JP2005332857A - Light emitting diode and method for manufacturing the same - Google Patents

Light emitting diode and method for manufacturing the same Download PDF

Info

Publication number
JP2005332857A
JP2005332857A JP2004147540A JP2004147540A JP2005332857A JP 2005332857 A JP2005332857 A JP 2005332857A JP 2004147540 A JP2004147540 A JP 2004147540A JP 2004147540 A JP2004147540 A JP 2004147540A JP 2005332857 A JP2005332857 A JP 2005332857A
Authority
JP
Japan
Prior art keywords
emitting diode
light emitting
light
led
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004147540A
Other languages
Japanese (ja)
Inventor
Hideo Tamamura
英雄 玉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2004147540A priority Critical patent/JP2005332857A/en
Priority to KR1020067022475A priority patent/KR20070013289A/en
Priority to PCT/JP2005/009287 priority patent/WO2005112136A1/en
Priority to US11/587,969 priority patent/US20070222365A1/en
Priority to TW094115914A priority patent/TWI278130B/en
Publication of JP2005332857A publication Critical patent/JP2005332857A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a light emitting diode that generates less uneven color and is low in cost. <P>SOLUTION: The light emitting diode converts light emission wavelength of a GaN LED as a primary light emission source by using one kind or several kinds of luminescent materials. A thin film made mainly of a fluorescent material is attached to the light pick-up surface of the LED as a primary light emission source in a manner like an LED wafer or aggregated chips, thus converting its wavelength and manufacturing a light emitting diode that can emit a light with a secondary light emission wavelength. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、LEDディスプレー、バックライト光源、信号機、および各種インジケーターなどに利用される発光ダイオードに関係し、特に第1次の発光源であるLEDが発生する光の波長を変換して、第2次の発光波長を発光するフォトルミネッセンス蛍光体を備えた発光ダイオードに関する   The present invention relates to a light emitting diode used in an LED display, a backlight light source, a traffic light, and various indicators, and in particular, converts a wavelength of light generated by an LED as a primary light emitting source to generate a second light source. LIGHT EMITTING DIODE WITH PHOTOLENSIVE FLUORESCENT LIGHT EMITTING NEXT EMISSION

LED(発光ダイオード)は小型、省電力消費、長寿命などの特性より、種々の幅広い用途に使用されている。
これは第1次の発光源であるLEDの発光波長を、1種類、又は数種類の蛍光材料を用いて波長変換し第2次の発光波長にすることにより、任意の色調の発光ダイオードを得る事ができるからである。
つまり第1次の発光源であるLEDの発光波長は1種類でも、1種類、又は数種類の蛍光材料により、数種類の波長を持った第2次の光に変換することにより、任意の色調の光を得ることができ、従って安価で安定した発光が得られ、これを利用して上記のような幅広い用途に使用されている。
この発光ダイオードの蛍光体のマウント方法の代表例は、例えば特許文献1に記載されている。この発明によれば、発光チップの発光をカッフ゜の底面においた発光素子全体を樹脂で封止する発光タ゛イオート゛で、前記樹脂はカッフ゜内部を充填する第1の樹脂と、第1の樹脂を包囲する第2の樹脂よりなり、第1の樹脂には波長変換する蛍光物質、または1部吸収するフイルター物質が含有されていることを特徴とすると記されている。
LEDs (light-emitting diodes) are used in a wide variety of applications due to their characteristics such as small size, low power consumption and long life.
This is to obtain a light emitting diode of any color tone by converting the light emission wavelength of the LED as the primary light emission source into a secondary light emission wavelength by using one or several kinds of fluorescent materials. Because you can.
In other words, even if there is only one type of light emission wavelength of the LED as the primary light source, light of any color tone can be obtained by converting it to secondary light having several types of wavelengths using one or several fluorescent materials. Therefore, inexpensive and stable light emission can be obtained, and this is used for a wide range of applications as described above.
A typical example of a method for mounting the phosphor of the light emitting diode is described in Patent Document 1, for example. According to the present invention, the light emitting diode auto seals the entire light emitting element with the light emission of the light emitting chip on the bottom surface of the cup, and the resin surrounds the first resin filling the inside of the cup and the first resin. It is described that it is composed of a second resin, and the first resin contains a fluorescent substance that converts wavelength or a filter substance that absorbs part of the first resin.

しかし、一般的に常温で液状で熱硬化する透光性樹脂に蛍光体を混合し波長変換する方法は、下記のような問題がある。
1)樹脂と蛍光体との比重がことなるので、液状の樹脂に蛍光体を混合すると、熱硬化するまでの時間に、液状樹脂と蛍光体の比重差のために蛍光体が沈降し、熱硬化した状態まで均一な混合状態を維持することが困難であり、発光ダイオードの色調の均一性を悪化させる。
2) 発光ダイオードの色調を向上させる目的で1種類以上の異なった蛍光体をもちいることが一般的である。この場合には、数種類の蛍光体間の比重が異なり沈降速度に違いがでる問題が加わり、一段と樹脂との混合、分散状態、沈降速度が不均一に成り易くなり、熱硬化した状態まで均一な混合状態を維持することが一段と困難になるので、いっそう発光ダイオードの色調の均一性を悪化させる。
However, generally, the method of converting the wavelength by mixing a phosphor with a translucent resin that is liquid and thermosetting at room temperature has the following problems.
1) Since the specific gravity of the resin and the phosphor is different, when the phosphor is mixed with the liquid resin, the phosphor settles down due to the difference in specific gravity between the liquid resin and the phosphor during the time until thermosetting. It is difficult to maintain a uniform mixed state up to the cured state, which deteriorates the color tone uniformity of the light emitting diode.
2) In general, one or more different phosphors are used for the purpose of improving the color tone of the light emitting diode. In this case, there is a problem that the specific gravity between several kinds of phosphors is different and the sedimentation speed is different. Since it becomes more difficult to maintain the mixed state, the color tone uniformity of the light emitting diode is further deteriorated.

3)一般的に第1次の発光源であるLEDの波長は、蛍光体で波長変換された第2次の発光波長より短波長である。また、一般的に使われている透光性樹脂は短波長の光を吸収すると、透光性が劣化する性質がある。従って、蛍光体で波長変換した第2次の発光波長より、発光源であるLEDの第1次の発光波長は短波長であることが多いので、蛍光体と透光性樹脂を混練した状態では、LEDの第1次の発光波長である短波長光が透光性樹脂を1部透過することになるので、透光性樹脂の劣化を防止することが難しい
4)樹脂と蛍光体の混練中、及び、LEDチップとの樹脂と蛍光体を混練した材料で封止中、に空気を巻き込やすく、歩留まりが悪化し、またこれを防止するには高価な機器が必要になり、製造コストが上昇する
また特許文献2には、BN結晶よりなるLEDに粒径限定した蛍光体層を結晶層の接合面につけることを提案しているが、本特許の対象は主としてGaN系半導体で対象が異なり、かつ1種類又は数種類の蛍光体の使用により演色性の良い白色系の光を取り出し、かつ光取り出し面の大部分を具体的な方法を提案して覆うことに特徴がある。
特開平7−99345号公報 特開平2−91980号公報
3) Generally, the wavelength of the LED, which is the primary emission source, is shorter than the secondary emission wavelength that has been wavelength-converted by the phosphor. Moreover, the translucent resin generally used has the property that translucency deteriorates when light of a short wavelength is absorbed. Therefore, the primary emission wavelength of the LED, which is the light source, is often shorter than the secondary emission wavelength that has been wavelength-converted by the phosphor, so in a state where the phosphor and the translucent resin are kneaded. It is difficult to prevent deterioration of the translucent resin because the short wavelength light, which is the primary emission wavelength of the LED, passes through a part of the translucent resin.
4) Air is easily entrapped during resin and phosphor kneading and sealing with a material kneaded resin and phosphor with LED chip, resulting in poor yield and expensive to prevent this. In addition, Patent Document 2 proposes that a phosphor layer having a grain size limited to an LED made of BN crystal is attached to the bonding surface of the crystal layer. The target is mainly GaN-based semiconductors, and the target is different, and by using one or several kinds of phosphors, white light with good color rendering properties is extracted, and most of the light extraction surface is covered by proposing a specific method There is a special feature.
JP-A-7-99345 Japanese Patent Laid-Open No. 2-91980

本発明は上記の問題を解決し、色ムラを解決し安価で安定した色調が得られる発光ダイオード及びその成形方法を提供するものである。   The present invention solves the above-described problems, and provides a light-emitting diode capable of solving color unevenness and obtaining an inexpensive and stable color tone and a molding method thereof.

本発明者は、上記課題を解決するために、鋭意研究を重ねた結果、本発明を完成させた。すなわち本発明は以下に関する。
(1)第1次の発光源であるGaN系のLEDの発光波長を、1種類、又は数種類の蛍光材料を用いて波長変換し第2次の発光波長を発光する発光ダイオードの製造方法において、第1次の発光源であるLEDの光取り出し面に、主として蛍光材料からなる薄膜をLEDウエハー又は集合したチップの状態で、つけることにより波長変換して第2次の発光波長を発光させることを特徴とする発光ダイオードの製造方法。
(2)第1次の発光波長が、第2の発光波長より短いことを特徴とする(1)に記載の発光ダイオードの製造方法。
(3)第1次の発光源であるLEDがGaN系で、LEDの基板がサファイア、又はSiCであることを特徴とする(1)または(2)に記載の発光ダイオードの製造方法。
(4)第1次の発光源であるLEDがGaN系のLEDであり、第2の発光色が白色系の色であることを特徴とする(1)〜(3)の何れか1項に記載の発光ダイオードの製造方法。
(5)主として蛍光材料からなる薄膜の膜厚が、100ミクロン以下であることを特徴とする(1)〜(4)の何れか1項に記載の発光ダイオードの製造方法。
The present inventor completed the present invention as a result of intensive studies in order to solve the above problems. That is, the present invention relates to the following.
(1) In a method of manufacturing a light emitting diode that emits a secondary light emission wavelength by converting the light emission wavelength of a GaN-based LED, which is a primary light emission source, using one or several types of fluorescent materials, The secondary light emission wavelength is emitted by converting the wavelength by attaching a thin film mainly made of a fluorescent material to the light extraction surface of the LED, which is the primary light emission source, in the state of an LED wafer or an assembled chip. A method for producing a light emitting diode.
(2) The method for producing a light-emitting diode according to (1), wherein the primary emission wavelength is shorter than the second emission wavelength.
(3) The method for producing a light-emitting diode according to (1) or (2), wherein the LED as the primary light-emitting source is GaN-based and the substrate of the LED is sapphire or SiC.
(4) The LED as the primary light emission source is a GaN-based LED, and the second light emission color is a white color. Any one of (1) to (3) The manufacturing method of the light emitting diode of description.
(5) The method for producing a light-emitting diode according to any one of (1) to (4), wherein the thickness of the thin film mainly made of a fluorescent material is 100 microns or less.

(6)主として蛍光材料からなる薄膜の膜厚が、50ミクロン以下であることを特徴とする(1)〜(5)の何れか1項に記載の発光ダイオードの製造方法。
(7)主として蛍光材料からなる薄膜の膜厚が、25ミクロン以下であることを特徴とする(1)〜(6)の何れか1項に記載の発光ダイオードの製造方法。
(8)主として蛍光材料からなる薄膜は、薄膜中の蛍光体重量百分率が70%以上であることを特徴とする(1)〜(7)の何れか1項に記載の発光ダイオードの製造方法。
(9)主として蛍光材料からなる薄膜は、薄膜中の蛍光体重量百分率が85%以上であることを特徴とする(1)〜(8)の何れか1項に記載の発光ダイオードの製造方法。
(10)(1)〜(9)の何れか1項に記載の発光ダイオードの製造方法で製造された発光ダイオード。
(6) The method for producing a light-emitting diode according to any one of (1) to (5), wherein the thickness of the thin film mainly made of a fluorescent material is 50 microns or less.
(7) The method for producing a light-emitting diode according to any one of (1) to (6), wherein the thickness of the thin film mainly made of a fluorescent material is 25 microns or less.
(8) The method for producing a light-emitting diode according to any one of (1) to (7), wherein the thin film mainly made of a fluorescent material has a phosphor weight percentage in the thin film of 70% or more.
(9) The method for producing a light-emitting diode according to any one of (1) to (8), wherein the thin film mainly made of a fluorescent material has a phosphor weight percentage in the thin film of 85% or more.
(10) A light-emitting diode manufactured by the method for manufacturing a light-emitting diode according to any one of (1) to (9).

本発明により、色ムラが少なく、かつ安価な発光ダイオードを提供できる。   According to the present invention, an inexpensive light emitting diode with little color unevenness can be provided.

従来の発光ダイオードでは、樹脂の中に蛍光材料を混入させることにより製造するため、樹脂と蛍光材料との比重差により蛍光材料が沈降し、色むらが生ずる等の問題が生じていた。そこで本発明者は、第1次の発光源であるLEDチップの発光面に樹脂を用いずに、直接蛍光材料の薄膜をつける事により、これらの問題を解決するものである。
薄膜の作りかたは、塗布、印刷、蒸着、スパッタリング、その他、適当な方法を選択することができる。
また蛍光材料は、LEDに直接薄膜をつける目的で、各種の添加剤を加えて作業がしやすい状態にすることは当然である。
Since the conventional light emitting diode is manufactured by mixing a fluorescent material in a resin, there is a problem that the fluorescent material is settled due to a difference in specific gravity between the resin and the fluorescent material, resulting in uneven color. Therefore, the present inventor solves these problems by directly attaching a thin film of a fluorescent material without using a resin on the light emitting surface of the LED chip as the primary light emitting source.
As a method for forming the thin film, an appropriate method such as coating, printing, vapor deposition, sputtering, or the like can be selected.
In addition, for the purpose of directly attaching a thin film to the LED, it is natural to add various additives to make the fluorescent material easy to work.

これにより、上記の問題は下記のように解決することができる。
1)樹脂と蛍光体との比重が異なっても、樹脂に混練する工程が無い。従って、樹脂と蛍光体の比重差による沈降する問題はないので、第1次の発光源であるLEDの発光面につけた蛍光体の薄膜を通り波長変換された第2次の発光波長は均一になり、従って出来た発光ダイオードの色調は均一になる。
2)数種類の蛍光体を混合して用いても、樹脂による混練工程がないので数種類の蛍光体の比重差の影響は受けない。従って数種類の蛍光体を混合しても、出来た発光ダイオードの色調は均一になる。
3) 第1次の発光源であるLEDの発光面に直接蛍光体の薄膜をつけるのであるので、LEDの第1次の発光波長である短波長光が透光性樹脂を透過することは無いので、透光性樹脂の劣化はおきない。
Thereby, the above problem can be solved as follows.
1) Even if the specific gravity of the resin and the phosphor is different, there is no step of kneading the resin. Therefore, there is no problem of sedimentation due to the difference in specific gravity between the resin and the phosphor, so the secondary emission wavelength that has been wavelength-converted through the phosphor thin film attached to the light emitting surface of the LED, which is the primary emission source, is uniform. Therefore, the color tone of the resulting light emitting diode becomes uniform.
2) Even if several types of phosphors are mixed and used, there is no kneading step using a resin, so there is no influence of the specific gravity difference of several types of phosphors. Therefore, even if several kinds of phosphors are mixed, the color tone of the resulting light emitting diode becomes uniform.
3) Since the phosphor thin film is directly attached to the light emitting surface of the LED as the primary light emitting source, the short wavelength light that is the primary light emitting wavelength of the LED does not pass through the translucent resin. Therefore, the translucent resin does not deteriorate.

4)樹脂と蛍光体の混練工程が無いので、空気の巻き込みの問題は起きない。従って、歩留まりが向上し悪化し、また空気巻き込み防止のための高価な機器が不必要になり、製造コストが減少する
従って本発明により、色ムラのない安価な発光ダイオードを供給することができる
しかし、LEDチップは大変小さく、かつ多量に生産するので、効率的な生産方法が求められる。
この解決方法として、本発明者は本発明の請求項に記載の、第1次の発光源であるGaN系のLEDの発光波長を、1種類、又は数種類の蛍光材料を用いて波長変換し第2次の発光波長を発光する発光ダイオードにおいて、第1次の発光源であるLEDの光取り出し面に、主として蛍光材料からなる薄膜をLEDウエハー又は集合したチップの状態で、つけることにより波長変換して第2次の発光波長を発光させることを特徴とする、発光ダイオード及び成形方法を提案する
4) Since there is no resin and phosphor kneading step, the problem of air entrainment does not occur. Therefore, the yield is improved and deteriorated, and an expensive device for preventing air entrainment is unnecessary and the manufacturing cost is reduced. Therefore, according to the present invention, an inexpensive light emitting diode without color unevenness can be supplied. Since LED chips are very small and produced in large quantities, an efficient production method is required.
As a solution to this problem, the inventor converted the emission wavelength of the GaN-based LED, which is the first emission source, according to the claims of the present invention, using one or several types of fluorescent materials, and converted the wavelength. In a light emitting diode that emits a secondary emission wavelength, wavelength conversion is performed by attaching a thin film mainly made of a fluorescent material to the light extraction surface of the LED, which is the primary emission source, in the state of an LED wafer or an assembled chip. Proposing a light emitting diode and a molding method characterized by emitting a second emission wavelength

