JP2005330528A - Raw material powder for magnetostrictive material, and method for manufacturing magnetostrictive material - Google Patents

Raw material powder for magnetostrictive material, and method for manufacturing magnetostrictive material Download PDF

Info

Publication number
JP2005330528A
JP2005330528A JP2004149009A JP2004149009A JP2005330528A JP 2005330528 A JP2005330528 A JP 2005330528A JP 2004149009 A JP2004149009 A JP 2004149009A JP 2004149009 A JP2004149009 A JP 2004149009A JP 2005330528 A JP2005330528 A JP 2005330528A
Authority
JP
Japan
Prior art keywords
powder
raw material
amine
magnetostrictive material
magnetostrictive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004149009A
Other languages
Japanese (ja)
Inventor
Takeshi Nakai
毅 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2004149009A priority Critical patent/JP2005330528A/en
Publication of JP2005330528A publication Critical patent/JP2005330528A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain, as a raw material powder for use in the manufacture of a magnetostrictive material by a powder metallurgy process, a raw material powder which is hardly oxidized and has low water absorbing property by a low-cost method. <P>SOLUTION: The magnetostrictive material having a composition represented by Tb<SB>0.3</SB>Dy<SB>0.7</SB>Fe<SB>1.89</SB>is manufactured by a powder metallurgy process through a powder mixing step, a film forming step, a compaction step, a heat treatment step and a sintering step. In the film forming step, a film composed of amine having ≥200°C boiling point is formed on the powder mixture. In the heat treatment step, in the course of temperature raise up to 500°C at a rate of ≤3°C/min under a pressure of ≤13.3 Pa(10<SP>-1</SP>Torr), the resultant green compact is held for ≥30 min at one point or a plurality of points in the range between 200 and 500°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、粉末冶金法で磁歪材(外部磁界を作用させたときに寸法が変化する磁性体)を製造する際に使用される原料粉末、およびこれを用いた磁歪材の製造方法に関する。   The present invention relates to a raw material powder used for producing a magnetostrictive material (a magnetic material whose dimensions change when an external magnetic field is applied) by powder metallurgy, and a method for producing a magnetostrictive material using the same.

磁歪材の製造方法としては、粉末冶金法や単結晶法が挙げられる。単結晶法は、磁性体を所定の配向で結晶成長させることで単結晶の磁歪材を得る方法である。粉末冶金法は、原料粉末をボールミル等により所定の組成となるように混合した後、得られた混合粉末を磁場中で配向させながら成形して焼結する方法であり、結晶軸が配向された磁歪材が所定形状で得られる。粉末冶金法は単結晶法よりも、磁歪材の製造コストを低く抑えることができる。   Examples of the method for producing the magnetostrictive material include a powder metallurgy method and a single crystal method. The single crystal method is a method of obtaining a single crystal magnetostrictive material by crystal growth of a magnetic material in a predetermined orientation. The powder metallurgy method is a method in which raw material powder is mixed so as to have a predetermined composition by a ball mill or the like, and then the obtained mixed powder is shaped and sintered while being oriented in a magnetic field, and the crystal axis is oriented. A magnetostrictive material is obtained in a predetermined shape. The powder metallurgy method can suppress the manufacturing cost of the magnetostrictive material lower than the single crystal method.

下記の特許文献1には、磁歪量の大きな(Tb,Dy)Fe2 系磁歪材を、粉末冶金法で製造することが記載されている。具体的には、下記の原料A粉末と原料B粉末を含む混合物、または、原料A粉末と原料B粉末と原料C粉末とを含む混合物を、磁場中で成形した後、焼結することにより、(Tbv Dy1-v )Tw で表わされる組成(Tは、Fe、Co、およびNiから選択される少なくとも1種の元素であり、vおよびwは原子比を表わし、0.27≦v<0.50、1.70≦w≦2.00である)の磁歪材を製造することが記載されている。 Patent Document 1 below describes that a (Tb, Dy) Fe 2 magnetostrictive material having a large magnetostriction amount is produced by a powder metallurgy method. Specifically, a mixture containing the following raw material A powder and raw material B powder, or a mixture containing raw material A powder, raw material B powder and raw material C powder is molded in a magnetic field and then sintered. (Tb v Dy 1-v ) A composition represented by T w (T is at least one element selected from Fe, Co, and Ni, v and w represent an atomic ratio, and 0.27 ≦ v <0.50, 1.70 ≦ w ≦ 2.00) is described.

原料A粉末は、(Tbx Dy1-x )Ty で表される組成の粉末であり、xおよびyは原子比を表わし、0.30<x≦0.50、1.70≦y≦2.00である。原料B粉末は、(Dy1-t Tbt z 1-z で表される組成の粉末であり、tおよびzは原子比を表わし、0≦t≦0.30、0.40≦z≦0.80である。原料C粉末は、実質的に前述のTから構成される。 The raw material A powder is a powder having a composition represented by (Tb x Dy 1-x ) T y , where x and y represent an atomic ratio, 0.30 <x ≦ 0.50, 1.70 ≦ y ≦ 2.00. The raw material B powder is a powder having a composition represented by (Dy 1−t Tb t ) z T 1−z , where t and z represent an atomic ratio, and 0 ≦ t ≦ 0.30, 0.40 ≦ z ≦ 0.80. The raw material C powder is substantially composed of the aforementioned T.

下記の特許文献2には、一般式:(Tbx Dy1-x )(Fey Cr1-y ) z (但し、0≦x≦1.0、0.8≦y≦0.95、1.5≦z≦3.0)で表される組成を有する相を主相とする磁歪合金及び/又はその前駆体からなり、酸素量が1.5wt%以下、窒素量が1.5wt%以下である主原料粉末を製造する粉末製造工程と、前記主原料粉末を用いて多結晶体を製造する焼結体製造工程と、を備えた超磁歪材料の製造方法が記載されている。 In the following Patent Document 2, the general formula: (Tb x Dy 1-x ) (Fe y Cr 1-y ) z (where 0 ≦ x ≦ 1.0, 0.8 ≦ y ≦ 0.95, 1 .5 ≦ z ≦ 3.0) consisting of a magnetostrictive alloy and / or its precursor having a phase having a composition represented by the following formula: oxygen content is 1.5 wt% or less and nitrogen content is 1.5 wt% or less A method for producing a giant magnetostrictive material comprising a powder production process for producing a main raw material powder and a sintered body production process for producing a polycrystalline body using the main raw material powder is described.

さて、粉末冶金法で磁歪材を製造する際に使用する原料粉末は、化学的に活性であるため酸化し易いという問題があり、磁歪特性および安全性を確保する目的で、従来より酸化防止の対策がとられている。その方法としては、窒素やアルゴンなどの不活性ガス中に長時間放置して表面を安定化する方法がある。
しかしながら、この方法では、磁歪特性が劣化するだけでなく、安定化処理に時間がかかるため、製造コストが高くなるという問題もある。また、希土類元素を含む組成の原料粉末は、水分を吸収し易いため、大気中で取り扱うと大気中の水分を吸収して、磁歪特性が劣化し易いという問題もある。
特開平7−286249号公報 特開2003−129194号公報
Now, the raw material powder used when producing a magnetostrictive material by the powder metallurgy method has a problem that it is easy to oxidize because it is chemically active. Measures are taken. As the method, there is a method of stabilizing the surface by leaving it in an inert gas such as nitrogen or argon for a long time.
However, this method has a problem that not only the magnetostriction characteristics are deteriorated but also the stabilization process takes time, so that the manufacturing cost is increased. In addition, since the raw material powder having a composition containing a rare earth element easily absorbs moisture, when handled in the atmosphere, there is also a problem that the magnetostriction characteristics are easily deteriorated by absorbing moisture in the atmosphere.
JP-A-7-286249 JP 2003-129194 A

本発明は、このような従来技術の問題点に着目してなされたものであり、粉末冶金法で磁歪材を製造する際に使用する原料粉末として、酸化され難く、吸水性が低いものを、コストの低い方法で得ることを課題とする。また、この原料粉末を用いた磁歪材の製造方法を提供する。   The present invention has been made by paying attention to such problems of the prior art, and as a raw material powder used when producing a magnetostrictive material by powder metallurgy, it is difficult to oxidize and has low water absorption. It is an object to obtain by a low cost method. Moreover, the manufacturing method of the magnetostrictive material using this raw material powder is provided.

上記課題を解決するために、本発明の磁歪材の原料粉末は、RTX (Rは一種類以上の希土類元素、TはFe、Ni、およびCoからなる群より選択される一種類以上の元素、XはRに対するTの原子比で、1.5≦X≦2.3)で表される組成の磁歪材を、粉末冶金法で製造する際に使用される原料粉末であって、沸点200℃以上のアミンからなる被膜が粒子の表面に形成されていることを特徴とする磁歪材の原料粉末を提供する。 In order to solve the above-mentioned problems, the raw material powder of the magnetostrictive material of the present invention contains RT X (R is one or more rare earth elements, T is one or more elements selected from the group consisting of Fe, Ni, and Co). , X is an atomic ratio of T to R, and is a raw material powder used when a magnetostrictive material having a composition represented by 1.5 ≦ X ≦ 2.3) is produced by a powder metallurgy method, and has a boiling point of 200 There is provided a raw material powder for a magnetostrictive material, characterized in that a film made of an amine having a temperature of 0 ° C. or higher is formed on the surface of particles.

本発明の「磁歪材の原料粉末」によれば、沸点200℃以上のアミンからなる被膜が粒子の表面に形成されているため、同じ組成で前記被覆が無い原料粉末と比較して、酸化され難く、吸水性も低い。
本発明はまた、R(一種類以上の希土類元素)とT(Fe、Ni、およびCoからなる群より選択される一種類以上の元素)とからなり組成の異なる複数の粉末を、混合物のRとTの比率が原子比でR:T=1:X(1.5≦X≦2.3)となるように混合する工程と、得られた混合粉末の表面に沸点200℃以上のアミンからなる被膜を施す工程と、被膜が施された混合粉末(本発明の原料粉末)を磁場中で配向させながら成形する工程と、得られた成形体を、13.3Pa(10-1Torr)以下の圧力の下、3℃/min以下の速度で500℃まで昇温させる間に、200℃以上500℃以下の範囲の一点または複数点の温度で30分間以上保持する熱処理工程と、熱処理後の成形体を1.33Pa(10-2Torr)以下の圧力の下、1100℃以上1300℃以下の温度で焼結する焼結工程と、を備えた磁歪材の製造方法を提供する。
According to the “magnetostrictive material powder” of the present invention, a film made of an amine having a boiling point of 200 ° C. or higher is formed on the surface of the particle. Difficult and water absorption is low.
The present invention also provides a plurality of powders composed of R (one or more rare earth elements) and T (one or more elements selected from the group consisting of Fe, Ni, and Co) and having different compositions, and R in the mixture. And a step of mixing so that the ratio of T to T is an atomic ratio of R: T = 1: X (1.5 ≦ X ≦ 2.3), and an amine having a boiling point of 200 ° C. or more on the surface of the obtained mixed powder A step of forming a coating film, a step of molding the mixed powder coated with the coating (raw material powder of the present invention) while orienting it in a magnetic field, and the obtained molded body at 13.3 Pa (10 −1 Torr) or less A heat treatment step of holding at a temperature in the range of 200 ° C. or more and 500 ° C. or less for 30 minutes or more while raising the temperature to 500 ° C. at a rate of 3 ° C./min or less under the pressure of The molded body was subjected to 1100 under a pressure of 1.33 Pa (10 −2 Torr) or less. And a sintering step of sintering at a temperature of not less than 1 ° C and not more than 1300 ° C.

本発明の「磁歪材の製造方法」によれば、混合粉末に沸点200℃以上のアミンからなる被膜を施す工程により、酸化され難く、吸水性の低い原料粉末が得られる。そのため、この原料粉末を用いて成形体を作製する工程を大気中で行ったり、長時間放置した後に行ったりしても、磁歪特性は劣化し難い。
また、焼結前に前記熱処理工程を行うことにより、原料粉末に形成されたアミン被膜を除去することができる。その結果、アミンの蒸気や分解された気体が焼結時に生じ難くなるため、磁歪特性の劣化を防止できる。
According to the “method for producing a magnetostrictive material” of the present invention, a raw material powder that is difficult to be oxidized and has low water absorption is obtained by applying a film made of an amine having a boiling point of 200 ° C. or higher to the mixed powder. For this reason, the magnetostriction characteristics are unlikely to deteriorate even if the step of producing a molded body using this raw material powder is performed in the air or after being left standing for a long time.
Moreover, the amine film formed in the raw material powder can be removed by performing the heat treatment step before sintering. As a result, amine vapor and decomposed gas are less likely to be generated during sintering, so that deterioration of magnetostrictive characteristics can be prevented.

使用するアミンは、沸点が200℃以上であれば特に限定されず、第1アミン、第2アミン、第3アミンのいずれであってもよい。また、複数種のアミンを混合して使用してもよい。沸点が200℃以上のアミンを使用することで、原料粉末の常温での取り扱い時にアミンが蒸散し難いため、アミン被膜による効果が安定的に得られる。
混合粉末の表面にアミンの被膜を施す方法としては、被膜成分のアミンを溶媒に溶解させてアミン溶液を調製し、アミン溶液に混合粉末を浸漬してアミン溶液を粒子の表面に付着させた後、溶媒を除去する方法が挙げられる。使用する溶媒は特に限定されないが、n−ヘキサン、トルエン、フルオロカーボン等が挙げられる。なお、混合粉末を湿式法で粉砕する場合には、混合粉末をアミン溶液に浸漬した状態で粉砕することにより、アミン溶液を粒子の表面に付着させてもよい。
The amine to be used is not particularly limited as long as the boiling point is 200 ° C. or higher, and may be any of a primary amine, a secondary amine, and a tertiary amine. Moreover, you may use it, mixing multiple types of amine. By using an amine having a boiling point of 200 ° C. or higher, the amine is less likely to evaporate when the raw material powder is handled at room temperature, so that the effect of the amine coating can be stably obtained.
As a method of applying an amine film on the surface of the mixed powder, the amine of the film component is dissolved in a solvent to prepare an amine solution, and the mixed powder is immersed in the amine solution to adhere the amine solution to the particle surface. And a method of removing the solvent. Although the solvent to be used is not specifically limited, n-hexane, toluene, fluorocarbon, etc. are mentioned. When the mixed powder is pulverized by a wet method, the amine solution may be adhered to the surface of the particles by pulverizing the mixed powder while being immersed in the amine solution.

また、スプレー造粒法で混合粉末の表面にアミンの被膜を施すこともできる。
アミン被膜は原料粉末の粒子表面全体に形成されていることが好ましい。そのため、例えばアミン溶液に混合粉末を浸漬する方法では、混合粉末の粒径が3〜5μmの場合、混合粉末とアミンの比率が質量比で、混合粉末:アミン=100:1.0〜4.0となるように、溶媒にアミンを溶解させた溶液を使用することが好ましい。アミンの量が前記比率の範囲より少ないと、アミン被膜により粒子表面を十分に被覆することができない。アミンの量が前記範囲より多いと、前述の熱処理工程を行ったとしてもアミン被膜が残存し易く、焼結工程での残留炭素量が多くなる。この残存炭素は磁歪特性を劣化させる原因となる。
Also, an amine film can be applied to the surface of the mixed powder by spray granulation.
The amine coating is preferably formed on the entire particle surface of the raw material powder. Therefore, for example, in the method of immersing the mixed powder in the amine solution, when the mixed powder has a particle size of 3 to 5 μm, the ratio of the mixed powder to the amine is a mass ratio, and the mixed powder: amine = 100: 1.0-4. It is preferable to use a solution in which an amine is dissolved in a solvent so as to be zero. If the amount of amine is less than the above range, the particle surface cannot be sufficiently covered with the amine coating. When the amount of the amine is larger than the above range, the amine film tends to remain even if the heat treatment step is performed, and the amount of residual carbon in the sintering step increases. This residual carbon causes the magnetostrictive characteristics to deteriorate.

本発明の原料粉末は、RTX (Rは一種類以上の希土類元素、TはFe、Ni、およびCoからなる群より選択される一種類以上の元素、XはRに対するTの原子比で、1.5≦X≦2.3)で表される組成の磁歪材を製造する際に使用される。この磁歪材を得るために、前記混合工程で、R(一種類以上の希土類元素)とT(Fe、Ni、およびCoからなる群より選択される一種類以上の元素)とからなり組成の異なる複数の粉末を、混合物のRとTの比率が原子比でR:T=1:X(1.5≦X≦2.3)となるように混合する。 The raw material powder of the present invention has RT X (R is one or more rare earth elements, T is one or more elements selected from the group consisting of Fe, Ni, and Co, X is the atomic ratio of T to R, It is used when producing a magnetostrictive material having a composition represented by 1.5 ≦ X ≦ 2.3). In order to obtain this magnetostrictive material, in the mixing step, R (one or more rare earth elements) and T (one or more elements selected from the group consisting of Fe, Ni, and Co) and different compositions A plurality of powders are mixed so that the ratio of R and T in the mixture is R: T = 1: X (1.5 ≦ X ≦ 2.3) in atomic ratio.

希土類元素とは、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luを指す。これらの希土類元素のうち、Sc、Y以外はランタノイドである。これらの元素のうち、Pr、Nd、Sm、Tb、Dy、Hoを用いることが好ましく、Tb、Dyを用いることがより好ましい。RとT以外に、Rと合金を形成できる遷移元素を含んでいてもよい。その遷移元素としては、Mn、Cr、Mo、Wが挙げられる。   The rare earth element refers to Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Among these rare earth elements, other than Sc and Y are lanthanoids. Of these elements, Pr, Nd, Sm, Tb, Dy, and Ho are preferably used, and Tb and Dy are more preferably used. In addition to R and T, a transition element capable of forming an alloy with R may be included. Examples of the transition element include Mn, Cr, Mo, and W.

磁歪材のより好ましい組成は(TbY Dy(1-Y) )TX (0.2≦Y≦0.5、1.5≦X≦2.3)である。Yが0.2未満であると、常温より低い温度域での磁歪量が低い。Yが0.5を超えると、常温での磁歪量が低い。さらに好ましい組成は(Tby Dy(1-y) )FeX (0.2≦Y≦0.5、1.5≦X≦2.3)である。特に好ましい組成はTb0.3 Dy0.7 Fe2 である。 A more preferable composition of the magnetostrictive material is (Tb Y Dy (1-Y) ) T X (0.2 ≦ Y ≦ 0.5, 1.5 ≦ X ≦ 2.3). When Y is less than 0.2, the amount of magnetostriction in a temperature range lower than room temperature is low. When Y exceeds 0.5, the amount of magnetostriction at room temperature is low. More preferred composition is (Tb y Dy (1-y )) Fe X (0.2 ≦ Y ≦ 0.5,1.5 ≦ X ≦ 2.3). A particularly preferred composition is Tb 0.3 Dy 0.7 Fe 2 .

本発明の「磁歪材の原料粉末」は、酸化され難く、吸水性の低いものである。そして、この原料粉末は、混合粉末の表面にアミン被膜を施すことにより得られるため、不活性ガスで安定化処理をして得られる従来の原料粉末よりも低いコストで製造できる。
また、本発明の原料粉末を用い、本発明の方法で磁歪材を製造することにより、磁歪特性が良好な磁歪材が得られる。
The “magnetostrictive material powder” of the present invention is hardly oxidized and has low water absorption. And since this raw material powder is obtained by applying an amine film on the surface of the mixed powder, it can be produced at a lower cost than a conventional raw material powder obtained by performing a stabilization treatment with an inert gas.
Further, by using the raw material powder of the present invention to produce a magnetostrictive material by the method of the present invention, a magnetostrictive material having good magnetostrictive characteristics can be obtained.

以下、本発明の実施形態について説明する。
<サンプルNo.1>
組成がTb0.3 Dy0.7 Fe1.89である磁歪材を、以下の方法で作製した。この方法は、粉末混合工程、被膜形成工程、成形工程、熱処理工程、および焼結工程からなる。
[粉末混合工程]
原料粉末Aを以下のようにして作製した。先ず、テルビウム(Tb)、ジスプロシウム(Dy)、鉄(Fe)を秤量し、アルゴン(Ar)ガス雰囲気下で溶融することにより、Tb0.4 Dy0.6 Fe1.93合金を作製した。次に、この合金をアニールした後、粉砕して、平均粒径100〜150μmの粉末とした。
Hereinafter, embodiments of the present invention will be described.
<Sample No.1>
A magnetostrictive material having a composition of Tb 0.3 Dy 0.7 Fe 1.89 was produced by the following method. This method includes a powder mixing process, a film forming process, a molding process, a heat treatment process, and a sintering process.
[Powder mixing process]
The raw material powder A was produced as follows. First, terbium (Tb), dysprosium (Dy), and iron (Fe) were weighed and melted in an argon (Ar) gas atmosphere to produce a Tb 0.4 Dy 0.6 Fe 1.93 alloy. Next, this alloy was annealed and then pulverized to obtain a powder having an average particle size of 100 to 150 μm.

原料粉末Bを以下のようにして作製した。先ず、テルビウム(Tb)、鉄(Fe)を秤量し、アルゴン(Ar)ガス雰囲気下で溶融することにより、Dy2.0 Fe1.0 合金を作製した。次に、この合金をアニールした後、粉砕して、平均粒径150〜250μmの粉末とした。次に、この粉末を水素ガス雰囲気中に保持して、水素添加処理を行った。その条件は、温度:200℃、保持時間:1時間である。 The raw material powder B was produced as follows. First, terbium (Tb) and iron (Fe) were weighed and melted in an argon (Ar) gas atmosphere to prepare a Dy 2.0 Fe 1.0 alloy. Next, this alloy was annealed and then pulverized to obtain a powder having an average particle size of 150 to 250 μm. Next, this powder was kept in a hydrogen gas atmosphere and subjected to hydrogenation treatment. The conditions are temperature: 200 ° C. and holding time: 1 hour.

原料粉末Cとして、平均粒径5μmの還元鉄を「還元処理」したものを用意した。還元処理は、水素ガス雰囲気中で、200℃に30分間保持することにより行った。
得られた各原料粉末A、B、Cを、原子比で、Tb:Dy:Fe=0.3:0.7:1.89の組成になるように秤量し、酸素含有率0.1ppmのアルゴンガス雰囲気下で、アトマイザーにより粒径が約3.5μmとなるように、粉砕、混合した。
As the raw material powder C, a powder obtained by “reducing” reduced iron having an average particle diameter of 5 μm was prepared. The reduction treatment was performed by holding at 200 ° C. for 30 minutes in a hydrogen gas atmosphere.
The obtained raw material powders A, B, and C were weighed so as to have a composition of Tb: Dy: Fe = 0.3: 0.7: 1.89 in terms of atomic ratio, and had an oxygen content of 0.1 ppm. Under an argon gas atmosphere, the mixture was pulverized and mixed with an atomizer so that the particle size was about 3.5 μm.

[被膜形成工程]
得られた混合粉末を浸漬させてアミン被膜を形成するためのアミン溶液として、n−ヘキサデシルアミン(沸点220℃)をn−ヘキサンに溶解させたn−ヘキサデシルアミン溶液を調製した。この溶液のn−ヘキサデシルアミン濃度は0.30質量%とした。この溶液100gに対して混合粉末を10g入れて60分間、270℃で攪拌した後、減圧乾燥を行った。これにより、混合粉末の表面にn−ヘキサデシルアミンの被膜が形成された。このようにして被膜が形成された混合粉末を、磁歪材の原料粉末として使用する。この原料粉末は、大気中で化学的に安定していた。
なお、混合粉末が溶液に浸漬された状態で、混合粉末とn−ヘキサデシルアミンの比率は、質量比で、混合粉末:n−ヘキサデシルアミン=100:3.0となっている。
[Film formation process]
As an amine solution for immersing the obtained mixed powder to form an amine film, an n-hexadecylamine solution in which n-hexadecylamine (boiling point 220 ° C.) was dissolved in n-hexane was prepared. The n-hexadecylamine concentration of this solution was 0.30% by mass. 10 g of the mixed powder was added to 100 g of this solution and stirred at 270 ° C. for 60 minutes, followed by drying under reduced pressure. Thereby, the film of n-hexadecylamine was formed on the surface of the mixed powder. The mixed powder with the coating formed in this way is used as a raw material powder for the magnetostrictive material. This raw material powder was chemically stable in the atmosphere.
In the state where the mixed powder is immersed in the solution, the ratio of the mixed powder and n-hexadecylamine is, by mass ratio, mixed powder: n-hexadecylamine = 100: 3.0.

[成形工程]
次に、この原料粉末(被膜が施された混合粉末)を、試験片作製用の型に入れ、15kOeの[111]軸に平行な磁場中で、圧力9.8×107 Pa(1ton/cm2 )、室温の条件で加圧成形した。
[熱処理工程]
得られた成形体を直ぐに真空焼結炉に入れ、13.3Pa(10-1Torr)の圧力の下、炉内の温度を、室温から300℃まで2.5℃/minの速度で昇温し、300℃で1時間保持した。次に、300℃から500℃まで2.5℃/minの速度で昇温した。
[焼結工程]
次に、成形体の入った真空焼結炉内の温度を、500℃から1100℃まで10℃/minの速度で昇温し、1.33Pa(10-2Torr)の圧力の下、1100℃で1時間保持することにより焼結を行った。
これにより、組成がTb0.3 Dy0.7 Fe1.89で、[111]軸が配向されている磁歪材の試験片が得られた。
[Molding process]
Next, this raw material powder (mixed powder coated with a film) is put in a mold for preparing a test piece, and in a magnetic field parallel to the [111] axis of 15 kOe, a pressure of 9.8 × 10 7 Pa (1 ton / cm 2 ) and room temperature.
[Heat treatment process]
The obtained molded body is immediately put in a vacuum sintering furnace, and the temperature in the furnace is increased from room temperature to 300 ° C. at a rate of 2.5 ° C./min under a pressure of 13.3 Pa (10 −1 Torr). And held at 300 ° C. for 1 hour. Next, the temperature was raised from 300 ° C. to 500 ° C. at a rate of 2.5 ° C./min.
[Sintering process]
Next, the temperature in the vacuum sintering furnace containing the molded body was increased from 500 ° C. to 1100 ° C. at a rate of 10 ° C./min, and the pressure was 1.33 Pa (10 −2 Torr) at 1100 ° C. Was sintered for 1 hour.
Thereby, a test piece of a magnetostrictive material having a composition of Tb 0.3 Dy 0.7 Fe 1.89 and an [111] axis oriented was obtained.

<サンプルNo.2>
得られた成形体を5時間大気中に放置した後に、真空焼結炉に入れて熱処理工程を行った。これ以外はサンプルNo.1と同じ方法で、組成がTb0.3 Dy0.7 Fe1.89で、[111]軸が配向されている磁歪材の試験片を得た。
<サンプルNo.3>
n−ヘキサデシルアミンに代えてトリエチレンテトラミン(沸点270℃)を用いた以外はサンプルNo.1と同じ方法で、組成がTb0.3 Dy0.7 Fe1.89で、[111]軸が配向されている磁歪材の試験片を得た。
<サンプルNo.4>
得られた成形体を5時間大気中に放置した後に、真空焼結炉に入れて熱処理工程を行った。これ以外はサンプルNo.3と同じ方法で、組成がTb0.3 Dy0.7 Fe1.89で、[111]軸が配向されている磁歪材の試験片を得た。
<Sample No.2>
The obtained molded body was left in the atmosphere for 5 hours, and then placed in a vacuum sintering furnace to perform a heat treatment step. Other than this, a test piece of magnetostrictive material having the composition Tb 0.3 Dy 0.7 Fe 1.89 and the [111] axis oriented was obtained in the same manner as Sample No. 1.
<Sample No. 3>
Magnetostriction with the composition of Tb 0.3 Dy 0.7 Fe 1.89 and [111] axis oriented in the same manner as sample No. 1 except that triethylenetetramine (boiling point 270 ° C.) was used instead of n-hexadecylamine. A specimen of the material was obtained.
<Sample No. 4>
The obtained molded body was left in the atmosphere for 5 hours, and then placed in a vacuum sintering furnace to perform a heat treatment step. Other than this, a test piece of magnetostrictive material having the composition of Tb 0.3 Dy 0.7 Fe 1.89 and the [111] axis oriented was obtained in the same manner as Sample No. 3.

<サンプルNo.5>
前述の[熱処理工程]を行わず、真空焼結炉に入れた成形体を、直ぐ1100℃まで昇温して焼結した。これ以外はサンプルNo.1と同じ方法で、組成がTb0.3 Dy0.7 Fe1.89で、[111]軸が配向されている磁歪材の試験片を得た。得られた試験片には多くの気孔が点在しており、十分に収縮した焼結体が得られなかった。
<サンプルNo.6>
n−ヘキサデシルアミンに代えてトリエチレンテトラミン(沸点270℃)を用いた。これ以外はサンプルNo.5と同じ方法で、組成がTb0.3 Dy0.7 Fe1.89で、[111]軸が配向されている磁歪材の試験片を得た。得られた試験片には多くの気孔が点在しており、十分に収縮した焼結体が得られなかった。
<Sample No. 5>
Without performing the above-mentioned [heat treatment step], the compact placed in the vacuum sintering furnace was immediately heated to 1100 ° C. and sintered. Other than this, a test piece of magnetostrictive material having the composition Tb 0.3 Dy 0.7 Fe 1.89 and the [111] axis oriented was obtained in the same manner as Sample No. 1. The obtained test piece was dotted with many pores, and a sufficiently contracted sintered body could not be obtained.
<Sample No. 6>
Instead of n-hexadecylamine, triethylenetetramine (boiling point 270 ° C.) was used. Other than this, a test piece of magnetostrictive material having the composition of Tb 0.3 Dy 0.7 Fe 1.89 and the [111] axis oriented was obtained in the same manner as Sample No. 5. The obtained test piece was dotted with many pores, and a sufficiently contracted sintered body could not be obtained.

<サンプルNo.7>
前述の[被膜形成工程]に代えて、混合粉末を大気圧の窒素ガス雰囲気に48時間放置する安定化処理を行った後に、成形工程を行った。また、前述の[熱処理工程]は行わず、真空焼結炉に入れた成形体を、直ぐ1100℃まで昇温して焼結した。これ以外はサンプルNo.1と同じ方法で、組成がTb0.3 Dy0.7 Fe1.89で、[111]軸が配向されている磁歪材の試験片を得た。
<Sample No. 7>
Instead of the above-mentioned [film formation step], the mixed powder was subjected to a stabilization treatment in which it was left in a nitrogen gas atmosphere at atmospheric pressure for 48 hours, and then a molding step was performed. Moreover, the above-mentioned [heat treatment process] was not performed, and the molded body put in the vacuum sintering furnace was immediately heated to 1100 ° C. and sintered. Other than this, a test piece of magnetostrictive material having the composition Tb 0.3 Dy 0.7 Fe 1.89 and the [111] axis oriented was obtained in the same manner as Sample No. 1.

<サンプルNo.8>
得られた成形体を5時間大気中に放置した後に、真空焼結炉に入れて焼結した。これ以外はサンプルNo.7と同じ方法で、組成がTb0.3 Dy0.7 Fe1.89で、[111]軸が配向されている磁歪材の試験片を得た。
これらの各試験片を用いて、磁歪量、酸素含有率、炭素含有率を測定した。磁歪量については、強度8×104 A/mの磁界を作用させた時の歪み量を、光ドップラー変位計で測定した。酸素含有率および窒素含有率は、酸素窒素分析装置を用いて測定した。その結果を下記の表1に示す。
<Sample No. 8>
The obtained molded body was left in the atmosphere for 5 hours, and then placed in a vacuum sintering furnace for sintering. Except this, a test piece of magnetostrictive material having the composition of Tb 0.3 Dy 0.7 Fe 1.89 and the [111] axis oriented was obtained by the same method as Sample No. 7.
Using each of these test pieces, the amount of magnetostriction, oxygen content, and carbon content were measured. Regarding the amount of magnetostriction, the amount of strain when a magnetic field having an intensity of 8 × 10 4 A / m was applied was measured with an optical Doppler displacement meter. The oxygen content and nitrogen content were measured using an oxygen nitrogen analyzer. The results are shown in Table 1 below.

Figure 2005330528
Figure 2005330528

この結果から以下のことが分かる。
大気中での放置時間が0分の場合と5時間の場合を比較すると、同じアミン被膜が形成された原料粉末を用い、本発明の方法を採用しているNo. 1とNo. 2、およびNo. 3とNo. 4で、磁歪量、酸素含有率、および窒素含有率のいずれにも違いがない。すなわち、アミン被膜が形成された原料粉末は酸化され難い。
From this result, the following can be understood.
Comparing the case where the standing time in the atmosphere is 0 minutes and the case where it is 5 hours, No. 1 and No. 2 adopting the method of the present invention using the raw material powder on which the same amine film is formed, and No. 3 and No. 4 have no difference in magnetostriction, oxygen content, and nitrogen content. That is, the raw material powder on which the amine film is formed is not easily oxidized.

これに対して、アミン被膜を形成せず、従来の安定化処理方法を採用しているNo. 7と8では、大気中での放置時間が5時間であるNo. 8は、放置時間が0分であるNo. 7よりも、磁歪量が低下し、酸素含有率が増加している。なお、窒素含有率が変化していないのは、アミン被膜が形成されていないからである。
また、No. 1とNo. 5との比較、およびNo. 3とNo. 6との比較から、同じアミン被膜が形成された原料粉末を用いていても、焼結工程前に熱処理工程を行わないと、窒素含有率が極端に増大するとともに、酸素含有率が増大し、その結果、磁歪量が低下することが分かる。
On the other hand, in Nos. 7 and 8 in which an amine film is not formed and the conventional stabilization treatment method is adopted, the standing time in the atmosphere is 5 hours. The amount of magnetostriction is lower than that of No. 7, which is a minute, and the oxygen content is increased. The nitrogen content does not change because the amine film is not formed.
Also, from the comparison between No. 1 and No. 5 and the comparison between No. 3 and No. 6, even if the raw material powder on which the same amine film is formed is used, the heat treatment step is performed before the sintering step. Otherwise, it can be seen that the nitrogen content increases extremely and the oxygen content increases, resulting in a decrease in magnetostriction.

Claims (2)

RTX (Rは一種類以上の希土類元素、TはFe、Ni、およびCoからなる群より選択される一種類以上の元素、XはRに対するTの原子比で、1.5≦X≦2.3)で表される組成の磁歪材を、粉末冶金法で製造する際に使用される原料粉末であって、
沸点200℃以上のアミンからなる被膜が粒子の表面に形成されていることを特徴とする磁歪材の原料粉末。
RT X (R is one or more rare earth elements, T is one or more elements selected from the group consisting of Fe, Ni, and Co, X is the atomic ratio of T to R, and 1.5 ≦ X ≦ 2 .3) is a raw material powder used when producing the magnetostrictive material having the composition represented by the powder metallurgy method,
A raw material powder for a magnetostrictive material, wherein a film made of an amine having a boiling point of 200 ° C. or more is formed on the surface of the particles.
R(一種類以上の希土類元素)とT(Fe、Ni、およびCoからなる群より選択される一種類以上の元素)とからなり組成の異なる複数の粉末を、混合物のRとTの比率が原子比でR:T=1:X(1.5≦X≦2.3)となるように混合する工程と、
得られた混合粉末の表面に沸点200℃以上のアミンからなる被膜を施す工程と、
被膜が施された混合粉末を磁場中で配向させながら成形する工程と、
得られた成形体を、13.3Pa(10-1Torr)以下の圧力の下、3℃/min以下の速度で500℃まで昇温させる間に、200℃以上500℃以下の範囲の一点または複数点の温度で30分間以上保持する熱処理工程と、
熱処理後の成形体を1.33Pa(10-2Torr)以下の圧力の下、1100℃以上1300℃以下の温度で焼結する焼結工程と、
を備えた磁歪材の製造方法。
A plurality of powders composed of R (one or more rare earth elements) and T (one or more elements selected from the group consisting of Fe, Ni, and Co) and having different compositions are mixed with a ratio of R and T in the mixture. Mixing at an atomic ratio of R: T = 1: X (1.5 ≦ X ≦ 2.3);
Applying a film made of an amine having a boiling point of 200 ° C. or higher to the surface of the obtained mixed powder;
Forming a mixed powder coated with a film while orienting it in a magnetic field;
While the obtained compact is heated to 500 ° C. at a rate of 3 ° C./min or less under a pressure of 13.3 Pa (10 −1 Torr) or less, one point in the range of 200 ° C. or more and 500 ° C. or less A heat treatment step of holding at a plurality of temperatures for 30 minutes or more;
A sintering step of sintering the molded body after the heat treatment at a temperature of 1100 ° C. or higher and 1300 ° C. or lower under a pressure of 1.33 Pa (10 −2 Torr) or lower;
A method for producing a magnetostrictive material comprising:
JP2004149009A 2004-05-19 2004-05-19 Raw material powder for magnetostrictive material, and method for manufacturing magnetostrictive material Pending JP2005330528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004149009A JP2005330528A (en) 2004-05-19 2004-05-19 Raw material powder for magnetostrictive material, and method for manufacturing magnetostrictive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004149009A JP2005330528A (en) 2004-05-19 2004-05-19 Raw material powder for magnetostrictive material, and method for manufacturing magnetostrictive material

Publications (1)

Publication Number Publication Date
JP2005330528A true JP2005330528A (en) 2005-12-02

Family

ID=35485396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004149009A Pending JP2005330528A (en) 2004-05-19 2004-05-19 Raw material powder for magnetostrictive material, and method for manufacturing magnetostrictive material

Country Status (1)

Country Link
JP (1) JP2005330528A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058155A1 (en) 2005-11-15 2007-05-24 Showa Denko K.K. Swaging method and swaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058155A1 (en) 2005-11-15 2007-05-24 Showa Denko K.K. Swaging method and swaging apparatus

Similar Documents

Publication Publication Date Title
US10755840B2 (en) R-T-B based sintered magnet
RU2377680C2 (en) Rare-earth permanaent magnet
JP6493138B2 (en) R-T-B sintered magnet
JP4702549B2 (en) Rare earth permanent magnet
EP2945172B1 (en) Soft magnetic metal powder and soft magnetic metal powder core using the same
EP2945171B1 (en) Soft magnetic metal powder and soft magnetic metal powder core using the same
JP2008263179A (en) Rare earth permanent magnet and method of manufacturing the same
WO2007119553A1 (en) Process for producing rare-earth permanent magnet material
JP2008147634A (en) Manufacturing method of rare earth permanent magnet
JP5348124B2 (en) Method for producing R-Fe-B rare earth sintered magnet and rare earth sintered magnet produced by the method
JP2018093202A (en) R-t-b based permanent magnet
EP2945170B1 (en) Soft magnetic metal powder and soft magnetic metal powder core using the same
JP2019102707A (en) R-t-b based permanent magnet
JP7424126B2 (en) RTB series permanent magnet
JP4179973B2 (en) Manufacturing method of sintered magnet
JP2018174312A (en) R-T-B based sintered magnet
JP2011162811A (en) Rare earth-iron based alloy powder for magnetic refrigeration
JP2005330528A (en) Raw material powder for magnetostrictive material, and method for manufacturing magnetostrictive material
JPH1022154A (en) Manufacture of rear-earth permanent magnet
JP2006089834A (en) Raw powder of magnetostrictive material, production method therefor, and method for producing magnetostrictive material
JP2018093201A (en) R-t-b based permanent magnet
JP7447573B2 (en) RTB series permanent magnet
JP2006144101A (en) Magnetostrictive material
JP2003003203A (en) Method for manufacturing high-density sintered compact, and the sintered compact
JP2009016403A (en) Rare earth sintered magnet