP7227528B2 (en) semiconductor light emitting device
JP2005332857A (en) Light emitting diode and method for manufacturing the same
US20140175480A1 (en) Led die and method for manufacturing led incorporating the same
TWI590487B (en) Thin-film light-emitting diode manufacturing method and film-type light-emitting Diode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101104

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees