JP2005329789A - Reinforcement structure of member of vehicle body front part - Google Patents

Reinforcement structure of member of vehicle body front part Download PDF

Info

Publication number
JP2005329789A
JP2005329789A JP2004149066A JP2004149066A JP2005329789A JP 2005329789 A JP2005329789 A JP 2005329789A JP 2004149066 A JP2004149066 A JP 2004149066A JP 2004149066 A JP2004149066 A JP 2004149066A JP 2005329789 A JP2005329789 A JP 2005329789A
Authority
JP
Japan
Prior art keywords
reinforcing member
bending
reaction force
front side
lower reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004149066A
Other languages
Japanese (ja)
Inventor
Tatsuya Fukushima
達也 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004149066A priority Critical patent/JP2005329789A/en
Publication of JP2005329789A publication Critical patent/JP2005329789A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)
  • Vibration Dampers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reinforcement structure of a member of a vehicle body front part capable of ensuring the compatibility of characteristic requirement between suppression of maximum bending reaction required for a full-wrap collision and suppression of bending angle required for an off-set collision. <P>SOLUTION: A front side member extension body 3 having a bending part 13 bent in the vertical direction is extended to the vehicle body front part along the longitudinal direction of the vehicle, and an upper side reinforcement member 5 and a lower side reinforcement member 7 are disposed on the inward of the bending part 13 of the front side member extension body 3 leaving an interval vertically. When the load in the longitudinal direction is applied to the front side member extension body 3 to cause a bending deformation, the upper side reinforcement member 5 and the lower side reinforcement member 7 abut to produce the reaction force. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、車体前部のメンバ部材の補強構造に関し、更に詳しくは、いわゆるフルラップ衝突及びオフセット衝突の双方に要求される反力特性を充足する車体前部のメンバ部材の補強構造に関する。  The present invention relates to a reinforcing structure for a member member at the front part of a vehicle body, and more particularly to a reinforcing structure for a member member at the front part of a vehicle body that satisfies the reaction force characteristics required for both so-called full-wrap collision and offset collision.

従来、サイドメンバエクステンション等の車体前部に設けられたメンバ部材には、その内方に補強部材が設けられたものがあり、車両衝突によってメンバ部材が曲げ変形を起こしたときに、補強部材がメンバ部材本体に当接するように構成されている(例えば、特許文献1,2参照)。   Conventionally, some member members provided at the front of the vehicle body, such as side member extensions, are provided with a reinforcing member on the inside thereof. When the member member is bent and deformed by a vehicle collision, the reinforcing member is It is comprised so that it may contact | abut to a member member main body (for example, refer patent documents 1, 2).

まず、特許文献1においては、軸圧潰により衝撃を吸収する中空断面の骨格部材(例えば、フロントサイドメンバ等のメンバ部材)の内側に補強部材(例えば、リインフォース)を設け、この補強部材に脆弱部として蛇腹部を形成して骨格部材の軸圧縮時に軸圧潰しやすいものとし、前記蛇腹部を骨格部材と干渉させることで軸圧縮時の骨格部材の曲げ変形を抑制して骨格部材が軸圧潰しやすくしている。  First, in Patent Document 1, a reinforcing member (for example, reinforcement) is provided inside a skeleton member (for example, a member member such as a front side member) having a hollow cross section that absorbs an impact by axial crushing. As the bellows portion is formed, the skeleton member is easily crushed when the skeleton member is axially compressed. It is easy.

また、特許文献2においては、骨格部材(メンバ部材)であるフロントサイドメンバエクステンションの内部にハット型断面形状の補強部材であるリインフォースを設け、フロントサイドメンバエクステンション前端に圧縮力が作用したときのフロントサイドメンバエクステンションとリインフォースの座屈モード波形のピーク数を互いに異なる素数とすることで、圧縮力によるフロントサイドメンバエクステンションの座屈形状の凹み部分が内部のリインフォースに接触するようにして、フロントサイドメンバエクステンションの断面潰れを抑制してフロントサイドメンバエクステンションの補強効果を高めている。
特開2003−312534公報 特開2003−312549公報
In Patent Document 2, the front side member extension, which is a skeleton member (member member), is provided with a reinforcement as a reinforcing member having a hat-shaped cross section, and the front side when the compressive force acts on the front end of the front side member extension is disclosed. By making the peak number of the buckling mode waveform of the side member extension and the reinforcement different from each other, the front side member is made so that the recessed portion of the buckling shape of the front side member extension due to the compressive force contacts the internal reinforcement. The cross-section of the extension is prevented from being crushed and the reinforcing effect of the front side member extension is enhanced.
JP 2003-31534 A JP 2003-312549 A

しかしながら、前記従来技術のメンバ部材によっては、いわゆるフルラップ衝突及びオフセット衝突の双方に要求される反力特性を充足させることが困難であり、また、この反力特性を充足させるためには、車両重量の増加やコスト上昇を招くおそれがあった。  However, depending on the member members of the prior art, it is difficult to satisfy the reaction force characteristics required for both the so-called full-wrap collision and offset collision, and in order to satisfy the reaction force characteristics, vehicle weight There was a risk of increasing the cost and cost.

即ち、前記特許文献1,2の技術によっては、フロントサイドメンバエクステンションなどのメンバ部材の曲げ変形を抑制して、曲げ反力を大きくすることができるが、一旦曲げ反力が最大値になったあとに、さらに曲げ変形させると曲げ反力が単調減少してしまい、フルラップ衝突で求められる最大曲げ反力の抑制と、オフセット衝突における曲げ角度の抑制とを両立することができないという問題があった。   That is, depending on the techniques of Patent Documents 1 and 2, it is possible to increase the bending reaction force by suppressing the bending deformation of the member member such as the front side member extension, but the bending reaction force once reached the maximum value. Later, when bending further deformed, the bending reaction force monotonously decreased, and there was a problem that it was impossible to achieve both the suppression of the maximum bending reaction force required in full-wrap collision and the suppression of the bending angle in offset collision. .

そこで、本発明は、フルラップ衝突で求められる最大曲げ反力の抑制と、オフセット衝突における曲げ角度の抑制とを両立することができる車体前部のメンバ部材の補強構造を提供することを目的としている。   Therefore, an object of the present invention is to provide a reinforcement structure for a member member at the front of a vehicle body that can achieve both the suppression of the maximum bending reaction force required in a full-wrap collision and the suppression of the bending angle in an offset collision. .

前記目的を達成するために、本発明に係る車体前部のメンバ部材の補強構造は、上下方向に屈曲した屈曲部を有するメンバ本体を、車体前部に車両前後方向に沿って延設するとともに、互いに近づく方向に凸状に湾曲した湾曲部を有する上側補強部材及び下側補強部材を、メンバ本体の屈曲部の内方に上下対向的に配置し、前記メンバ本体に車両前後方向の荷重が入力されて屈曲部を中心に曲げ変形を起こしたときに、前記上側補強部材及び下側補強部材の湾曲部同士が当接して反力を生ずるように構成している。  In order to achieve the above-mentioned object, the reinforcing structure for a member member at the front portion of the vehicle body according to the present invention includes a member body having a bent portion bent in the vertical direction extending along the vehicle front-rear direction at the front portion of the vehicle body. An upper reinforcing member and a lower reinforcing member having curved portions that are convexly curved in a direction approaching each other are arranged vertically opposite to each other inside the bent portion of the member main body, and a load in the vehicle longitudinal direction is applied to the member main body. When the bending deformation is caused around the bent portion, the curved portions of the upper reinforcing member and the lower reinforcing member come into contact with each other to generate a reaction force.

本発明に係る車体前部のメンバ部材の補強構造によれば、前記メンバ本体に車両前後方向の荷重が入力されて屈曲部を中心に曲げ変形を起こしたときに、前記上側補強部材及び下側補強部材の湾曲部同士が当接して反力を生ずるため、いわゆるフルラップ衝突及びオフセット衝突の双方の要求特性を満たすメンバ部材を得ることができる。  According to the reinforcing structure of the member member at the front part of the vehicle body according to the present invention, when the load in the vehicle front-rear direction is input to the member body and bending deformation occurs around the bent part, the upper reinforcing member and the lower side Since the curved portions of the reinforcing members come into contact with each other to generate a reaction force, a member member that satisfies the required characteristics of both so-called full-wrap collision and offset collision can be obtained.

即ち、フルラップ衝突は、オフセット衝突よりもメンバ部材の曲げ角度が小さいが、メンバ部材の曲げ反力は大きくなる。また、オフセット衝突は、メンバ部材の曲げ角度が大きくなるが、曲げ反力は小さくなる。従って、フルラップ衝突においては、メンバ部材の曲げ反力を抑制することが求められ、オフセット衝突においては、メンバ部材の曲げ角度を抑制することが求められる。よって、本発明によれば、上側補強部材及び下側補強部材の湾曲部同士が当接するまでは、メンバ部材の曲げ反力を抑制すると共に、湾曲部同士が当接したのちは、互いに反力が発生するため、曲げ角度を小さくすることができ、フルラップ衝突で求められる最大曲げ反力の抑制と、オフセット衝突における曲げ角度の抑制とを両立することができる。   That is, in the full wrap collision, the bending angle of the member member is smaller than that in the offset collision, but the bending reaction force of the member member is increased. Further, in the offset collision, the bending angle of the member member increases, but the bending reaction force decreases. Therefore, it is required to suppress the bending reaction force of the member member in the full wrap collision, and to suppress the bending angle of the member member in the offset collision. Therefore, according to the present invention, the bending reaction force of the member member is suppressed until the curved portions of the upper reinforcing member and the lower reinforcing member are in contact with each other, and after the curved portions are in contact with each other, the reaction force is mutually reduced. Therefore, the bending angle can be reduced, and both the suppression of the maximum bending reaction force required in the full wrap collision and the suppression of the bending angle in the offset collision can be achieved.

以下、本発明の実施形態を、メンバ部材としてフロントサイドメンバエクステンションを例にとって説明する。   Hereinafter, an embodiment of the present invention will be described taking a front side member extension as an example of a member member.

[第1の実施形態]
図1は本発明の第1実施形態によるフロントサイドメンバエクステンションを示す斜視図、図2は図1の下側補強部材を示す斜視図、及び図3は図1の一部を切り欠いて示す側面図である。
[First embodiment]
1 is a perspective view showing a front side member extension according to a first embodiment of the present invention, FIG. 2 is a perspective view showing a lower reinforcing member of FIG. 1, and FIG. 3 is a side view showing a part of FIG. FIG.

本実施形態によるメンバ部材であるフロントサイドメンバエクステンション1は、車体前部に配設されたフロントサイドメンバの後端部に接合されており、図1に示すように、メンバ本体である断面略ハット状のフロントサイドメンバエクステンション本体3と、該フロントサイドメンバエクステンション本体3の内方に設けられ、上下対向的に配置された上側補強部材5及び下側補強部材7とを備えている。   A front side member extension 1 which is a member member according to the present embodiment is joined to a rear end portion of a front side member disposed at a front portion of a vehicle body, and as shown in FIG. The front side member extension main body 3 is provided, and the upper side reinforcing member 5 and the lower side reinforcing member 7 are provided inwardly of the front side member extension main body 3 and are arranged in a vertically opposed manner.

前記フロントサイドメンバエクステンション本体3は、図3に示すように、車両前方に延びる前部9と、該前部9から後方斜め下方に向けて延設される傾斜部11と、該傾斜部11の下端部に設けられた屈曲部13と、該屈曲部13から車両後方に延びる後部15とから一体に形成され、前記前部9及び後部15はともに略水平状に延びている。また、前記屈曲部13は前方斜め下方に向けて凸状に屈曲している。即ち、フロントサイドメンバエクステンション本体3は、屈曲部13において、その延設方向が傾斜部11の後方斜め下方から車両後方側に変更されている。さらに、フロントサイドメンバエクステンション本体3は、下部に配置された底面17と、該底面17の左右両端から上方に延設された側面19と、該側面19の上端から車幅方向に延びる取付フランジ21とから一体に形成されており、前記取付フランジ21は、フロア及びダッシュパネルの下面に接合される。   As shown in FIG. 3, the front side member extension main body 3 includes a front part 9 that extends forward of the vehicle, an inclined part 11 that extends obliquely downward and rearward from the front part 9, It is integrally formed from a bent portion 13 provided at the lower end portion and a rear portion 15 extending from the bent portion 13 to the rear of the vehicle, and both the front portion 9 and the rear portion 15 extend substantially horizontally. Further, the bent portion 13 is bent in a convex shape obliquely downward and forward. That is, the front side member extension main body 3 has the bent portion 13 whose extension direction is changed from the obliquely lower rear side of the inclined portion 11 to the vehicle rear side. Further, the front side member extension main body 3 includes a bottom surface 17 disposed at a lower portion, a side surface 19 extending upward from left and right ends of the bottom surface 17, and a mounting flange 21 extending in the vehicle width direction from the upper end of the side surface 19. The mounting flange 21 is joined to the floor and the lower surface of the dash panel.

