JP2005327528A - Solid electrolyte-containing electrode for lithium secondary battery - Google Patents

Solid electrolyte-containing electrode for lithium secondary battery Download PDF

Info

Publication number
JP2005327528A
JP2005327528A JP2004143209A JP2004143209A JP2005327528A JP 2005327528 A JP2005327528 A JP 2005327528A JP 2004143209 A JP2004143209 A JP 2004143209A JP 2004143209 A JP2004143209 A JP 2004143209A JP 2005327528 A JP2005327528 A JP 2005327528A
Authority
JP
Japan
Prior art keywords
solid electrolyte
active material
positive electrode
particles
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004143209A
Other languages
Japanese (ja)
Other versions
JP4800589B2 (en
Inventor
Shin Fujitani
伸 藤谷
Kumiko Kanai
久美子 金井
Masahisa Fujimoto
正久 藤本
Masahiro Tatsumisuna
昌弘 辰己砂
Akitoshi Hayashi
晃敏 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Prefecture
Sanyo Electric Co Ltd
Original Assignee
Osaka Prefecture
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Prefecture, Sanyo Electric Co Ltd filed Critical Osaka Prefecture
Priority to JP2004143209A priority Critical patent/JP4800589B2/en
Publication of JP2005327528A publication Critical patent/JP2005327528A/en
Application granted granted Critical
Publication of JP4800589B2 publication Critical patent/JP4800589B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To improve charge/discharge cycle characteristics in an electrode containing a solid electrolyte having lithium ion conductivity and used in a secondary battery. <P>SOLUTION: In the electrode containing the solid electrolyte having lithium ion conductivity and used in the lithium secondary battery, solid electrolyte particles having lithium ion conductivity formed by mechanical milling treatment are mixed with and dispersed in positive active material powder not practically containing particles having a particle size of 30 μm or more, preferably not practically containing particles having a particle size of 2 μm or less. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、リチウム二次電池に用いるリチウムイオン導電性の固体電解質を含有した電極に関するものである。   The present invention relates to an electrode containing a lithium ion conductive solid electrolyte used for a lithium secondary battery.

近年、携帯電話及び持ち運び可能な電子機器が広く普及している。従来より、これらの携帯用電子機器には各種の化学電池が使用されているが、安全性や信頼性の点で解決すべき問題は多い。漏液、安全性などにおける不安を解消するため、将来的には電池の全固体化を行うことが強く求められている。   In recent years, mobile phones and portable electronic devices have become widespread. Conventionally, various types of chemical batteries have been used in these portable electronic devices, but there are many problems to be solved in terms of safety and reliability. In order to eliminate concerns about leakage, safety, etc., there is a strong demand for solidification of the battery in the future.

このため、イオン導電性の固体電解質、特に蓄電性の高いリチウム二次電池を構成するとができるリチウムイオン導電性の固体電解質に関する検討が行われている(例えば、非特許文献1)。   For this reason, studies have been made on ion-conductive solid electrolytes, particularly lithium-ion conductive solid electrolytes that can constitute lithium secondary batteries with high power storage (for example, Non-Patent Document 1).

このような固体電解質の中でも、導電性の高いガラス固体電解質粒子をメカニカルミリング処理で合成し、これをLiCoO2などの正極活物質と混合して固体電解質を含有する電極を作製する試みがなされている(例えば、特許文献1)。 Among such solid electrolytes, attempts have been made to synthesize high-conductivity glass solid electrolyte particles by mechanical milling and mix them with a positive electrode active material such as LiCoO 2 to produce an electrode containing the solid electrolyte. (For example, Patent Document 1).

しかしながら、このようなガラス固体電解質粒子を用いた場合に、どのような電極構造のものが良好な特性を示すかについて詳細には検討されていない。
特開2001−273928号公報 Electrochemistry 69, No. 10 (2001)p793-797
However, when such glass solid electrolyte particles are used, it has not been studied in detail what kind of electrode structure exhibits good characteristics.
JP 2001-293928 A Electrochemistry 69, No. 10 (2001) p793-797

本発明の目的は、リチウム二次電池に用いるリチウムイオン導電性の固体電解質を含有した電極であって、電気化学容量が高く、かつ充放電サイクル特性に優れた電極及びこれを用いたリチウム二次電池を提供することにある。   An object of the present invention is an electrode containing a lithium ion conductive solid electrolyte for use in a lithium secondary battery, having high electrochemical capacity and excellent charge / discharge cycle characteristics, and a lithium secondary using the same To provide a battery.

本発明は、リチウム二次電池に用いるリチウムイオン導電性の固体電解質を含有した電極であって、メカニカルミリング処理により合成したリチウムイオン導電性の固体電解質粒子を、粒子径30μm以上の粒子を実質的に含まない正極活物質粉体に混合して分散させたことを特徴としている。   The present invention is an electrode containing a lithium ion conductive solid electrolyte for use in a lithium secondary battery, and substantially comprises lithium ion conductive solid electrolyte particles synthesized by mechanical milling treatment with particles having a particle diameter of 30 μm or more. It is characterized by being mixed and dispersed in a positive electrode active material powder not included in the above.

