JP2009016403A - Rare earth sintered magnet - Google Patents

Rare earth sintered magnet Download PDF

Info

Publication number
JP2009016403A
JP2009016403A JP2007173547A JP2007173547A JP2009016403A JP 2009016403 A JP2009016403 A JP 2009016403A JP 2007173547 A JP2007173547 A JP 2007173547A JP 2007173547 A JP2007173547 A JP 2007173547A JP 2009016403 A JP2009016403 A JP 2009016403A
Authority
JP
Japan
Prior art keywords
rare earth
sintered magnet
magnet
particles
earth sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007173547A
Other languages
Japanese (ja)
Other versions
JP4930226B2 (en
Inventor
Tetsuya Hidaka
徹也 日高
Eiji Kato
英治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2007173547A priority Critical patent/JP4930226B2/en
Publication of JP2009016403A publication Critical patent/JP2009016403A/en
Application granted granted Critical
Publication of JP4930226B2 publication Critical patent/JP4930226B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rare earth sintered magnet which has high mechanical strength and is not apt to chip. <P>SOLUTION: The rare earth sintered magnet has a surface portion and a center portion enclosed with the surface portion and contains, as a main phase, particles containing an R<SB>2</SB>T<SB>14</SB>B-based compound (wherein R includes at least one kind of rare earth element and T represents Fe alone or both Fe and Co), the rare earth sintered magnet being characterized in that when the distance from the surface to the center of gravity of the particles during two-dimensional observation is considered to be 100%, the surface part is a part up to 20% of the distance from the surface toward the center of gravity and when the ratio of the lattice constants of a (c) axis to an (a) axis of the R<SB>2</SB>T<SB>14</SB>B-based compound is denoted as c/a, ≥20% of particles which are 0.5 to 1.4% smaller in c/a at the surface portion than the center portion are contained in all particles sampled during the two-dimensional observation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、希土類焼結磁石に関する。   The present invention relates to a rare earth sintered magnet.

近年、200kJ/m以上の高エネルギー積を示す磁石として、いわゆる希土類焼結磁石(例えばR−Fe−B系磁石;Rは希土類元素を示す。以下、同様。)が開発されている。このような希土類焼結磁石は、主に粉末焼結法により製造される(例えば、特許文献1)。 In recent years, so-called rare earth sintered magnets (for example, R—Fe—B magnets; R represents a rare earth element; hereinafter the same) have been developed as magnets having a high energy product of 200 kJ / m 3 or more. Such rare earth sintered magnets are mainly manufactured by a powder sintering method (for example, Patent Document 1).

しかし、希土類焼結磁石は高エネルギー積を示すものの、主成分として、比較的容易に酸化される希土類元素を含有するため耐食性が比較的低い。このため、希土類焼結磁石の耐食性を改善するために、希土類焼結磁石に表面処理を施されることが多い。例えば、下記特許文献2では、希土類焼結磁石を酸化性雰囲気下にて200〜500℃で加熱することで、保護層を形成することが提案されている。
特開昭59−46008号公報 特開平5−226129号公報
However, although a rare earth sintered magnet exhibits a high energy product, it has a relatively low corrosion resistance because it contains a rare earth element that is relatively easily oxidized as a main component. For this reason, in order to improve the corrosion resistance of the rare earth sintered magnet, surface treatment is often applied to the rare earth sintered magnet. For example, Patent Document 2 below proposes forming a protective layer by heating a rare earth sintered magnet at 200 to 500 ° C. in an oxidizing atmosphere.
JP 59-46008 A JP-A-5-226129

ところで、希土類焼結磁石に表面処理が施される際、前処理としてバレルなどで面取り加工を行うのが一般的である。強度の低い希土類焼結磁石の場合、研磨によりチッピングを含む割れや欠けが発生し、歩留まりが悪いという問題点がある。   By the way, when a surface treatment is performed on a rare earth sintered magnet, it is common to perform chamfering with a barrel or the like as a pretreatment. In the case of a rare-earth sintered magnet with low strength, there is a problem that cracking and chipping including chipping occur due to polishing, and the yield is poor.

また、希土類焼結磁石応用製品の多様化に伴い、より薄くより小さい製品が求められている。このような薄くて小さい製品は、割れや欠けが比較的生じやすいことから、このような製品の製造における歩留まりを向上させるためにも、より機械的強度が高い希土類焼結磁石が望まれている。   In addition, with the diversification of rare earth sintered magnet application products, thinner and smaller products are required. Since such thin and small products are relatively prone to cracking and chipping, rare earth sintered magnets with higher mechanical strength are desired in order to improve the yield in the manufacture of such products. .

そこで、本発明は、上記問題点を鑑みて、機械的強度が高く割れや欠けが発生しにくい希土類焼結磁石を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a rare earth sintered magnet that has high mechanical strength and is less likely to crack or chip.

本発明者等は、上記課題を解決すべく鋭意検討した結果、R14B系化合物を含む粒子を主相とした焼結磁石において、2次元観察時の粒子における中心部と、それを包囲する表面部とで、R14B系化合物のa軸に対するc軸の格子定数の比に差が生じることに着目し、表面部における格子定数の比が、中心部における格子定数の比に対して一定割合だけ小さくなる粒子が、2次元観察時にサンプリングした全粒子中に一定割合以上含まれる場合に、磁石の機械的強度が高く割れや欠けが発生しにくくなることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a sintered magnet having a particle containing an R 2 T 14 B-based compound as a main phase and a central portion of the particle during two-dimensional observation, Focusing on the difference in the ratio of the lattice constant of the c-axis to the a-axis of the R 2 T 14 B-based compound between the surrounding surface portion and the ratio of the lattice constant in the surface portion is the ratio of the lattice constant in the central portion. The present invention has found that when particles that are smaller than a certain ratio with respect to the above are contained in all particles sampled during two-dimensional observation at a certain ratio or more, the magnet has high mechanical strength and is less likely to be cracked or chipped. It came to complete.

すなわち、本発明の希土類焼結磁石は、表面部及び前記表面部に囲まれている中心部を有し、R14B系化合物(Rは少なくとも1種の希土類元素を含み、TはFe単独又はFe及びCoの両方を示す)を含む粒子を主相とする希土類焼結磁石であって、粒子における二次元観察時の表面から重心までの距離を100%とした場合、表面部が表面から重心に向かって該距離の20%相当する距離までの部分であり、R14B系化合物のa軸に対するc軸の格子定数の比をc/aとした場合、表面部おけるc/aが中心部より0.5〜1.4%小さい粒子が、2次元観察時にサンプリングした全粒子に対して20%以上の割合で含まれていることを特徴とするものである。 That is, the rare earth sintered magnet of the present invention has a surface portion and a central portion surrounded by the surface portion, and R 2 T 14 B-based compound (R contains at least one kind of rare earth element, and T is Fe A rare earth sintered magnet whose main phase is a particle containing a single particle or both Fe and Co), and the surface portion is the surface when the distance from the surface to the center of gravity during two-dimensional observation of the particle is 100% The distance from the center of gravity to the distance corresponding to 20% of the distance, and the ratio of the lattice constant of the c-axis to the a-axis of the R 2 T 14 B compound is c / a, c / Particles in which a is 0.5 to 1.4% smaller than the center are contained in a ratio of 20% or more with respect to all particles sampled during two-dimensional observation.

この希土類焼結磁石によれば、機械的強度が高くチッピング等が発生しにくい希土類焼結磁石を提供することができ、それによって表面処理や加工する際の歩留まりを向上させることが可能となる。その理由は、必ずしも解明されておらず、恐らく所定粒子の存在及びその所定割合によって、粒子と粒界相との整合性が向上したことによるものではないかと本発明者らは推測している。   According to this rare earth sintered magnet, it is possible to provide a rare earth sintered magnet which has high mechanical strength and is less likely to cause chipping, thereby improving the yield in surface treatment and processing. The reason is not necessarily elucidated, and the present inventors speculate that the reason is that the consistency between the particles and the grain boundary phase is improved by the presence of the predetermined particles and the predetermined ratio.

また上記希土類焼結磁石においては、前記表面部おける前記c/aが前記中心部より0.5〜1.4%小さい粒子が、2次元観察時にサンプリングした全粒子に対して25%以上の割合で含まれていることが好ましい。このような希土類焼結磁石によれば、チッピング等が発生しにくい磁石を提供することができ、それによって表面処理や加工する際の歩留まりをより向上させることが可能となる。   Further, in the rare earth sintered magnet, particles having c / a 0.5 to 1.4% smaller than the center portion in the surface portion is a ratio of 25% or more with respect to all particles sampled during two-dimensional observation. It is preferable that it is contained. According to such a rare earth sintered magnet, it is possible to provide a magnet that is less likely to cause chipping and the like, thereby making it possible to further improve the yield during surface treatment and processing.

また上記希土類焼結磁石においては、Rとして少なくとも、Nd及びPrから選択される少なくとも1種と、Dy及びTbから選択される少なくとも1種とが含まれることが好ましい。Nd及びPrは、Dy及びTbに比べて、格子定数c/a比が大きいため、このような元素を含むR14B系化合物を主相とすると、磁気特性のバランスに優れた磁石が容易に製造できる他、本発明の構成要件である、「磁石中、中心部より表面部のc/aが0.5〜1.4%小さい所定粒子の割合を20%以上とする」ことがより容易となり、機械的強度がより高い磁石を提供することができる。 In the rare earth sintered magnet, it is preferable that at least one selected from Nd and Pr and at least one selected from Dy and Tb are included as R. Since Nd and Pr have a larger lattice constant c / a ratio than Dy and Tb, when an R 2 T 14 B compound containing such an element is used as a main phase, a magnet having an excellent balance of magnetic properties can be obtained. In addition to being able to be manufactured easily, it is a constituent requirement of the present invention that “the ratio of the predetermined particles in the magnet where the c / a of the surface portion is 0.5 to 1.4% smaller than the center portion is 20% or more”. It becomes easier and can provide a magnet with higher mechanical strength.

本発明の希土類焼結磁石によれば、機械的強度が高くチッピングを含む割れや欠けが発生しにくい磁石を提供することができ、それによって表面処理や加工する際の歩留まりを向上させることが可能となる。   According to the rare earth sintered magnet of the present invention, it is possible to provide a magnet that has high mechanical strength and is less likely to cause cracking and chipping including chipping, thereby improving the yield during surface treatment and processing. It becomes.

以下、本発明の好適な実施形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described.

[希土類焼結磁石]
まず、本発明に係る希土類焼結磁石の実施形態について説明する。
[Rare earth sintered magnet]
First, an embodiment of a rare earth sintered magnet according to the present invention will be described.

本発明の希土類焼結磁石は、表面部及び表面部に囲まれている中心部を有し、R14B系化合物(Rは少なくとも1種の希土類元素を含み、TはFe単独又はFe及びCoの両方を示す)を含む粒子を主相とする希土類焼結磁石であって、粒子における二次元観察時の表面から重心までの距離を100%とした場合、表面部が表面から重心に向かって該距離の20%相当する距離までの部分であり、R14B系化合物のa軸に対するc軸の格子定数の比をc/aとした場合、表面部におけるc/aが中心部より0.5〜1.4%小さい粒子が、2次元観察時にサンプリングした全粒子に対して20%以上の割合で含まれていることを特徴とするものである。 The rare earth sintered magnet of the present invention has a surface portion and a central portion surrounded by the surface portion, and R 2 T 14 B-based compound (R contains at least one kind of rare earth element, and T is Fe alone or Fe In the rare earth sintered magnet having a main phase including particles containing both Co and Co), and the distance from the surface to the center of gravity at the time of two-dimensional observation of the particles is 100%, the surface portion is from the surface to the center of gravity. When the ratio of the lattice constant of the c-axis to the a-axis of the R 2 T 14 B compound is c / a, c / a at the surface is the center. Particles 0.5 to 1.4% smaller than the portion are contained in a ratio of 20% or more with respect to all particles sampled during two-dimensional observation.

上記表面部及び中心部は、以下のように定義される。すなわち、主相粒子の二次元観察時の表面から重心までの距離を100%とした場合、表面部が表面から重心に向かって該距離の20%相当する距離までの部分であり、中心部が表面部に囲まれている部分である。表面部及び中心部は粒子ごと、断面ごとに決定される。ここで、二次元観察とは、磁石を任意の断面から二次元に観察することをいう。観察は、例えば電子顕微鏡など粒子のサイズや格子定数を測定できる装置を用いて行う。また、格子定数の測定はR−T−B系化合物の格子定数を測定するための通常の方法及び装置を使用すればよい。例えば、透過型電子顕微鏡(TEM)を用いて、電子線回折に基づいて測定する方法がある。   The said surface part and center part are defined as follows. That is, when the distance from the surface to the center of gravity during the two-dimensional observation of the main phase particles is 100%, the surface portion is a portion from the surface to the center of gravity up to a distance corresponding to 20% of the distance, and the center portion is It is a part surrounded by the surface part. The surface portion and the center portion are determined for each particle and for each cross section. Here, two-dimensional observation refers to two-dimensional observation of a magnet from an arbitrary cross section. The observation is performed using an apparatus such as an electron microscope that can measure the particle size and lattice constant. Moreover, the measurement of a lattice constant should just use the normal method and apparatus for measuring the lattice constant of a R-T-B type compound. For example, there is a method of measuring based on electron diffraction using a transmission electron microscope (TEM).