また、前記上側補強部材5は、図1に示すように、断面略コ字状に形成されており、下側に配置された底部23と、該底部23の左右両端から上方に延びる側部フランジ25とから構成されている。そして、図3に示すように、前記上側補強部材5は、側面視でフロントサイドメンバエクステンション本体3に沿って形成され、フロントサイドメンバエクステンション本体3の屈曲部13付近で前方斜め下方に凸状に湾曲しており、その湾曲方向がフロントサイドメンバエクステンションの屈曲部13の屈曲方向と同じ方向に構成されている。上側補強部材5の底部23はフロントサイドメンバエクステンション本体3の中立軸27よりも上方の位置に配置され、側部フランジ25は、その全長に亘って、フロントサイドメンバエクステンション本体3の側面19にスポット溶接等により接合されている。   Further, as shown in FIG. 1, the upper reinforcing member 5 is formed in a substantially U-shaped cross section, and has a bottom portion 23 disposed on the lower side and side flanges extending upward from both left and right ends of the bottom portion 23. 25. As shown in FIG. 3, the upper reinforcing member 5 is formed along the front side member extension main body 3 in a side view, and protrudes obliquely forward and downward near the bent portion 13 of the front side member extension main body 3. The bending direction is the same as the bending direction of the bent portion 13 of the front side member extension. The bottom 23 of the upper reinforcing member 5 is disposed at a position above the neutral shaft 27 of the front side member extension main body 3, and the side flange 25 is spotted on the side surface 19 of the front side member extension main body 3 over the entire length thereof. Joined by welding or the like.

さらに、図2に示すように、前記下側補強部材7は、前後両端に接合フランジ29,31が形成され、図3に示すように、接合フランジ29,31はフロントサイドメンバエクステンション本体3の屈曲部13の前後でフロントサイドメンバエクステンション本体3の底面17にスポット溶接等で接合されている。また、下側補強部材7はフロントサイドメンバエクステンション1の屈曲部13付近で後方斜め上方に向けて凸状に湾曲しており、その湾曲方向がフロントサイドメンバエクステンション本体3の屈曲部13の屈曲方向と逆方向に形成されている。これにより、上側補強部材5の湾曲部33と下側補強部材7の湾曲部35は、互いに近づく方向、即ち逆方向に凸状に湾曲している。そして、図3に示すように、上側補強部材5の湾曲部33の頂部33aと下側補強部材7の湾曲部35の頂部35aとは、所定の間隔dをおいて配置されている。なお、この間隔dは、上側補強部材5の湾曲部33の位置を下げたり、下側補強部材7の湾曲部35の位置を上げたりすることにより、適宜、変更することができる。さらに、間隔dの大きさを適宜変更することにより、湾曲部同士33,35の当接タイミングを調整することができ、また、湾曲部同士33,35の当接による反力の大きさも調整することもできる。   Further, as shown in FIG. 2, the lower reinforcing member 7 is formed with joint flanges 29 and 31 at both front and rear ends, and as shown in FIG. 3, the joint flanges 29 and 31 are bent of the front side member extension body 3. It is joined to the bottom surface 17 of the front side member extension main body 3 before and after the portion 13 by spot welding or the like. Further, the lower reinforcing member 7 is curved in a convex shape toward the rear obliquely upward near the bent portion 13 of the front side member extension 1, and the bending direction thereof is the bent direction of the bent portion 13 of the front side member extension main body 3. It is formed in the opposite direction. Accordingly, the curved portion 33 of the upper reinforcing member 5 and the curved portion 35 of the lower reinforcing member 7 are curved in a convex shape in a direction approaching each other, that is, in the opposite direction. And as shown in FIG. 3, the top part 33a of the curved part 33 of the upper side reinforcement member 5 and the top part 35a of the curved part 35 of the lower side reinforcement member 7 are arrange | positioned at predetermined intervals d. The distance d can be appropriately changed by lowering the position of the curved portion 33 of the upper reinforcing member 5 or raising the position of the curved portion 35 of the lower reinforcing member 7. Furthermore, by appropriately changing the size of the distance d, the contact timing of the curved portions 33 and 35 can be adjusted, and the magnitude of the reaction force caused by the contact of the curved portions 33 and 35 can also be adjusted. You can also.

図4は前端部に荷重が入力された場合にフロントサイドメンバエクステンションが曲げ変形を起こしている状態を示す側面図、図5は本発明によるフロントサイドメンバエクステンションに荷重が入力された場合におけるフロントサイドメンバエクステンションの曲げ角度と反力との関係を示すグラフである。   FIG. 4 is a side view showing a state where the front side member extension is bent when a load is input to the front end, and FIG. 5 is a front side view when the load is input to the front side member extension according to the present invention. It is a graph which shows the relationship between the bending angle of a member extension, and reaction force.

フロントサイドメンバエクステンション1の前端部に荷重fが車両後方に向けて入力されると、フロントサイドメンバエクステンション1は、屈曲部13を中心にして車両後方側に曲げ角度θの曲げ変形を起こす。   When the load f is input to the front end portion of the front side member extension 1 toward the rear of the vehicle, the front side member extension 1 causes a bending deformation at a bending angle θ around the bent portion 13 toward the rear of the vehicle.

そして、図5に示すように、本発明によるフロントサイドメンバエクステンション1では、曲げ角度θmax1及びθmax2で曲げ反力の極大値を2つ(Fmax1,Fmax2)有している。また、最初の極大値であるFmax1は、フルラップ衝突に要求される曲げ反力の規定値であるFmax以下に設定され、最終的な曲げ角度はオフセット衝突に要求される曲げ角度の規定値であるθmaxに設定されている。   As shown in FIG. 5, the front side member extension 1 according to the present invention has two maximum values (Fmax1, Fmax2) of bending reaction forces at bending angles θmax1 and θmax2. In addition, Fmax1, which is the first maximum value, is set to be equal to or less than Fmax, which is a specified value of the bending reaction force required for full-wrap collision, and the final bending angle is a specified value of the bending angle required for offset collision. θmax is set.

つまり、フルラップ衝突とオフセット衝突の反力特性の要求を両立させるフロントサイドメンバエクステンション1においては、フルラップ衝突でのフロントサイドメンバエクステンション1の曲げ反力をFmax以下とし、オフセット衝突でのフロントサイドメンバエクステンション1の曲げ角度をθmax以下とすればよい。このためには、フロントサイドメンバエクステンション1の曲げ反力特性が、図5のようにフルラップ衝突時の最大曲げ反力の最大値Fmax1とオフセット衝突時の曲げ反力の最大値Fmax2が、Fmax1<Fmax2で、Fmax1となる曲げ角θmax1とFmax2となる曲げ角θmax2の間の曲げ角(θmax1<θ<θmax2)において曲げ角が大きくなるにつれて曲げ反力FがFmax1から一旦下降し、その後上昇に転じてFmax2に至ることが求められる。   That is, in the front side member extension 1 that satisfies both the requirements of the reaction force characteristics of the full lap collision and the offset collision, the bending reaction force of the front side member extension 1 in the full lap collision is set to Fmax or less, and the front side member extension in the offset collision is set. The bending angle of 1 may be set to θmax or less. For this purpose, the bending reaction force characteristic of the front side member extension 1 is such that the maximum value Fmax1 of the maximum bending reaction force at the time of full lap collision and the maximum value Fmax2 of the bending reaction force at the time of offset collision are Fmax1 < At Fmax2, the bending reaction force F temporarily decreases from Fmax1 as the bending angle increases at the bending angle (θmax1 <θ <θmax2) between the bending angle θmax1 that becomes Fmax1 and the bending angle θmax2 that becomes Fmax2, and then increases. To reach Fmax2.

以下に、車両前方から衝突荷重が入力された場合のフロントサイドメンバエクステンションの変形の推移を図6〜図8を用いて説明する。なお、図6は本発明の第1実施形態によるフロントサイドメンバエクステンションの側面図であり、荷重入力前の状態を示しており、図7は図6のフロントサイドメンバエクステンションの前端部に荷重が入力されて曲げ変形を起こした状態を示す側面図であり、図8は図7の状態から更に変形が進んだフロントサイドメンバエクステンションの側面図である。   The transition of the deformation of the front side member extension when a collision load is input from the front of the vehicle will be described below with reference to FIGS. 6 is a side view of the front side member extension according to the first embodiment of the present invention, and shows a state before the load is input, and FIG. 7 is a diagram in which a load is input to the front end portion of the front side member extension of FIG. FIG. 8 is a side view showing a state where bending deformation has occurred, and FIG. 8 is a side view of the front side member extension in which the deformation has further advanced from the state of FIG.

まず、図7に示すように、フロントサイドメンバエクステンション1の前部9に車両後方の荷重fが入力されると、フロントサイドメンバエクステンション1の屈曲部13に作用する曲げモーメントによって屈曲部13を中心にフロントサイドメンバエクステンション1が曲げ角度θ(B)の曲げ変形を起こす。ここで、上側補強部材5の湾曲部33は、その湾曲方向をフロントサイドメンバエクステンション1の屈曲部13の屈曲方向と同じ下方に設定しているので、フロントサイドメンバエクステンション1の屈曲部13の曲げ変形に追従して下に凸の変形モードとなる曲げ変形が生じる。さらに、上側補強部材5の湾曲部33はフロントサイドメンバエクステンションの中立軸27よりも上側に配置されているために、フロントサイドメンバエクステンション本体3の屈曲部13付近に曲げ変形に伴って生じる座屈の断面潰れにより、上側補強部材5の湾曲部33の頂部33aは中立軸27に近づくように下方に移動する。   First, as shown in FIG. 7, when a vehicle load f is input to the front portion 9 of the front side member extension 1, the bending portion 13 is centered by a bending moment acting on the bending portion 13 of the front side member extension 1. In addition, the front side member extension 1 causes a bending deformation of a bending angle θ (B). Here, since the bending portion 33 of the upper reinforcing member 5 has its bending direction set to be the same downward as the bending direction of the bending portion 13 of the front side member extension 1, the bending portion 13 of the front side member extension 1 is bent. Following the deformation, bending deformation occurs in a downward convex deformation mode. Further, since the curved portion 33 of the upper reinforcing member 5 is disposed above the neutral shaft 27 of the front side member extension, buckling caused by bending deformation in the vicinity of the bent portion 13 of the front side member extension main body 3. The top 33a of the curved portion 33 of the upper reinforcing member 5 moves downward so as to approach the neutral shaft 27 due to the collapse of the cross section.

一方、これと同時にフロントサイドメンバエクステンション本体3の屈曲部13に生じる曲げ変形に伴って下側補強部材7の接合フランジ同士29,31の距離が狭まることによって、下側補強部材7の湾曲部35に曲げ変形が生じる。ここで、下側補強部材7の湾曲部35の湾曲方向を上に凸としたために、下側補強部材7の湾曲部35の曲げ変形モードは上に凸となり、下側補強部材7の湾曲部35の頂部35aはフロントサイドメンバエクステンション本体3の底面17に対して上方に移動する。   Meanwhile, at the same time, the bending portion 35 of the lower reinforcing member 7 is narrowed due to the bending deformation occurring in the bent portion 13 of the front side member extension body 3, whereby the curved portion 35 of the lower reinforcing member 7 is reduced. Bending deformation occurs. Here, since the bending direction of the curved portion 35 of the lower reinforcing member 7 is convex upward, the bending deformation mode of the curved portion 35 of the lower reinforcing member 7 is convex upward, and the curved portion of the lower reinforcing member 7 is The top portion 35 a of 35 moves upward with respect to the bottom surface 17 of the front side member extension main body 3.

さらに、フロントサイドメンバエクステンション1の屈曲部13の曲げ変形がさらに進み、曲げ角度θが大きくなるにつれて、上側補強部材5の湾曲部33の頂部33aと下側補強部材7の湾曲部35の頂部35aの距離dは減少し、図8に示すように、それぞれの頂部同士33a,35aは当接する。そして、フロントサイドメンバエクステンション1の曲げ変形が更に進むと、各湾曲部同士33,35に互いに反力が生ずるようになる。   Further, as the bending deformation of the bent portion 13 of the front side member extension 1 further proceeds and the bending angle θ increases, the top portion 33a of the curved portion 33 of the upper reinforcing member 5 and the top portion 35a of the curved portion 35 of the lower reinforcing member 7 are increased. The distance d decreases, and as shown in FIG. 8, the apexes 33a and 35a come into contact with each other. When the bending deformation of the front side member extension 1 further proceeds, a reaction force is generated between the curved portions 33 and 35.

図9は、本発明の第1実施形態によるサイドメンバエクステンションに荷重が入力された場合におけるサイドメンバエクステンションの曲げ角度と反力との関係を示すグラフである。なお、θ(A)は図6の状態における曲げ角度に対応し、θ(B)は図7の状態における曲げ角度に対応し、θ(C)は図8の状態における曲げ角度に対応している。  FIG. 9 is a graph showing the relationship between the bending angle and reaction force of the side member extension when a load is input to the side member extension according to the first embodiment of the present invention. Note that θ (A) corresponds to the bending angle in the state of FIG. 6, θ (B) corresponds to the bending angle in the state of FIG. 7, and θ (C) corresponds to the bending angle in the state of FIG. Yes.

屈曲部13を中心とするフロントサイドメンバエクステンション1の曲げ角度θに対する曲げ反力Fの変化は、フロントサイドメンバエクステンション本体3の曲げ反力F1と、上側補強部材5の湾曲部33の曲げ反力F2と、下側補強部材7の湾曲部35の曲げ反力F3とを合計した曲げ反力となり、F=F1+F2+F3を満たしている。   Changes in the bending reaction force F with respect to the bending angle θ of the front side member extension 1 centered on the bending portion 13 are the bending reaction force F1 of the front side member extension body 3 and the bending reaction force of the bending portion 33 of the upper reinforcing member 5. The total bending reaction force F2 and the bending reaction force F3 of the curved portion 35 of the lower reinforcing member 7 is a bending reaction force that satisfies F = F1 + F2 + F3.

まず、フロントサイドメンバエクステンション1に荷重fが入力される前で曲げ角度θ=θ(A)=0のとき、フロントサイドメンバエクステンション本体3の曲げ反力F1は、曲げ変形が生じる屈曲部13が座屈して断面潰れが発生するので曲げ角θに対して極大値を示した後は、曲げ角度θの増加に伴って単調減少する。上側補強部材5と下側補強部材7の曲げ反力F2,F3についても、それぞれの湾曲部33,35の頂部33a,35a付近に生じる降伏と、上側補強部材5と下側補強部材7の曲げ角度の増加に伴う曲げモーメントのモーメントアームの増加によって極大値となった後は、曲げ角度θの増加に伴って一旦は減少する。しかし、上側補強部材5の湾曲部33の頂部33aと下側補強部材7の湾曲部35の頂部35aが当接(干渉)したのちは、それぞれの上側補強部材5及び下側補強部材7に反力が発生する。この反力によって、上側補強部材5の湾曲部33の頂部33aの下方移動と、下側補強部材7の湾曲部35の頂部35aの上方移動とが抑制されるようになる。これにより、上側補強部材5と下側補強部材7の曲げ変形が抑制されるとともに上側補強部材5の曲げ反力F2と下側補強部材7の曲げ反力F3が上昇して曲げ反力Fが2つ目の極大値を示す。   First, when the bending angle θ = θ (A) = 0 before the load f is input to the front side member extension 1, the bending reaction force F1 of the front side member extension main body 3 is caused by the bending portion 13 where bending deformation occurs. Since the cross section is crushed due to buckling, after the maximum value is shown with respect to the bending angle θ, it decreases monotonously as the bending angle θ increases. With respect to the bending reaction forces F2 and F3 of the upper reinforcing member 5 and the lower reinforcing member 7, the yield occurring in the vicinity of the top portions 33a and 35a of the curved portions 33 and 35, and the bending of the upper reinforcing member 5 and the lower reinforcing member 7, respectively. After reaching the maximum value by increasing the moment arm of the bending moment as the angle increases, it decreases once as the bending angle θ increases. However, after the top portion 33a of the curved portion 33 of the upper reinforcing member 5 and the top portion 35a of the curved portion 35 of the lower reinforcing member 7 come into contact (interference), the upper reinforcing member 5 and the lower reinforcing member 7 are opposed to each other. Force is generated. Due to this reaction force, the downward movement of the top portion 33 a of the curved portion 33 of the upper reinforcing member 5 and the upward movement of the top portion 35 a of the curved portion 35 of the lower reinforcing member 7 are suppressed. As a result, the bending deformation of the upper reinforcing member 5 and the lower reinforcing member 7 is suppressed, and the bending reaction force F2 of the upper reinforcing member 5 and the bending reaction force F3 of the lower reinforcing member 7 are increased so that the bending reaction force F is increased. The second maximum value is shown.

以上より、フロントサイドメンバエクステンション本体3、上側補強部材5及び下側補強部材7の曲げ反力の合計(F1+F2+F3)で与えられるフロントサイドメンバエクステンションの反力Fは、上側補強部材5の湾曲部33と下側補強部材7の湾曲部35が当接する前に一旦極大値を示し、その後減少するが、上側補強部材5の湾曲部33と下側補強部材7の湾曲部35が干渉した後は再び増加し始め、2つ目の極大値を示す。   From the above, the reaction force F of the front side member extension given by the total bending reaction force (F1 + F2 + F3) of the front side member extension main body 3, the upper reinforcing member 5 and the lower reinforcing member 7 is the curved portion 33 of the upper reinforcing member 5. Before the curved portion 35 of the lower reinforcing member 7 abuts, and once reaches a maximum value, then decreases, but after the curved portion 33 of the upper reinforcing member 5 and the curved portion 35 of the lower reinforcing member 7 interfere, It starts to increase and shows the second maximum.

ここで、上側補強部材5の湾曲部33と下側補強部材7の湾曲部35が当接するときのフロントサイドメンバエクステンション1の屈曲部13の曲げ角度θ(C)が、フルラップ衝突におけるフロントサイドメンバエクステンション1の曲げ角度の最大値付近になるようにすれば、フルラップ衝突時のフロントサイドメンバエクステンション1の最大曲げ反力をFmax以下とし、かつ、オフセット衝突時の最大曲げ角度をθmax以下にすることができる。このため、フルラップ衝突とオフセット衝突の双方に求められる特性要求を満たしたフロントサイドメンバエクステンション1を得ることができる。   Here, the bending angle θ (C) of the bent portion 13 of the front side member extension 1 when the curved portion 33 of the upper reinforcing member 5 and the curved portion 35 of the lower reinforcing member 7 abut is the front side member in the full wrap collision. If it is close to the maximum value of the bending angle of the extension 1, the maximum bending reaction force of the front side member extension 1 at the time of full lap collision should be Fmax or less, and the maximum bending angle at the time of offset collision should be θmax or less. Can do. Therefore, it is possible to obtain the front side member extension 1 that satisfies the characteristic requirements required for both full wrap collision and offset collision.

以下に、本発明の第1実施形態による作用効果について説明する。   Below, the effect by 1st Embodiment of this invention is demonstrated.

一般に、車両の前面衝突は、いわゆるフルラップ衝突とオフセット衝突に大別される。  In general, a frontal collision of a vehicle is roughly divided into a so-called full-wrap collision and an offset collision.

このフルラップ衝突は、衝突エネルギーを車両前面のほぼ全幅で吸収するため、車体変形量は比較的小さいが、衝突時の車体減速度や乗員の減速度は大きくなる。車両衝突時には、ほぼエンジンコンパートメントのみが変形するので、ダッシュパネルやフロアパネルの下部に設けられたフロントサイドメンバエクステンションの曲げ角度は小さい。しかし、フロントサイドメンバエクステンション1に生じる曲げ反力は大きくなり、車体減速度は大きくなる。このように、フルラップ衝突においては、フロントサイドメンバエクステンション1に生じる曲げ反力を規定値以下に抑制して車体減速度を低くすることが要求される。  In this full wrap collision, the collision energy is absorbed by almost the entire width of the front surface of the vehicle, so that the deformation amount of the vehicle body is relatively small, but the vehicle body deceleration and the occupant deceleration during the collision are large. At the time of a vehicle collision, almost only the engine compartment is deformed, so the bending angle of the front side member extension provided at the lower part of the dash panel or floor panel is small. However, the bending reaction force generated in the front side member extension 1 increases, and the vehicle body deceleration increases. Thus, in a full lap collision, it is required to reduce the vehicle body deceleration by suppressing the bending reaction force generated in the front side member extension 1 to a specified value or less.

一方、オフセット衝突においては、衝突エネルギーを車両の一部(例えば、左右片側)で吸収するため、車体変形量は大きくなり、衝突時の車体減速度や乗員の減速度は小さくなる。つまり、フロントサイドメンバエクステンション1に生じる屈曲部13を中心とする曲げ角度は大きいが、フロントサイドメンバエクステンション1に生じる曲げ反力は小さくなる。このように、オフセット衝突においては、フロントサイドメンバエクステンション1に生じる曲げ角度を規定値以下に抑制することが要求される。  On the other hand, in an offset collision, the collision energy is absorbed by a part of the vehicle (for example, one of the left and right sides). That is, the bending angle around the bent portion 13 generated in the front side member extension 1 is large, but the bending reaction force generated in the front side member extension 1 is small. As described above, in the offset collision, it is required to suppress the bending angle generated in the front side member extension 1 to a specified value or less.

従って、本発明によれば、フロントサイドメンバエクステンション1の曲げ反力と曲げ角度を規定値以下に抑えることにより、フルラップ衝突とオフセット衝突の双方に対する要求特性を充足することができる。  Therefore, according to the present invention, the required characteristics for both the full wrap collision and the offset collision can be satisfied by suppressing the bending reaction force and the bending angle of the front side member extension 1 to the specified values or less.

なお、フロントサイドメンバエクステンション1に補強構造を追設しない場合は、フルラップ衝突で求められる曲げ反力を規定値以下とすることと、オフセット衝突で求められる曲げ角を規定値以下とすることの双方を満たすことが困難となる。  When the reinforcing structure is not additionally provided on the front side member extension 1, both the bending reaction force obtained in the full wrap collision is set to a specified value or less and the bending angle obtained in the offset collision is set to a specified value or less. It becomes difficult to satisfy.

つまり、フロントサイドメンバエクステンション1に何らの補強構造を加えずに、曲げ反力の最大値をフルラップ衝突に対応させてFmax以下とすると、フロントサイドメンバエクステンション1の屈曲変形に伴う屈曲部13の応力集中により、曲げ反力の最大値を超えてなお曲げ変形をさせると、屈曲部13に生じる座屈による断面潰れが屈曲部13の曲げ反力を単調低下させてしまう。そのため、オフセット衝突時のフロントサイドメンバエクステンション1の曲げ角θがθmaxよりも大きくなってしまう。逆に、オフセット衝突時のフロントサイドメンバエクステンション1の曲げ角をθmax以下にしようとするとフルラップ衝突時の曲げ反力がFmax以上になってしまう。このように、フロントサイドメンバエクステンション1になんら補強構造を加えないと、フルラップ衝突で求められる曲げ反力をFmax以下とすることと、オフセット衝突で求められる曲げ角θをθmax以下とすることの要求特性を両立させることが困難となる。しかし、本発明によれば、上側補強部材5及び下側補強部材7からなる補強構造を設けているため、フルラップ衝突の要求特性とオフセット衝突の要求特性との両立を図ることができる。   That is, if no maximum reinforcing structure is added to the front side member extension 1 and the maximum value of the bending reaction force is set to Fmax or less corresponding to the full wrap collision, the stress of the bent portion 13 due to the bending deformation of the front side member extension 1 If the bending deformation is performed beyond the maximum value of the bending reaction force due to concentration, the cross-sectional collapse due to buckling occurring in the bending portion 13 monotonously decreases the bending reaction force of the bending portion 13. Therefore, the bending angle θ of the front side member extension 1 at the time of the offset collision becomes larger than θmax. On the other hand, if the bending angle of the front side member extension 1 at the time of the offset collision is made to be equal to or less than θmax, the bending reaction force at the time of the full wrap collision becomes Fmax or more. As described above, if no reinforcing structure is added to the front side member extension 1, the bending reaction force required in the full wrap collision is set to Fmax or less, and the bending angle θ required in the offset collision is requested to be θmax or less. It becomes difficult to achieve both properties. However, according to the present invention, since the reinforcing structure including the upper reinforcing member 5 and the lower reinforcing member 7 is provided, it is possible to achieve both the required characteristics of the full wrap collision and the required characteristics of the offset collision.

また、本実施形態においては、車体前部に車両前後方向に沿って延設され、上下方向に屈曲した屈曲部13を有するメンバ本体(フロントサイドメンバエクステンション本体)3と、該メンバ本体3の屈曲部13の内方に上下対向的に取り付けられ、互いに近づく方向に凸状に湾曲した湾曲部33,35を有する上側補強部材5及び下側補強部材7とを備え、前記メンバ本体3に車両前後方向の荷重fが入力されて屈曲部13を中心に曲げ変形を起こしたときに、前記上側補強部材5及び下側補強部材7の湾曲部同士33,35が当接して反力を生ずるように構成している。このため、いわゆるフルラップ衝突及びオフセット衝突の双方の要求特性を満たすメンバ部材(フロントサイドメンバエクステンション)1を得ることができる。   In the present embodiment, a member main body (front side member extension main body) 3 having a bent portion 13 that extends in the vehicle front-rear direction and is bent in the vertical direction at the front of the vehicle body, and the bending of the member main body 3 are provided. An upper reinforcing member 5 and a lower reinforcing member 7 which are attached to the inside of the portion 13 so as to be opposed to each other in a vertical direction and have curved portions 33 and 35 curved in a convex shape in a direction approaching each other; When a direction load f is input and bending deformation occurs around the bent portion 13, the curved portions 33 and 35 of the upper reinforcing member 5 and the lower reinforcing member 7 are brought into contact with each other to generate a reaction force. It is composed. Therefore, it is possible to obtain a member member (front side member extension) 1 that satisfies the required characteristics of both so-called full wrap collision and offset collision.

即ち、フルラップ衝突は、オフセット衝突よりも車体変形量は小さいため、メンバ部材1の曲げ角度が小さく、車両室内の変形もあまり生じない。その一方、高い車体減速度が生じ、メンバ部材1の曲げ反力は大きくなるため、これに伴う乗員の減速度も大きくなる。このため、フルラップ衝突においては、図5に示すように、メンバ部材1の曲げ角度の最大値よりも、メンバ部材1の曲げ反力の最大値Fmax1を規定値Fmax以下に管理することが求められるが、本実施形態によれば、簡単かつ確実に曲げ反力の最大値を規定値以下に抑えることができる。   That is, the full lap collision has a smaller amount of vehicle body deformation than the offset collision, so the bending angle of the member member 1 is small, and the deformation in the vehicle compartment does not occur much. On the other hand, since a high vehicle body deceleration occurs and the bending reaction force of the member member 1 increases, the occupant deceleration associated therewith also increases. For this reason, in a full-wrap collision, as shown in FIG. 5, it is required to manage the maximum value Fmax1 of the bending reaction force of the member member 1 to be equal to or less than a specified value Fmax, rather than the maximum value of the bending angle of the member member 1. However, according to this embodiment, the maximum value of the bending reaction force can be suppressed to a specified value or less easily and reliably.

また、オフセット衝突は、車体の部分的衝突により発生するため、メンバ部材1の変形量が大きく、図5に示すように、曲げ角度の最大値θmaxも大きくなる。ここで、本実施形態では、曲げ角度の最大値θmaxが規定値と同一角度に設定されている。このように、オフセット衝突の場合は、曲げ角度の最大値を規定値θmax以下に管理することが求められるが、本実施形態によれば、簡単かつ確実に曲げ角度の最大値を規定値以下に抑えることができる。   Further, since the offset collision occurs due to a partial collision of the vehicle body, the deformation amount of the member member 1 is large, and the maximum value θmax of the bending angle is also large as shown in FIG. Here, in this embodiment, the maximum value θmax of the bending angle is set to the same angle as the specified value. As described above, in the case of an offset collision, it is required to manage the maximum value of the bending angle to be equal to or less than the specified value θmax. Can be suppressed.

また、前記上側補強部材5をメンバ本体3の屈曲部13の屈曲方向と同一方向に湾曲させ、下側補強部材7をメンバ本体3の屈曲方向と反対方向に湾曲させると共に、これらの上側補強部材5及び下側補強部材7の湾曲部同士33,35を所定の間隔dをおいて配置することにより、メンバ本体3に車両前後方向の荷重fが入力されたときに、上側補強部材5と下側補強部材7の曲げ変形モードが互いに逆方向になるように構成している。このため、簡単な構造で、メンバ部材1が曲げ変形を起こした場合に、前記上側補強部材5及び下側補強部材7の湾曲部同士33,35が確実に当接して反力を生ずるようにすることができる。また、上側補強部材5及び下側補強部材7という簡単な構造で湾曲部同士33,35による反力を発生させることができる。   Further, the upper reinforcing member 5 is bent in the same direction as the bending direction of the bent portion 13 of the member main body 3, the lower reinforcing member 7 is bent in the direction opposite to the bending direction of the member main body 3, and these upper reinforcing members are also bent. By arranging the curved portions 33 and 35 of the lower reinforcing member 5 and the lower reinforcing member 7 with a predetermined distance d, when the load f in the vehicle front-rear direction is input to the member body 3, the upper reinforcing member 5 and the lower reinforcing member 5 The bending deformation modes of the side reinforcing members 7 are configured to be opposite to each other. For this reason, when the member member 1 is bent and deformed with a simple structure, the curved portions 33 and 35 of the upper reinforcing member 5 and the lower reinforcing member 7 are surely brought into contact with each other to generate a reaction force. can do. Moreover, the reaction force by the curved portions 33 and 35 can be generated with a simple structure of the upper reinforcing member 5 and the lower reinforcing member 7.

さらに、前記上側補強部材5及び下側補強部材7の少なくともいずれかに、前記メンバ本体3の曲げ角度θに対する上側補強部材5及び下側補強部材7の湾曲部同士33,35の当接タイミングを調整する当接調整手段を設けているため、前記湾曲部同士33,35の当接による反力を発生させるタイミングを適宜、調整することができる。   Further, at least one of the upper reinforcing member 5 and the lower reinforcing member 7 is set to contact the curved portions 33 and 35 of the upper reinforcing member 5 and the lower reinforcing member 7 with respect to the bending angle θ of the member main body 3. Since the contact adjusting means for adjusting is provided, the timing for generating the reaction force due to the contact between the curved portions 33 and 35 can be appropriately adjusted.

なお、前記上側補強部材5及び下側補強部材7の湾曲部同士33,35の間隔dを変更することにより、前記湾曲部同士33,35の当接タイミングを調整するようにしているため、当接タイミングの調整を簡単に、かつ正確に行うことができる。   Note that the timing of contact between the curved portions 33 and 35 is adjusted by changing the distance d between the curved portions 33 and 35 of the upper reinforcing member 5 and the lower reinforcing member 7. The contact timing can be adjusted easily and accurately.

また、上下方向に屈曲した屈曲部13を有するメンバ本体3を車体前部に車両前後方向に沿って延設し、前記メンバ本体3の屈曲部13の内方に上下に間隔を隔てて上側補強部材5及び下側補強部材7を配置すると共に、前記メンバ本体3に車両前後方向の荷重fが入力されて曲げ変形を起こしたときに、前記上側補強部材5及び下側補強部材7が当接して反力Fを生じるように構成している。このため、いわゆるフルラップ衝突及びオフセット衝突の双方における要求特性を満たすメンバ部材(フロントサイドメンバエクステンション)1を得ることができる。   Further, the member main body 3 having the bent portion 13 bent in the vertical direction is extended along the vehicle front-rear direction at the front portion of the vehicle body, and the upper reinforcement is provided with an interval in the vertical direction inside the bent portion 13 of the member main body 3. The member 5 and the lower reinforcing member 7 are disposed, and the upper reinforcing member 5 and the lower reinforcing member 7 come into contact with each other when the load f in the vehicle front-rear direction is input to the member main body 3 to cause bending deformation. Thus, the reaction force F is generated. Therefore, it is possible to obtain a member member (front side member extension) 1 that satisfies the required characteristics in both so-called full wrap collision and offset collision.

なお、本実施形態によれば、フルラップ衝突時におけるメンバ部材1の曲げ角度では上側補強部材5と下側補強部材7の湾曲部33,35を干渉させず、オフセット衝突時における曲げ角度では湾曲部33,35を干渉させるように適宜、調整することができる。   According to the present embodiment, the bending portions 33 and 35 of the upper reinforcing member 5 and the lower reinforcing member 7 do not interfere with each other at the bending angle of the member member 1 at the time of the full wrap collision, and the bending portion at the bending angle at the time of the offset collision. It can adjust suitably so that 33 and 35 may interfere.

また、上側補強部材5の曲げ変形モードと下側補強部材7の曲げ変形モードの曲げ方向が互いに逆方向に設定されているために、曲げ角度θが大きくなるにつれて上側補強部材5の湾曲部33の頂部33aと下側補強部材7の湾曲部35の頂部35aとの間隔dを狭め、上側補強部材5及び下側補強部材7の湾曲部33,35を干渉させて反力を発生させることができる。   Further, since the bending directions of the bending deformation mode of the upper reinforcing member 5 and the bending deformation mode of the lower reinforcing member 7 are set to be opposite to each other, the bending portion 33 of the upper reinforcing member 5 increases as the bending angle θ increases. The distance d between the top portion 33a of the lower reinforcement member 7 and the top portion 35a of the curved portion 35 of the lower reinforcing member 7 is narrowed, and the curved portions 33 and 35 of the upper reinforcing member 5 and the lower reinforcing member 7 are caused to interfere to generate a reaction force. it can.

さらに、上側補強部材5の頂部33aと下側補強部材7の頂部35aとを間隔dをおいて配置したことにより、メンバ部材1の屈曲部13の曲げ角θが小さいときには、上側補強部材5と下側補強部材7が干渉しないので、上側補強部材5と下側補強部材7の干渉による反力が発生せず、メンバ部材1の曲げ反力の極大値を規定値以下にすることができる。   Further, by arranging the top portion 33a of the upper reinforcing member 5 and the top portion 35a of the lower reinforcing member 7 with a distance d, when the bending angle θ of the bent portion 13 of the member member 1 is small, the upper reinforcing member 5 and Since the lower reinforcing member 7 does not interfere, a reaction force due to the interference between the upper reinforcing member 5 and the lower reinforcing member 7 does not occur, and the maximum value of the bending reaction force of the member member 1 can be made not more than a specified value.

[第2の実施形態]
以下に、第2実施形態によるフロントサイドメンバエクステンションについて説明するが、前記第1実施形態と同一構造については、同一符号を付してその説明を省略する。
[Second Embodiment]
Hereinafter, the front side member extension according to the second embodiment will be described. The same structure as that of the first embodiment is denoted by the same reference numeral, and the description thereof is omitted.

本実施形態においては、第1実施形態による下側補強部材の前後両端部の側端部にフランジを設け、該フランジをフロントサイドメンバエクステンション本体の側面にスポット溶接等で接合している。   In the present embodiment, flanges are provided at the side end portions of the front and rear end portions of the lower reinforcing member according to the first embodiment, and the flanges are joined to the side surfaces of the front side member extension body by spot welding or the like.

図10は本発明の第2実施形態によるフロントサイドメンバエクステンションを示す側面図、図11は図10の下側補強部材を示す斜視図である。  10 is a side view showing a front side member extension according to a second embodiment of the present invention, and FIG. 11 is a perspective view showing a lower reinforcing member of FIG.

本実施形態に係るフロントサイドメンバエクステンション43における下側補強部材37には、図11に示すように、前端に設けられた接合フランジ29の近傍部の左右両端に上方に延びる左右一対のフランジ39,39が形成され、後端に設けられた接合フランジ31の近傍部の左右両端にも上方に延びる左右一対のフランジ41,41が形成されている。また、図10に示すように、前部のフランジ39及び後部のフランジ41はフロントサイドメンバエクステンション本体3の側面19に接合されており、下側補強部材37のうち、前記前部及び後部のフランジ39,41の間の部位は側面19に接合されていないため、上下に湾曲自在に形成されている。   As shown in FIG. 11, the lower reinforcing member 37 in the front side member extension 43 according to the present embodiment includes a pair of left and right flanges 39 extending upward at the left and right ends of the vicinity of the joint flange 29 provided at the front end. 39 is formed, and a pair of left and right flanges 41, 41 extending upward are also formed at both left and right ends of the vicinity of the joint flange 31 provided at the rear end. Also, as shown in FIG. 10, the front flange 39 and the rear flange 41 are joined to the side surface 19 of the front side member extension main body 3, and the front and rear flanges of the lower reinforcing member 37. Since the part between 39 and 41 is not joined to the side surface 19, it is formed so that it can be bent up and down.

以下に、車両前方から衝突荷重が入力された場合のフロントサイドメンバエクステンションの変形の推移を図12〜図14を用いて説明する。なお、図12は本発明の第2実施形態によるフロントサイドメンバエクステンションを示す側面図であり、荷重入力前の状態を示しており、図13は図12のフロントサイドメンバエクステンションの前端部に荷重fが入力されて曲げ変形を起こした状態を示す側面図であり、上側補強部材5と下側補強部材とが当接しており、図14は図13の状態から更に変形が進んだフロントサイドメンバエクステンションの側面図である。また、図13は、前記第1実施形態における図7と同一の曲げ角度の曲げ変形を起こした状態を示しており、図14は、前記図8と同一の曲げ角度の曲げ変形を起こした状態を示している。   The transition of the deformation of the front side member extension when a collision load is input from the front of the vehicle will be described below with reference to FIGS. 12 is a side view showing the front side member extension according to the second embodiment of the present invention, and shows a state before the load is input. FIG. 13 shows a load f at the front end of the front side member extension of FIG. FIG. 14 is a side view showing a state in which bending deformation is caused by being inputted, and the upper side reinforcing member 5 and the lower side reinforcing member are in contact with each other, and FIG. 14 is a front side member extension in which the deformation has further advanced from the state of FIG. FIG. 13 shows a state in which the bending deformation of the same bending angle as in FIG. 7 in the first embodiment is caused, and FIG. 14 shows a state in which the bending deformation of the same bending angle as in FIG. 8 is caused. Is shown.

図13に示すように、フロントサイドメンバエクステンション43に車両前後方向の荷重fが入力された場合、上側補強部材5の湾曲部33は前方斜め下方に向けて曲げ変形を起こし、下側補強部材37の湾曲部35は後方斜め上方に向けて曲げ変形を起こす。ここで、下側補強部材37がフロントサイドメンバエクステンション本体3に対して曲げ変形をするのは、前部のフランジ39と後部のフランジ41との間で側面19に接合されていない部位に限定されるため、下側補強部材37における曲げ変形をする部位の長さは、第1実施形態の場合よりも短くなる。このため、図7と比較して図13の方が、下側補強部材37の上方への移動量が大きくなり、図13においては、下側補強部材37の湾曲部35の頂部35aと、上側補強部材5の湾曲部33の頂部33aとが当接している。   As shown in FIG. 13, when a load f in the vehicle front-rear direction is input to the front side member extension 43, the curved portion 33 of the upper reinforcing member 5 undergoes bending deformation obliquely downward and forward, and the lower reinforcing member 37. The bending portion 35 is bent and deformed diagonally upward. Here, the lower side reinforcing member 37 bends and deforms with respect to the front side member extension main body 3 only in a portion that is not joined to the side surface 19 between the front flange 39 and the rear flange 41. Therefore, the length of the portion that undergoes bending deformation in the lower reinforcing member 37 is shorter than in the case of the first embodiment. Therefore, the amount of upward movement of the lower reinforcing member 37 is larger in FIG. 13 than in FIG. 7. In FIG. 13, the top portion 35 a of the curved portion 35 of the lower reinforcing member 37 and the upper portion The top 33 a of the curved portion 33 of the reinforcing member 5 is in contact with the curved portion 33.

さらに、図14に示すように、フロントサイドメンバエクステンション43の曲げ変形が進むと、下側補強部材37の湾曲部35と上側補強部材5の湾曲部33との干渉が更に進んで互いの変形及び反力が大きくなる。ここで、第1実施形態においては、図8に示すように、フロントサイドメンバエクステンション1の曲げ角度がθ(C)のときに下側補強部材7の湾曲部35の頂部35aと上側補強部材5の湾曲部33の頂部33aとが当接し始めているが、本実施形態においては、図14に示すように、両湾曲部同士33,35の干渉が進んで変形を起こしている。   Further, as shown in FIG. 14, when the bending deformation of the front side member extension 43 proceeds, the interference between the curved portion 35 of the lower reinforcing member 37 and the curved portion 33 of the upper reinforcing member 5 further progresses, and the mutual deformation and Reaction force increases. Here, in the first embodiment, as shown in FIG. 8, when the bending angle of the front side member extension 1 is θ (C), the top portion 35 a of the curved portion 35 of the lower reinforcing member 7 and the upper reinforcing member 5. In this embodiment, as shown in FIG. 14, the interference between the two curved portions 33 and 35 is advanced, causing deformation.

また、図15は本発明の第2実施形態によるサイドメンバエクステンションに荷重が入力された場合におけるサイドメンバエクステンションの曲げ角度と反力との関係を示すグラフである。   FIG. 15 is a graph showing the relationship between the bending angle and reaction force of the side member extension when a load is input to the side member extension according to the second embodiment of the present invention.

下側補強部材37のフランジ39,41をフロントサイドメンバエクステンション本体3に結合したために、フロントサイドメンバエクステンション43の屈曲部13の曲げ変形時に下側補強部材37の湾曲部35に生じる曲げ変形はフランジ同士39,41の間の部位に限定されるので、フロントサイドメンバエクステンション1の屈曲部13の曲げ角度の増加に伴って下側補強部材37の湾曲部35の頂部35aが上方に移動する移動量は、フランジがない第1実施形態に比べて大きくなる。これにより、上側補強部材5の湾曲部33と下側補強部材37の湾曲部35が干渉するフロントサイドメンバエクステンション1の屈曲部13の曲げ角度が第1実施形態に比べて小さくなる。   Since the flanges 39 and 41 of the lower reinforcing member 37 are coupled to the front side member extension main body 3, the bending deformation generated in the curved portion 35 of the lower reinforcing member 37 when the bending portion 13 of the front side member extension 43 is bent is flanged. Since it is limited to the part between 39 and 41, the moving amount | distance which the top part 35a of the curved part 35 of the lower side reinforcement member 37 moves upwards with the increase in the bending angle of the bending part 13 of the front side member extension 1 Is larger than that of the first embodiment without a flange. Thereby, the bending angle of the bending part 13 of the front side member extension 1 where the bending part 33 of the upper side reinforcement member 5 interferes with the bending part 35 of the lower side reinforcement member 37 becomes small compared with 1st Embodiment.

また、上側補強部材5の湾曲部33と下側補強部材37の湾曲部35との当接タイミングが早まるので、フロントサイドメンバエクステンション1の曲げ反力が極大値になった後の反力が単調減少するところの反力の減少分が第1実施形態よりも小さいために湾曲部33,35が当接して生じるフロントサイドメンバエクステンション全体43の曲げ反力の極大値が、破線で示す第1実施形態に比べて大きくなり、第2実施形態における最大曲げ角度θ’maxを第1実施形態における最大曲げ角度(規定値)θmaxよりも低減させることができる。そのため、前部のフランジ39と後部のフランジ41との間の長さを調節することにより、上側補強部材5の湾曲部33と下側補強部材37の湾曲部35との当接タイミング、及び、これらの湾曲部同士33,35の当接による曲げ反力の大きさを調整することができる。   Further, since the contact timing between the curved portion 33 of the upper reinforcing member 5 and the curved portion 35 of the lower reinforcing member 37 is advanced, the reaction force after the bending reaction force of the front side member extension 1 reaches the maximum value is monotonous. In the first embodiment, the maximum value of the bending reaction force of the entire front side member extension 43 generated when the curved portions 33 and 35 come into contact with each other because the decrease in the reaction force that decreases is smaller than that in the first embodiment. The maximum bending angle θ′max in the second embodiment can be reduced as compared with the maximum bending angle (specified value) θmax in the first embodiment. Therefore, by adjusting the length between the front flange 39 and the rear flange 41, the contact timing between the curved portion 33 of the upper reinforcing member 5 and the curved portion 35 of the lower reinforcing member 37, and The magnitude of the bending reaction force due to the contact between the curved portions 33 and 35 can be adjusted.

以下に、本実施形態による作用効果を説明する。   Below, the effect by this embodiment is demonstrated.

前記当接調整手段は、前記上側補強部材5及び下側補強部材37の少なくともいずれかの前部と後部に設けられてメンバ本体3の側面19に固定されたフランジ39,41であり、このフランジ39,41の固定位置を変更することにより、前記湾曲部同士33,35の当接タイミングを調整するようにしている。   The contact adjusting means includes flanges 39 and 41 provided at the front and rear portions of at least one of the upper reinforcing member 5 and the lower reinforcing member 37 and fixed to the side surface 19 of the member main body 3. By changing the fixed positions of 39 and 41, the contact timing of the curved portions 33 and 35 is adjusted.

また、前記反力調整手段は、前記上側補強部材5及び下側補強部材37の少なくともいずれかの前部と後部に設けられてメンバ本体3の側面19に固定されたフランジ39,41であり、このフランジ39,41の固定位置を変更することにより、上側補強部材5及び下側補強部材37の湾曲部同士33,35の当接による反力の大きさを調整するように構成している。   Further, the reaction force adjusting means is a flange 39, 41 provided at the front part and the rear part of at least one of the upper reinforcing member 5 and the lower reinforcing member 37 and fixed to the side face 19 of the member main body 3. By changing the fixing positions of the flanges 39 and 41, the magnitude of the reaction force due to the contact between the curved portions 33 and 35 of the upper reinforcing member 5 and the lower reinforcing member 37 is adjusted.

このように、フランジ39,41の位置を変更するという非常に簡単な手段で前記湾曲部同士33,35の当接タイミング、及び、湾曲部同士33,35の当接による反力の大きさを調整することができる。   In this way, the contact timing between the curved portions 33 and 35 and the magnitude of the reaction force due to the contact between the curved portions 33 and 35 can be determined by a very simple means of changing the positions of the flanges 39 and 41. Can be adjusted.

[第3の実施形態]
以下に、第3実施形態によるフロントサイドメンバエクステンションについて説明するが、前記第1及び第2実施形態と同一構造については、同一符号を付してその説明を省略する。
[Third embodiment]
The front side member extension according to the third embodiment will be described below. The same structure as that of the first and second embodiments is denoted by the same reference numeral, and the description thereof is omitted.

第3実施形態に係るフロントサイドメンバエクステンションは、第1実施形態に比べて、上側補強部材の湾曲部における側部フランジをフロントサイドメンバエクステンション本体の側面に接合しないようにしたものであり、湾曲部における側部フランジを除去しても良い。   The front side member extension according to the third embodiment is such that the side flange in the curved portion of the upper reinforcing member is not joined to the side surface of the front side member extension main body as compared with the first embodiment. The side flange may be removed.

図16は、本発明の第3実施形態によるフロントサイドメンバエクステンションを示す側面図である。  FIG. 16 is a side view showing a front side member extension according to the third embodiment of the present invention.

上側補強部材5の左右両側には、側部フランジ(フランジ)25が形成され、該側部フランジ25はフロントサイドメンバエクステンション本体3の側面19に接合されている。ここで、図16の一点鎖線で囲んだ部位Eは上側補強部材5の湾曲部33であり、この湾曲部33における側部フランジ25はフロントサイドメンバエクステンション本体3の側面19に接合されておらず、湾曲部33以外の部位が側面19に接合されている。従って、フロントサイドメンバエクステンション45が曲げ変形を起こした場合に、上側補強部材5の湾曲部33の部位は、上下移動量が大きくなる。  Side flanges (flanges) 25 are formed on the left and right sides of the upper reinforcing member 5, and the side flanges 25 are joined to the side surface 19 of the front side member extension main body 3. Here, a portion E surrounded by a one-dot chain line in FIG. 16 is the curved portion 33 of the upper reinforcing member 5, and the side flange 25 in the curved portion 33 is not joined to the side surface 19 of the front side member extension body 3. Parts other than the curved portion 33 are joined to the side surface 19. Accordingly, when the front side member extension 45 undergoes bending deformation, the amount of vertical movement of the curved portion 33 of the upper reinforcing member 5 increases.

以下に、車両前方から荷重fが入力された場合のフロントサイドメンバエクステンション45の変形の推移を図17〜図19を用いて説明する。なお、図18は、前記第1実施形態における図7と同一の曲げ角度の曲げ変形を起こした状態を示しており、図19は、前記図8と同一の曲げ角度の曲げ変形を起こした状態を示している。   Hereinafter, the transition of deformation of the front side member extension 45 when the load f is input from the front of the vehicle will be described with reference to FIGS. 18 shows a state in which the bending deformation with the same bending angle as that in FIG. 7 in the first embodiment is caused, and FIG. 19 shows a state in which the bending deformation with the same bending angle as in FIG. 8 is caused. Is shown.

図18に示すように、フロントサイドメンバエクステンション45に車両前後方向の荷重fが入力された場合、上側補強部材5の湾曲部33は前方斜め下方に向けて曲げ変形を起こし、下側補強部材7の湾曲部35は後方斜め上方に向けて曲げ変形を起こしている。ここで、上側補強部材5がフロントサイドメンバエクステンション本体3よりも大きな曲げ変形をするのは、側部フランジ25が接合されていない湾曲部の部位Eに限定されるため、図7と比較して図18の方が、上側補強部材5の下方への移動量が大きくなり、図18においては、下側補強部材7の湾曲部35の頂部35aと上側補強部材5の湾曲部33の頂部33aとが当接している。  As shown in FIG. 18, when a load f in the vehicle front-rear direction is input to the front side member extension 45, the curved portion 33 of the upper reinforcing member 5 undergoes bending deformation obliquely downward toward the front, and the lower reinforcing member 7. The bending portion 35 is bent and deformed obliquely upward and backward. Here, the upper reinforcing member 5 is bent more greatly than the front side member extension main body 3 because it is limited to the curved portion E where the side flange 25 is not joined. In FIG. 18, the amount of downward movement of the upper reinforcing member 5 becomes larger. In FIG. 18, the top 35 a of the curved portion 35 of the lower reinforcing member 7 and the top 33 a of the curved portion 33 of the upper reinforcing member 5 Are in contact.

さらに、図19に示すように、フロントサイドメンバエクステンション45の曲げ変形が進むと、下側補強部材7の湾曲部35と上側補強部材5の湾曲部33との干渉が更に進んで反力が大きくなる。  Further, as shown in FIG. 19, when the bending deformation of the front side member extension 45 proceeds, the interference between the curved portion 35 of the lower reinforcing member 7 and the curved portion 33 of the upper reinforcing member 5 further proceeds, and the reaction force increases. Become.

また、図20は本発明の第3実施形態によるサイドメンバエクステンションに荷重が入力された場合におけるサイドメンバエクステンションの曲げ角度と反力との関係を示すグラフである。  FIG. 20 is a graph showing the relationship between the bending angle and reaction force of the side member extension when a load is input to the side member extension according to the third embodiment of the present invention.

上側補強部材5の湾曲部33に対応する側部フランジ25をフロントサイドメンバエクステンション本体3に接合しないことにより、フロントサイドメンバエクステンション45に屈曲部13を中心に曲げ変形が生じるときに上側補強部材5の湾曲部33の曲げ変形はフロントサイドメンバエクステンション本体3の側面19に拘束されなくなり、湾曲部33の頂部33aにおける下方移動量が、湾曲部33全体をフロントサイドメンバエクステンション本体3の側面19に結合する第1実施形態よりも大きくなる。これにより、第1実施形態に比較して、上側補強部材5の湾曲部33と下側補強部材7の湾曲部35が当接するフロントサイドメンバエクステンション45の屈曲部13の曲げ角度が第1実施形態に比べて小さくなるので、上側補強部材5の側部フランジ25のうち、フロントサイドメンバエクステンション45の側面19に接合する長さを調節することで、上側補強部材5の湾曲部33と下側補強部材7の湾曲部35が当接するフロントサイドメンバエクステンション45の曲げ角度を調整することができる。   When the side flange 25 corresponding to the curved portion 33 of the upper reinforcing member 5 is not joined to the front side member extension body 3, the upper reinforcing member 5 is bent when the front side member extension 45 is bent around the bent portion 13. The bending deformation of the bending portion 33 is not restrained by the side surface 19 of the front side member extension main body 3, and the downward movement amount at the top portion 33 a of the bending portion 33 couples the entire bending portion 33 to the side surface 19 of the front side member extension main body 3. It becomes larger than the first embodiment. Thereby, compared with 1st Embodiment, the bending angle of the bending part 13 of the front side member extension 45 which the curved part 33 of the upper side reinforcement member 5 and the curved part 35 of the lower side reinforcement member 7 contact | abut is 1st Embodiment. Therefore, by adjusting the length of the side flange 25 of the upper reinforcing member 5 that is joined to the side surface 19 of the front side member extension 45, the curved portion 33 and the lower reinforcing member of the upper reinforcing member 5 are adjusted. The bending angle of the front side member extension 45 with which the curved portion 35 of the member 7 abuts can be adjusted.

以下に、本実施形態による作用効果を説明する。   Below, the effect by this embodiment is demonstrated.

前記当接調整手段は、前記上側補強部材5及び下側補強部材7の少なくともいずれかの前部と後部に設けられてメンバ本体3の側面19に固定されたフランジ25であり、このフランジ25の固定位置を変更することにより、前記湾曲部同士33,35の当接タイミングを調整するようにしている。   The contact adjusting means is a flange 25 provided at a front portion and a rear portion of at least one of the upper reinforcing member 5 and the lower reinforcing member 7 and fixed to the side surface 19 of the member main body 3. By changing the fixing position, the contact timing of the curved portions 33 and 35 is adjusted.

また、前記反力調整手段は、前記上側補強部材5及び下側補強部材7の少なくともいずれかの前部と後部に設けられてメンバ本体3の側面19に固定されたフランジ25であり、このフランジ25の固定位置を変更することにより、上側補強部材5及び下側補強部材7の湾曲部同士33,35の当接による反力の大きさを調整するように構成している。   The reaction force adjusting means is a flange 25 provided at the front part and the rear part of at least one of the upper reinforcing member 5 and the lower reinforcing member 7 and fixed to the side surface 19 of the member main body 3. By changing the fixing position of 25, the magnitude of the reaction force due to the contact between the curved portions 33, 35 of the upper reinforcing member 5 and the lower reinforcing member 7 is adjusted.

このように、フランジ25の固定位置を、図16に示す部位E以外に限定し、この部位Eの湾曲部33の側部フランジ25はフロントサイドメンバエクステンション本体3に接合しないという非常に簡単かつ安価な手段で前記湾曲部同士33,35の当接タイミング、及び、湾曲部同士33,35の当接による反力の大きさを調整することができる。   In this way, the fixing position of the flange 25 is limited to a portion other than the portion E shown in FIG. 16, and the side flange 25 of the curved portion 33 of this portion E is very simple and inexpensive that it is not joined to the front side member extension main body 3. The contact timing of the curved portions 33 and 35 and the magnitude of the reaction force due to the contact of the curved portions 33 and 35 can be adjusted by such means.

[第4の実施形態]
以下に、第4実施形態によるフロントサイドメンバエクステンションについて説明するが、前記第1〜第3実施形態と同一構造については、同一符号を付してその説明を省略する。
[Fourth embodiment]
The front side member extension according to the fourth embodiment will be described below, but the same structure as that of the first to third embodiments is denoted by the same reference numeral, and the description thereof is omitted.

本実施形態においては、下側補強部材の湾曲部に車両前後方向に沿ってリブを形成したものを示すが、上側補強部材の下面に下方に凸状のリブを形成しても良く、また上側補強部材及び下側補強部材の双方にリブを設けても良い。   In the present embodiment, the curved portion of the lower reinforcing member is formed with ribs along the longitudinal direction of the vehicle. However, a convex rib may be formed downward on the lower surface of the upper reinforcing member. Ribs may be provided on both the reinforcing member and the lower reinforcing member.

図21は本発明の第4実施形態によるフロントサイドメンバエクステンションを示す側面図、図22は下側補強部材の斜視図である。  FIG. 21 is a side view showing a front side member extension according to a fourth embodiment of the present invention, and FIG. 22 is a perspective view of a lower reinforcing member.

本実施形態に係るフロントサイドメンバエクステンション47においては、下側補強部材49の湾曲部35にフロントサイドメンバエクステンション本体3の中立軸27に向かう方向、即ち、上方に凸状のリブ51,51を左右一対に形成しており、これらのリブ51,51は、車両前後方向に沿って延設されている。   In the front side member extension 47 according to the present embodiment, ribs 51, 51 that are convex in the direction toward the neutral shaft 27 of the front side member extension body 3, that is, upward, are formed on the curved portion 35 of the lower reinforcing member 49. It forms in a pair and these ribs 51 and 51 are extended along the vehicle front-back direction.

以下に、車両前方から衝突荷重が入力された場合のフロントサイドメンバエクステンションの変形の推移を図23〜図25を用いて説明する。なお、図24は、前記第1実施形態における図7と同一の曲げ角度の曲げ変形を起こした状態を示しており、図25は、前記図8と同一の曲げ角度の曲げ変形を起こした状態を示している。   The transition of the deformation of the front side member extension when a collision load is input from the front of the vehicle will be described below with reference to FIGS. 24 shows a state where the bending deformation of the same bending angle as that of FIG. 7 in the first embodiment is caused, and FIG. 25 shows a state where the bending deformation of the same bending angle as that of FIG. 8 is caused. Is shown.

図24に示すように、フロントサイドメンバエクステンション47に車両後方の荷重fが入力された場合、上側補強部材5の湾曲部33は前方斜め下方に向けて曲げ変形を起こし、下側補強部材49の湾曲部35は後方斜め上方に向けて曲げ変形を起こしている。ここで、下側補強部材49にリブ51が形成されているため、図7と比較して図24の方が、上側補強部材5の湾曲部33の頂部33aと下側補強部材49の湾曲部35の頂部35aとの距離dが短くなり、両頂部33a,35aの当接タイミングが早くなる。  As shown in FIG. 24, when a vehicle rear load f is input to the front side member extension 47, the curved portion 33 of the upper reinforcing member 5 undergoes bending deformation obliquely downward toward the front, and the lower reinforcing member 49 The bending portion 35 is bent and deformed obliquely upward and rearward. Here, since the ribs 51 are formed on the lower reinforcing member 49, the top portion 33a of the curved portion 33 of the upper reinforcing member 5 and the curved portion of the lower reinforcing member 49 in FIG. The distance d with the top 35a of 35 becomes short, and the contact timing of both the tops 33a and 35a becomes early.

さらに、図25に示すように、フロントサイドメンバエクステンション47の曲げ変形が進むと、下側補強部材49の湾曲部35と上側補強部材5の湾曲部33との干渉が更に進んで互いの変形及び反力が大きくなる。  Furthermore, as shown in FIG. 25, when the bending deformation of the front side member extension 47 proceeds, the interference between the curved portion 35 of the lower reinforcing member 49 and the curved portion 33 of the upper reinforcing member 5 further progresses, and the mutual deformation and Reaction force increases.

このように、第1実施形態に比べて上側補強部材5の湾曲部33が下側補強部材3の湾曲部35に当接するときのフロントサイドメンバエクステンション1の屈曲部13の曲げ角度θが小さくなるので、リブ51の***高さを調節することで、上側補強部材5の湾曲部33と下側補強部材49の湾曲部35が当接するフロントサイドメンバエクステンション47の曲げ角度を調整することができ、また、フロントサイドメンバエクステンション47の最大曲げ角度を調整することができる。そして、下側補強部材49の湾曲部35にフロントサイドメンバエクステンション47の中立軸27に向かうリブを設ける場合や上側補強部材5の湾曲部33と下側補強部材3の湾曲部35の両方にフロントサイドメンバエクステンション47の中立軸27に向かう方向に***したリブ51を設ける場合においても、リブ51の***高さを大きくすることで、上側補強部材5の湾曲部33が下側補強部材3の湾曲部35に当接するフロントサイドメンバエクステンション47の屈曲部13の曲げ角度を小さくすることができ、また、フロントサイドメンバエクステンション47の最大曲げ角度を調整することができる。   As described above, the bending angle θ of the bent portion 13 of the front side member extension 1 when the curved portion 33 of the upper reinforcing member 5 contacts the curved portion 35 of the lower reinforcing member 3 is smaller than that of the first embodiment. Therefore, by adjusting the protruding height of the rib 51, the bending angle of the front side member extension 47 with which the curved portion 33 of the upper reinforcing member 5 and the curved portion 35 of the lower reinforcing member 49 abut can be adjusted. Further, the maximum bending angle of the front side member extension 47 can be adjusted. When the ribs directed to the neutral shaft 27 of the front side member extension 47 are provided on the curved portion 35 of the lower reinforcing member 49, both the curved portion 33 of the upper reinforcing member 5 and the curved portion 35 of the lower reinforcing member 3 are front-mounted. Even in the case of providing the rib 51 that protrudes in the direction toward the neutral shaft 27 of the side member extension 47, the bending portion 33 of the upper reinforcing member 5 is bent by the height of the protruding portion of the rib 51. The bending angle of the bent portion 13 of the front side member extension 47 in contact with the portion 35 can be reduced, and the maximum bending angle of the front side member extension 47 can be adjusted.

以下に、本実施形態による作用効果について説明する。   Below, the effect by this embodiment is demonstrated.

前記当接調整手段は、前記上側補強部材5及び下側補強部材49の少なくともいずれかに設けられて上下方向に突出したリブ51であり、このリブ51の高さを調整することにより、前記湾曲部同士33,35の当接タイミングを調整するようにしている。   The contact adjusting means is a rib 51 that is provided on at least one of the upper reinforcing member 5 and the lower reinforcing member 49 and protrudes in the vertical direction. By adjusting the height of the rib 51, the curve is adjusted. The contact timing of the parts 33 and 35 is adjusted.

また、前記反力調整手段は、前記上側補強部材5及び下側補強部材49の少なくともいずれかに設けられて上下方向に突出したリブ51であり、このリブ51の高さを調整することにより、上側補強部材5及び下側補強部材49の湾曲部同士33,35の当接による反力の大きさを調整するように構成している。   Further, the reaction force adjusting means is a rib 51 provided in at least one of the upper reinforcing member 5 and the lower reinforcing member 49 and protruding in the vertical direction, and by adjusting the height of the rib 51, It is configured to adjust the magnitude of the reaction force caused by the contact between the curved portions 33 and 35 of the upper reinforcing member 5 and the lower reinforcing member 49.

このように、非常に簡単かつ安価な手段で前記湾曲部同士33,35の当接タイミングの調整、及び湾曲部同士33,35の当接による反力の大きさの調整を行うことができる。   Thus, the contact timing of the curved portions 33 and 35 and the magnitude of the reaction force due to the contact of the curved portions 33 and 35 can be adjusted by a very simple and inexpensive means.

[第5の実施形態]
以下に、第5実施形態によるフロントサイドメンバエクステンションについて説明するが、前記第1〜第4実施形態と同一構造については、同一符号を付してその説明を省略する。
[Fifth Embodiment]
The front side member extension according to the fifth embodiment will be described below. The same structure as that of the first to fourth embodiments is denoted by the same reference numeral, and the description thereof is omitted.

第5実施形態においては、下側補強部材の湾曲部に車両前後方向に沿って2本のスリットを設けているが、上側補強部材にスリットを設けても良く、また、上側補強部材及び下側補強部材の双方にスリットを設けても良い。   In the fifth embodiment, two slits are provided in the curved portion of the lower reinforcing member along the vehicle longitudinal direction. However, the upper reinforcing member may be provided with slits, and the upper reinforcing member and the lower side may be provided. You may provide a slit in both the reinforcement members.

図27は本発明の第5実施形態によるフロントサイドメンバエクステンションを示す側面図、図28は図27の下側補強部材を示す斜視図である。  FIG. 27 is a side view showing a front side member extension according to a fifth embodiment of the present invention, and FIG. 28 is a perspective view showing a lower reinforcing member of FIG.

本実施形態に係るフロントサイドメンバエクステンション53においては、下側補強部材55における湾曲部35の左右両側に車両前後方向に沿って左右一対のスリット57,57を形成しており、かつ、これらのスリット同士57,57の間で下側補強部材55を上方に凸状に膨らませて凸部59を形成している。即ち、スリット同士57,57の間の下側補強部材55における曲率半径を、スリット57の左右両側の曲率半径よりも小さく設定している。なお、下側補強部材55の側端57aとスリット57との間を、スリット間57,57よりも上方に凸状に湾曲させても良い。  In the front side member extension 53 according to the present embodiment, a pair of left and right slits 57, 57 are formed along the vehicle front-rear direction on both left and right sides of the curved portion 35 of the lower reinforcing member 55, and these slits A convex portion 59 is formed by inflating the lower reinforcing member 55 upwardly between the portions 57 and 57. That is, the curvature radius of the lower reinforcing member 55 between the slits 57 and 57 is set to be smaller than the curvature radii on the left and right sides of the slit 57. It should be noted that the space between the side end 57 a of the lower reinforcing member 55 and the slit 57 may be curved in a convex shape above the space between the slits 57, 57.

以下に、車両前方から衝突荷重fが入力された場合のフロントサイドメンバエクステンションの変形の推移を図29〜図31を用いて説明する。なお、図30は、前記第1実施形態における図7と同一の曲げ角度の曲げ変形を起こした状態を示しており、図31は、前記図8と同一の曲げ角度の曲げ変形を起こした状態を示している。   Hereinafter, the transition of the deformation of the front side member extension when the collision load f is input from the front of the vehicle will be described with reference to FIGS. 30 shows a state where the bending deformation of the same bending angle as that of FIG. 7 in the first embodiment is caused, and FIG. 31 shows a state where the bending deformation of the same bending angle as that of FIG. 8 is caused. Is shown.

図30に示すように、フロントサイドメンバエクステンション53に車両前後方向の荷重fが入力された場合、上側補強部材5の湾曲部33は前方斜め下方に向けて曲げ変形を起こし、下側補強部材55の湾曲部35は後方斜め上方に向けて曲げ変形を起こしている。ここで、下側補強部材55のスリット間に凸部59が形成されているため、図7と比較して図30の方が、上側補強部材5の湾曲部33の頂部33aと下側補強部材55の湾曲部35の頂部35aとの距離が短くなり、両頂部33a,35aの当接タイミングが早くなる。  As shown in FIG. 30, when a load f in the vehicle front-rear direction is input to the front side member extension 53, the curved portion 33 of the upper reinforcing member 5 undergoes bending deformation obliquely downward toward the front, and the lower reinforcing member 55. The bending portion 35 is bent and deformed obliquely upward and backward. Here, since the convex portion 59 is formed between the slits of the lower reinforcing member 55, the top portion 33a of the curved portion 33 of the upper reinforcing member 5 and the lower reinforcing member are compared with FIG. The distance from the top 35a of the 55 curved portion 35 is shortened, and the contact timing of both the tops 33a and 35a is accelerated.

さらに、図31に示すように、フロントサイドメンバエクステンション53の曲げ変形が進むと、下側補強部材55の湾曲部35と上側補強部材5の湾曲部33との干渉が更に進んで互いの変形及び反力が大きくなる。ここで、図31に示す上側補強部材5の湾曲部33の頂部33aがスリット57と側端57aとの間に当接したときには、曲げ反力が若干上昇するため、図32のグラフには、第1〜第4実施形態の極大値に以外に、θ(C)に対応する曲げ角度で示す極大値が加わって3個の極大値を示している。即ち、上側補強部材5の湾曲部33と下側補強部材55の湾曲部35が当接する前の曲げ反力の極大値と、下側補強部材55の湾曲部35の全幅が上側補強部材5の湾曲部33に当接した後の曲げ反力の極大値と、これらの極大値の間に更にもう一つの極大値が生じている。   Further, as shown in FIG. 31, when the bending deformation of the front side member extension 53 proceeds, the interference between the curved portion 35 of the lower reinforcing member 55 and the curved portion 33 of the upper reinforcing member 5 further proceeds, and mutual deformation and Reaction force increases. Here, when the top portion 33a of the curved portion 33 of the upper reinforcing member 5 shown in FIG. 31 abuts between the slit 57 and the side end 57a, the bending reaction force slightly increases. In addition to the local maximum values of the first to fourth embodiments, the local maximum value indicated by the bending angle corresponding to θ (C) is added to show three local maximum values. That is, the maximum value of the bending reaction force before the curved portion 33 of the upper reinforcing member 5 and the curved portion 35 of the lower reinforcing member 55 contact each other and the entire width of the curved portion 35 of the lower reinforcing member 55 are Another maximum value is generated between the maximum value of the bending reaction force after coming into contact with the bending portion 33 and these maximum values.

また、破線で示す第1実施形態と比較すると、曲げ反力の第3の極大値は大きくなり、かつ、第3の極大値を示す曲げ角度が小さくなっている。これにより、図32のグラフに示すように、曲げ反力Fと曲げ角度θとの積によって得られるエネルギー吸収量を大きくすることができ、オフセット衝突時のフロントサイドメンバエクステンション1の最大曲げ角度を小さくすることができる。   Moreover, compared with 1st Embodiment shown with a broken line, the 3rd maximum value of bending reaction force becomes large, and the bending angle which shows a 3rd maximum value is small. Thereby, as shown in the graph of FIG. 32, the amount of energy absorption obtained by the product of the bending reaction force F and the bending angle θ can be increased, and the maximum bending angle of the front side member extension 1 at the time of the offset collision can be increased. Can be small.

以下に、本実施形態による作用効果について説明する。   Below, the effect by this embodiment is demonstrated.

前記上側補強部材5及び下側補強部材55の少なくともいずれかに車両前後方向に沿って複数のスリット57を形成し、これらのスリット同士57,57の間の補強部材を上下方向に突出させて凸部59を形成し、この凸部59の突出高さを調整することにより、前記湾曲部同士33,35の当接タイミングを調整するようにしている。   A plurality of slits 57 are formed in at least one of the upper reinforcing member 5 and the lower reinforcing member 55 along the vehicle front-rear direction, and the reinforcing members between the slits 57, 57 protrude in the vertical direction to project. The contact timing of the curved portions 33 and 35 is adjusted by forming a portion 59 and adjusting the protruding height of the convex portion 59.

また、前記上側補強部材5及び下側補強部材55の少なくともいずれかに車両前後方向に沿って複数のスリット57を形成し、これらのスリット同士57,57の間で補強部材を上下方向に突出させて凸部59を形成し、この凸部59の突出高さを調整することにより、上側補強部材5及び下側補強部材55の湾曲部同士33,35の当接による反力の大きさを調整するように構成している。   In addition, a plurality of slits 57 are formed in at least one of the upper reinforcing member 5 and the lower reinforcing member 55 along the vehicle front-rear direction, and the reinforcing member protrudes in the vertical direction between the slits 57 57. By adjusting the protrusion height of the convex portion 59 and adjusting the protruding height of the convex portion 59, the magnitude of the reaction force due to the contact between the curved portions 33 and 35 of the upper reinforcing member 5 and the lower reinforcing member 55 is adjusted. It is configured to do.

このように、非常に簡単かつ安価な手段で前記湾曲部同士33,35の当接タイミングの調整、及び湾曲部同士33,35の当接による反力の大きさの調整を行うことができる。  Thus, the contact timing of the curved portions 33 and 35 and the magnitude of the reaction force due to the contact of the curved portions 33 and 35 can be adjusted by a very simple and inexpensive means.

なお、これまでは、メンバ部材単体について主に説明してきたが、次に、メンバ部材を車体に取り付けた状態について簡単に説明する。   Up to now, the member member alone has been mainly described. Next, the state in which the member member is attached to the vehicle body will be briefly described.

図33は本発明に係るフロントサイドメンバエクステンションを組み付けた車体を斜め上方から見た斜視図、図34は図33の車体下部の要部を斜め下方から見た斜視図である。   FIG. 33 is a perspective view of the vehicle body assembled with the front side member extension according to the present invention as viewed obliquely from above, and FIG. 34 is a perspective view of the main part of the lower portion of the vehicle body of FIG.

図33に示すように、車体61の前部には、エンジンルーム63が設けられており、該エンジンルーム63は、ダッシュパネル65によってキャビン67と分けられている。また、図34に示すように、このダッシュパネル65は上方に向けて延びており、ダッシュパネル65の下端部65aから車両後方に向けてフロア69が延設されている。   As shown in FIG. 33, an engine room 63 is provided at the front of the vehicle body 61, and the engine room 63 is separated from the cabin 67 by a dash panel 65. As shown in FIG. 34, the dash panel 65 extends upward, and a floor 69 extends from the lower end portion 65a of the dash panel 65 toward the rear of the vehicle.

そして、前記フロア69及びダッシュパネル65の下面には、フロントサイドメンバエクステンション1,43,45,47,53が接合されている。つまり、フロントサイドメンバエクステンション本体3の傾斜部11はダッシュパネル65に接合され、後部15はフロア69に接合されている。なお、フロア69には、クロスメンバ71,73がフロントサイドメンバエクステンション1,43,45,47,53と直交して配設されている。   Front side member extensions 1, 43, 45, 47, 53 are joined to the lower surfaces of the floor 69 and the dash panel 65. That is, the inclined portion 11 of the front side member extension main body 3 is joined to the dash panel 65, and the rear portion 15 is joined to the floor 69. In addition, on the floor 69, cross members 71 and 73 are disposed orthogonal to the front side member extensions 1, 43, 45, 47 and 53.

本発明の第1実施形態によるフロントサイドメンバエクステンションを示す斜視図である。It is a perspective view which shows the front side member extension by 1st Embodiment of this invention. 図1の下側補強部材を示す斜視図である。It is a perspective view which shows the lower side reinforcement member of FIG. 図1の一部を切り欠いて示す側面図である。It is a side view which notches and shows a part of FIG. 前端部に荷重が入力された場合にフロントサイドメンバエクステンションが曲げ変形を起こしている状態を示す側面図である。FIG. 6 is a side view showing a state where the front side member extension undergoes bending deformation when a load is input to the front end portion. 本発明によるフロントサイドメンバエクステンションに荷重が入力された場合におけるフロントサイドメンバエクステンションの曲げ角度と反力との関係を示すグラフである。It is a graph which shows the relationship between the bending angle and reaction force of the front side member extension when a load is input to the front side member extension according to the present invention. 本発明の第1実施形態によるフロントサイドメンバエクステンションの側面図であり、荷重入力前の状態を示している。It is a side view of the front side member extension by a 1st embodiment of the present invention, and shows the state before load input. 図6のフロントサイドメンバエクステンションの前端部に荷重が入力されて曲げ変形を起こした状態を示す側面図である。FIG. 7 is a side view showing a state where a load is applied to the front end portion of the front side member extension of FIG. 6 to cause bending deformation. 図7の状態から更に変形が進んだフロントサイドメンバエクステンションの側面図である。FIG. 8 is a side view of a front side member extension that is further deformed from the state of FIG. 7. 本発明の第1実施形態によるフロントサイドメンバエクステンションに荷重が入力された場合におけるフロントサイドメンバエクステンションの曲げ角度と反力との関係を示すグラフである。It is a graph which shows the relationship between the bending angle and reaction force of a front side member extension when a load is input into the front side member extension by 1st Embodiment of this invention. 本発明の第2実施形態によるフロントサイドメンバエクステンションを示す側面図である。It is a side view which shows the front side member extension by 2nd Embodiment of this invention. 図10の下側補強部材を示す斜視図である。It is a perspective view which shows the lower side reinforcement member of FIG. 本発明の第2実施形態によるフロントサイドメンバエクステンションを示す側面図であり、荷重入力前の状態を示している。It is a side view which shows the front side member extension by 2nd Embodiment of this invention, and has shown the state before load input. 図12のフロントサイドメンバエクステンションの前端部に荷重が入力されて曲げ変形を起こした状態を示す側面図である。FIG. 13 is a side view showing a state where a load is applied to the front end portion of the front side member extension of FIG. 12 to cause bending deformation. 図13の状態から更に変形が進んだフロントサイドメンバエクステンションの側面図である。FIG. 14 is a side view of a front side member extension that is further deformed from the state of FIG. 13. 本発明の第2実施形態によるフロントサイドメンバエクステンションに荷重が入力された場合におけるフロントサイドメンバエクステンションの曲げ角度と反力との関係を示すグラフである。It is a graph which shows the relationship between the bending angle and reaction force of a front side member extension when a load is input into the front side member extension by 2nd Embodiment of this invention. 本発明の第3実施形態によるフロントサイドメンバエクステンションを示す側面図である。It is a side view which shows the front side member extension by 3rd Embodiment of this invention. 本発明の第3実施形態によるフロントサイドメンバエクステンションを示す側面図であり、荷重入力前の状態を示している。It is a side view which shows the front side member extension by 3rd Embodiment of this invention, and has shown the state before load input. 図17のフロントサイドメンバエクステンションの前端部に荷重が入力されて曲げ変形を起こした状態を示す側面図である。FIG. 18 is a side view showing a state where a load is applied to the front end portion of the front side member extension of FIG. 17 to cause bending deformation. 図18の状態から更に変形が進んだフロントサイドメンバエクステンションの側面図である。FIG. 19 is a side view of the front side member extension that is further deformed from the state of FIG. 18. 本発明の第3実施形態によるサイドメンバエクステンションに荷重が入力された場合におけるサイドメンバエクステンションの曲げ角度と反力との関係を示すグラフである。It is a graph which shows the relationship between the bending angle and reaction force of a side member extension in case the load is input into the side member extension by 3rd Embodiment of this invention. 本発明の第4実施形態によるフロントサイドメンバエクステンションを示す側面図である。It is a side view which shows the front side member extension by 4th Embodiment of this invention. 図21の下側補強部材を示す斜視図である。It is a perspective view which shows the lower side reinforcement member of FIG. 本発明の第4実施形態によるフロントサイドメンバエクステンションを示す側面図であり、荷重入力前の状態を示している。It is a side view which shows the front side member extension by 4th Embodiment of this invention, and has shown the state before load input. 図23のフロントサイドメンバエクステンションの前端部に荷重が入力されて曲げ変形を起こした状態を示す側面図である。FIG. 24 is a side view showing a state where a load is applied to the front end portion of the front side member extension of FIG. 23 to cause bending deformation. 図24の状態から更に変形が進んだフロントサイドメンバエクステンションの側面図である。FIG. 25 is a side view of the front side member extension that is further deformed from the state of FIG. 24. 本発明の第4実施形態によるフロントサイドメンバエクステンションに荷重が入力された場合におけるフロントサイドメンバエクステンションの曲げ角度と反力との関係を示すグラフである。It is a graph which shows the relationship between the bending angle and reaction force of a front side member extension when a load is input into the front side member extension by 4th Embodiment of this invention. 本発明の第5実施形態によるフロントサイドメンバエクステンションを示す側面図である。It is a side view which shows the front side member extension by 5th Embodiment of this invention. 図27の下側補強部材を示す斜視図である。It is a perspective view which shows the lower side reinforcement member of FIG. 本発明の第5実施形態によるフロントサイドメンバエクステンションを示す側面図であり、荷重入力前の状態を示している。It is a side view which shows the front side member extension by 5th Embodiment of this invention, and has shown the state before load input. 図29のフロントサイドメンバエクステンションの前端部に荷重が入力されて曲げ変形を起こした状態を示す側面図である。FIG. 30 is a side view showing a state where a load is applied to the front end portion of the front side member extension of FIG. 29 to cause bending deformation. 図30の状態から更に変形が進んだフロントサイドメンバエクステンションの側面図である。FIG. 31 is a side view of a front side member extension that has been further deformed from the state of FIG. 30. 本発明の第5実施形態によるフロントサイドメンバエクステンションに荷重が入力された場合におけるフロントサイドメンバエクステンションの曲げ角度と反力との関係を示すグラフである。It is a graph which shows the relationship between the bending angle and reaction force of a front side member extension when a load is input into the front side member extension by 5th Embodiment of this invention. 本発明に係るフロントサイドメンバエクステンションを取り付けた車体を示す斜視図である。It is a perspective view which shows the vehicle body which attached the front side member extension which concerns on this invention. 図33の車体の要部を下方から見た斜視図である。It is the perspective view which looked at the principal part of the vehicle body of FIG. 33 from the downward direction.