メカニカルミリング処理により合成したリチウムイオン導電性の固体電解質粒子は、2〜10μm程度の粒子径を有しており、この固体電解質粒子に、本発明に従い粒子径30μm以上の粒子を実質的に含まない正極活物質粉体を混合して分散させることにより、固体電解質粒子と正極活物質粉体とを均一に分散して混合することができ、これによって充放電サイクル特性を向上させることができる。   The lithium ion conductive solid electrolyte particles synthesized by mechanical milling have a particle size of about 2 to 10 μm, and the solid electrolyte particles do not substantially contain particles having a particle size of 30 μm or more according to the present invention. By mixing and dispersing the positive electrode active material powder, the solid electrolyte particles and the positive electrode active material powder can be uniformly dispersed and mixed, thereby improving the charge / discharge cycle characteristics.

本発明において、正極活物質粉体は、粒子径2μm以下の粒子を実質的に含まないことがさらに好ましい。粒子径2μm以下の粒子を実質的に含まないことにより、さらに正極活物質粉体を均一に混合させることができ、さらに充放電サイクル特性を向上させることができる。   In the present invention, it is further preferable that the positive electrode active material powder does not substantially contain particles having a particle diameter of 2 μm or less. By substantially not including particles having a particle diameter of 2 μm or less, the positive electrode active material powder can be further uniformly mixed, and charge / discharge cycle characteristics can be further improved.

本発明において粒子径30μm以上の粒子あるいは粒子径2μm以下の粒子を実質的に含まないとは、これらの粒子が粒子全体において2%以下であることを意味している。本発明において、粒子分布は、例えば、レーザー回折式粒度分布測定装置により測定することができる。   In the present invention, “substantially free of particles having a particle diameter of 30 μm or more or particles having a particle diameter of 2 μm or less means that these particles are 2% or less in the entire particle. In the present invention, the particle distribution can be measured by, for example, a laser diffraction particle size distribution measuring apparatus.

本発明によれば、リチウムイオン導電性の固体電解質粒子と正極活物質粉末とを均一に分散して混合することができ、充放電の繰り返しに対して安定な固体電解質/正極活物質の界面構造を形成することができる。このため、活物質の可逆的な充放電容量を高めることができ、充放電サイクルによっても可逆的な電気化学容量を高く維持できるため、充放電サイクル特性を向上させることができる。   According to the present invention, lithium ion conductive solid electrolyte particles and positive electrode active material powder can be uniformly dispersed and mixed, and the solid electrolyte / positive electrode active material interface structure is stable against repeated charge and discharge. Can be formed. For this reason, since the reversible charging / discharging capacity | capacitance of an active material can be raised and a reversible electrochemical capacity | capacitance can be maintained high also by a charging / discharging cycle, charging / discharging cycling characteristics can be improved.

本発明において用いる固体電解質は、メカニカルミリング処理により合成されるリチウムイオン導電性の固体電解質であれば特に限定されるものではないが、ガラス固体電解質であることが好ましく、特にリチウムイオン導電性の高いLi2S−SiS2−P25が好ましく用いられる。 The solid electrolyte used in the present invention is not particularly limited as long as it is a lithium ion conductive solid electrolyte synthesized by mechanical milling treatment, but is preferably a glass solid electrolyte, and particularly high in lithium ion conductivity. Li 2 S—SiS 2 —P 2 S 5 is preferably used.

本発明において、正極活物質は、リチウムイオンを電気化学的に吸蔵・放出できるものであればよく、特に限定されるものではないが、電気化学容量が比較的大きく、金属リチウム基準で3V以上の電位をもつコバルトまたはニッケルの内の少なくとも1種類を含む層状岩塩型構造を有するリチウム含有遷移金属酸化物が好ましく用いられる。このような正極活物質として、例えば、LiCoa1-a2(式中Mは、B、Mg、Al、Ti、Mn、V、Fe、Ni、Cu、Zn、Ga、Y、Zr、Nb、Mo、及びInから選ばれる少なくとも1種類以上であり、aは0<a≦1を満足する。)で表わされるリチウムコバルト複合酸化物、及びLiNib1-b2(式中Mは、B、Mg、Al、Ti、Mn、V、Fe、Co、Cu、Zn、Ga、Y、Zr、Nb、Mo、及びInから選ばれる少なくとも1種類以上であり、bは0<b≦1を満足する。)で表わされるリチウムニッケル複合酸化物を挙げることができる。これらの中でも、LiCoO2は電気化学容量が大きく、粉砕条件により粒度の調整が比較的容易であるため、本発明において特に好ましく用いられる。 In the present invention, the positive electrode active material is not particularly limited as long as it is capable of electrochemically occluding and releasing lithium ions. However, the positive electrode active material has a relatively large electrochemical capacity and is 3 V or more based on metallic lithium. A lithium-containing transition metal oxide having a layered rock salt structure containing at least one of potential cobalt or nickel is preferably used. As such a positive electrode active material, for example, LiCo a M 1-a O 2 (wherein M is B, Mg, Al, Ti, Mn, V, Fe, Ni, Cu, Zn, Ga, Y, Zr, A lithium cobalt composite oxide represented by at least one selected from Nb, Mo, and In, a satisfying 0 <a ≦ 1, and LiNi b M 1-b O 2 (wherein M Is at least one selected from B, Mg, Al, Ti, Mn, V, Fe, Co, Cu, Zn, Ga, Y, Zr, Nb, Mo, and In, and b is 0 <b ≦ 1 is satisfied.) Can be mentioned. Among these, LiCoO 2 is particularly preferably used in the present invention because it has a large electrochemical capacity and the particle size can be adjusted relatively easily depending on the grinding conditions.

本発明において、固体電解質粒子と正極活物質粉体の混合割合は、重量比(正極活物質粉体:固体電解質粒子)で、50:50〜90:10の範囲内であることが好ましい。正極活物質粉体の混合割合が少なすぎると、体積エネルギー密度が低下するため好ましくない。正極活物質粉体の混合割合が多すぎると、充分なリチウムイオン導電性を得ることができなくなるため好ましくない。   In the present invention, the mixing ratio of the solid electrolyte particles and the positive electrode active material powder is preferably in the range of 50:50 to 90:10 by weight ratio (positive electrode active material powder: solid electrolyte particles). If the mixing ratio of the positive electrode active material powder is too small, the volume energy density is lowered, which is not preferable. When the mixing ratio of the positive electrode active material powder is too large, it is not preferable because sufficient lithium ion conductivity cannot be obtained.

本発明のリチウム二次電池は、上記本発明の電極からなる正極と、負極と、固体電解質とを備えることを特徴としている。   The lithium secondary battery of the present invention is characterized by comprising a positive electrode comprising the electrode of the present invention, a negative electrode, and a solid electrolyte.

本発明のリチウム二次電池において用いる固体電解質としては、上記本発明の電極に含有させる固体電解質を用いることができる。しかしながら、これに限定されるものではなく、上記電極に含有させる固体電解質と異なる固体電解質を用いてもよい。   As the solid electrolyte used in the lithium secondary battery of the present invention, the solid electrolyte contained in the electrode of the present invention can be used. However, it is not limited to this, You may use the solid electrolyte different from the solid electrolyte contained in the said electrode.

本発明のリチウム二次電池に用いる負極としては、Liを吸蔵・放出できる物質であればよく、具体例としては、Li金属、炭素、Liと合金化する物質(In、Si、Sn、Geなど)及びそれら合金の酸化物、窒化物、炭化物などが考えられる。   The negative electrode used in the lithium secondary battery of the present invention may be any material that can occlude / release Li, and specific examples include materials that form an alloy with Li metal, carbon, Li (In, Si, Sn, Ge, etc. And oxides, nitrides and carbides of these alloys.

本発明のリチウム二次電池は、上記本発明の電極からなる正極を用いているので、電気化学容量が高く、かつ充放電サイクル特性に優れた全固体型のリチウム二次電池とすることができる。   Since the lithium secondary battery of the present invention uses the positive electrode comprising the electrode of the present invention, it can be an all-solid-state lithium secondary battery having high electrochemical capacity and excellent charge / discharge cycle characteristics. .

本発明によれば、固体電解質粒子と正極活物質粉末とを均一に分散して混合することができ、これによって電気化学容量を高め、かつ充放電サイクル特性を向上させることができる。   According to the present invention, it is possible to uniformly disperse and mix the solid electrolyte particles and the positive electrode active material powder, thereby increasing the electrochemical capacity and improving the charge / discharge cycle characteristics.

以下、本発明を具体的な実施例により説明するが、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更して実施することが可能なものである。   Hereinafter, the present invention will be described by way of specific examples. However, the present invention is not limited to the following examples, and can be appropriately modified and implemented without departing from the scope of the present invention. It is.

(実施例1)
〔正極活物質の作製〕
LiOHと、Co(OH)2とを、LiとCoのモル比が1:1になるようにらいかい乳鉢にて混合した後、空気雰囲気中で1000℃で20時間熱処理した後粉砕し、平均粒子径が約5μmのLiCoO2粒子を得た。これを再びらいかい乳鉢にて粉砕した。粉砕速度及び粉砕時間を調整することにより、図1に示すような粒度分布を有するLiCoO2粉末活物質を得た。なお、図1に示す粒度分布は、レーザー回折式粒度分布測定装置により測定した。
(Example 1)
[Preparation of positive electrode active material]
LiOH and Co (OH) 2 were mixed in a rough mortar so that the molar ratio of Li and Co was 1: 1, then heat-treated at 1000 ° C. for 20 hours in an air atmosphere, and then pulverized. LiCoO 2 particles having a particle diameter of about 5 μm were obtained. This was again crushed in a rough mortar. By adjusting the grinding speed and grinding time, a LiCoO 2 powder active material having a particle size distribution as shown in FIG. 1 was obtained. The particle size distribution shown in FIG. 1 was measured with a laser diffraction particle size distribution measuring device.

図1から明らかなように、このLiCoO2粉末は、粒子径2μm以下及び粒子径30μm以上の粒子を含んでいない。 As apparent from FIG. 1, this LiCoO 2 powder does not contain particles having a particle size of 2 μm or less and a particle size of 30 μm or more.