希土類焼結磁石において、主相粒子の中心部より表面部におけるa軸に対するc軸の格子定数の比c/aが0.5〜1.4%小さい所定粒子(以下、単に「所定粒子」という)の数は、粒子の全体に対する割合が20%以上となる数である。このような磁石は、所定粒子の割合が20%未満の磁石に比べて機械的強度が高く、チッピングが発生しにくい。また、所定粒子の割合が25%以上であることが好ましく、この場合、磁石の機械的強度がより高まる傾向にある。なお、所定粒子の全体に占める割合を測定する場合、サンプリングする粒子の数は特に限定されないが、磁石全体の状態を推測する観点からは、少なくとも、10個以上、好ましくは20個以上の個別の粒子をサンプリングして測定することが望ましい。また、電子顕微鏡等を使用して測定する場合、2視野以上、好ましくは4視野以上を測定することが望ましい。   In a rare earth sintered magnet, a predetermined particle (hereinafter simply referred to as “predetermined particle”) in which the ratio c / a of the lattice constant of the c axis to the a axis in the surface portion of the main phase particle is 0.5 to 1.4% smaller than the center portion. ) Is a number that makes the ratio of the particles to the whole 20% or more. Such a magnet has higher mechanical strength than a magnet having a predetermined particle ratio of less than 20%, and chipping is less likely to occur. Further, the ratio of the predetermined particles is preferably 25% or more. In this case, the mechanical strength of the magnet tends to be further increased. When measuring the ratio of the predetermined particles to the whole, the number of particles to be sampled is not particularly limited. However, from the viewpoint of estimating the state of the whole magnet, at least 10 or more, preferably 20 or more individual particles. It is desirable to sample and measure the particles. Moreover, when measuring using an electron microscope etc., it is desirable to measure 2 visual fields or more, Preferably 4 visual fields or more.

この希土類焼結磁石は、当該磁石を加工し着磁した磁石製品はもちろん、当該磁石を着磁していないものの両方を含む。磁石の主相として、R14B系化合物が含まれる。ここで、Rは少なくとも1種の希土類元素を含み、TはFe単独又はFe及びCoの両方を示す。粒界部分に希土類元素の配合割合が高い希土類リッチ相、及び、ホウ素原子の配合割合が高いホウ素リッチ相が含まれていてもよい。また、主相の粒径は、通常1〜100μm程度である。 This rare earth sintered magnet includes both magnet products obtained by processing and magnetizing the magnet, as well as those not magnetized. An R 2 T 14 B-based compound is included as the main phase of the magnet. Here, R contains at least one rare earth element, and T represents Fe alone or both Fe and Co. The grain boundary portion may contain a rare earth-rich phase with a high rare earth element content and a boron rich phase with a high boron atom content. Moreover, the particle size of the main phase is usually about 1 to 100 μm.

上記Rは、上述したように、少なくとも1種の希土類元素を含む。希土類元素とは、長周期型周期表の第3族に属するスカンジウム(Sc)、イットリウム(Y)及びランタノイド元素のことをいい、ランタノイド元素には、例えば、ランタン(La)、セリウム(Ce)、プラセオジウム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユーロピウム(Eu)、ガドリニウム(Gd)、テルビニウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)等が含まれる。また、希土類元素は、軽希土類及び重希土類に分類され、重希土類元素とはGd、Tb、Dy、Ho、Er、Tm、Yb、Luをいい、軽希土類元素はそれ以外の希土類元素である。磁気特性の観点から、Nd及び/又はPrを主体とすることが好ましい。さらに重希土類元素、特にDy及び/又はTbが含まれることが好ましく、Gdが含まれてもよい。この場合、重希土類元素は、R14B化合物の異方性磁界を大きくする作用があり、磁石の保磁力を向上させることが可能である。 As described above, R includes at least one rare earth element. Rare earth elements refer to scandium (Sc), yttrium (Y) and lanthanoid elements belonging to Group 3 of the long-period periodic table. Examples of lanthanoid elements include lanthanum (La), cerium (Ce), Praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), Ytterbium (Yb), lutetium (Lu) and the like are included. The rare earth elements are classified into light rare earth elements and heavy rare earth elements. The heavy rare earth elements are Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, and the light rare earth elements are other rare earth elements. From the viewpoint of magnetic properties, Nd and / or Pr are preferred. Furthermore, it is preferable that heavy rare earth elements, particularly Dy and / or Tb, are included, and Gd may be included. In this case, the heavy rare earth element has an effect of increasing the anisotropic magnetic field of the R 2 T 14 B compound, and can improve the coercive force of the magnet.

また、Tとしては、希土類元素以外、例えば、コバルト(Co)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、ニッケル(Ni)、銅(Cu)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)などの鉄以外の遷移元素からなる群より選ばれる少なくとも1種の元素をさらに含んでいてもよい。そのうち、特にZr又はTiが好ましい。   As T, other than rare earth elements, for example, cobalt (Co), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), zirconium (Zr) ), Niobium (Nb), molybdenum (Mo), hafnium (Hf), tantalum (Ta), and at least one element selected from the group consisting of transition elements other than iron, such as tungsten (W). Good. Of these, Zr or Ti is particularly preferable.

上記Tは、Fe単独であってもよく、Feの一部がCoで置換されているものであってもよい。一部Co置換の場合、磁気特性を低下させることなく温度特性を向上させることができる。また、Coの含有量は、Feの含有量の20重量%以下に抑えることが望ましい。これ以上の置換は磁気特性を低下させる上に、価格的にも高価となってしまうからである。   The above T may be Fe alone or a part of Fe may be substituted with Co. In the case of partial Co substitution, the temperature characteristics can be improved without deteriorating the magnetic characteristics. Further, the Co content is desirably suppressed to 20% by weight or less of the Fe content. This is because replacement beyond this will lower the magnetic properties and increase the price.

上記R14B系化合物において、Bの一部が炭素(C)より置換されていてもよい。この場合、磁石の製造が容易となるほか、製造コストの低減も図れるようになる。また、耐蝕性を向上させることができる。また、これらの元素の置換量は、磁気特性に実質的に影響しない量とすることが望ましい。 In the R 2 T 14 B-based compound, a part of B may be substituted with carbon (C). In this case, the magnet can be easily manufactured and the manufacturing cost can be reduced. Moreover, corrosion resistance can be improved. Further, it is desirable that the substitution amount of these elements is an amount that does not substantially affect the magnetic characteristics.

保磁力の向上や製造コストの低減等を図る観点から、本発明の希土類焼結磁石は、上記構成に加え、アルミニウム(Al)、ビスマス(Bi)、アンチモン(Sb)、ゲルマニウム(Ge)、スズ(Sn)、ケイ素(Si)、ガリウム(Ga)等の元素をさらに含んでいてもよい。これらの含有量も磁気特性に影響を及ぼさない範囲とすることが好ましく、それぞれ5重量%以下とすることが好ましい。また、その他、不可避的に混入する成分としては、酸素(O)、窒素(N)、炭素(C)、カルシウム(Ca)等が考えられる。これらはそれぞれ0.5重量%程度以下の量で含有されていてもよい。   From the viewpoint of improving the coercive force and reducing the manufacturing cost, the rare earth sintered magnet of the present invention includes aluminum (Al), bismuth (Bi), antimony (Sb), germanium (Ge), tin, in addition to the above-described configuration. It may further contain an element such as (Sn), silicon (Si), or gallium (Ga). These contents are also preferably in a range that does not affect the magnetic properties, and each content is preferably 5% by weight or less. In addition, oxygen (O), nitrogen (N), carbon (C), calcium (Ca), etc. are conceivable as components that are inevitably mixed. Each of these may be contained in an amount of about 0.5% by weight or less.