符号の説明Explanation of symbols

1,43,45,47,53…フロントサイドメンバエクステンション(メンバ部材)
3…フロントサイドメンバエクステンション本体(メンバ本体)
5…上側補強部材
7,37,49,55…下側補強部材
13…屈曲部
19…側面
25…側部フランジ(フランジ、当接調整手段、反力調整手段)
33,35…湾曲部
39,41…フランジ(当接調整手段、反力調整手段)
51…リブ(当接調整手段、反力調整手段)
57…スリット
59…凸部(当接調整手段、反力調整手段)
1, 43, 45, 47, 53 ... Front side member extension (member member)
3. Front side member extension body (member body)
5 ... Upper reinforcing member 7,37,49,55 ... Lower reinforcing member 13 ... Bending part 19 ... Side 25 ... Side flange (flange, contact adjusting means, reaction force adjusting means)
33, 35 ... curved portion 39, 41 ... flange (contact adjusting means, reaction force adjusting means)
51 ... Rib (contact adjusting means, reaction force adjusting means)
57 ... Slit 59 ... Convex (contact adjusting means, reaction force adjusting means)

Claims (13)

車体前部に車両前後方向に沿って延設され、上下方向に屈曲した屈曲部を有するメンバ本体と、該メンバ本体の屈曲部の内方に上下対向的に取り付けられ、互いに近づく方向に凸状に湾曲した湾曲部を有する上側補強部材及び下側補強部材とを備え、
前記メンバ本体に車両前後方向の荷重が入力されて屈曲部を中心に曲げ変形を起こしたときに、前記上側補強部材及び下側補強部材の湾曲部同士が当接して反力を生ずるように構成したことを特徴とする車体前部のメンバ部材の補強構造。
A member body that extends along the vehicle front-rear direction at the front of the vehicle body and has a bent portion that is bent in the up-down direction, and is attached to the inside of the bent portion of the member body so as to face up and down, and is convex in a direction toward each other An upper reinforcing member and a lower reinforcing member each having a curved portion curved to
When the load in the vehicle front-rear direction is input to the member main body and bending deformation occurs around the bent portion, the curved portions of the upper reinforcing member and the lower reinforcing member come into contact with each other to generate a reaction force A structure for reinforcing a member member at the front of a vehicle body, characterized in that
前記上側補強部材をメンバ本体の屈曲部の屈曲方向と同一方向に湾曲させ、下側補強部材をメンバ本体の屈曲方向と反対方向に湾曲させると共に、これらの上側補強部材及び下側補強部材の湾曲部同士を所定の間隔をおいて配置することにより、メンバ本体に車両前後方向の荷重が入力されたときに、上側補強部材と下側補強部材の曲げ変形モードが互いに逆方向になるように構成したことを特徴とする請求項1に記載の車体前部のメンバ部材の補強構造。   The upper reinforcing member is bent in the same direction as the bending direction of the bent portion of the member main body, the lower reinforcing member is bent in the direction opposite to the bending direction of the member main body, and the upper reinforcing member and the lower reinforcing member are bent. By arranging the parts at a predetermined interval, the bending deformation modes of the upper reinforcing member and the lower reinforcing member are opposite to each other when a vehicle longitudinal load is input to the member body. The reinforcement structure of the member member of the vehicle body front part of Claim 1 characterized by the above-mentioned. 前記上側補強部材及び下側補強部材の少なくともいずれかに、前記メンバ本体の曲げ角度に対する上側補強部材及び下側補強部材の湾曲部同士の当接タイミングを調整する当接調整手段を設けたことを特徴とする請求項1又は2に記載の車体前部のメンバ部材の補強構造。   At least one of the upper reinforcing member and the lower reinforcing member is provided with a contact adjusting means for adjusting the contact timing of the curved portions of the upper reinforcing member and the lower reinforcing member with respect to the bending angle of the member main body. The reinforcement structure of the member member of the vehicle body front part of Claim 1 or 2 characterized by the above-mentioned. 前記上側補強部材及び下側補強部材の湾曲部同士の間隔を変更することにより、前記湾曲部同士の当接タイミングを調整するようにしたことを特徴とする請求項3に記載の車体前部のメンバ部材の補強構造。   The vehicle body front portion according to claim 3, wherein a contact timing between the curved portions is adjusted by changing an interval between the curved portions of the upper reinforcing member and the lower reinforcing member. Member member reinforcement structure. 前記当接調整手段は、前記上側補強部材及び下側補強部材の少なくともいずれかの前部と後部に設けられてメンバ本体の側面に固定されたフランジであり、このフランジの固定位置を変更することにより、前記湾曲部同士の当接タイミングを調整するようにしたことを特徴とする請求項3に記載の車体前部のメンバ部材の補強構造。   The contact adjusting means is a flange that is provided at a front portion and a rear portion of at least one of the upper reinforcing member and the lower reinforcing member and is fixed to a side surface of the member main body, and changes a fixing position of the flange. 4. The reinforcement structure for a member member at the front portion of the vehicle body according to claim 3, wherein the contact timing of the curved portions is adjusted by the above. 前記当接調整手段は、前記上側補強部材及び下側補強部材の少なくともいずれかに設けられて上下方向に突出したリブであり、このリブの高さを調整することにより、前記湾曲部同士の当接タイミングを調整するようにしたことを特徴とする請求項3に記載の車体前部のメンバ部材の補強構造。   The contact adjusting means is a rib that is provided on at least one of the upper reinforcing member and the lower reinforcing member and protrudes in the vertical direction. By adjusting the height of the rib, the contact between the curved portions is adjusted. 4. The reinforcing structure for a member member at the front of a vehicle body according to claim 3, wherein the contact timing is adjusted. 前記上側補強部材及び下側補強部材の少なくともいずれかに車両前後方向に沿って複数のスリットを形成し、これらのスリット同士の間の補強部材を上下方向に突出させて凸部を形成し、この凸部の突出高さを調整することにより、前記湾曲部同士の当接タイミングを調整するようにしたことを特徴とする請求項3に記載の車体前部のメンバ部材の補強構造。   A plurality of slits are formed in at least one of the upper reinforcing member and the lower reinforcing member along the vehicle front-rear direction, and the reinforcing member between these slits is protruded in the vertical direction to form a convex portion. The reinforcing structure for a member member at the front part of the vehicle body according to claim 3, wherein the contact timing of the curved parts is adjusted by adjusting the protruding height of the convex part. 前記上側補強部材及び下側補強部材の少なくともいずれかに、前記メンバ本体の曲げ変形時における上側補強部材及び下側補強部材の湾曲部同士の当接による反力の大きさを調整する反力調整手段を設けたことを特徴とする請求項1〜3のいずれか1項に記載の車体前部のメンバ部材の補強構造。   Reaction force adjustment that adjusts the magnitude of the reaction force caused by the abutment of the curved portions of the upper reinforcing member and the lower reinforcing member during bending deformation of the member body on at least one of the upper reinforcing member and the lower reinforcing member The reinforcing structure for a member member at the front portion of the vehicle body according to any one of claims 1 to 3, wherein means are provided. 前記上側補強部材及び下側補強部材の湾曲部同士の間隔を変更することにより、上側補強部材及び下側補強部材の湾曲部同士の当接による反力の大きさを調整するように構成したことを特徴とする請求項8に記載の車体前部のメンバ部材の補強構造。   By changing the distance between the curved portions of the upper reinforcing member and the lower reinforcing member, the magnitude of the reaction force due to the contact between the curved portions of the upper reinforcing member and the lower reinforcing member is adjusted. The reinforcing structure for a member member at the front portion of the vehicle body according to claim 8. 前記反力調整手段は、前記上側補強部材及び下側補強部材の少なくともいずれかの前部と後部に設けられてメンバ本体の側面に固定されたフランジであり、このフランジの固定位置を変更することにより、上側補強部材及び下側補強部材の湾曲部同士の当接による反力の大きさを調整するように構成したことを特徴とする請求項8に記載の車体前部のメンバ部材の補強構造。   The reaction force adjusting means is a flange that is provided at a front portion and a rear portion of at least one of the upper reinforcing member and the lower reinforcing member and is fixed to a side surface of the member main body, and changes a fixing position of the flange. 9. The structure for reinforcing a member member at the front of a vehicle body according to claim 8, wherein the magnitude of the reaction force due to contact between the curved portions of the upper reinforcing member and the lower reinforcing member is adjusted by . 前記反力調整手段は、前記上側補強部材及び下側補強部材の少なくともいずれかに設けられて上下方向に突出したリブであり、このリブの高さを調整することにより、上側補強部材及び下側補強部材の湾曲部同士の当接による反力の大きさを調整するように構成したことを特徴とする請求項8に記載の車体前部のメンバ部材の補強構造。   The reaction force adjusting means is a rib provided in at least one of the upper reinforcing member and the lower reinforcing member and projecting in the vertical direction. By adjusting the height of the rib, the upper reinforcing member and the lower reinforcing member 9. The reinforcement structure for a member member at the front portion of the vehicle body according to claim 8, wherein the magnitude of the reaction force due to contact between the curved portions of the reinforcement members is adjusted. 前記上側補強部材及び下側補強部材の少なくともいずれかに車両前後方向に沿って複数のスリットを形成し、これらのスリット同士の間で補強部材を上下方向に突出させて凸部を形成し、この凸部の突出高さを調整することにより、上側補強部材及び下側補強部材の湾曲部同士の当接による反力の大きさを調整するように構成したことを特徴とする請求項8に記載の車体前部のメンバ部材の補強構造。   A plurality of slits are formed in at least one of the upper reinforcing member and the lower reinforcing member along the vehicle front-rear direction, and the reinforcing member is protruded in the vertical direction between these slits to form a convex portion. The configuration according to claim 8, wherein the magnitude of the reaction force due to contact between the curved portions of the upper reinforcing member and the lower reinforcing member is adjusted by adjusting the protruding height of the convex portion. The reinforcement structure of the member member of the vehicle body front part. 上下方向に屈曲した屈曲部を有するメンバ本体を車体前部に車両前後方向に沿って延設し、前記メンバ本体の屈曲部の内方に上下に間隔を隔てて上側補強部材及び下側補強部材を対向的に配置し、前記メンバ本体に車両前後方向の荷重が入力されて曲げ変形を起こしたときに、前記上側補強部材及び下側補強部材が当接して反力を生じるように構成したことを特徴とする車体前部のメンバ部材の補強構造。

A member main body having a bent portion bent in the vertical direction is extended along the vehicle front-rear direction at the front portion of the vehicle body, and an upper reinforcing member and a lower reinforcing member are spaced in the vertical direction inside the bent portion of the member main body. Are arranged opposite to each other, and when the vehicle body longitudinal load is input to the member main body and bending deformation occurs, the upper reinforcing member and the lower reinforcing member come into contact with each other to generate a reaction force. A structure for reinforcing a member member at the front of the vehicle body.

JP2004149066A 2004-05-19 2004-05-19 Reinforcement structure of member of vehicle body front part Pending JP2005329789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004149066A JP2005329789A (en) 2004-05-19 2004-05-19 Reinforcement structure of member of vehicle body front part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004149066A JP2005329789A (en) 2004-05-19 2004-05-19 Reinforcement structure of member of vehicle body front part

Publications (1)

Publication Number Publication Date
JP2005329789A true JP2005329789A (en) 2005-12-02

Family

ID=35484740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004149066A Pending JP2005329789A (en) 2004-05-19 2004-05-19 Reinforcement structure of member of vehicle body front part

Country Status (1)

Country Link
JP (1) JP2005329789A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100726524B1 (en) * 2005-12-15 2007-06-11 현대자동차주식회사 A shock absorbing device of front side member in a car
JP2007269092A (en) * 2006-03-30 2007-10-18 Toyoda Gosei Co Ltd Steering wheel
JP2009234495A (en) * 2008-03-28 2009-10-15 Mazda Motor Corp Frame structure of automobile
JP2012011828A (en) * 2010-06-29 2012-01-19 Suzuki Motor Corp Lower structure of vehicle
JP2012056372A (en) * 2010-09-06 2012-03-22 Toyota Motor Corp Side member structure
GB2505669A (en) * 2012-09-06 2014-03-12 Secr Defence Chassis frame deformable on under vehicle impact
JP2017505232A (en) * 2014-01-07 2017-02-16 オートテック エンジニアリング エー.アイ.イー. Metal beam with limited bending angle
JP2018144638A (en) * 2017-03-06 2018-09-20 新日鐵住金株式会社 Impact resistant member for vehicle
CN111516757A (en) * 2020-04-10 2020-08-11 东风柳州汽车有限公司 Longeron structure and car

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100726524B1 (en) * 2005-12-15 2007-06-11 현대자동차주식회사 A shock absorbing device of front side member in a car
JP2007269092A (en) * 2006-03-30 2007-10-18 Toyoda Gosei Co Ltd Steering wheel
JP2009234495A (en) * 2008-03-28 2009-10-15 Mazda Motor Corp Frame structure of automobile
JP2012011828A (en) * 2010-06-29 2012-01-19 Suzuki Motor Corp Lower structure of vehicle
JP2012056372A (en) * 2010-09-06 2012-03-22 Toyota Motor Corp Side member structure
GB2505669A (en) * 2012-09-06 2014-03-12 Secr Defence Chassis frame deformable on under vehicle impact
JP2017505232A (en) * 2014-01-07 2017-02-16 オートテック エンジニアリング エー.アイ.イー. Metal beam with limited bending angle
JP2018144638A (en) * 2017-03-06 2018-09-20 新日鐵住金株式会社 Impact resistant member for vehicle
CN111516757A (en) * 2020-04-10 2020-08-11 东风柳州汽车有限公司 Longeron structure and car

Similar Documents

Publication Publication Date Title
JP4304537B2 (en) Vehicle skeleton structure
US7931318B2 (en) Bumper attachment portion structure
US8585129B2 (en) Vehicle front structure
JP5924308B2 (en) Body front structure
US10442466B2 (en) Frame structure of vehicle
JP5649527B2 (en) Vehicle hood
JP2005125989A (en) Hood structure for vehicle
JP6102870B2 (en) Body front structure
WO2019189804A1 (en) Bumper structural body
JP2006321491A (en) Reinforcing structure of vehicle body skeleton frame
JP2005329789A (en) Reinforcement structure of member of vehicle body front part
US9809253B2 (en) Vehicle body lower portion structure
JP4534991B2 (en) Body front structure
JP5207228B2 (en) Inner panel for vehicle
JP5228864B2 (en) Rocker structure
JP4479446B2 (en) Body structure
WO2013183388A1 (en) Knee protector structure for vehicle
JP2006321490A (en) Reinforcing structure of vehicle body skeleton frame
WO2020170501A1 (en) Vehicle front structure
EP3604086B1 (en) Shock-absorbing member and side member of automobile
JP7213292B2 (en) rear body structure
JP7201146B2 (en) vehicle front structure
JP2011111081A (en) Reinforcing structure of vehicle skeleton member
JP2008037318A (en) Vehicle body upper part structure
JP2009137522A (en) Front body structure of automobile