〔固体電解質の作製〕
Li2S、SiS2及びP25を、モル比が71:16.5:12.5となるようにめのう乳鉢で混合した後、この混合物1gを容積45mlのAl23製のポットに、直径10mmのAl23製のボ―ル10個とともに投入した。この遊星型ボールミル装置を用いて、台盤回転数370rpmで20時間のメカニカルミリング処理を行うことにより、平均粒子径が約5μmのガラス試料を得た。得られたガラス試料を、結晶化温度以上である260℃で熱処理することにより、Li2S−SiS2−P25のガラス固体電解質を作製した。なお、以上の操作は、全て乾燥アルゴン雰囲気中で行った。
(Production of solid electrolyte)
Li 2 S, SiS 2 and P 2 S 5 were mixed in an agate mortar so that the molar ratio was 71: 16.5: 12.5, and then 1 g of this mixture was added to a 45 ml Al 2 O 3 pot. Were introduced together with 10 balls made of Al 2 O 3 with a diameter of 10 mm. Using this planetary ball mill device, a glass sample having an average particle diameter of about 5 μm was obtained by performing mechanical milling treatment for 20 hours at a platen rotation speed of 370 rpm. The obtained glass sample was heat-treated at 260 ° C., which is equal to or higher than the crystallization temperature, to prepare a Li 2 S—SiS 2 —P 2 S 5 glass solid electrolyte. All the above operations were performed in a dry argon atmosphere.

〔固体電解質含有電極の作製〕
以上のようにして作製した正極活物質粉体と固体電解質粒子とを、重量比(正極活物質粉体:固体電解質粒子)で60:40となるように秤量し、めのう乳鉢で混合して、固体電解質含有電極を作製した。
(Production of solid electrolyte-containing electrode)
The positive electrode active material powder and the solid electrolyte particles produced as described above are weighed so that the weight ratio (positive electrode active material powder: solid electrolyte particles) is 60:40, and mixed in an agate mortar. A solid electrolyte-containing electrode was prepared.

図2(a)は、以上のようにして作製した固体電解質含有電極のSEM(走査型電子顕微鏡)像であり、図2(b)は、EPMAによる元素(コバルト)分布像であり、図2(c)は、EPMAによる元素(硫黄)分布像である。   FIG. 2A is an SEM (scanning electron microscope) image of the solid electrolyte-containing electrode produced as described above, and FIG. 2B is an element (cobalt) distribution image by EPMA. (C) is an element (sulfur) distribution image by EPMA.

図2(b)及び(c)から明らかなように、正極活物質であるLiCoO2粒子と、固体電解質であるLi2S−SiS2−P25が均一に分散して混合しており、固体電解質と正極活物質の界面が良好に形成されていることがわかる。 As is clear from FIGS. 2B and 2C, the LiCoO 2 particles as the positive electrode active material and the Li 2 S—SiS 2 —P 2 S 5 as the solid electrolyte are uniformly dispersed and mixed. It can be seen that the interface between the solid electrolyte and the positive electrode active material is well formed.

〔試験電池の作製〕
上記の固体電解質含有電極について、可逆的な充放電容量を測定するため、この固体電解質含有電極を用いて試験電池を作製した。
[Production of test battery]
In order to measure reversible charge / discharge capacity of the solid electrolyte-containing electrode, a test battery was produced using the solid electrolyte-containing electrode.

図3は、試験電池作製の工程を示す模式的断面図である。ステンレス棒4の上にポリカーボネートからなる円筒形容器5を載せ、円筒形容器5内に、固体電解質含有電極の粉末20mgを入れ、次に電極に含有させたのと同じ固体電解質粒子80mgを入れ、円筒形容器5の上にステンレス棒6を載せた後、このステンレス棒6を3700kg/cm2の圧力で一軸プレスすることにより、直径10mmの二層ペレットを作製した。その後、ステンレス棒6を取り外し、負極として、厚み0.1mmの金属リチウムをペレットに貼り付け、2500kg/cm2の圧力で再度一軸プレスすることにより、三層ペレットを作製した。ステンレス棒4及び6を上記三層ペレットに接触させ、これを集電体として用い、試験電池とした。 FIG. 3 is a schematic cross-sectional view showing a test battery manufacturing process. A cylindrical container 5 made of polycarbonate is placed on the stainless steel rod 4, and 20 mg of the solid electrolyte-containing electrode powder is placed in the cylindrical container 5, and then 80 mg of the same solid electrolyte particles contained in the electrode are placed. After placing the stainless steel rod 6 on the cylindrical container 5, the stainless steel rod 6 was uniaxially pressed at a pressure of 3700 kg / cm 2 to produce a double-layered pellet having a diameter of 10 mm. Thereafter, the stainless steel rod 6 was removed, metal lithium having a thickness of 0.1 mm was attached to the pellet as the negative electrode, and uniaxial pressing was performed again at a pressure of 2500 kg / cm 2 to produce a three-layer pellet. Stainless steel bars 4 and 6 were brought into contact with the above three-layer pellets and used as current collectors to form test batteries.

〔充放電試験〕
以上のようにして作製した試験電池を用いて、以下の充放電条件で電極特性を測定した。1サイクル目は、Li1-xCoO2において、x=0.4までリチウムの引き抜きを行う容量規制で充電を行い、放電は2Vまでの電位規制で行った。2サイクル目以降は、1サイクル目の充電到達電位と2Vの電位範囲で充放電を繰り返した。測定は、温度25℃、電流密度128μA/cm2で行った。
(Charge / discharge test)
Using the test battery produced as described above, the electrode characteristics were measured under the following charge / discharge conditions. In the first cycle, in Li 1-x CoO 2 , charging was performed by capacity regulation in which lithium was extracted until x = 0.4, and discharging was performed by potential regulation up to 2V. From the second cycle onward, charging and discharging were repeated within the potential range of the first cycle charge and 2 V. The measurement was performed at a temperature of 25 ° C. and a current density of 128 μA / cm 2 .

図4に、初期充放電曲線を示す。また、図5に、50サイクルまでの各サイクルにおける放電容量及び充放電効率を示す。   FIG. 4 shows an initial charge / discharge curve. FIG. 5 shows the discharge capacity and charge / discharge efficiency in each cycle up to 50 cycles.

図4から明らかなように、初期の電気化学容量として80mAh/gが得られた。また、図5から明らかなように、10サイクル目以降の可逆的な電気化学容量は、38〜42mAh/gであり、安定した充放電を行うことができた。   As is clear from FIG. 4, 80 mAh / g was obtained as the initial electrochemical capacity. Further, as is clear from FIG. 5, the reversible electrochemical capacity after the 10th cycle was 38 to 42 mAh / g, and stable charging / discharging could be performed.

(実施例2)
〔正極活物質の作製〕
粉砕速度及び粉砕時間を調整することにより、図6に示すような粒度分布を有する正極活物質粉末とした以外は、実施例1と同様にして正極活物質粉末を作製した。
(Example 2)
[Preparation of positive electrode active material]
A positive electrode active material powder was produced in the same manner as in Example 1 except that the positive electrode active material powder having a particle size distribution as shown in FIG.

図6から明らかなように、本実施例で作製した正極活物質粉末は、30μm以上の粒子を含まないが、2μm以下の粒子は含んでいる。   As is clear from FIG. 6, the positive electrode active material powder produced in this example does not contain particles of 30 μm or more, but contains particles of 2 μm or less.

〔固体電解質含有電極の作製〕
上記の正極活物質粉体を用いる以外は、実施例1と同様にして固体電解質含有電極を作製した。
(Production of solid electrolyte-containing electrode)
A solid electrolyte-containing electrode was produced in the same manner as in Example 1 except that the above positive electrode active material powder was used.

図7(a)は、この固体電解質含有電極のSEM像を示しており、図7(b)は、EPMAによる元素(コバルト)分布像を示しており、図7(c)は、EPMAによる元素(硫黄)分布像を示している。   7A shows an SEM image of this solid electrolyte-containing electrode, FIG. 7B shows an element (cobalt) distribution image by EPMA, and FIG. 7C shows an element by EPMA. (Sulfur) distribution image is shown.

図7(b)及び(c)から明らかなように、正極活物質粉末と固体電解質粒子が互いに均一に分散し、混合されている。実施例1と比較すると、実施例1の方がより均一に分散していることがわかる。   As is clear from FIGS. 7B and 7C, the positive electrode active material powder and the solid electrolyte particles are uniformly dispersed and mixed with each other. Compared to Example 1, it can be seen that Example 1 is more uniformly dispersed.

〔試験電池の作製及び充放電試験〕
上記の固体電解質含有電極を用いる以外は、実施例1と同様にして試験電池を作製し、この試験電池を用いて、実施例1と同様にして充放電試験を行った。
[Production of test battery and charge / discharge test]
A test battery was prepared in the same manner as in Example 1 except that the solid electrolyte-containing electrode was used, and a charge / discharge test was performed in the same manner as in Example 1 using this test battery.

図8は初期充放電曲線を示しており、図9は50サイクルまでの各サイクルにおける放電容量及び充放電効率を示している。   FIG. 8 shows an initial charge / discharge curve, and FIG. 9 shows the discharge capacity and charge / discharge efficiency in each cycle up to 50 cycles.

図8から明らかなように、初期の電気化学容量として80mAh/gが得られた。また、図9から明らかなように、10サイクル目以降の可逆的な電気化学容量は、10〜38mAh/gであった。   As is clear from FIG. 8, 80 mAh / g was obtained as the initial electrochemical capacity. Further, as is clear from FIG. 9, the reversible electrochemical capacity after the 10th cycle was 10 to 38 mAh / g.

(比較例)
〔正極活物質粉体の作製〕
粉砕速度及び粉砕時間を調整することにより、図10に示すような粒度分布を有する正極活物質粉体とする以外は、実施例1と同様にして正極活物質粉体を作製した。
(Comparative example)
[Preparation of positive electrode active material powder]
A positive electrode active material powder was prepared in the same manner as in Example 1 except that the positive electrode active material powder having a particle size distribution as shown in FIG. 10 was obtained by adjusting the pulverization speed and pulverization time.

図10に示すように、ここで得られた正極活物質粉体は粒子径30μm以上の粒子を含んでいる。また、粒子径2μm以下の粒子は含まれていない。   As shown in FIG. 10, the positive electrode active material powder obtained here contains particles having a particle diameter of 30 μm or more. Further, particles having a particle diameter of 2 μm or less are not included.

〔固体電解質含有電極の作製〕
上記の正極活物質粉体を用いる以外は、実施例1と同様にして固体電解質含有電極を作製した。
(Production of solid electrolyte-containing electrode)
A solid electrolyte-containing electrode was produced in the same manner as in Example 1 except that the above positive electrode active material powder was used.

図11(a)は、固体電解質含有電極のSEM像を示しており、図11(b)は、EPMAによる元素(コバルト)分布像を示しており、図11(c)は、EPMAによる元素(硫黄)分布像を示している。   11A shows an SEM image of the solid electrolyte-containing electrode, FIG. 11B shows an element (cobalt) distribution image by EPMA, and FIG. 11C shows an element by EPMA (cobalt). (Sulfur) distribution image.

図11(b)及び(c)から明らかなように、実施例1(図2)及び実施例2(図7)と比べ、正極活物質粉体及び固体電解質粒子の分散が不均一であることがわかる。   As is clear from FIGS. 11B and 11C, the dispersion of the positive electrode active material powder and the solid electrolyte particles is not uniform as compared with Example 1 (FIG. 2) and Example 2 (FIG. 7). I understand.

〔試験電池の作製及び充放電試験〕
上記の固体電解質含有電極を用いて、実施例1と同様にして試験電池を作製し、この試験電池を用いて、実施例1と同様にして充放電試験を行った。
[Production of test battery and charge / discharge test]
A test battery was produced using the solid electrolyte-containing electrode in the same manner as in Example 1, and a charge / discharge test was conducted in the same manner as in Example 1 using this test battery.

図12は、初期充放電曲線を示しており、図13は50サイクルまでの各サイクルの放電容量及び充放電効率を示している。   FIG. 12 shows an initial charge / discharge curve, and FIG. 13 shows the discharge capacity and charge / discharge efficiency of each cycle up to 50 cycles.

図12から明らかなように、初期の電気化学容量として60mAh/gが得られた。また、図13から明らかなように、10サイクル目以降の可逆的な電気化学容量は3〜10mAh/gであった。   As is clear from FIG. 12, 60 mAh / g was obtained as the initial electrochemical capacity. Further, as is clear from FIG. 13, the reversible electrochemical capacity after the 10th cycle was 3 to 10 mAh / g.

実施例1及び2と比較例との比較から明らかなように、本発明に従い、粒子径30μm以上の粒子を実質的に含まない正極活物質粉体を用いることにより、高い放電容量を得ることができ、充放電サイクル特性を向上させることができる。   As is clear from the comparison between Examples 1 and 2 and the comparative example, a high discharge capacity can be obtained by using the positive electrode active material powder substantially free of particles having a particle diameter of 30 μm or more according to the present invention. And charge / discharge cycle characteristics can be improved.

本発明に従う実施例1において作製した正極活物質粉体の粒度分布を示す図。The figure which shows the particle size distribution of the positive electrode active material powder produced in Example 1 according to this invention. 本発明に従う実施例1において作製した固体電解質含有電極のSEM像(a)、EPMAによる元素(コバルト)分布像(b)、EPMAによる元素(硫黄)分布像(c)。The SEM image (a) of the solid electrolyte containing electrode produced in Example 1 according to this invention, the element (cobalt) distribution image (b) by EPMA, and the element (sulfur) distribution image (c) by EPMA. 本発明に従う実施例1において作製した試験電池の作製工程を示す模式的断面図。Typical sectional drawing which shows the preparation process of the test battery produced in Example 1 according to this invention. 本発明に従う実施例1において作製した試験電池の初期充放電曲線を示す図。The figure which shows the initial stage charge / discharge curve of the test battery produced in Example 1 according to this invention. 本発明に従う実施例1において作製した試験電池のサイクル特性を示す図。The figure which shows the cycling characteristics of the test battery produced in Example 1 according to this invention. 本発明に従う実施例2において作製した正極活物質粉体の粒度分布を示す図。The figure which shows the particle size distribution of the positive electrode active material powder produced in Example 2 according to this invention. 本発明に従う実施例2において作製した固体電解質含有電極のSEM像(a)、EPMAによる元素(コバルト)分布像(b)、EPMAによる元素(硫黄)分布像(c)。The SEM image (a) of the solid electrolyte containing electrode produced in Example 2 according to this invention, the element (cobalt) distribution image (b) by EPMA, and the element (sulfur) distribution image (c) by EPMA. 本発明に従う実施例2において作製した試験電池の初期充放電曲線を示す図。The figure which shows the initial stage charge / discharge curve of the test battery produced in Example 2 according to this invention. 本発明に従う実施例2において作製した試験電池のサイクル特性を示す図。The figure which shows the cycling characteristics of the test battery produced in Example 2 according to this invention. 比較例において作製した正極活物質粉体の粒度分布を示す図。The figure which shows the particle size distribution of the positive electrode active material powder produced in the comparative example. 比較例において作製した固体電解質含有電極のSEM像(a)、EPMAによる元素(コバルト)分布像(b)、EPMAによる元素(硫黄)分布像(c)。The SEM image (a) of the solid electrolyte containing electrode produced in the comparative example, the element (cobalt) distribution image (b) by EPMA, and the element (sulfur) distribution image (c) by EPMA. 比較例において作製した試験電池の初期充放電曲線を示す図。The figure which shows the initial stage charge / discharge curve of the test battery produced in the comparative example. 比較例において作製した試験電池のサイクル特性を示す図。The figure which shows the cycling characteristics of the test battery produced in the comparative example.