希土類焼結磁石における希土類元素の含有量は25〜35重量%であり、好ましく28〜33重量%であり、Bの含有量は0.5〜1.5重量%であり、好ましく0.8〜1.2重量%であることが望ましい。また、Coの含有量を4重量%以下の範囲、好ましくは0.1〜2重量%、より好ましくは0.3〜1.5重量%とすることが望ましい。   The rare earth element content in the rare earth sintered magnet is 25 to 35% by weight, preferably 28 to 33% by weight, and the B content is 0.5 to 1.5% by weight, preferably 0.8 to It is desirable that the content be 1.2% by weight. Further, it is desirable that the Co content is in the range of 4 wt% or less, preferably 0.1 to 2 wt%, more preferably 0.3 to 1.5 wt%.

また、Al及び/又はCuを0.02〜0.6重量%の範囲で含有することができる。この範囲でAl及びCuの1種又は2種を含有させることにより、得られる磁石の高保磁力化、高耐食性化、温度特性の改善が可能となる。Alの場合、好ましいAlの量は0.03〜0.3重量%であり、より好ましくは0.05〜0.25重量%である。また、Cuの場合、好ましいCuの量は0.3重量%以下(ただし、0を含まず)、より好ましくは0.2重量%以下(ただし、0を含まず)、特に好ましくは0.03〜0.15重量%である。   Moreover, Al and / or Cu can be contained in 0.02-0.6 weight%. By containing one or two of Al and Cu in this range, it is possible to increase the coercive force, increase the corrosion resistance, and improve the temperature characteristics of the obtained magnet. In the case of Al, the preferable amount of Al is 0.03 to 0.3% by weight, and more preferably 0.05 to 0.25% by weight. In the case of Cu, the preferable amount of Cu is 0.3% by weight or less (however, not including 0), more preferably 0.2% by weight or less (however, not including 0), and particularly preferably 0.03%. ~ 0.15 wt%.

また、希土類焼結磁石において、磁気特性の観点から、酸素量を6000ppm以下とすることが好ましく、より好ましくは3000ppm以下、特に好ましくは2000ppm以下とする。また、炭素量を2000ppm以下とすることが好ましく、より好ましくは1500ppm以下、特に好ましくは1200ppm以下とする。さらに、窒素量を1000ppm以下とすることが好ましく、より好ましくは800ppm以下、特に好ましくは600ppm以下とする。   In the rare earth sintered magnet, from the viewpoint of magnetic properties, the oxygen content is preferably 6000 ppm or less, more preferably 3000 ppm or less, and particularly preferably 2000 ppm or less. Further, the carbon content is preferably 2000 ppm or less, more preferably 1500 ppm or less, and particularly preferably 1200 ppm or less. Furthermore, the nitrogen content is preferably 1000 ppm or less, more preferably 800 ppm or less, and particularly preferably 600 ppm or less.

[希土類焼結磁石の製造方法]
次に、上述したような構成を有する希土類焼結磁石の好適な製造方法について説明する。
[Method of manufacturing rare earth sintered magnet]
Next, a preferred method for manufacturing a rare earth sintered magnet having the above-described configuration will be described.

本発明の希土類焼結磁石の作製は、特に限定しないが、焼結法による作製が好ましく、二合金法による焼結は、中心部より表面部のc/aが小さい主相粒子を含む磁石が得られやすいため、より好ましい。以下、二合金法について詳細に説明する。   Production of the rare earth sintered magnet of the present invention is not particularly limited, but production by a sintering method is preferred, and sintering by a two-alloy method produces a magnet including main phase particles having a c / a smaller in the surface portion than in the central portion. Since it is easy to obtain, it is more preferable. Hereinafter, the two-alloy method will be described in detail.

まず、2種の合金を用意する。例えば、鋳造法やストリップキャスト法等の公知の合金製造プロセスにより所望の組成を有する主相用合金及び粒界相用合金を作製するができる。2種のうち、主成分であり、主相粒子の形成に貢献する合金を主相用合金といい、他方を粒界相用合金という。なお、主相用合金及び粒界相用合金のいずれもR14B系化合物を含有してもよく、その組成は上述した通りである。また、二合金法では、2種以上の合金を使用してよく、この場合、R14B系化合物の含有割合が50%より少ない合金を便宜上粒界相合金という。さらに、粒界相用合金にR14B系化合物を含有する場合、主相用合金よりc/a比が小さいものを使用すると、所定粒子を全体の20%以上とすることがより容易となる。例えば、主相用合金を軽希土類元素(Nd及び/又はPr)の含有量(重量%)がより多いものとし、粒界相用合金を重希土類元素(Dy及び/又はTb)の含有量がより多いものとすることができる。また、主相用及び粒界相用合金中のBの含有量(重量%)が異なるものを使用することもできる。さらに、重希土類元素の含有量がより多い合金において、Bの含有量を少なくすることもできる。 First, two types of alloys are prepared. For example, a main phase alloy and a grain boundary phase alloy having a desired composition can be produced by a known alloy manufacturing process such as a casting method or a strip casting method. Of the two types, an alloy that is a main component and contributes to the formation of main phase particles is called a main phase alloy, and the other is called a grain boundary phase alloy. Note that both the main phase alloy and the grain boundary phase alloy may contain an R 2 T 14 B-based compound, and the composition thereof is as described above. In the two-alloy method, two or more kinds of alloys may be used. In this case, an alloy containing less than 50% of the R 2 T 14 B-based compound is referred to as a grain boundary phase alloy for convenience. Furthermore, when the R 2 T 14 B-based compound is contained in the grain boundary phase alloy, it is easier to make the predetermined particles 20% or more of the total when using a compound having a smaller c / a ratio than the main phase alloy. It becomes. For example, the main phase alloy has a higher content (wt%) of light rare earth elements (Nd and / or Pr), and the grain boundary phase alloy has a heavy rare earth element (Dy and / or Tb) content. It can be more. Moreover, the thing in which content (weight%) of B in the alloy for main phases and grain boundary phases differs can also be used. Further, in an alloy having a higher heavy rare earth element content, the B content can be reduced.

次に、これらの各母合金は別々に又は一緒に粉砕される。粉砕工程には、粗粉砕工程と微粉砕工程とがある。まず、各母合金を、それぞれ粒径数百μm程度になるまで粗粉砕する。粗粉砕は、スタンプミル、ジョークラッシャー、ブラウンミル等を用い、不活性ガス雰囲気中にて行なうことが望ましい。粗粉砕性を向上させるために、水素を吸蔵させた後、粗粉砕を行なうことが効果的である。また、水素吸蔵を行った後に、水素を放出させ、さらに粗粉砕を行うこともできる。また、水素処理を粗粉砕と位置付けることもできる。   Each of these master alloys is then ground separately or together. The pulverization process includes a coarse pulverization process and a fine pulverization process. First, each mother alloy is coarsely pulverized until the particle size becomes about several hundred μm. The coarse pulverization is desirably performed in an inert gas atmosphere using a stamp mill, a jaw crusher, a brown mill or the like. In order to improve the coarse pulverization property, it is effective to perform coarse pulverization after occlusion of hydrogen. Moreover, after hydrogen occlusion, hydrogen can be released and further coarse pulverization can be performed. In addition, hydrogen treatment can be positioned as coarse pulverization.

粗粉砕工程後、微粉砕工程に移る。微粉砕には、主にジェットミルが用いられ、粒径数百μm程度の粗粉砕粉末が、例えば平均粒径3〜5μmになるまで粉砕される。ジェットミルは、高圧の不活性ガス(例えば窒素ガス)を狭いノズルより開放して高速のガス流を発生させ、この高速のガス流により粗粉砕粉末を加速し、粗粉砕粉末同士の衝突やターゲットあるいは容器壁との衝突を発生させて粉砕する方法である。微粉砕時に、脂肪酸アミド、脂肪酸、金属石鹸等の潤滑剤を0.01〜0.3重量%程度添加することにより、粉砕効率を向上させるとともに成形時に配向性の高い微粉を得ることができる。   After the coarse pulverization process, the process proceeds to the fine pulverization process. For the fine pulverization, a jet mill is mainly used, and a coarsely pulverized powder having a particle size of about several hundred μm is pulverized until the average particle size becomes 3 to 5 μm, for example. The jet mill opens a high-pressure inert gas (for example, nitrogen gas) from a narrow nozzle to generate a high-speed gas flow, and the high-speed gas flow accelerates the coarsely pulverized powder. Or it is the method of generating and colliding with a container wall. By adding about 0.01 to 0.3% by weight of a lubricant such as fatty acid amide, fatty acid or metal soap at the time of fine pulverization, it is possible to improve the pulverization efficiency and obtain fine powder with high orientation at the time of molding.

微粉砕工程において主相用合金及び粒界相用合金を別々に粉砕した場合には、微粉砕された主相用合金粉末及び粒界相用合金粉末を窒素雰囲気中で混合する。この混合時に潤滑剤を添加することもできる。主相用合金粉末及び粒界相用合金粉末の混合比率は、重量比で80:20〜97:3程度とすればよい。同様に、主相用合金及び粒界相用合金を一緒に粉砕する場合の混合比率も重量比で80:20〜97:3程度とすればよい。   When the main phase alloy and the grain boundary phase alloy are separately ground in the fine grinding step, the finely ground main phase alloy powder and the grain boundary phase alloy powder are mixed in a nitrogen atmosphere. A lubricant can be added during the mixing. The mixing ratio of the main phase alloy powder and the grain boundary phase alloy powder may be about 80:20 to 97: 3 by weight. Similarly, the mixing ratio when the main phase alloy and the grain boundary phase alloy are ground together may be about 80:20 to 97: 3 by weight.

次いで、主相用合金粉末及び粒界相用合金粉末からなる混合粉末を、磁場印加によってその結晶軸を配向させた状態で加圧成形する。この磁場中成形の条件は、12〜20kOe(960〜1600kA/m)前後の磁場で、0.1〜3t/cm(10〜300MPa)とすればよい。 Next, a mixed powder composed of the main phase alloy powder and the grain boundary phase alloy powder is pressure-molded in a state in which the crystal axis is oriented by applying a magnetic field. The molding conditions in the magnetic field may be a magnetic field of about 12 to 20 kOe (960 to 1600 kA / m) and 0.1 to 3 t / cm 2 (10 to 300 MPa).

磁場中成形後、その成形体を真空又は不活性ガス雰囲気中で焼結する。焼結温度は、組成、粉砕方法、粒度と粒度分布の違い等、諸条件により調整する必要があるが、1000〜1100℃で1〜5時間程度焼結すればよい。ここで、焼結の温度及び時間を調節することで、所定粒子が20%以上である磁石を製造することができる。また、水素が残存したままで焼結する場合、脱水素温度以下の低温領域では主相用合金及び粒界相用合金が反応せず、脱水素後に一気に反応が進むことがあるため、このことを利用して、水素処理の有無に合わせて、焼結温度や時間を調節することで、所定粒子の割合が20%以上とすることがより容易になる。   After molding in a magnetic field, the compact is sintered in a vacuum or an inert gas atmosphere. Although it is necessary to adjust sintering temperature by various conditions, such as a composition, a grinding | pulverization method, a difference of a particle size and a particle size distribution, what is necessary is just to sinter at 1000-1100 degreeC for about 1 to 5 hours. Here, by adjusting the sintering temperature and time, a magnet having 20% or more of predetermined particles can be manufactured. In addition, when sintering with hydrogen remaining, the main phase alloy and the grain boundary phase alloy do not react in the low temperature region below the dehydrogenation temperature, and the reaction may proceed at once after dehydrogenation. It is easier to adjust the ratio of the predetermined particles to 20% or more by adjusting the sintering temperature and time according to the presence or absence of hydrogen treatment.

焼結後、得られた焼結体に時効処理を施すことができる。時効処理は、保磁力を制御する上で重要である。時効処理を2段に分けて行なう場合には、700〜950℃及び500〜650℃での所定時間の保持が有効である。500〜650℃の保持の前に700〜950℃での熱処理を行なうと、主に角型性が向上するため、混合法においては特に有効である。また、500〜700℃の熱処理で保磁力が大きく増加するため、時効処理を1段で行なう場合には、500〜700℃の時効処理を施すとよい。   After sintering, the obtained sintered body can be subjected to an aging treatment. The aging treatment is important for controlling the coercive force. When the aging treatment is performed in two stages, it is effective to hold at 700 to 950 ° C. and 500 to 650 ° C. for a predetermined time. When heat treatment at 700 to 950 ° C. is performed before holding at 500 to 650 ° C., the squareness is mainly improved, so that it is particularly effective in the mixing method. Further, since the coercive force is greatly increased by the heat treatment at 500 to 700 ° C., the aging treatment at 500 to 700 ° C. is preferably performed when the aging treatment is performed in one stage.

上記全ての製造過程は、低酸素雰囲気において行うことが好ましい。この場合、酸素濃度は1.0重量%以下であればよく、0.1重量%以下、さらに200ppm以下であることがより好ましい。   All the above manufacturing processes are preferably performed in a low oxygen atmosphere. In this case, the oxygen concentration may be 1.0% by weight or less, more preferably 0.1% by weight or less, and further preferably 200 ppm or less.

また、上記所定粒子の割合は、使用する合金の組成、組織、混合量、微粉粒径及び焼結条件などを調整することにより所望の値に設定することができる。   Further, the ratio of the predetermined particles can be set to a desired value by adjusting the composition, structure, mixing amount, fine particle size, sintering conditions, and the like of the alloy to be used.

さらに、所定粒子において、表面部における格子定数の比c/aが中心部におけるc/aより0.5〜1.4%小さくなるようにするためには、使用する合金の組成、組織、混合量、微粉粒径及び焼結条件などを調節すればよい。   Further, in order to make the lattice constant ratio c / a in the surface portion 0.5 to 1.4% smaller than the c / a in the center portion in a predetermined particle, the composition, structure, and mixing of the alloy to be used. The amount, fine particle size, sintering conditions, etc. may be adjusted.

二合金法以外には、希土類の酸化物、フッ化物などを利用する粒界拡散法、スパッタ法などで主に重希土類元素を磁石表面に物理的に堆積させ、その後熱処理を行う表面改質法などの方法も用いられる。   In addition to the two-alloy method, a surface modification method in which heavy rare earth elements are physically deposited mainly on the magnet surface by a grain boundary diffusion method using a rare earth oxide or fluoride, a sputtering method, etc., and then heat-treated. Such a method is also used.

以上のようにして希土類焼結磁石が得られる。こうして得られた磁石をさらに任意の形状に加工することもできる。加工には、例えば、打ち抜き、切削など金属加工の手段が用いられる。また、耐蝕性を向上させるためには、表面加工を施すこともできる。さらに、着磁させると、磁石製品が得られる。   A rare earth sintered magnet is obtained as described above. The magnet thus obtained can be further processed into an arbitrary shape. For the processing, for example, metal processing means such as punching or cutting is used. Moreover, in order to improve corrosion resistance, surface processing can also be given. Further, when magnetized, a magnet product is obtained.

以下、本発明を実施例及び比較例を挙げてさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to a following example.

(合金)
以下の実施例及び比較例において使用される主相及び粒界相用合金は、一般的なストリップキャスティング法によって作製した。それぞれの合金におけるFe以外の組成(重量%)を表1に示す。なお、表1中、「T.RE」は、Total Rare Earthを意味する。

Figure 2009016403

(alloy)
The main phase and grain boundary phase alloys used in the following examples and comparative examples were produced by a general strip casting method. Table 1 shows the composition (% by weight) of each alloy other than Fe. In Table 1, “T.RE” means Total Rare Earth.
Figure 2009016403

(実施例1−1〜1−3)
水素処理を行った合金Aと、水素処理を行わなかった合金Bとを9:1の比率で混合し、気流式粉砕機(ジェットミル)に供した。このとき、合金Aとしては、室温で水素吸蔵させた後、Ar雰囲気中で600℃まで加熱し、室温まで冷却して得られたものを使用した。得られた微粉をレーザー回折式粒度分布計で測定したところ、粒径D50は4.2μmであった。上記微粉を磁場中で成型、真空中、1060℃で4時間(実施例1−1)、1080℃で4時間(実施例1−2)又は1070℃で2時間(実施例1−3)焼結し、続いてAr雰囲気中、800℃で1時間、そして550℃で1時間の2段階で熱処理を行い、磁石を得た。なお、これらの実施例も含めて以下では特に記載しない限り、各工程における雰囲気中の酸素濃度を重量比で100ppm以下に制御した。
(Examples 1-1 to 1-3)
The alloy A that had been subjected to hydrogen treatment and the alloy B that had not been subjected to hydrogen treatment were mixed at a ratio of 9: 1, and then subjected to an airflow pulverizer (jet mill). At this time, the alloy A used was obtained by absorbing hydrogen at room temperature, heating to 600 ° C. in an Ar atmosphere, and cooling to room temperature. When the obtained fine powder was measured with a laser diffraction particle size distribution analyzer, the particle size D50 was 4.2 μm. The fine powder is molded in a magnetic field, and baked in vacuum at 1060 ° C. for 4 hours (Example 1-1) at 1080 ° C. for 4 hours (Example 1-2) or at 1070 ° C. for 2 hours (Example 1-3). Then, heat treatment was performed in two stages of 800 ° C. for 1 hour and 550 ° C. for 1 hour in an Ar atmosphere to obtain a magnet. In addition, unless otherwise indicated below including these Examples, the oxygen concentration in the atmosphere in each step was controlled to 100 ppm or less by weight ratio.

(比較例1−1〜1−3)
合金A及び合金Bは共に水素処理を行ったものであること以外、実施例1−1〜1−3と同様にして合金A,Bを粉砕し、微粉を得た。このとき、合金A,Bの水素処理は実施例1−1と同様に行った。そして、実施例1−1と同様にして微粉の粒径D50を測定したところ、微粉のD50は4.1〜4.2μmであった。続いてAr雰囲気中でそれぞれ実施例1−1〜1−3と同様な焼結温度、すなわち、1060℃で4時間(比較例1−1)、1080℃で4時間(比較例1−2)又は1070℃で2時間(比較例1−3)焼結し、実施例1−1と同様な条件で2段階の熱処理を各1時間行い、磁石を得た。
(Comparative Examples 1-1 to 1-3)
Alloys A and B were pulverized in the same manner as in Examples 1-1 to 1-3 except that both the alloys A and B were subjected to hydrogen treatment, and fine powder was obtained. At this time, the hydrogen treatment of the alloys A and B was performed in the same manner as in Example 1-1. And when the particle size D50 of fine powder was measured like Example 1-1, D50 of fine powder was 4.1-4.2 micrometers. Subsequently, sintering temperatures similar to those of Examples 1-1 to 1-3, respectively, in an Ar atmosphere, that is, 1060 ° C. for 4 hours (Comparative Example 1-1), 1080 ° C. for 4 hours (Comparative Example 1-2) Alternatively, sintering was performed at 1070 ° C. for 2 hours (Comparative Example 1-3), and two-stage heat treatment was performed for 1 hour under the same conditions as in Example 1-1 to obtain a magnet.

(比較例2−1)
得られる磁石が実施例1−1の磁石と同じ最終組成となるように、1種の合金(合金C)を使用した。合金Cを実施例1−1と同様に水素処理し、続いて実施例1−1と同様に、磁石を得た。
(Comparative Example 2-1)
One kind of alloy (alloy C) was used so that the obtained magnet had the same final composition as the magnet of Example 1-1. Alloy C was treated with hydrogen in the same manner as in Example 1-1, and then a magnet was obtained in the same manner as in Example 1-1.

(実施例2−1〜2−8)
合金の種類及び配合比を表2に示す通りとし、さらにいずれの合金にも水素処理を行ったこと以外は、実施例1−1と同様にして磁石を得た。
(Examples 2-1 to 2-8)
Magnets were obtained in the same manner as in Example 1-1 except that the alloy types and mixing ratios were as shown in Table 2 and that any alloy was subjected to hydrogen treatment.

(実施例3−1及び3−2)
合金の種類及び配合比を表2に示す通りとし、いずれの合金にも水素処理を行い、さらにジェットミルを用いた粉砕における雰囲気中の酸素濃度を0.3重量%(実施例3−1)又は1.0重量%(実施例3−2)としたこと以外は実施例1−1と同様にして磁石を得た。
(Examples 3-1 and 3-2)
The alloy types and mixing ratios are as shown in Table 2, all the alloys were treated with hydrogen, and the oxygen concentration in the atmosphere in the pulverization using a jet mill was 0.3 wt% (Example 3-1). Or the magnet was obtained like Example 1-1 except having set it as 1.0 weight% (Example 3-2).

(比較例3−1)
表2に示す合金を使用し、ジェットミルを用いた粉砕における雰囲気中の酸素濃度を1.6重量%としたこと以外は、実施例1−1と同じ条件に従い、磁石を得た。
(Comparative Example 3-1)
A magnet was obtained according to the same conditions as in Example 1-1 except that the alloy shown in Table 2 was used and the oxygen concentration in the atmosphere in the pulverization using a jet mill was 1.6 wt%.

(実施例4−1及び4−2)
焼結まで実施例1−1と同様に行った後、得られた焼結体の表面に80%のDy−Al合金粉(粒径:1.0μm)を載せ、700℃で1時間、続いて550℃で1時間熱処理し、磁石を得た。
(Examples 4-1 and 4-2)
After carrying out in the same manner as Example 1-1 until sintering, 80% Dy-Al alloy powder (particle size: 1.0 μm) was placed on the surface of the obtained sintered body, followed by 1 hour at 700 ° C. And heat-treated at 550 ° C. for 1 hour to obtain a magnet.

(実施例4−2)
焼結まで実施例1−1と同様に行った後、得られた焼結体の表面に80%のTb−Cu合金粉(粒径:1.5μm)を載せ、900℃で1時間、続いて550℃で1時間熱処理し、磁石を得た。
(Example 4-2)
After carrying out in the same manner as in Example 1-1 until sintering, 80% Tb—Cu alloy powder (particle size: 1.5 μm) was placed on the surface of the obtained sintered body, followed by 1 hour at 900 ° C. And heat-treated at 550 ° C. for 1 hour to obtain a magnet.

(実施例5−1、5−2及び6)
合金の種類及び配合比を表2に示す通りとし、さらに水素処理を行ったこと以外、実施例1−1と同じ条件に従い、磁石を得た。このとき水素処理は、実施例1−1と同様に行った。
(Examples 5-1, 5-2 and 6)
The magnets were obtained in accordance with the same conditions as in Example 1-1 except that the alloy types and mixing ratios were as shown in Table 2 and that hydrogen treatment was further performed. At this time, the hydrogen treatment was performed in the same manner as in Example 1-1.

なお、上記の実施例及び比較例に使用される合金及びその配合比、粉砕後の微粉粒径D50、並びに得られた磁石の最終組成は表2に示した。

Figure 2009016403

In addition, Table 2 shows the alloys used in the above-described Examples and Comparative Examples, their blending ratio, the fine particle diameter D50 after pulverization, and the final composition of the obtained magnet.
Figure 2009016403

(格子定数の測定)
上記のようにして得られた磁石を熱硬化性樹脂中に埋め込み、サンドペーパー、続いてダイヤモンドペーストで鏡面研磨し、サンプルとした。そして、各サンプルに対し、透過型電子顕微鏡(JEM2100F;日本電子社製)を用いて、4視野確認し、全部で20粒子を調査した。このとき、各粒子について、中心部及び表面部のそれぞれにおける電子線回折像に基づいて格子定数a及びcを測定し、表面部のc/aが中心部より0.5〜1.4%小さい粒子の数を評価した。その結果を表3に示す。
(Measurement of lattice constant)
The magnet obtained as described above was embedded in a thermosetting resin, and mirror-polished with sandpaper and then with diamond paste to prepare a sample. Then, for each sample, four visual fields were confirmed using a transmission electron microscope (JEM2100F; manufactured by JEOL Ltd.), and a total of 20 particles were investigated. At this time, for each particle, the lattice constants a and c are measured based on the electron diffraction images at the center and the surface, and the c / a of the surface is 0.5 to 1.4% smaller than the center. The number of particles was evaluated. The results are shown in Table 3.

(強度試験)
上記のようにして得られた磁石を、内周スライサーを用い、18×20×3mmの磁石片サンプルに加工し、メディアの空間体積率40%で60分間ボールミルに供した。このとき、メディアには、直径12mmのジルコニアを用いた。
(Strength test)
The magnet obtained as described above was processed into a magnet piece sample of 18 × 20 × 3 mm using an inner peripheral slicer, and subjected to a ball mill for 60 minutes at a space volume ratio of media of 40%. At this time, zirconia having a diameter of 12 mm was used as the medium.

その後、磁石片サンプルを取り出し、残重量を測ることによってチッピング(欠け)の程度を評価した。なお、残重量が98.5%未満の場合、「欠け大」と評価した。各実施例、比較例ごとに、60個の磁石片サンプルを用意し、それぞれについてチッピングの評価を行った。その結果を表3に示す。

Figure 2009016403

Thereafter, a magnet piece sample was taken out and the remaining weight was measured to evaluate the degree of chipping. When the remaining weight was less than 98.5%, it was evaluated as “large chipping”. For each example and comparative example, 60 magnet piece samples were prepared, and chipping was evaluated for each sample. The results are shown in Table 3.
Figure 2009016403

表3から、所定粒子が全体に占める割合が20%以上の磁石が、割合が20%よりも少ない磁石に比べて、含まれる希土類金属の種類及び含有量、並びに酸素含有量にかかわらず、チッピングが発生しにくいことが分かった。すなわち、表面部のc/aが中心部より0.5〜1.4%小さい粒子の数が全体の20%以上である磁石は、機械的強度が高く、実用性・加工性に優れることが分かった。   From Table 3, a chip in which the ratio of the predetermined particles to the whole is 20% or more is chipped regardless of the kind and content of rare earth metal contained and the oxygen content, compared to a magnet having a ratio of less than 20%. It was found that is difficult to occur. That is, a magnet in which the number of particles whose c / a of the surface portion is 0.5 to 1.4% smaller than the center portion is 20% or more of the whole has high mechanical strength and is excellent in practicality and workability. I understood.

さらに、所定粒子の割合と、欠け大との相関関係についての結果を図1に示す。図1に示す結果より、所定粒子の割合が20%以上である場合、20%未満の場合に比べて、欠け大の磁石片サンプルの個数(割合)が有意に減少した。   Furthermore, the result about the correlation with the ratio of a predetermined particle | grain and chipping is shown in FIG. From the results shown in FIG. 1, when the ratio of the predetermined particles is 20% or more, the number (ratio) of chip pieces having a large size is significantly reduced as compared with the case of less than 20%.

表面部のc/aが中心部より0.5〜1.4%小さい粒子の数と磁石片サンプルの欠け大の数との相関関係を示すグラフである。It is a graph which shows the correlation between the number of the particle | grains whose c / a of a surface part is 0.5 to 1.4% smaller than a center part, and the number of chip size of a magnet piece sample.

Claims (3)

表面部及び前記表面部に囲まれている中心部を有し、R14B系化合物(Rは少なくとも1種の希土類元素を含み、TはFe単独又はFe及びCoの両方を示す)を含む粒子を主相とする希土類焼結磁石であって、
前記粒子における二次元観察時の表面から重心までの距離を100%とした場合、前記表面部が前記表面から前記重心に向かって前記距離の20%に相当する距離までの部分であり、
前記R14B系化合物のa軸に対するc軸の格子定数の比をc/aとした場合、前記表面部おける前記c/aが前記中心部より0.5〜1.4%小さい粒子が、2次元観察時にサンプリングした全粒子に対して20%以上の割合で含まれている、希土類焼結磁石。
A surface portion and a central portion surrounded by the surface portion, and an R 2 T 14 B-based compound (R includes at least one rare earth element, and T represents Fe alone or both Fe and Co). A rare earth sintered magnet whose main phase is particles containing,
When the distance from the surface to the center of gravity at the time of two-dimensional observation of the particles is 100%, the surface portion is a portion from the surface toward the center of gravity to a distance corresponding to 20% of the distance,
When the ratio of the lattice constant of the c-axis to the a-axis of the R 2 T 14 B-based compound is c / a, the c / a in the surface portion is 0.5 to 1.4% smaller than the center portion Is a rare earth sintered magnet containing 20% or more of all particles sampled during two-dimensional observation.
前記表面部おける前記c/aが前記中心部より0.5〜1.4%小さい粒子が、2次元観察時にサンプリングした全粒子に対して25%以上の割合で含まれている、請求項1に記載の希土類焼結磁石。   The particle | grains whose said c / a in the said surface part is 0.5 to 1.4% smaller than the said center part are contained in the ratio of 25% or more with respect to all the particles sampled at the time of two-dimensional observation. The rare earth sintered magnet according to 1. 前記Rとして少なくとも、Nd及びPrから選択される少なくとも1種と、Dy及びTbから選択される少なくとも1種とが含まれる、請求項1又は2に記載の希土類焼結磁石。
The rare earth sintered magnet according to claim 1 or 2, wherein at least one selected from Nd and Pr and at least one selected from Dy and Tb are included as R.
JP2007173547A 2007-06-29 2007-06-29 Rare earth sintered magnet Active JP4930226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007173547A JP4930226B2 (en) 2007-06-29 2007-06-29 Rare earth sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007173547A JP4930226B2 (en) 2007-06-29 2007-06-29 Rare earth sintered magnet

Publications (2)

Publication Number Publication Date
JP2009016403A true JP2009016403A (en) 2009-01-22
JP4930226B2 JP4930226B2 (en) 2012-05-16

Family

ID=40356992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007173547A Active JP4930226B2 (en) 2007-06-29 2007-06-29 Rare earth sintered magnet

Country Status (1)

Country Link
JP (1) JP4930226B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011211068A (en) * 2010-03-30 2011-10-20 Tdk Corp Sintered magnet, motor and automobile
CN110021466A (en) * 2017-12-28 2019-07-16 厦门钨业股份有限公司 A kind of R-Fe-B-Cu-Al system sintered magnet and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04155902A (en) * 1990-10-19 1992-05-28 Tdk Corp Permanent magnet and manufacture thereof
WO2005001856A1 (en) * 2003-06-30 2005-01-06 Tdk Corporation R-t-b based rare earth permanent magnet and method for production thereof
JP2006210450A (en) * 2005-01-26 2006-08-10 Tdk Corp R-t-b series sintered magnet
WO2006098204A1 (en) * 2005-03-14 2006-09-21 Tdk Corporation R-t-b based sintered magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04155902A (en) * 1990-10-19 1992-05-28 Tdk Corp Permanent magnet and manufacture thereof
WO2005001856A1 (en) * 2003-06-30 2005-01-06 Tdk Corporation R-t-b based rare earth permanent magnet and method for production thereof
JP2006210450A (en) * 2005-01-26 2006-08-10 Tdk Corp R-t-b series sintered magnet
WO2006098204A1 (en) * 2005-03-14 2006-09-21 Tdk Corporation R-t-b based sintered magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011211068A (en) * 2010-03-30 2011-10-20 Tdk Corp Sintered magnet, motor and automobile
CN110021466A (en) * 2017-12-28 2019-07-16 厦门钨业股份有限公司 A kind of R-Fe-B-Cu-Al system sintered magnet and preparation method thereof

Also Published As

Publication number Publication date
JP4930226B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
TWI673730B (en) R-Fe-B based sintered magnet and manufacturing method thereof
JP6488976B2 (en) R-T-B sintered magnet
TWI431644B (en) Rare earth permanent magnet and manufacturing method thereof
TWI238422B (en) R-Fe-B sintered magnet
RU2377680C2 (en) Rare-earth permanaent magnet
JP5093485B2 (en) Rare earth permanent magnet and manufacturing method thereof
JP6493138B2 (en) R-T-B sintered magnet
JP4702549B2 (en) Rare earth permanent magnet
CN109935432B (en) R-T-B permanent magnet
CN108154987B (en) R-T-B permanent magnet
JP2018093202A (en) R-t-b based permanent magnet
CN108154988B (en) R-T-B permanent magnet
JP4076175B2 (en) R-T-B rare earth permanent magnet
CN111261352B (en) Method for producing R-T-B permanent magnet
JP2019102707A (en) R-t-b based permanent magnet
JP4951703B2 (en) Alloy material for RTB-based rare earth permanent magnet, method for manufacturing RTB-based rare earth permanent magnet, and motor
JP2008060241A (en) High resistance rare-earth permanent magnet
JP2005150503A (en) Method for manufacturing sintered magnet
CN108630367B (en) R-T-B rare earth magnet
JP2009010305A (en) Method for manufacturing rare-earth magnet
JP4076178B2 (en) R-T-B rare earth permanent magnet
JP6511844B2 (en) RTB based sintered magnet
JP6508447B1 (en) Method of manufacturing RTB based sintered magnet
JP4930226B2 (en) Rare earth sintered magnet
JP6645306B2 (en) RTB based sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

R150 Certificate of patent or registration of utility model

Ref document number: 4930226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3