これは個々に切断したLEDチップの状態で、蛍光体薄膜をつけるのは、その成形工程より、種々の機器を要して高価なものになるので、LEDウエハーの状態又は集合したチップの状態で波長変換用蛍光体薄膜を作成するもので、望ましくはLEDウエハーの状態で作成するのが望ましい。
一般的なGaN系のLEDの製造工程を参考までに記述する。なお、具体的な方法は技術の種類により異なり、本特許はこの工程に束縛されるものではない。
1)サファイアウエハーを用意する
2)MOCVD法でサファイアウエハーの上に種々のエピタキシャル薄膜層を作成する
3)マスクを付けて、エッチング法により不要部分を除去する
4)P,Nの電極をスパッタ法や蒸着法により作成する
5)サファイア面にテープを取り付ける
6)各LEDチップの大きさに切断又は半切断する
7)各LEDチップの電気特性をチェックし、選品、グレード分けする。
8)電極架台(ステム)にLEDチップを装着し電線を取り付ける
9)樹脂で露出したLEDチップの部分を封止する。
This is in the state of individually cut LED chips, and attaching a phosphor thin film is expensive because it requires various equipment than the molding process. A phosphor thin film for wavelength conversion is prepared, and it is preferable that the phosphor thin film is formed in the state of an LED wafer.
A general GaN LED manufacturing process is described for reference. The specific method varies depending on the type of technology, and this patent is not restricted to this process.
1) Prepare a sapphire wafer
2) Create various epitaxial thin film layers on sapphire wafer by MOCVD method
3) Attach a mask and remove unnecessary parts by etching.
4) Create P and N electrodes by sputtering or vapor deposition
5) Attach the tape to the sapphire surface
6) Cut or semi-cut into the size of each LED chip
7) Check the electrical characteristics of each LED chip, select and grade.
8) Attach the LED chip to the electrode base (stem) and attach the wire
9) Seal the exposed LED chip part with resin.

上記の工程の中でウエハーの到達温度が蛍光材料の物性に変化を与えない温度範囲内の工程で蛍光材料の薄膜作成の工程を入れるのが望ましく、上記の工程では3)から6)の工程内にいれるのが効率的であるが、集合したチップの状態で蛍光体の薄膜を付けてもかまわない。
GaN系のLEDの場合はサファイア面を上にして、光を取り出すフリップチップ型が光の取り出し効率が高いので、本方法は一段と有利な発光ダイオードを作成する事になる。
発光面が基板とエピタキシャル薄膜層の両面の場合は、本特許で提案したLEDウエハーの状態又は集合したチップの状態で波長変換用蛍光体薄膜を作成する方法は一段とその効果が大きいものとなる。
Among the above steps, it is desirable to include the step of creating a thin film of fluorescent material in a step within the temperature range where the temperature reached by the wafer does not change the physical properties of the fluorescent material. In the above step, steps 3) to 6) It is efficient to put it inside, but a phosphor thin film may be attached in the assembled chip state.
In the case of a GaN-based LED, the flip chip type that extracts light with the sapphire surface facing up has high light extraction efficiency, so this method creates a more advantageous light emitting diode.
In the case where the light emitting surface is both the substrate and the epitaxial thin film layer, the method for producing the wavelength converting phosphor thin film in the state of the LED wafer or the assembled chip proposed in this patent is much more effective.

(実施例1)
サファイア基板を用いたGaN系の発光ダイオードの作成工程に本発明の方法を適用した。
サファイア基板の上に、明細書記述の一般的なGaN系のLEDの製造工程に従い、2)のMOCVD法によりエピタキシャル薄膜層を作成し、3)マスクを付けて、エッチング法により不要部分を除去したのちに、図1に示すように、サファイアウエハー基盤面に蛍光体の薄膜層を作成し、その後4)のP,N,の電極をスパッタ法や蒸着法により作成した。
以降の操作は同じように実施した。これにより生産効率は大幅に向上し、また色ムラの少ない発光ダイオードを作成することができた。
(Example 1)
The method of the present invention was applied to a process for producing a GaN-based light emitting diode using a sapphire substrate.
On the sapphire substrate, according to the general GaN-based LED manufacturing process described in the specification, an epitaxial thin film layer was created by 2) MOCVD method, 3) a mask was attached, and unnecessary portions were removed by etching method. After that, as shown in FIG. 1, a phosphor thin film layer was formed on the sapphire wafer base surface, and then 4) P, N, and electrode were prepared by sputtering or vapor deposition.
The subsequent operations were performed in the same manner. As a result, the production efficiency was greatly improved, and a light emitting diode with little color unevenness could be produced.

(実施例2)
サファイア基板を用いたGaN系の発光ダイオードの作成工程に本発明の方法を適用した。
サファイア基板の上に、明細書記述の一般的なGaN系のLEDの製造工程に従い、4)のP,N,の電極をスパッタ法や蒸着法により作成するしたのちにサファイアウエハーの基板面に図1のように蛍光体の薄膜層を作成し、その後サファイア面に蛍光体の薄膜層を取り付けた面に5)のテープを取り付けた。
以降の操作は同じように実施した。これにより生産効率は大幅に向上し、また色ムラの少ない発光ダイオードを作成することができた。
(Example 2)
The method of the present invention was applied to a process for producing a GaN-based light emitting diode using a sapphire substrate.
On the sapphire substrate, according to the general GaN LED manufacturing process described in the specification, the P, N, and 4 electrodes of 4) are created by sputtering or vapor deposition, and then shown on the substrate surface of the sapphire wafer. The phosphor thin film layer was prepared as in 1, and then the tape 5) was attached to the surface of the sapphire surface on which the phosphor thin film layer was attached.
The subsequent operations were performed in the same manner. As a result, the production efficiency was greatly improved, and a light emitting diode with little color unevenness could be produced.

(実施例3)
SiC基板を用いたGaN系の発光ダイオードのの作成工程に本発明の方法を適用した。
SiCのLED作成の場合3)のマスクを付けて、エッチング法により不要部分を除去する工程はないので、4)のP,N,の電極をスパッタ法や蒸着法により作成するしたのちにSiC基板面とエピタキシャル薄膜層にと蛍光体の薄膜層を図2のように作成した。
以降の操作は同じように実施した。これにより生産効率は大幅に向上し、また色ムラ の少ない発光ダイオードを作成することができた。
(Example 3)
The method of the present invention was applied to the fabrication process of a GaN-based light emitting diode using a SiC substrate.
In the case of SiC LED creation, there is no process to attach the mask of 3) and remove the unnecessary part by etching method, so after making the P, N, electrode of 4) by sputtering method or vapor deposition method, SiC substrate A thin film layer of phosphor was formed on the surface and the epitaxial thin film layer as shown in FIG.
The subsequent operations were performed in the same manner. As a result, production efficiency was greatly improved, and light-emitting diodes with less color unevenness could be produced.

本発明により色むらのない、安価で高効率で波長変換が可能な発光ダイオードが効率よく製造できる。   According to the present invention, an inexpensive, highly efficient light-emitting diode capable of wavelength conversion without color unevenness can be efficiently manufactured.

実施例1、実施例2のサファイア基板にGaNの系のLED作成時にサファイアウエハーに蛍光体膜をつけた図である。FIG. 3 is a diagram in which a phosphor film is attached to a sapphire wafer when a GaN-based LED is formed on the sapphire substrates of Examples 1 and 2. 実施例3のSiC基板にGaN系のLED作成時にSiCウエハーに蛍光体膜をつけた図である。FIG. 4 is a diagram in which a phosphor film is attached to a SiC wafer when a GaN-based LED is formed on the SiC substrate of Example 3.

符号の説明Explanation of symbols

1 電極
2 電極
3 蛍光体薄膜
4 エピタキシャル層
5 基板(GaN系はサファイア、SiC系はSiC)
6 チップの切断面
1 Electrode 2 Electrode 3 Phosphor thin film 4 Epitaxial layer 5 Substrate (GaN is sapphire, SiC is SiC)
6 Cutting surface of chip

Claims (10)

第1次の発光源であるGaN系のLEDの発光波長を、1種類、又は数種類の蛍光材料を用いて波長変換し第2次の発光波長を発光する発光ダイオードの製造方法において、第1次の発光源であるLEDの光取り出し面に、主として蛍光材料からなる薄膜をLEDウエハー又は集合したチップの状態で、つけることにより波長変換して第2次の発光波長を発光させることを特徴とする発光ダイオードの製造方法。 In a method for manufacturing a light emitting diode that emits a secondary emission wavelength by converting the emission wavelength of a GaN-based LED, which is a primary emission source, using one or several types of fluorescent materials, The second light emission wavelength is emitted by converting the wavelength by attaching a thin film mainly made of a fluorescent material to the light extraction surface of the LED, which is a light emission source, in the state of an LED wafer or an assembled chip. Manufacturing method of light emitting diode. 第1次の発光波長が、第2の発光波長より短いことを特徴とする請求項1に記載の発光ダイオードの製造方法。 2. The method for producing a light emitting diode according to claim 1, wherein the first emission wavelength is shorter than the second emission wavelength. 第1次の発光源であるLEDがGaN系で、LEDの基板がサファイア、又はSiCであることを特徴とする請求項1または2に記載の発光ダイオードの製造方法。 3. The method of manufacturing a light emitting diode according to claim 1, wherein the LED as the first light emitting source is a GaN-based LED and the substrate of the LED is sapphire or SiC. 第1次の発光源であるLEDがGaN系のLEDであり、第2の発光色が白色系の色であることを特徴とする請求項1〜3の何れか1項に記載の発光ダイオードの製造方法。 4. The light emitting diode according to claim 1, wherein the LED that is the first light emitting source is a GaN-based LED, and the second light emitting color is a white color. 5. Production method. 主として蛍光材料からなる薄膜の膜厚が、100ミクロン以下であることを特徴とする請求項1〜4の何れか1項に記載の発光ダイオードの製造方法。 The method for manufacturing a light-emitting diode according to any one of claims 1 to 4, wherein the thickness of the thin film mainly made of a fluorescent material is 100 microns or less. 主として蛍光材料からなる薄膜の膜厚が、50ミクロン以下であることを特徴とする請求項1〜5の何れか1項に記載の発光ダイオードの製造方法。 6. The method of manufacturing a light emitting diode according to claim 1, wherein the thickness of the thin film mainly made of a fluorescent material is 50 microns or less. 主として蛍光材料からなる薄膜の膜厚が、25ミクロン以下であることを特徴とする請求項1〜6の何れか1項に記載の発光ダイオードの製造方法。 The method for producing a light-emitting diode according to any one of claims 1 to 6, wherein the thickness of the thin film mainly made of a fluorescent material is 25 microns or less. 主として蛍光材料からなる薄膜は、薄膜中の蛍光体重量百分率が70%以上であることを特徴とする請求項1〜7の何れか1項に記載の発光ダイオードの製造方法。 The method for producing a light-emitting diode according to any one of claims 1 to 7, wherein the thin film mainly made of a fluorescent material has a phosphor weight percentage of 70% or more in the thin film. 主として蛍光材料からなる薄膜は、薄膜中の蛍光体重量百分率が85%以上であることを特徴とする請求項1〜8の何れか1項に記載の発光ダイオードの製造方法。 The method for producing a light-emitting diode according to any one of claims 1 to 8, wherein the thin film mainly made of a fluorescent material has a phosphor weight percentage in the thin film of 85% or more. 請求項1〜9の何れか1項に記載の発光ダイオードの製造方法で製造された発光ダイオード。
The light emitting diode manufactured with the manufacturing method of the light emitting diode of any one of Claims 1-9.
JP2004147540A 2004-05-18 2004-05-18 Light emitting diode and method for manufacturing the same Pending JP2005332857A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004147540A JP2005332857A (en) 2004-05-18 2004-05-18 Light emitting diode and method for manufacturing the same
KR1020067022475A KR20070013289A (en) 2004-05-18 2005-05-16 Light-emitting diode and method of manufacturing the same
PCT/JP2005/009287 WO2005112136A1 (en) 2004-05-18 2005-05-16 Light-emitting diode and method of manufacturing the same
US11/587,969 US20070222365A1 (en) 2004-05-18 2005-05-16 Light-Emitting Diode and Method of Manufacturing the Same
TW094115914A TWI278130B (en) 2004-05-18 2005-05-17 Light-emitting diode and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004147540A JP2005332857A (en) 2004-05-18 2004-05-18 Light emitting diode and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2005332857A true JP2005332857A (en) 2005-12-02

Family

ID=35487311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004147540A Pending JP2005332857A (en) 2004-05-18 2004-05-18 Light emitting diode and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2005332857A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307816A (en) * 1998-04-24 1999-11-05 Citizen Electronics Co Ltd Package structure for chip semiconductor and its manufacture
JP2000208822A (en) * 1999-01-11 2000-07-28 Matsushita Electronics Industry Corp Semiconductor light-emitting device
JP2002151747A (en) * 2001-09-03 2002-05-24 Nichia Chem Ind Ltd Light emitting diode and its forming method
JP2002344070A (en) * 2001-05-14 2002-11-29 Furukawa Electric Co Ltd:The Device for holding laser bar
JP2004095765A (en) * 2002-08-30 2004-03-25 Nichia Chem Ind Ltd Light emitting device and method for manufacturing the same
WO2005112136A1 (en) * 2004-05-18 2005-11-24 Showa Denko K.K. Light-emitting diode and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307816A (en) * 1998-04-24 1999-11-05 Citizen Electronics Co Ltd Package structure for chip semiconductor and its manufacture
JP2000208822A (en) * 1999-01-11 2000-07-28 Matsushita Electronics Industry Corp Semiconductor light-emitting device
JP2002344070A (en) * 2001-05-14 2002-11-29 Furukawa Electric Co Ltd:The Device for holding laser bar
JP2002151747A (en) * 2001-09-03 2002-05-24 Nichia Chem Ind Ltd Light emitting diode and its forming method
JP2004095765A (en) * 2002-08-30 2004-03-25 Nichia Chem Ind Ltd Light emitting device and method for manufacturing the same
WO2005112136A1 (en) * 2004-05-18 2005-11-24 Showa Denko K.K. Light-emitting diode and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP3645422B2 (en) Light emitting device
US8597963B2 (en) Manufacture of light emitting devices with phosphor wavelength conversion
US6841802B2 (en) Thin film light emitting diode
US7329907B2 (en) Phosphor-converted LED devices having improved light distribution uniformity
US7414271B2 (en) Thin film led
JP4417906B2 (en) Light emitting device and manufacturing method thereof
JP3172454U (en) Light emitting diode package structure
JP4353196B2 (en) Light emitting device
TWI509839B (en) Light emitting diode package and method for making it
TWI278130B (en) Light-emitting diode and method of manufacturing the same
KR100901369B1 (en) White light emitting diode chip and manufacturing method therof
JP2006005336A (en) Light-emitting diode and manufacturing method therefor
JP2010129655A (en) Led light emitting device
JP2007067183A (en) Led package with compound semiconductor light emitting device
KR20130124229A (en) Light emitting diode (led) dice having wavelength conversion layers and methods of fabrication
JP2004048040A (en) Semiconductor light emitting device
JP2007059419A (en) Led package with compound semiconductor light emitting element
TWI389341B (en) Light-emitting device
KR20040088418A (en) Tri-color white light emitted diode
JP2009212275A (en) Backlight source for liquid crystal display device
US20130240930A1 (en) Light emitting device and method for manufacturing the same
CN101271940A (en) Semiconductor illuminating device and production method thereof
TW201301570A (en) Multi-color light emitting diode and manufacturing method thereof
JP4624719B2 (en) Light emitting diode manufacturing method and light emitting diode
KR100684043B1 (en) White light emitting diode and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019