符号の説明Explanation of symbols

1…固体電解質含有電極
2…固体電解質
3…負極
4…ステンレス棒
5…円筒形容器
6…ステンレス棒
DESCRIPTION OF SYMBOLS 1 ... Solid electrolyte containing electrode 2 ... Solid electrolyte 3 ... Negative electrode 4 ... Stainless steel rod 5 ... Cylindrical container 6 ... Stainless steel rod

Claims (5)

リチウム二次電池に用いるリチウムイオン導電性の固体電解質を含有した電極であって、
メカニカルミリング処理により合成したリチウムイオン導電性の固体電解質粒子を、粒子径30μm以上の粒子を実質的に含まない正極活物質粉体に混合して分散させたことを特徴とするリチウム二次電池用固体電解質含有電極。
An electrode containing a lithium ion conductive solid electrolyte used in a lithium secondary battery,
Lithium ion conductive solid electrolyte particles synthesized by mechanical milling treatment are mixed and dispersed in a positive electrode active material powder substantially free of particles having a particle size of 30 μm or more. Solid electrolyte-containing electrode.
前記正極活物質粉体が、粒子径2μm以下の粒子を実質的に含まないことを特徴とするリチウム二次電池用固体電解質含有電極。   A solid electrolyte-containing electrode for a lithium secondary battery, wherein the positive electrode active material powder does not substantially contain particles having a particle diameter of 2 μm or less. 前記固体電解質粒子が、Li2S−SiS2−P25であることを特徴とする請求項1または2に記載のリチウム二次電池用固体電解質含有電極。 The solid electrolyte-containing electrode for a lithium secondary battery according to claim 1, wherein the solid electrolyte particles are Li 2 S—SiS 2 —P 2 S 5 . 前記正極活物質粉体が、LiCoO2であることを特徴とする請求項1〜3のいずれか1項に記載のリチウム二次電池用固体電解質含有電極。 4. The solid electrolyte-containing electrode for a lithium secondary battery according to claim 1, wherein the positive electrode active material powder is LiCoO 2 . 請求項1〜4に記載の電極からなる正極と、負極と、固体電解質とを備えることを特徴とするリチウム二次電池。
A lithium secondary battery comprising a positive electrode comprising the electrode according to claim 1, a negative electrode, and a solid electrolyte.
JP2004143209A 2004-05-13 2004-05-13 Solid electrolyte-containing electrode for lithium secondary battery Expired - Fee Related JP4800589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004143209A JP4800589B2 (en) 2004-05-13 2004-05-13 Solid electrolyte-containing electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004143209A JP4800589B2 (en) 2004-05-13 2004-05-13 Solid electrolyte-containing electrode for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2005327528A true JP2005327528A (en) 2005-11-24
JP4800589B2 JP4800589B2 (en) 2011-10-26

Family

ID=35473714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004143209A Expired - Fee Related JP4800589B2 (en) 2004-05-13 2004-05-13 Solid electrolyte-containing electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4800589B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149438A (en) * 2005-11-25 2007-06-14 Osaka Prefecture Univ Manufacturing method of composite for electrode, electrode material and secondary battery or whole solid battery
JP2008004459A (en) * 2006-06-26 2008-01-10 Idemitsu Kosan Co Ltd Solid electrolyte microparticle and its manufacturing method
JP2008103282A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd Electrode material, and solid secondary battery using it
JP2009152077A (en) * 2007-12-20 2009-07-09 Sumitomo Electric Ind Ltd Lithium battery
JP2010067499A (en) * 2008-09-11 2010-03-25 Idemitsu Kosan Co Ltd Manufacturing method of cathode mixture and cathode mixture obtained using it
JP2012094446A (en) * 2010-10-28 2012-05-17 Toyota Motor Corp All-solid battery
JP2013137889A (en) * 2011-12-28 2013-07-11 Mitsui Mining & Smelting Co Ltd Sulfide-based solid electrolyte
US8852803B2 (en) 2011-03-30 2014-10-07 Samsung Sdi Co., Ltd. Composite, electrode active material for secondary lithium battery including the composite, method of preparing the composite, anode for secondary lithium battery including the electrode active material, and secondary lithium battery including the anode
JP2015038861A (en) * 2013-07-17 2015-02-26 Jsr株式会社 Slurry for power storage device electrode, method for manufacturing the same, power storage device electrode, and power storage device
CN106450440A (en) * 2016-09-13 2017-02-22 清华大学 All-solid-state lithium-ion battery, solid electrolyte compound and preparation method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06243897A (en) * 1992-12-24 1994-09-02 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH08106911A (en) * 1994-10-05 1996-04-23 Matsushita Electric Ind Co Ltd All solid lithium battery
JPH08195219A (en) * 1994-11-14 1996-07-30 Matsushita Electric Ind Co Ltd Fuel-solid lithium secondary battery
JPH11134937A (en) * 1997-10-31 1999-05-21 Osaka Prefecture Manufacture of ion conductive sulfide glass, ion conductive sulfide glass, solid-type electrolyte and totally solid-type secondary battery
JPH11176236A (en) * 1997-12-09 1999-07-02 Toyota Motor Corp Lithium ion conducting solid electrolyte and battery
JP2001273928A (en) * 2000-03-27 2001-10-05 Osaka Prefecture Lithium based secondary battery and its manufacturing method
JP2002109955A (en) * 2000-10-02 2002-04-12 Osaka Prefecture Sulfide crystallized glass, solid electrolyte, and fully solid secondary cell
JP2003123748A (en) * 2001-10-05 2003-04-25 Toda Kogyo Corp Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same
JP2005228570A (en) * 2004-02-12 2005-08-25 Idemitsu Kosan Co Ltd Lithium ion conductive sulfide based crystallized glass and its manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06243897A (en) * 1992-12-24 1994-09-02 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH08106911A (en) * 1994-10-05 1996-04-23 Matsushita Electric Ind Co Ltd All solid lithium battery
JPH08195219A (en) * 1994-11-14 1996-07-30 Matsushita Electric Ind Co Ltd Fuel-solid lithium secondary battery
JPH11134937A (en) * 1997-10-31 1999-05-21 Osaka Prefecture Manufacture of ion conductive sulfide glass, ion conductive sulfide glass, solid-type electrolyte and totally solid-type secondary battery
JPH11176236A (en) * 1997-12-09 1999-07-02 Toyota Motor Corp Lithium ion conducting solid electrolyte and battery
JP2001273928A (en) * 2000-03-27 2001-10-05 Osaka Prefecture Lithium based secondary battery and its manufacturing method
JP2002109955A (en) * 2000-10-02 2002-04-12 Osaka Prefecture Sulfide crystallized glass, solid electrolyte, and fully solid secondary cell
JP2003123748A (en) * 2001-10-05 2003-04-25 Toda Kogyo Corp Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same
JP2005228570A (en) * 2004-02-12 2005-08-25 Idemitsu Kosan Co Ltd Lithium ion conductive sulfide based crystallized glass and its manufacturing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149438A (en) * 2005-11-25 2007-06-14 Osaka Prefecture Univ Manufacturing method of composite for electrode, electrode material and secondary battery or whole solid battery
JP2008004459A (en) * 2006-06-26 2008-01-10 Idemitsu Kosan Co Ltd Solid electrolyte microparticle and its manufacturing method
JP2008103282A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd Electrode material, and solid secondary battery using it
JP2009152077A (en) * 2007-12-20 2009-07-09 Sumitomo Electric Ind Ltd Lithium battery
JP2010067499A (en) * 2008-09-11 2010-03-25 Idemitsu Kosan Co Ltd Manufacturing method of cathode mixture and cathode mixture obtained using it
JP2012094446A (en) * 2010-10-28 2012-05-17 Toyota Motor Corp All-solid battery
US8852803B2 (en) 2011-03-30 2014-10-07 Samsung Sdi Co., Ltd. Composite, electrode active material for secondary lithium battery including the composite, method of preparing the composite, anode for secondary lithium battery including the electrode active material, and secondary lithium battery including the anode
JP2013137889A (en) * 2011-12-28 2013-07-11 Mitsui Mining & Smelting Co Ltd Sulfide-based solid electrolyte
JP2015038861A (en) * 2013-07-17 2015-02-26 Jsr株式会社 Slurry for power storage device electrode, method for manufacturing the same, power storage device electrode, and power storage device
CN106450440A (en) * 2016-09-13 2017-02-22 清华大学 All-solid-state lithium-ion battery, solid electrolyte compound and preparation method

Also Published As

Publication number Publication date
JP4800589B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
Qiu et al. A high entropy oxide (Mg0. 2Co0. 2Ni0. 2Cu0. 2Zn0. 2O) with superior lithium storage performance
Hu et al. Inhibiting grain coarsening and inducing oxygen vacancies: the roles of Mn in achieving a highly reversible conversion reaction and a long life SnO 2–Mn–graphite ternary anode
JP3232984B2 (en) Method for producing nonaqueous electrolyte battery and positive electrode active material
CN110061203B (en) Rare earth composite metaphosphate coated lithium anode material and preparation method thereof
Morales et al. Cycling-induced stress in lithium ion negative electrodes: LiAl/LiFePO4 and Li4Ti5O12/LiFePO4 cells
Lou et al. Mg-doped Li1. 2Mn0. 54Ni0. 13Co0. 13O2 nano flakes with improved electrochemical performance for lithium-ion battery application
CN109817926A (en) A kind of prelithiation material and preparation method thereof and lithium battery
CN111009656A (en) Preparation method of rare earth metal doped high-nickel ternary battery positive electrode material
EP2579367A1 (en) Powder for negative electrode material of lithium-ion rechargeable battery electrode, and method of producing same
JP4800589B2 (en) Solid electrolyte-containing electrode for lithium secondary battery
KR20110108301A (en) Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
WO2011030486A1 (en) Silicon oxide and anode material for lithium ion secondary cell
TW201351764A (en) Lithium nickel cobalt cathode material powder
Guo et al. A novel SnxSbNi composite as anode materials for Li rechargeable batteries
CN112771693A (en) Three-dimensional composite metal lithium cathode, metal lithium battery and device
Gao et al. An effective strategy to enhance the electrochemical performance of LiNi0. 6Mn0. 2Co0. 2O2: Optimizing a Li diffusion pathway via magnetic alignment of single-crystal cathode material under an ordinary 0.4-T magnetic field
KR20040014270A (en) Negative electrode active material, method of producing the same, and nonaqueous electrolyte cell
CN115863650A (en) Core-shell type sodium ion battery positive electrode active material and preparation method and application thereof
Yu et al. Significantly improved cycling stability for electrochemical hydrogen storage in Ti1. 4V0. 6Ni alloy with TiN
JP2004079463A (en) Negative electrode active material for lithium ion secondary battery, its manufacturing method, negative electrode for the same, and lithium ion secondary battery
WO2022080108A1 (en) Lithium-ion secondary cell and positive electrode of same
Ahn et al. Lithium storage properties of ball milled Ni-57 mass% Sn alloy
JP5036174B2 (en) Non-aqueous electrolyte secondary battery
JPH10324522A (en) Production of lithium cobalt oxide particulate powder
Xia et al. Effect of current collector on electrochemical performance of alloy anodes of lithium ion batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees