JP2005323444A - Protection system of dc power feeding circuit network - Google Patents

Protection system of dc power feeding circuit network Download PDF

Info

Publication number
JP2005323444A
JP2005323444A JP2004138762A JP2004138762A JP2005323444A JP 2005323444 A JP2005323444 A JP 2005323444A JP 2004138762 A JP2004138762 A JP 2004138762A JP 2004138762 A JP2004138762 A JP 2004138762A JP 2005323444 A JP2005323444 A JP 2005323444A
Authority
JP
Japan
Prior art keywords
circuit
short
current
supercurrent
breakers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004138762A
Other languages
Japanese (ja)
Other versions
JP4120618B2 (en
Inventor
Yasuhiro Takabayashi
泰弘 高林
Masahide Koshiba
昌英 小柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2004138762A priority Critical patent/JP4120618B2/en
Publication of JP2005323444A publication Critical patent/JP2005323444A/en
Application granted granted Critical
Publication of JP4120618B2 publication Critical patent/JP4120618B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To protect a DC power feeding circuit network at a short circuit fault time without power interrupting the whole system. <P>SOLUTION: The magnitudes of the overcurrent set values of first to sixteenth super-limiting current circuit breakers 31-46 to perform a breaking operation when an overcurrent flows are set as a forward overcurrent set value and a backward overcurrent set value for every forward current and backward current flowing through the first to the sixteenth super-limiting current circuit breakers 31-46. For example, in a normal operation state, the forward overcurrent set value and the backward overcurrent set value are set so that the first to the sixteenth super-limiting current circuit breakers 31-46 may not operate to be broken by a rated current flowing to the circuit network, a charging current and a regenerative current. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、短絡事故が発生した場合に直流給電回路網に接続された発電機等の電気機器を保護する直流給電回路網の保護システムに関する。   The present invention relates to a protection system for a DC power supply network that protects electrical equipment such as a generator connected to the DC power supply network when a short circuit accident occurs.

直流を電源とする直流給電回路網として、例えば、直流電流を電源とする船舶向け電気システムがある。電気推進船舶等の電気システムとして、一次電源としての蓄電池と、蓄電池を充電する発電機からなる電源装置と、推進に必要な推進電動機と、運航に必要な補機電動機等の機器類とを備えたものがある。
このような電気システムには、短絡事故が発生したときの対策が施されている。従来方式では、回路網に配置した気中遮断器(ACB)或いはヒューズ等の保護装置により短絡事故時の保護が行われている(例えば特許文献1参照)。
As a DC power supply network that uses DC as a power source, for example, there is an electrical system for ships that uses DC current as a power source. As an electric system for electric propulsion vessels, etc., it has a storage battery as a primary power source, a power supply device consisting of a generator for charging the storage battery, a propulsion motor necessary for propulsion, and equipment such as an auxiliary motor necessary for operation There is something.
Such an electric system is provided with a countermeasure when a short-circuit accident occurs. In the conventional method, protection in the event of a short circuit is performed by a protective device such as an air circuit breaker (ACB) or a fuse arranged in a circuit network (see, for example, Patent Document 1).

これらの保護装置は、過電流を検出して遮断動作により保護動作をする過電流検出動作型の保護装置である。この保護装置は、当該保護装置を通過する電流値に基づいて遮断動作(開路動作)して、短絡事故時の発電機等の電気機器を保護している。
特開平10−262330号公報
These protection devices are overcurrent detection operation type protection devices that detect an overcurrent and perform a protection operation by a cutoff operation. This protection device protects electrical devices such as a generator in the event of a short circuit by performing a shut-off operation (open circuit operation) based on the current value passing through the protection device.
JP 10-262330 A

電気推進船舶等の電気システムでは、電路長が短いため、回路(電路)インピーダンスが微小である。このような電気システムの場合、短絡事故発生時には、短絡発生点に急峻な電流上昇を伴い大きな短絡電流が流れるため、高速・大遮断容量性能をもつ保護装置が必要となる。
また、低インピーダンス電路であるため、保護装置相互間で協調動作して個々が選択的に遮断動作することが困難である。これを図17乃至図19を用いて説明する。
In an electric system such as an electric propulsion ship, the circuit (electric circuit) impedance is very small because the electric circuit length is short. In such an electric system, when a short-circuit accident occurs, a large short-circuit current flows at the short-circuit occurrence point with a steep current rise, and thus a protective device having high speed and large breaking capacity performance is required.
Moreover, since it is a low-impedance electric circuit, it is difficult for the protective devices to perform a cooperative operation between the protective devices and selectively perform an individual cutoff operation. This will be described with reference to FIGS.

図17は、電路系統図(直流給電回路網)の一部を示す。
図17に示すように、直流電源をなす蓄電池101を備える回路(主回路)に、動力系102が接続されており、その動力系102の前後には動力系保護装置として第1及び第2遮断器(気中遮断器又は超限流遮断器)111,112が配置されている。また、図17に示すように、主回路上に主回路保護装置として第3及び第4遮断器(気中遮断器又は超限流遮断器)113,114が配置されている。これら遮断器111〜114は、動力系回路の定格電流I1や主回路の定格電流I2に応じて選定されている。
FIG. 17 shows a part of a circuit diagram (DC power supply network).
As shown in FIG. 17, a power system 102 is connected to a circuit (main circuit) including a storage battery 101 that forms a DC power source, and first and second cutoffs are provided as power system protection devices before and after the power system 102. The breakers (air circuit breakers or supercurrent breakers) 111 and 112 are arranged. Moreover, as shown in FIG. 17, the 3rd and 4th circuit breakers (air circuit breaker or a supercurrent circuit breaker) 113,114 are arrange | positioned as a main circuit protection apparatus on the main circuit. These circuit breakers 111 to 114 are selected according to the rated current I1 of the power system circuit and the rated current I2 of the main circuit.

図18は、遮断器の保護動作特性を示す。
一般的には、遮断器の過電流設定値は、定格電流を100%としたときの電流倍率で決定される。例えば、定格電流を100%としたとき、過電流検出開始電流が125%程度となり、過電流瞬時動作電流が500%程度となるように設定する。図18に示す保護動作特性は、動力系回路の定格電流I1が1kAであり、主回路の定格電流I2が10kAである場合の保護動作特性を示す。
FIG. 18 shows the protective operating characteristics of the circuit breaker.
Generally, the overcurrent set value of the circuit breaker is determined by the current magnification when the rated current is 100%. For example, when the rated current is 100%, the overcurrent detection start current is set to about 125%, and the overcurrent instantaneous operating current is set to about 500%. The protection operation characteristics shown in FIG. 18 indicate the protection operation characteristics when the rated current I1 of the power system circuit is 1 kA and the rated current I2 of the main circuit is 10 kA.

ここで、図17に示すように主回路の一部c1,c2間で短絡が発生した場合を考える。
この場合、図19に示すように、短絡発生直後に急峻な上昇を示す推定短絡電流が発生する。ここで、推定短絡電流とは、回路電圧を回路抵抗で除した流れるであろう短絡電流の最大値である。この推定短絡電流は、回路インピーダンスが小さいほど大きくなる。また、短絡発生直後の短絡電流の上昇は電流突進率(di/dt)で示され、この電流突進率は、回路インダクタンスLを回路抵抗Rで除した値(L/R)で決定される。よって、回路インダクタンスLが小さければ、短絡電流は急峻な上昇を示すことになる。
Here, consider a case where a short circuit occurs between the parts c1 and c2 of the main circuit as shown in FIG.
In this case, as shown in FIG. 19, an estimated short-circuit current that shows a steep rise immediately after the occurrence of the short-circuit occurs. Here, the estimated short-circuit current is the maximum value of the short-circuit current that will flow by dividing the circuit voltage by the circuit resistance. The estimated short circuit current increases as the circuit impedance decreases. The increase in the short-circuit current immediately after the occurrence of the short-circuit is indicated by a current rush rate (di / dt), and this current rush rate is determined by a value (L / R) obtained by dividing the circuit inductance L by the circuit resistance R. Therefore, if the circuit inductance L is small, the short circuit current shows a sharp rise.

このようなことから、短絡が発生した場合、第1及び第2遮断器111,112を流れる短絡電流はIS1となり、第3及び第4遮断器113,114を流れる短絡電流はIS1+IS2となるが、それぞれの短絡電流経路の抵抗が小さいほど、その短絡電流IS1,IS1+IS2は大きくなり、また、インダクタンスが小さければ、短絡電流IS1,IS1+IS2は短時間で大電流値に到達することになる。   For this reason, when a short circuit occurs, the short circuit current flowing through the first and second circuit breakers 111 and 112 is IS1, and the short circuit current flowing through the third and fourth circuit breakers 113 and 114 is IS1 + IS2. The short circuit current IS1, IS1 + IS2 increases as the resistance of each short circuit path decreases, and if the inductance is small, the short circuit currents IS1, IS1 + IS2 reach a large current value in a short time.

一方、遮断器の保護動作は、短絡発生による過電流を検出してから接点を開いて(接点を開極して)短絡電流(事故電流)を限流遮断するようになっているので、過電流検出から接点開極開始までの時間遅れがほぼ20〜数十msec.存在する。このようなことから、接点が開いてから短絡電流が限流(減少)するときには、構成回路に配置した各遮断器(保護装置)が既に短絡電流を検出し、遮断動作を開始してしまう。なお、過電流の検出は、変流器(電流検出器)が設定値(しきい値)を超えているか否かで検出している。   On the other hand, the protective action of the circuit breaker is to limit the short-circuit current (accident current) by opening the contact (opening the contact) after detecting the over-current due to the occurrence of short circuit. There is a time delay of approximately 20 to several tens of msec. From current detection to the start of contact opening. For this reason, when the short-circuit current is limited (decreased) after the contact is opened, each circuit breaker (protection device) arranged in the constituent circuit has already detected the short-circuit current and started the breaking operation. The overcurrent is detected based on whether or not the current transformer (current detector) exceeds a set value (threshold value).

よって、本来であれば、各遮断器(保護装置)の設定に従って各遮断器が選択的に保護動作するのが理想であるが、インピーダンスが小さい回路網では、瞬時に大短絡電流に到達してしまい、かつ各遮断器の遮断動作の遅れにより、各遮断器の定格及び設定値にかかわらず、全ての遮断器がほぼ同時に動作してしまう。この結果、前述したように、低インピーダンスの回路では、保護装置(遮断器)相互間で協調動作して個々が選択的に遮断動作することが困難となる。このような事態に至ってしまうと、一ヶ所で発生した短絡事故が回路網に配置した全ての保護装置を動作させてしまう可能性があり、この場合には、システム全体の停電を招いてしまう。   Therefore, it is ideal that each circuit breaker selectively protects according to the setting of each circuit breaker (protection device). However, in a circuit network with low impedance, a large short-circuit current is instantaneously reached. In addition, due to the delay of the circuit breaker operation, all circuit breakers operate almost simultaneously regardless of the rating and set value of each circuit breaker. As a result, as described above, in a low-impedance circuit, it is difficult for the protective devices (breakers) to perform a cooperative operation between the protective devices (breakers) and to selectively perform a blocking operation individually. If such a situation occurs, there is a possibility that a short-circuit accident occurring in one place may cause all the protective devices arranged in the circuit network to operate, and in this case, a power failure of the entire system is caused.

このように、従来方式の過電流検出による短絡保護方式では、高速・大遮断容量の保護装置が必要であり、また、保護装置相互間で協調動作して選択的に遮断保護動作を得ることが極めて困難である。
さらに、近年の電源容量増大に伴い、保護装置の遮断容量向上が望まれる。しかし、保護装置の遮断容量向上が技術的に限界である状況となっている。
As described above, the conventional short-circuit protection method based on overcurrent detection requires a high-speed, large breaking capacity protection device, and can selectively obtain a break protection operation by cooperative operation between the protection devices. It is extremely difficult.
Furthermore, with the recent increase in power supply capacity, it is desired to improve the breaking capacity of the protection device. However, there is a technical limit to improving the breaking capacity of the protection device.

本発明は、前述の問題に鑑みてなされたものであり、高速・大遮断容量性能をもつ保護装置を必要とすることなく、かつシステム全体を停電させることなく、直流給電回路網の短絡事故時の保護を図ることができる直流給電回路網の保護システムの提供を目的とする。   The present invention has been made in view of the above-described problems, and does not require a protective device having high speed and large breaking capacity performance, and without power failure of the entire system, at the time of a short circuit accident of a DC power supply network. It is an object of the present invention to provide a protection system for a DC power supply network that can protect the circuit.

本発明に係る直流給電回路網の保護システムは、複数の電気機器と、当該複数の電気機器に対応させて配置され、かつ過電流を検出して遮断動作する遮断装置とを備えた直流給電回路網を保護する直流給電回路網の保護システムにおいて、前記遮断装置が過電流を検出して遮断動作するための遮断動作電流値の大きさを、前記遮断装置内を流れる正方向電流及び逆方向電流毎に設定することを特徴とする。   A protection system for a DC power supply network according to the present invention includes a plurality of electrical devices, and a DC power supply circuit that is disposed corresponding to the plurality of electrical devices and that includes a shut-off device that detects an overcurrent and performs a shut-off operation. In a protection system for a DC power supply circuit network that protects a network, the magnitude of a cutoff operation current value for the cutoff device to detect a overcurrent and perform a cutoff operation is defined as a forward current and a reverse current flowing in the cutoff device. It is characterized by setting every time.

本発明によれば、遮断装置が過電流を検出して遮断動作するための遮断動作電流値の大きさを、当該遮断装置内を流れる正方向電流及び逆方向電流毎に設定することで、回路網で短絡事故が発生したときの正方向又は逆方向の短絡電流を遮断装置が的確に検出し、遮断装置が速やかに遮断動作することができる。
これにより、短絡事故が発生しても直流給電回路網の全ての遮断装置が遮断動作してしまうことを防止できるので、直流給電回路網の短絡事故時の保護を図りつつ、システム全体が停電してしまうことを防止できる。
According to the present invention, by setting the magnitude of the cutoff operation current value for the cutoff device to detect the overcurrent and perform the cutoff operation for each of the forward current and the reverse current flowing through the cutoff device, The breaking device can accurately detect the short-circuit current in the normal direction or the reverse direction when a short-circuit accident occurs in the net, and the breaking device can quickly cut-off.
As a result, even if a short-circuit accident occurs, it is possible to prevent all the interruption devices of the DC power supply network from shutting down, so that the entire system can be cut off while protecting the DC power supply network in the event of a short-circuit accident. Can be prevented.

本発明を実施するための最良の形態(以下、実施形態という。)を図面を参照しながら詳細に説明する。
(1)構成の説明
図1は本発明が適用される直流給電回路網の電路系統図を示す。図2は図1の電路系統図に対応するインピーダンスマップを示す。
The best mode for carrying out the present invention (hereinafter referred to as an embodiment) will be described in detail with reference to the drawings.
(1) Description of Configuration FIG. 1 shows a circuit diagram of a DC power supply network to which the present invention is applied. FIG. 2 shows an impedance map corresponding to the circuit diagram of FIG.

図1に示すように、直流電源をなす第1及び第2(1号及び2号)蓄電池1,2(B1,B2)を備える回路(主回路)に、第1及び第2(1号系及び2号系)動力3,4(MA1,MA2)、第1及び第2(1号及び2号)発電機5,6(G1,G2)、並びに電動機7(M)が接続されている。例えば、直流給電回路網が船舶用のものであれば、電動機7は推進電動機になる。   As shown in FIG. 1, a circuit (main circuit) including first and second (No. 1 and No. 2) storage batteries 1 and 2 (B1 and B2) forming a DC power source is connected to the first and second (No. 1 systems). And No. 2 system) power 3, 4 (MA1, MA2), first and second (No. 1 and 2) generators 5, 6 (G1, G2), and electric motor 7 (M) are connected. For example, if the DC power supply network is for ships, the motor 7 is a propulsion motor.

また、この回路網において、第1蓄電池1、第1動力3及び第1発電機5により1号系の回路網を構成し、第2蓄電池2、第2動力4及び第2発電機6により2号系の回路網を構成している。
また、この回路網では、第1及び第2接続点a1,a2により第1動力3が接続されており、第3及び第4接続点a3,a4により第2動力4が接続されており、第5及び第6接続点a5,a6により第1発電機5が接続されており、第7及び第8接続点a7,a8により第2発電機6が接続されており、第9及び第10接続点a9,a10により電動機7が接続されている。これにより直流給電回路網が構成されている。
In this circuit network, the first storage battery 1, the first power 3 and the first generator 5 constitute a No. 1 system network, and the second storage battery 2, the second power 4 and the second generator 6 It constitutes a circuit network.
In this circuit network, the first power 3 is connected by the first and second connection points a1 and a2, the second power 4 is connected by the third and fourth connection points a3 and a4, The first generator 5 is connected by the fifth and sixth connection points a5 and a6, the second generator 6 is connected by the seventh and eighth connection points a7 and a8, and the ninth and tenth connection points. The electric motor 7 is connected by a9 and a10. Thus, a DC power supply network is configured.

また、これらの各構成機器要素1〜7の電力規模の関係は一般的には次のような関係になる。
(B1又はB2)>M>(G1又はG2)>(MA1又はMA2)
これにより、各構成機器要素1〜7の電流規模の関係は次のような関係になる。
(B1又はB2)>M>(G1又はG2)>(MA1又はMA2)
そして、この回路網では、第1及び第2動力3,4並びに第1及び第2発電機5,6それぞれの前後に、第1乃至第8遮断器(気中遮断器)11〜18及び第1乃至第8超限流遮断器31〜38が設置されている。また、前記第1及び第2蓄電池1,2を備える回路上、第1接続点a1と第5接続点a5との間に、第9遮断器19及び第9超限流遮断器39を備え、第2接続点a2と第6接続点a6との間に、第10遮断器20及び第10超限流遮断器40を備え、第3接続点a3と第7接続点a7との間に、第11遮断器21及び第11超限流遮断器41を備え、第4接続点a4と第8接続点a8との間に、第12遮断器22及び第12超限流遮断器42を備え、第5接続点a5と第9接続点a9との間に、第13超限流遮断器43を備え、第6接続点a6と第10接続点a10との間に、第14超限流遮断器44を備え、第7接続点a7と第9接続点a9との間に、第15超限流遮断器45を備え、第8接続点a8と第10接続点a10との間に、第16超限流遮断器46を備えている。
Moreover, the relationship between the power scales of these component device elements 1 to 7 is generally as follows.
(B1 or B2)>M> (G1 or G2)> (MA1 or MA2)
Thereby, the relationship of the electric current scale of each component apparatus element 1-7 becomes the following relationships.
(B1 or B2)>M> (G1 or G2)> (MA1 or MA2)
In this circuit network, the first to eighth circuit breakers (air circuit breakers) 11 to 18 and the first and second powers 3 and 4 and the first and second power generators 5 and 6 are respectively connected to the front and rear. 1st-8th supercurrent limit circuit breakers 31-38 are installed. In addition, on the circuit including the first and second storage batteries 1, 2 and 9 between the first connection point a1 and the fifth connection point a5, a ninth circuit breaker 19 and a ninth ultracurrent limiting circuit breaker 39 are provided. Between the second connection point a2 and the sixth connection point a6, the tenth circuit breaker 20 and the tenth supercurrent limiter 40 are provided, and between the third connection point a3 and the seventh connection point a7, 11 circuit breaker 21 and 11th supercurrent limit circuit breaker 41, 12th circuit breaker 22 and 12th supercurrent limit circuit breaker 42 between 4th connection point a4 and 8th connection point a8, A thirteenth supercurrent breaker 43 is provided between the fifth connection point a5 and the ninth connection point a9, and a fourteenth supercurrent limiter 44 is provided between the sixth connection point a6 and the tenth connection point a10. Including a fifteenth supercurrent breaker 45 between the seventh connection point a7 and the ninth connection point a9, and between the eighth connection point a8 and the tenth connection point a10. 6 and a super limiting breaker 46.

ここで、第1乃至第8遮断器11〜18は、各回路の定格電流に応じて選定されている。また、第1乃至第16超限流遮断器31〜46はそれぞれ、当該第1乃至第16超限流遮断器31〜46を通る電流を検出する変流器(電流検出器)31a〜46aと、変流器31a〜46aの電流検出結果に基づいて動作する限流ヒューズ31c〜46cとを備えている。具体的には、限流ヒューズ31c〜46cは、変流器31a〜46aに設定されている過電流設定値(過電流保護設定値)に達したときに動作し、この動作が第1乃至第16超限流遮断器31〜46の遮断動作となる。   Here, the first to eighth circuit breakers 11 to 18 are selected according to the rated current of each circuit. Further, the first to sixteenth supercurrent breakers 31 to 46 are current transformers (current detectors) 31a to 46a that detect currents passing through the first to sixteenth supercurrent breakers 31 to 46, respectively. Current limiting fuses 31c to 46c that operate based on the current detection results of the current transformers 31a to 46a. Specifically, the current limiting fuses 31c to 46c operate when the overcurrent set value (overcurrent protection set value) set in the current transformers 31a to 46a is reached. It becomes the interruption | blocking operation | movement of 16 supercurrent limit circuit breakers 31-46.

このように回路網に第1乃至第8遮断器11〜18及び第1乃至第16超限流遮断器31〜46を配置することで、回路網の任意の点で短絡事故があった場合に各回路及び構成機器要素1〜7の保護を行っている。
なお、遮断器11〜18や超限流遮断器31〜46を備える一方で、個々の構成機器要素1〜7は、個別に保護装置を備えており、その保護装置によって独自に保護されている。
Thus, by arranging the first to eighth circuit breakers 11 to 18 and the first to sixteenth current limiting circuit breakers 31 to 46 in the circuit network, when there is a short circuit accident at an arbitrary point of the circuit network Each circuit and component device elements 1 to 7 are protected.
In addition, while providing the circuit breakers 11-18 and the supercurrent limit circuit breakers 31-46, each component apparatus element 1-7 is equipped with the protective device separately, and is protected uniquely by the protective device. .

(2)過電流設定値の説明
次に、第1乃至第16超限流遮断器31〜46(具体的には変流器31a〜46a)の過電流設定値を説明する。
第1乃至第16超限流遮断器31〜46に設定される過電流設定値は、第1乃至第16超限流遮断器31〜46に流れる正方向電流に対応する正方向過電流設定値と、第1乃至第16超限流遮断器31〜46に流れる逆方向電流に対応する逆方向過電流設定値とがあり、それら正方向過電流設定値及び逆方向過電流設定値の大きさが各回路の定格電流等の条件に応じて個別に設定されている。下記表1及び図3は、各回路の定格電流と、第1乃至第16超限流遮断器31〜46に設定される正方向過電流設定値(正方向設定値)及び逆方向過電流設定値(逆方向設定値)との関係を示す。
(2) Description of overcurrent set value Next, the overcurrent set value of the 1st thru | or 16th supercurrent limit circuit breakers 31-46 (specifically current transformer 31a-46a) is demonstrated.
The overcurrent set values set in the first to sixteenth supercurrent limit circuit breakers 31 to 46 are positive direction overcurrent set values corresponding to the positive direction currents flowing in the first to sixteenth supercurrent limit circuit breakers 31 to 46. And reverse overcurrent setting values corresponding to the reverse currents flowing through the first to sixteenth supercurrent breakers 31 to 46, and the magnitudes of the positive overcurrent setting value and the reverse overcurrent setting value. Are individually set according to conditions such as the rated current of each circuit. Table 1 and FIG. 3 below show the rated current of each circuit, the positive overcurrent setting value (forward setting value) and the reverse overcurrent setting set in the first to sixteenth supercurrent limiters 31 to 46. It shows the relationship with the value (reverse direction setting value).

Figure 2005323444
Figure 2005323444

なお、ここでこの回路網に流れる電流は次のようになる。
図1に示す正方向電流+Ib1,+Ib2は、蓄電池1,2の放電電流であり、正方向電流+Ig1,+Ig2は、発電機5,6の出力電流であり、正方向電流値Imは、電動機7の動力用電流であり、正方向電流+Ima1,+Ima2は、動力3,4の動力用電流である。また、逆方向電流−Ib1,−Ib2,−Ig1,−Ig2,−Ima1,−Ima2は、正方向電流+Ib1,+Ib2,+Ig1,+Ig2,+Ima1,+Ima2とは逆方向に流れる電流になる。例えば、逆方向電流−Ib1,−Ib2は、蓄電池1,2の充電電流又は回生電流である。ここで、充電電流は、発電機5,6により蓄電池1,2を充電する場合の電流であり、回生電流は、電動機7が減速やブレーキ動作時に発生して、蓄電池1,2に流れる電流である。
Here, the current flowing in this network is as follows.
The positive direction currents + Ib1 and + Ib2 shown in FIG. 1 are the discharge currents of the storage batteries 1 and 2, the positive direction currents + Ig1 and + Ig2 are the output currents of the generators 5 and 6, and the positive direction current value Im is the electric motor 7 The positive currents + Ima1 and + Ima2 are power currents for the powers 3 and 4. Further, the reverse currents -Ib1, -Ib2, -Ig1, -Ig2, -Ima1, -Ima2 are currents flowing in the reverse direction to the positive currents + Ib1, + Ib2, + Ig1, + Ig2, + Ima1, + Ima2. For example, the reverse currents -Ib1 and -Ib2 are charging currents or regenerative currents of the storage batteries 1 and 2. Here, the charging current is a current when the storage batteries 1 and 2 are charged by the generators 5 and 6, and the regenerative current is a current that flows through the storage batteries 1 and 2 when the electric motor 7 is decelerated or braked. is there.

また、これら正方向電流+Im,+I1aΣ,+I2aΣ,+I1bΣ,+I2bΣ,+I1cΣ,+I2cΣは、短絡事故が発生していない正常運転状態に回路網に流れる電流であり、正常動作運転状態において、これら正方向電流の間には、次のような関係が成り立つ。
+I1aΣ=+Ib1−(+Ima1)=+I1bΣ
+I1cΣ=+I1bΣ+(+Ig1)
+I2aΣ=+Ib2−(+Ima2)=+I2bΣ
+I2cΣ=+I2bΣ+(+Ig2)
+Im=+I1cΣ+I2cΣ
また、逆方向電流−Im,−I1aΣ,−I2aΣ,−I1bΣ,−I2bΣ,−I1cΣ,−I2cΣは、前記正方向電流+Im,+I1aΣ,+I2aΣ,+I1bΣ,+I2bΣ,+I1cΣ,+I2cΣとは逆方向に流れる電流になる。例えば、逆方向電流−Im,−I1cΣ,−I2cΣは、蓄電池1,2への回生電流であり、逆方向電流−I1aΣ(−I1bΣ),−I2aΣ(−I2bΣ)は、充電電流や回生電流になる。
The positive currents + Im, + I1aΣ, + I2aΣ, + I1bΣ, + I2bΣ, + I1cΣ, and + I2cΣ are currents that flow through the circuit network in a normal operation state in which no short-circuit accident has occurred. The following relationship holds between:
+ I1aΣ = + Ib1-(+ Ima1) = + I1bΣ
+ I1cΣ = + I1bΣ + (+ Ig1)
+ I2aΣ = + Ib2 − (+ Ima2) = + I2bΣ
+ I2cΣ = + I2bΣ + (+ Ig2)
+ Im = + I1cΣ + I2cΣ
Further, the reverse currents -Im, -I1aΣ, -I2aΣ, -I1bΣ, -I2bΣ, -I1cΣ, -I2cΣ flow in the opposite direction to the positive currents + Im, + I1aΣ, + I2aΣ, + I1bΣ, + I2bΣ, + I1cΣ, + I2cΣ. Become current. For example, the reverse currents -Im, -I1cΣ and -I2cΣ are regenerative currents to the storage batteries 1 and 2, and the reverse currents -I1aΣ (-I1bΣ) and -I2aΣ (-I2bΣ) are used as charging currents and regenerative currents. Become.

以上のような電流が回路網に流れており、この回路網に設置されている第1乃至第16超限流遮断器31〜46の正方向過電流設定値及び逆方向過電流設定値は次のように設定されている(表1、図3参照)。
(2−1)第9乃至第12超限流遮断器39〜42の過電流設定値
第9乃至第12超限流遮断器39〜42は、蓄電池1,2から最大負荷電力の電動機7へ電力を供給する推進母線に設置した短絡保護用のものである。そして、この第9乃至第12超限流遮断器39〜42が設置されている回路の定格電流(I1a,I2a)を+12とすれば、第9乃至第12超限流遮断器39〜42の正方向過電流設定値I1aoc,I2aocを+15(=+12×1.2)程度に設定し、第9乃至第12超限流遮断器39〜42の逆方向過電流設定値I1aR,I2aRを−6(=+12×(−0.5))程度に設定する。
The current as described above is flowing in the circuit network, and the forward overcurrent set value and the reverse overcurrent set value of the first to sixteenth ultracurrent breakers 31 to 46 installed in the circuit network are as follows. (See Table 1 and FIG. 3).
(2-1) Overcurrent setting values of ninth to twelfth supercurrent breakers 39 to 42 The ninth to twelfth supercurrent breakers 39 to 42 are connected from the storage batteries 1 and 2 to the motor 7 having the maximum load power. It is for short circuit protection installed in the propulsion bus that supplies power. If the rated current (I1a, I2a) of the circuit in which the ninth to twelfth supercurrent breakers 39 to 42 are installed is +12, the ninth to twelfth supercurrent breakers 39 to 42 The forward overcurrent set values I1aoc and I2aoc are set to about +15 (= + 12 × 1.2), and the reverse overcurrent set values I1aR and I2aR of the ninth to twelfth supercurrent breakers 39 to 42 are set to −6. Set to about (= + 12 × (−0.5)).

また、前述したように発電機5,6により蓄電池1,2に充電電流が流れ、又は電動機7が減速やブレーキ動作時に蓄電池1,2に回生電流が流れており、これら電流が逆方向電流−I1aΣ,−I2aΣとして第9乃至第12超限流遮断器39〜42を流れることから、逆方向過電流設定値I1aR,I2aRは、充電電流及び回生電流(逆方向電流−I1aΣ,−I2aΣ)によって当該第9乃至第12超限流遮断器39〜42が遮断動作しないよう、これらの電流値よりも高い値に設定されている。   Further, as described above, the charging current flows to the storage batteries 1 and 2 by the generators 5 and 6, or the regenerative current flows to the storage batteries 1 and 2 when the electric motor 7 decelerates and brakes, and these currents are reverse current − The reverse overcurrent setting values I1aR and I2aR are caused by the charging current and the regenerative current (reverse currents −I1aΣ and −I2aΣ) since they flow through the ninth to twelfth supercurrent limiters 39 to 42 as I1aΣ and −I2aΣ. The current value is set to a value higher than these current values so that the ninth to twelfth supercurrent breakers 39 to 42 do not perform the breaking operation.

(2−2)第13乃至第16超限流遮断器43〜46の過電流設定値
第13乃至第16超限流遮断器43〜46は、電動機7への電力供給回路の短絡保護用のものである。そして、この第13乃至第16超限流遮断器43〜46が設定されている回路の定格電流(I1c,I2c)を+9とすれば、第13乃至第16超限流遮断器43〜46の正方向過電流設定値I1coc,I2cocを+11(=+9×1.2)程度に設定し、第13乃至第16超限流遮断器43〜46の逆方向過電流設定値I1cR,I2cRを前記第9乃至第12超限流遮断器39〜42の逆方向過電流設定値I1aR,I2aRと同様に、−6程度に設定する。
(2-2) Overcurrent setting values of thirteenth to sixteenth supercurrent breakers 43 to 46 The thirteenth to sixteenth supercurrent breakers 43 to 46 are for short-circuit protection of the power supply circuit to the motor 7. Is. If the rated current (I1c, I2c) of the circuit in which the thirteenth to sixteenth supercurrent breakers 43 to 46 are set is +9, the thirteenth to sixteenth supercurrent breakers 43 to 46 The forward overcurrent set values I1coc and I2coc are set to about +11 (= + 9 × 1.2), and the reverse overcurrent set values I1cR and I2cR of the thirteenth to sixteenth supercurrent limiters 43 to 46 are Similar to the reverse overcurrent set values I1aR and I2aR of the ninth to twelfth supercurrent limiter breakers 39 to 42, it is set to about -6.

この場合、当然、電動機7からの回生電流は逆方向過電流設定値I1cR,I2cRである約−6を越えない範囲で制御するようにして、電動機7が回生動作した時に第13乃至第16超限流遮断器43〜46が誤動作しないようにする。
(2−3)第5乃至第8超限流遮断器35〜38の過電流設定値
第5乃至第8超限流遮断器35〜38は、発電機5,6用の回路の短絡保護用のものである。そして、この第5乃至第8超限流遮断器35〜38が設定されている回路の定格電流(Ig1,Ig2)を+4とすれば、第5乃至第8超限流遮断器35〜38の正方向過電流設定値Ig1oc,Ig2ocを+6(=+4×1.5)程度に設定し、第5乃至第8超限流遮断器35〜38の逆方向過電流設定値Ig1R,Ig2Rを−0.4(=+4×(−0.1))程度に設定する。
In this case, naturally, the regenerative current from the electric motor 7 is controlled within a range not exceeding about −6 which is the reverse overcurrent set values I1cR and I2cR, and when the electric motor 7 performs the regenerative operation, The current limit circuit breakers 43 to 46 are prevented from malfunctioning.
(2-3) Overcurrent set values of the fifth to eighth supercurrent breakers 35 to 38 The fifth to eighth supercurrent breakers 35 to 38 are for short circuit protection of the circuits for the generators 5 and 6. belongs to. If the rated current (Ig1, Ig2) of the circuit in which the fifth to eighth supercurrent breakers 35 to 38 are set is +4, the fifth to eighth supercurrent breakers 35 to 38 The forward overcurrent set values Ig1oc and Ig2oc are set to about +6 (= + 4 × 1.5), and the reverse overcurrent set values Ig1R and Ig2R of the fifth to eighth supercurrent breakers 35 to 38 are set to −0. .4 (= + 4 × (−0.1)) or so.

ここで、発電機5,6は、蓄電池1,2への充電の他、電動機7及び動力(補機動力)3,4にも電力を供給するので、通常運転状態では逆方向に電流が流れることはない。よって、逆方向電流が発生した状態とは異常状態である。よって、僅かな逆方向電流が発生しても、これを検出し、速やかに回路を遮断するのが望ましい。このようなことから、第5乃至第8超限流遮断器35〜38の逆方向過電流設定値Ig1R,Ig2Rを−0.4程度の小さい値に設定している。   Here, the generators 5 and 6 supply power to the electric motor 7 and power (auxiliary power) 3 and 4 in addition to charging the storage batteries 1 and 2, so that current flows in the reverse direction in the normal operation state. There is nothing. Therefore, the state where the reverse current is generated is an abnormal state. Therefore, it is desirable that even if a slight reverse current is generated, this is detected and the circuit is promptly shut off. For this reason, the reverse overcurrent set values Ig1R and Ig2R of the fifth to eighth supercurrent breakers 35 to 38 are set to a small value of about −0.4.

(2−4)第1乃至第4超限流遮断器31〜34の過電流設定値
第1乃至第4超限流遮断器31〜34は、動力(補機動力)3,4用の回路の短絡保護用のものである。そして、この第1乃至第4超限流遮断器31〜34が設定されている回路の定格電流(Ima1,Ima2)を+1.5とすれば、第1乃至第4超限流遮断器31〜34の正方向過電流設定値Ima1oc,Ima2ocを+2.2(=+1.5×1.5)程度に設定し、第1乃至第4超限流遮断器31〜34の逆方向過電流設定値Ima1R,Ima2Rを当該正方向過電流設定値Ima1oc,Ima2ocと絶対値で同値の−2.2程度に設定する。
(2-4) Overcurrent set values of the first to fourth ultracurrent breakers 31 to 34 The first to fourth ultracurrent breakers 31 to 34 are circuits for power (auxiliary power) 3 and 4. For short circuit protection. If the rated current (Ima1, Ima2) of the circuit in which the first to fourth supercurrent breakers 31 to 34 are set is +1.5, the first to fourth supercurrent breakers 31 to 31 are set. 34 forward overcurrent set values Ima1oc and Ima2oc are set to about +2.2 (= + 1.5 × 1.5), and the reverse overcurrent set values of the first to fourth ultracurrent breakers 31 to 34 are set. Ima1R and Ima2R are set to about −2.2, which is the same absolute value as the positive overcurrent set values Ima1oc and Ima2oc.

ここで、動力(補機動力)3,4が電力の供給を受けて動く機器であることから、その回路には通常運転状態では逆方向に電流が流れることはなく、動力(補機動力)3,4以外の回路における短絡事故発生時にのみ逆方向の電流が流れることになる。このようなことから、動力(補機動力)3,4以外の回路で発生した短絡事故によって動力(補機動力)3,4の回路の第1乃至第4超限流遮断器31〜34が遮断動作することがないように、第1乃至第4超限流遮断器31〜34が逆方向電流では検出動作しないようにしてもよく、これにより、例えば、電気推進船舶の電気システムにおいて、船舶の運転のために必要な動力(補機動力)電源をより確実に最後まで確保することができるようになる。   Here, since the power (auxiliary power) 3 and 4 is a device that moves upon receiving power supply, current does not flow in the reverse direction in the normal operation state, and the power (auxiliary power) A current in the reverse direction flows only when a short circuit accident occurs in circuits other than 3 and 4. For this reason, the first to fourth supercurrent-limiting circuit breakers 31 to 34 in the power (auxiliary power) 3 and 4 circuits are caused by a short circuit accident occurring in a circuit other than the power (auxiliary power) 3 and 4. The first to fourth ultracurrent limiters 31 to 34 may be prevented from detecting operation with a reverse current so that the circuit breaker does not operate. For example, in an electric system of an electric propulsion ship, Thus, the power (auxiliary power) power source necessary for the operation can be more reliably secured to the end.

(3)超限流遮断器の遮断動作の説明
次に短絡事故が発生した時の第1乃至第16超限流遮断器31〜46の遮断動作を説明する。
先ず、図4は、正常運転状態での電流の流れ方向(正方向の流れ方向)を示す。この図4中にて、実線として示す電流の矢印の方向(正方向の流れ方向)は正常運転状態での電流の流れ方向となる。また、点線として示す電流の矢印の方向(逆方向の流れ方向)は充電や回生時の電流の流れ方向となる。
(3) Description of breaking operation of supercurrent breaker Next, the breaking operation of the first to sixteenth supercurrent breakers 31 to 46 when a short circuit accident occurs will be described.
First, FIG. 4 shows a current flow direction (a positive flow direction) in a normal operation state. In FIG. 4, the direction of the current arrow indicated by the solid line (positive flow direction) is the current flow direction in the normal operation state. The direction of the current arrow indicated by the dotted line (the reverse flow direction) is the current flow direction during charging or regeneration.

ここでは、図1、図2及び図4に示す点1BPと点1BNとの間、点CPと点CNとの間、点1APと点1ANとの間又は点1GPと点1GNとの間で短絡事故が発生した場合を説明する。
ここで、点1BPは、第9超限流遮断器39と第5接続点a5との間の点であり、点1BNは、第10超限流遮断器40と第6接続点a6との間の点であり、点CPは第9接続点a9であり、点CNは第10接続点a10であり、点1APは、第1超限流遮断器31と第1動力3との間にある点であり、点1ANは、第2超限流遮断器32と第1動力3との間にある点であり、点1GPは、第5超限流遮断器35と第1発電機5との間にあり、点1GNは、第6超限流遮断器36と第1発電機5との間にある点である。以下の説明では、これら点1BP,1BN,CP,CN,1AP,1AN,1GP,1GNを短絡点1BP,1BN,CP,CN,1AP,1AN,1GP,1GNと言うことにする。
Here, a short circuit is made between point 1BP and point 1BN, between point CP and point CN, between point 1AP and point 1AN, or between point 1GP and point 1GN as shown in FIGS. Explain when an accident occurs.
Here, the point 1BP is a point between the ninth supercurrent breaker 39 and the fifth connection point a5, and the point 1BN is between the tenth supercurrent breaker 40 and the sixth connection point a6. The point CP is the ninth connection point a9, the point CN is the tenth connection point a10, and the point 1AP is between the first supercurrent limiter 31 and the first power 3 The point 1AN is a point between the second supercurrent breaker 32 and the first power 3, and the point 1GP is between the fifth supercurrent breaker 35 and the first generator 5. The point 1GN is a point between the sixth supercurrent limiter 36 and the first generator 5. In the following description, these points 1BP, 1BN, CP, CN, 1AP, 1AN, 1GP, and 1GN are referred to as short-circuit points 1BP, 1BN, CP, CN, 1AP, 1AN, 1GP, and 1GN.

(3−1)短絡点1BPと短絡点1BNとの間で短絡事故が発生した場合(図5、図6、図7)
図5は、短絡点1BPと短絡点1BNとの間で短絡事故発生時の短絡電流の流れを電路系統図をベースに記載したものを示し、図6は、その電路系統図に対応するインピーダンスマップを示す。また、図7は、短絡点1BPと短絡点1BNとの間で短絡事故発生時の超限流遮断器での検出電流及び保護動作を示す。
(3-1) When a short circuit accident occurs between the short circuit point 1BP and the short circuit point 1BN (FIGS. 5, 6, and 7)
FIG. 5 shows the flow of a short-circuit current when a short-circuit accident occurs between the short-circuit point 1BP and the short-circuit point 1BN based on the electric circuit diagram, and FIG. 6 shows an impedance map corresponding to the electric circuit diagram. Indicates. Moreover, FIG. 7 shows the detection current and the protective operation in the supercurrent breaker when a short circuit accident occurs between the short circuit point 1BP and the short circuit point 1BN.

図5及び図6に示すように、短絡点1BPと短絡点1BNとの間で短絡事故が発生すると、各々の回路網からは当該回路網の回路定数によって決まる短絡電流がそれぞれ流出し、短絡点1BPと短絡点1BNとの間に短絡電流(合計電流)IΣが流れる。ここで、短絡電流IΣは下記式のようになる。
IΣ=I1aΣ+I1bΣ
I1aΣ=Ib1+Ima1
I1bΣ=Ig1+I1cΣ
I1cΣ=Im+I2cΣ
I2cΣ=Ig2+I2bΣ
I2bΣ=Ib2+Ima2(=I2aΣ)
ここで、電流Ib1,Ib2は、正方向電流であり、それぞれ第1及び第2蓄電池1,2から短絡点1BP,1BNに向かう短絡電流となり、電流Ima1,Ima2は、逆方向電流であり、それぞれ第1及び第2動力3,4の電動機負荷等に起因して、短絡点1BP,1BNに向かう短絡電流となり、電流Ig1,Ig2は、正方向電流であり、それぞれ第1及び第2発電機5,6から短絡点1BP,1BNに向かう短絡電流であり、電流Imは、逆方向電流であり、電動機7から短絡点1BP,1BNに向かう短絡電流となる。例えば、短絡電流I1aΣは、第9遮断器19及び第9超限流遮断器39を通って短絡点1BP,1BNに流れる電流であり、或いは短絡点1BP,1BNから第10遮断器20及び第10超限流遮断器40に流れ込む電流である。
As shown in FIGS. 5 and 6, when a short circuit accident occurs between the short circuit point 1BP and the short circuit point 1BN, a short circuit current determined by the circuit constant of the circuit network flows out from each circuit network. A short-circuit current (total current) IΣ flows between 1BP and the short-circuit point 1BN. Here, the short-circuit current IΣ is expressed by the following equation.
IΣ = I1aΣ + I1bΣ
I1aΣ = Ib1 + Ima1
I1bΣ = Ig1 + I1cΣ
I1cΣ = Im + I2cΣ
I2cΣ = Ig2 + I2bΣ
I2bΣ = Ib2 + Ima2 (= I2aΣ)
Here, the currents Ib1 and Ib2 are forward currents, which are short-circuit currents from the first and second storage batteries 1 and 2 to the short-circuit points 1BP and 1BN, respectively. The currents Ima1 and Ima2 are reverse-currents, respectively. Due to the motor loads and the like of the first and second powers 3 and 4, short-circuit currents toward the short-circuit points 1BP and 1BN are generated, and the currents Ig1 and Ig2 are forward currents, respectively. , 6 is a short-circuit current toward the short-circuit points 1BP, 1BN, and the current Im is a reverse current, which is a short-circuit current from the motor 7 toward the short-circuit points 1BP, 1BN. For example, the short-circuit current I1aΣ is a current that flows to the short-circuit points 1BP and 1BN through the ninth circuit breaker 19 and the ninth supercurrent limiter 39, or from the short-circuit points 1BP and 1BN to the tenth circuit breaker 20 and the tenth circuit. This is the current that flows into the supercurrent breaker 40.

このとき、短絡点1BP,1BNの近傍に配置されている第9及び第10超限流遮断器39,40並びに第13及び第14超限流遮断器43,44に関して、第9及び第10超限流遮断器39,40には正方向短絡電流I1aΣ(正I1aΣ又は+I1aΣ)が流れ、第13及び第14超限流遮断器43,44には逆方向短絡電流I1cΣ(逆I1cΣ又は−I1cΣ)が流れる。また、このとき、第1及び第2超限流遮断器31,32に逆方向短絡電流Ima1(逆Ima1又は−Ima1)が流れ、第3及び第4超限流遮断器33,34に逆方向短絡電流Ima2(逆Ima2又は−Ima2)が流れる。   At this time, with respect to the ninth and tenth supercurrent limiters 39, 40 and the thirteenth and fourteenth supercurrent limiters 43, 44 arranged in the vicinity of the short-circuit points 1BP, 1BN, A forward-direction short-circuit current I1aΣ (positive I1aΣ or + I1aΣ) flows through the current-limiting circuit breakers 39 and 40, and a reverse-direction short-circuit current I1cΣ (reverse I1cΣ or −I1cΣ) flows through the thirteenth and fourteenth supercurrent-limiting circuit breakers 43 and 44. Flows. At this time, the reverse short-circuit current Ima1 (reverse Ima1 or -Ima1) flows through the first and second supercurrent breakers 31, 32, and the reverse direction flows through the third and fourth supercurrent breakers 33, 34. A short-circuit current Ima2 (reverse Ima2 or -Ima2) flows.

これら各短絡電流の短絡事故発生時からの変化は図7に示すようになる。各短絡電流の大きさと電流上昇は回路インピーダンスに支配される。すなわち例えば、短絡点1BP,1BNに流れる短絡電流IΣは、各回路から流入する短絡電流の総和であるが、その一方で、短絡点1BP,1BNが第1蓄電池1に近いためインピーダンスが小さくなることから、短絡電流IΣは、高電流突進率短絡電流、過大短絡電流となる。   Changes in these short-circuit currents from the occurrence of a short-circuit accident are as shown in FIG. The magnitude of each short circuit current and the current rise are governed by the circuit impedance. That is, for example, the short-circuit current IΣ flowing through the short-circuit points 1BP and 1BN is the sum of the short-circuit currents flowing from the respective circuits, but on the other hand, the short-circuit points 1BP and 1BN are close to the first storage battery 1 so that the impedance is reduced. Therefore, the short circuit current IΣ becomes a high current rush rate short circuit current and an excessive short circuit current.

このように各短絡電流が変化するときに、第9及び第10超限流遮断器39,40に流れる正方向短絡電流I1aΣ(正I1aΣ又は+I1aΣ)は、短絡発生から時間t2後にその第9及び第10超限流遮断器39,40の正方向過電流設定値I1aocである+15になり(同図の動作点f1に達し)、この時に第9及び第10超限流遮断器39,40が遮断動作を開始する。   Thus, when each short-circuit current changes, the positive direction short-circuit current I1aΣ (positive I1aΣ or + I1aΣ) flowing through the ninth and tenth supercurrent limiters 39, 40 is the ninth and tenth after the time t2 from the occurrence of the short-circuit. The positive direction overcurrent set value I1aoc of the tenth supercurrent breaker 39, 40 becomes +15 (reaching the operating point f1 in the figure). At this time, the ninth and tenth supercurrent breakers 39, 40 are Start the shut-off operation.

また、第13及び第14超限流遮断器43,44に流れる逆方向短絡電流I1cΣ(逆I1cΣ又は−I1cΣ)は、短絡発生から時間t1(<t2)後にその第13及び第14超限流遮断器43,44の逆方向過電流設定値I1cRである−6になり(同図の動作点r1に達し)、この時に第13及び第14超限流遮断器43,44が遮断動作を開始する。   The reverse short-circuit current I1cΣ (reverse I1cΣ or −I1cΣ) flowing through the thirteenth and fourteenth supercurrent limiters 43 and 44 is the thirteenth and fourteenth supercurrent limit after time t1 (<t2) from the occurrence of the short circuit. The reverse overcurrent set value I1cR of the circuit breakers 43 and 44 is -6 (which reaches the operating point r1 in the figure), and at this time, the 13th and 14th supercurrent breakers 43 and 44 start the circuit breaking operation. To do.

これら第9及び第10超限流遮断器39,40並びに第13及び第14超限流遮断器43,44の遮断動作により、短絡点1BP,1BNが切り離される。
一方、第15及び第16超限流遮断器45,46の動作点、すなわち正方向短絡電流I2cΣ(正I2cΣ又は+I2cΣ)が当該第15及び第16超限流遮断器45,46の正方向過電流設定値I2cocである+11(同図の点f2)に達するまでの時間が、短絡発生から前記時間t1及びt2よりも後の時間t3となっている。
The short-circuit points 1BP and 1BN are disconnected by the breaking operation of the ninth and tenth supercurrent breakers 39 and 40 and the thirteenth and fourteenth supercurrent breakers 43 and 44.
On the other hand, the operating point of the fifteenth and sixteenth supercurrent breakers 45, 46, that is, the positive short-circuit current I2cΣ (positive I2cΣ or + I2cΣ) The time until reaching the current set value I2coc +11 (point f2 in the figure) is a time t3 after the time t1 and t2 from the occurrence of the short circuit.

また、第5乃至第8超限流遮断器35〜38の動作点、すなわち正方向短絡電流Ig1,Ig2(正Ig1又は+Ig1,正Ig2又は+Ig2)が当該第5乃至第8超限流遮断器35〜38の正方向過電流設定値Ig1oc,Ig2ocである+6(同図の点f3,f4)に達するまでの時間が、短絡発生から前記時間t1及びt2よりも後の時間t5及びt7となっている。   Further, the operating points of the fifth to eighth supercurrent limiters 35 to 38, that is, the positive-direction short-circuit currents Ig1 and Ig2 (positive Ig1 or + Ig1, positive Ig2 or + Ig2) are the fifth to eighth supercurrent limiters. The time required to reach the positive overcurrent set values Ig1oc and Ig2oc of +35 to 35 (points f3 and f4 in the figure) is times t5 and t7 after the occurrence of the short circuit and after the times t1 and t2. ing.

また、第11及び第12超限流遮断器41,42の動作点、すなわち正方向短絡電流I2aΣ又はI2bΣ(正I2aΣ若しくは+I2aΣ又は正I2bΣ若しくは+I2bΣ)が当該第11及び第12超限流遮断器41,42の正方向過電流設定値I2aocである+15(同図の点f5)に達するまでの時間が、短絡発生から前記時間t1及びt2よりも後の時間t8となっている。   Further, the operating points of the eleventh and twelfth supercurrent limiters 41, 42, that is, the positive direction short-circuit current I2aΣ or I2bΣ (positive I2aΣ or + I2aΣ or positive I2bΣ or + I2bΣ) are the eleventh and twelfth supercurrent limiters. The time until the positive overcurrent set value I2aoc of 41 and 42 reaches +15 (point f5 in the figure) is the time t8 after the time t1 and t2 from the occurrence of the short circuit.

また、第1乃至第4超限流遮断器31〜34の動作点、すなわち逆方向短絡電流Ima1,Ima2(逆Ima1又は−Ima1,逆Ima2又は−Ima2)が当該第1乃至第4超限流遮断器31〜34の逆方向過電流設定値Ima1R,Ima2Rである−2.2(同図の点r2,r3)に達するまでの時間が、短絡発生から前記時間t1及びt2よりも後の時間t4及びt6となっている。   Further, the operating points of the first to fourth supercurrent limiters 31 to 34, that is, the reverse short-circuit currents Ima1 and Ima2 (reverse Ima1 or -Ima1, reverse Ima2 or -Ima2) are the first to fourth supercurrent limiters. The time until the reverse overcurrent set values Ima1R and Ima2R of the circuit breakers 31 to 34 are −2.2 (points r2 and r3 in the figure) is the time after the occurrence of the short circuit after the times t1 and t2. t4 and t6.

以上のように、短絡点1BPと短絡点1BNとの間で短絡事故発生時に、第9、第10、第13及び第14超限流遮断器39,40,43,44以外の第1乃至第8、第11、第12、第15、第16超限流遮断器31〜38,41,42,45,46に先行して、当該第9、第10、第13及び第14超限流遮断器39,40,43,44が遮断動作を開始することで、第1乃至第8、第11、第12、第15及び第16超限流遮断器31〜38,41,42,45,46が遮断動作する前に短絡点1BP,1BNが切り離される。これにより、短絡点1BPと短絡点1BNとの間で短絡事故が発生しても、第1乃至第8、第11、第12、第15及び第16超限流遮断器31〜38,41,42,45,46が遮断動作(保護動作)しないので、それら超限流遮断器に保護されている他の健全回路への給電を継続させることができ、システムの安全を確保することができる。   As described above, when a short-circuit accident occurs between the short-circuit point 1BP and the short-circuit point 1BN, the first to the other than the ninth, tenth, thirteenth, and fourteenth supercurrent limiters 39, 40, 43, and 44 are used. The ninth, tenth, thirteenth, and fourteenth supercurrent limiters are preceded by the eighth, eleventh, twelfth, fifteenth, and sixteenth supercurrent limiters 31-38, 41, 42, 45, and 46. The first to eighth, eleventh, twelfth, fifteenth and sixteenth supercurrent limiters 31 to 38, 41, 42, 45, and 46 are started by the breakers 39, 40, 43, and 44 starting the breaking operation. Short circuit points 1BP and 1BN are disconnected before the breaking operation. Thereby, even if a short-circuit accident occurs between the short-circuit point 1BP and the short-circuit point 1BN, the first to eighth, eleventh, twelfth, fifteenth and sixteenth supercurrent limiter breakers 31 to 38, 41, Since 42, 45, and 46 do not perform a cut-off operation (protection operation), it is possible to continue power supply to other healthy circuits protected by these supercurrent breakers, and to ensure system safety.

なお、前記表1には、短絡点1BPと短絡点1BNとの間で短絡事故が発生した時の各超限流遮断器31〜46の動作状態(○又は×で示す)を示している。
(3−2)短絡点CPと短絡点CNとの間で短絡事故が発生した場合(図8、図9、図10)
図8は、短絡点CPと短絡点CNとの間で短絡事故発生時の短絡電流の流れを電路系統図をベースに記載したものを示し、図9は、その電路系統図に対応するインピーダンスマップを示す。また、図10は、短絡点CPと短絡点CNとの間で短絡事故発生時の超限流遮断器での検出電流及び保護動作を示す。
In Table 1, the operating states (indicated by ◯ or x) of the respective supercurrent breakers 31 to 46 when a short circuit accident occurs between the short circuit point 1BP and the short circuit point 1BN are shown.
(3-2) When a short circuit accident occurs between the short circuit point CP and the short circuit point CN (FIG. 8, FIG. 9, FIG. 10)
FIG. 8 shows a flow of a short-circuit current when a short-circuit accident occurs between the short-circuit point CP and the short-circuit point CN based on the circuit diagram, and FIG. 9 shows an impedance map corresponding to the circuit diagram. Indicates. FIG. 10 shows the detection current and the protection operation in the ultracurrent breaker when a short circuit accident occurs between the short circuit point CP and the short circuit point CN.

図8及び図9に示すように、短絡点CPと短絡点CNとの間で短絡事故が発生すると、各々の回路網からは当該回路網の回路定数によって決まる短絡電流がそれぞれ流出し、短絡点CPと短絡点CNとの間に短絡電流(合計電流)IΣが流れる。ここで、短絡電流IΣは下記式のようになる。
IΣ=I1cΣ+I2cΣ
ここで、1号系の回路と2号系の回路の電気的定数及びインピーダンスが左右対称で同値であると仮定すれば、短絡電流I1cΣと短絡電流I2cΣとの関係は
I1cΣ=I2cΣ
となる。例えば、I1cΣについては下記式のようになる。
As shown in FIGS. 8 and 9, when a short circuit accident occurs between the short circuit point CP and the short circuit point CN, a short circuit current determined by the circuit constant of the circuit network flows out from each circuit network. A short-circuit current (total current) IΣ flows between CP and the short-circuit point CN. Here, the short-circuit current IΣ is expressed by the following equation.
IΣ = I1cΣ + I2cΣ
Assuming that the electrical constants and impedances of the No. 1 circuit and No. 2 circuit are symmetrical and have the same value, the relationship between the short-circuit current I1cΣ and the short-circuit current I2cΣ is I1cΣ = I2cΣ
It becomes. For example, I1cΣ is expressed by the following formula.

I1cΣ=Ig1+I1bΣ
I1bΣ=Ib1+Ima1(=I1aΣ)
ここで、電流Ib1は、正方向電流であり、第1蓄電池1から短絡点CP,CNに向かう短絡電流となり、電流Ima1は、逆方向電流であり、第1動力3の電動機負荷等に起因して、短絡点CP,CNに向かう短絡電流となる。
I1cΣ = Ig1 + I1bΣ
I1bΣ = Ib1 + Ima1 (= I1aΣ)
Here, the current Ib1 is a forward current and is a short-circuit current from the first storage battery 1 toward the short-circuit points CP and CN. The current Ima1 is a reverse-direction current and is caused by the motor load of the first power 3 and the like. Thus, the short-circuit current is directed toward the short-circuit points CP and CN.

このとき、短絡点CP,CNの近傍に配置されている第13乃至第16超限流遮断器43〜46には、正方向短絡電流I1cΣ,I2cΣ(正I1cΣ又は+I1cΣ,正I2cΣ又は+I2cΣ)が流れる。
これら各短絡電流の短絡事故発生時からの変化は図10に示すようになる。この図10に示すように各短絡電流が変化するとき、第13乃至第16超限流遮断器43〜46に流れる正方向短絡電流I1cΣ,I2cΣ(正I1cΣ又は+I1cΣ,正I2cΣ又は+I2cΣ)はともに、短絡発生から時間t1後にその第13乃至第16超限流遮断器43〜46の正方向過電流設定値I1coc,I2cocである+11に達し(同図の動作点f1に達し)、この時に第13乃至第16超限流遮断器43〜46が遮断動作を開始する。
At this time, positive direction short circuit currents I1cΣ and I2cΣ (positive I1cΣ or + I1cΣ, positive I2cΣ or + I2cΣ) are provided in the thirteenth to sixteenth supercurrent limiters 43 to 46 disposed in the vicinity of the short-circuit points CP and CN. Flowing.
Changes in these short-circuit currents from the occurrence of a short-circuit accident are as shown in FIG. As shown in FIG. 10, when the short-circuit currents change, the positive-direction short-circuit currents I1cΣ and I2cΣ (positive I1cΣ or + I1cΣ, positive I2cΣ or + I2cΣ) flowing through the thirteenth to sixteenth supercurrent limiters 43 to 46 are both After the time t1 from the occurrence of the short circuit, the positive overcurrent set values I1coc and I2coc of the thirteenth to sixteenth supercurrent breakers 43 to 46 reach +11 (the operating point f1 in the figure is reached). The thirteenth to sixteenth supercurrent breakers 43 to 46 start the breaking operation.

一方、第9乃至第12超限流遮断器39〜42の動作点、すなわち正方向短絡電流I1aΣ又はI1bΣ(正I1aΣ若しくは+I1aΣ又は正I1bΣ若しくは+I1bΣ),I2aΣ又はI2bΣ(正I2aΣ若しくは+I2aΣ又は正I2bΣ若しくは+I2bΣ)が当該第9乃至第12超限流遮断器39〜42の正方向過電流設定値I1aoc,I2aocである+15(同図の点f2)に達するまでの時間が、短絡発生から前記時間t1よりも後の時間t2となっている。   On the other hand, the operating points of the ninth to twelfth supercurrent limiters 39 to 42, that is, the positive direction short-circuit current I1aΣ or I1bΣ (positive I1aΣ or + I1aΣ or positive I1bΣ or + I1bΣ), I2aΣ or I2bΣ (positive I2aΣ or + I2aΣ or positive I2bΣ Alternatively, the time from when the short circuit occurs until the time when + I2bΣ) reaches +15 (point f2 in the figure), which is the positive overcurrent set values I1aoc and I2aoc of the ninth to twelfth supercurrent breakers 39 to 42, is Time t2 is later than t1.

また、第5乃至第8超限流遮断器35〜38の動作点、すなわち正方向短絡電流Ig1,Ig2(正Ig1又は+Ig1,正Ig2又は+Ig2)が当該第5乃至第8超限流遮断器35〜38の正方向過電流設定値Ig1oc,Ig2ocである+6(同図の点f3)に達するまでの時間が、短絡発生から前記時間t1よりも後の時間t4となっている。
また、第1乃至第4超限流遮断器31〜34の動作点、すなわち逆方向短絡電流Ima1,Ima2(逆Ima1又は−Ima1,逆Ima2又は−Ima2)が当該第1乃至第4超限流遮断器31〜34の逆方向過電流設定値Ima1R,Ima2Rである−2.2(同図の点r1)に達するまでの時間が、短絡発生から前記時間t1よりも後の時間t3となっている。
Further, the operating points of the fifth to eighth supercurrent limiters 35 to 38, that is, the positive-direction short-circuit currents Ig1 and Ig2 (positive Ig1 or + Ig1, positive Ig2 or + Ig2) are the fifth to eighth supercurrent limiters. The time required to reach +6 (point f3 in the figure) which is the positive overcurrent set values Ig1oc and Ig2oc of 35 to 38 is a time t4 after the time t1 from the occurrence of the short circuit.
Further, the operating points of the first to fourth supercurrent limiters 31 to 34, that is, the reverse short-circuit currents Ima1 and Ima2 (reverse Ima1 or -Ima1, reverse Ima2 or -Ima2) are the first to fourth supercurrent limiters. The time required to reach the reverse overcurrent setting values Ima1R and Ima2R of −2.2 (point r1 in the figure) of the circuit breakers 31 to 34 is a time t3 after the time t1 from the occurrence of the short circuit. Yes.

以上のように、短絡点CPと短絡点CNとの間で短絡事故発生時に、第13乃至第16超限流遮断器43〜46以外の第1乃至第12限流遮断器31〜42に先行して、当該第13乃至第16超限流遮断器43〜46が遮断動作を開始することで、第1乃至第12超限流遮断器31〜42が遮断動作する前に短絡点CP,CNが切り離される。これにより、短絡点CPと短絡点CNとの間で短絡事故が発生しても、第1乃至第12超限流遮断器31〜42が遮断動作(保護動作)しないので、それら超限流遮断器に保護されている他の健全回路への給電を継続させることができ、システムの安全を確保することができる。   As described above, when a short circuit accident occurs between the short circuit point CP and the short circuit point CN, the first to twelfth current limit circuit breakers 31 to 42 other than the thirteenth to sixteenth ultra current limit circuit breakers 43 to 46 precede. Then, when the thirteenth to sixteenth supercurrent breakers 43 to 46 start the breaking operation, the short-circuit points CP and CN before the first to twelfth supercurrent breakers 31 to 42 perform the breaking operation. Is cut off. As a result, even if a short-circuit accident occurs between the short-circuit point CP and the short-circuit point CN, the first to twelfth supercurrent breakers 31 to 42 do not perform a break operation (protection operation). The power supply to other healthy circuits protected by the device can be continued, and the safety of the system can be ensured.

なお、前記表1には、短絡点CPと短絡点CNとの間で短絡事故が発生した時の各超限流遮断器31〜46の動作状態(○又は×で示す)を示している。
(3−3)短絡点1APと短絡点1ANとの間で短絡事故が発生した場合(図11、図12、図13)
図11は、短絡点1APと短絡点1ANとの間で短絡事故発生時の短絡電流の流れを電路系統図をベースに記載したものを示し、図12は、その電路系統図に対応するインピーダンスマップを示す。また、図13は、短絡点1APと短絡点1ANとの間で短絡事故発生時の超限流遮断器での検出電流及び保護動作を示す。
Table 1 shows the operating states (indicated by circles or crosses) of the respective supercurrent breakers 31 to 46 when a short circuit accident occurs between the short circuit point CP and the short circuit point CN.
(3-3) When a short circuit accident occurs between the short circuit point 1AP and the short circuit point 1AN (FIGS. 11, 12, and 13)
FIG. 11 shows a flow of a short-circuit current when a short-circuit accident occurs between the short-circuit point 1AP and the short-circuit point 1AN based on the circuit diagram, and FIG. 12 shows an impedance map corresponding to the circuit diagram. Indicates. FIG. 13 shows the detected current and the protective operation in the ultracurrent breaker when a short circuit accident occurs between the short circuit point 1AP and the short circuit point 1AN.

図11及び図12に示すように、短絡点1APと短絡点1ANとの間で短絡事故が発生すると、各々の回路網からは当該回路網の回路定数によって決まる短絡電流がそれぞれ流出し、短絡点1APと短絡点1ANとの間に短絡電流(合計電流)IΣが流れる。ここで、短絡電流IΣは下記式のようになる。
IΣ=Ib1+I1aΣ
I1aΣ=Ig1+I1cΣ(=I1bΣ)
I1cΣ=Im+I2cΣ
I2cΣ=Ig2+I2bΣ
I2bΣ=Ib2+Ima2(=I2aΣ)
ここで、電流Ib1,Ib2は、正方向電流であり、それぞれ第1及び第2蓄電池1,2から短絡点1AP,1ANに向かう短絡電流となり、電流Ima2は、逆方向電流であり、第2動力4の電動機負荷等に起因して、短絡点1AP,1ANに向かう短絡電流となり、電流Ig1,Ig2は、正方向電流であり、それぞれ第1及び第2発電機5,6から短絡点1AP,1ANに向かう短絡電流であり、電流Imは、逆方向電流であり、電動機7から短絡点1AP,1ANに向かう短絡電流となる。また、短絡電流I1aΣは、逆方向電流(逆I1aΣ又は−I1aΣ)である。
As shown in FIG. 11 and FIG. 12, when a short circuit accident occurs between the short circuit point 1AP and the short circuit point 1AN, a short circuit current determined by the circuit constant of the circuit network flows out from each circuit network. A short-circuit current (total current) IΣ flows between 1AP and the short-circuit point 1AN. Here, the short-circuit current IΣ is expressed by the following equation.
IΣ = Ib1 + I1aΣ
I1aΣ = Ig1 + I1cΣ (= I1bΣ)
I1cΣ = Im + I2cΣ
I2cΣ = Ig2 + I2bΣ
I2bΣ = Ib2 + Ima2 (= I2aΣ)
Here, the currents Ib1 and Ib2 are forward currents, which are short-circuit currents from the first and second storage batteries 1 and 2 to the short-circuit points 1AP and 1AN, respectively, and the current Ima2 is a reverse-direction current and the second power 4 is a short-circuit current toward the short-circuit points 1AP and 1AN, and the currents Ig1 and Ig2 are positive currents, and the short-circuit points 1AP and 1AN from the first and second generators 5 and 6, respectively. The current Im is a reverse current and is a short-circuit current from the motor 7 toward the short-circuit points 1AP and 1AN. The short-circuit current I1aΣ is a reverse current (reverse I1aΣ or -I1aΣ).

このとき、短絡点1AP,1ANの近傍に配置されている第1及び第2超限流遮断器31,32には、短絡電流IΣが流れる。ここで、短絡点1AP,1ANが第1蓄電池1に近いためインピーダンスが小さくなることから、短絡電流IΣは、高電流突進率短絡電流、過大短絡電流となる。
そして、このときの各短絡電流の短絡事故発生時からの変化は図13に示すようになる。この図13に示すように各短絡電流が変化するとき、第1及び第2超限流遮断器31,32に短絡電流IΣが流れ、その短絡電流IΣは、短絡発生から時間t1後にその第1及び第2超限流遮断器31,32の正方向過電流設定値Ima1ocである+2.2に達し(同図の動作点f1に達し)、この時に第1及び第2超限流遮断器31,32が遮断動作を開始する。
At this time, a short-circuit current IΣ flows through the first and second supercurrent limiters 31 and 32 disposed in the vicinity of the short-circuit points 1AP and 1AN. Here, since the short-circuit points 1AP and 1AN are close to the first storage battery 1 and the impedance is small, the short-circuit current IΣ becomes a high current rush rate short-circuit current and an excessive short-circuit current.
And the change from the time of the occurrence of a short circuit accident of each short circuit current at this time is as shown in FIG. As shown in FIG. 13, when each short-circuit current changes, a short-circuit current IΣ flows through the first and second supercurrent-limiting circuit breakers 31 and 32, and the short-circuit current IΣ is the first short-time current tΣ after the occurrence of the short-circuit. And the positive overcurrent set value Ima1oc of the second supercurrent breaker 31, 32 reaches +2.2 (reaching the operating point f1 in the figure). At this time, the first and second supercurrent breakers 31 32 start the shut-off operation.

一方、第9及び第10超限流遮断器39,40の動作点、すなわち逆方向短絡電流I1aΣ又はI1bΣ(逆I1aΣ若しくは−I1aΣ又は逆I1bΣ若しくは−I1bΣ)が当該第9及び第10超限流遮断器39,40の逆方向過電流設定値I1aRである−6(同図の点r1)に達するまでの時間が、短絡発生から前記時間t1よりも後の時間t2となっている。   On the other hand, the operating points of the ninth and tenth current limit breakers 39, 40, that is, the reverse short-circuit current I1aΣ or I1bΣ (reverse I1aΣ or −I1aΣ or reverse I1bΣ or −I1bΣ) correspond to the ninth and tenth supercurrent limiters. The time until the reverse overcurrent set value I1aR of −6 (point r1 in the figure) of the circuit breakers 39 and 40 is reached is a time t2 after the time t1 from the occurrence of the short circuit.

また、第13及び第14超限流遮断器43,44の動作点、すなわち逆方向短絡電流I1cΣ(逆I1cΣ又は−I1cΣ)が当該第13及び第14超限流遮断器43,44の逆方向過電流設定値I1cRである−6(同図の点r2)に達するまでの時間が、短絡発生から前記時間t1よりも後の時間t3となっている。
また、第15及び第16超限流遮断器45,46の動作点、すなわち正方向短絡電流I2cΣ(正I2cΣ又は+I2cΣ)が当該第15及び第16超限流遮断器45,46の正方向過電流設定値I2cocである+11(同図の点f2)に達するまでの時間が、短絡発生から前記時間t1よりも後の時間t4となっている。
Further, the operating points of the thirteenth and fourteenth supercurrent breakers 43, 44, that is, the reverse short-circuit current I1cΣ (reverse I1cΣ or -I1cΣ) is the reverse direction of the thirteenth and fourteenth supercurrent breakers 43, 44. The time required to reach the overcurrent set value I1cR of −6 (point r2 in the figure) is the time t3 after the time t1 after the occurrence of the short circuit.
Further, the operating point of the fifteenth and sixteenth supercurrent breakers 45, 46, that is, the positive short-circuit current I2cΣ (positive I2cΣ or + I2cΣ) is the positive overshoot of the fifteenth and sixteenth supercurrent breakers 45, 46. The time until reaching the current set value I2coc +11 (point f2 in the figure) is the time t4 after the time t1 from the occurrence of the short circuit.

また、第11及び第12超限流遮断器41,42の動作点、すなわち正方向短絡電流I2aΣ又はI2bΣ(正I2aΣ若しくは+I2aΣ又は正I2bΣ若しくは+I2bΣ)が当該第11及び第12超限流遮断器41,42の正方向過電流設定値I2aocである+15(同図の点f3)に達するまでの時間が、短絡発生から前記時間t1よりも後の時間t5となっている。   Further, the operating points of the eleventh and twelfth supercurrent limiters 41, 42, that is, the positive direction short-circuit current I2aΣ or I2bΣ (positive I2aΣ or + I2aΣ or positive I2bΣ or + I2bΣ) are the eleventh and twelfth supercurrent limiters. The time required to reach the positive overcurrent set value I2aoc of 41 and 42, +15 (point f3 in the figure), is a time t5 after the time t1 after the occurrence of the short circuit.

また、第5乃至第8超限流遮断器35〜38の動作点、すなわち正方向短絡電流Ig1,Ig2(正Ig1又は+Ig1,正Ig2又は+Ig2)が当該第5乃至第8超限流遮断器35〜38の正方向過電流設定値Ig1oc,Ig2ocである+6(同図の点f4,f5)に達するまでの時間が、短絡発生から前記時間t1よりも後の時間t6及びt8となっている。   Further, the operating points of the fifth to eighth supercurrent limiters 35 to 38, that is, the positive-direction short-circuit currents Ig1 and Ig2 (positive Ig1 or + Ig1, positive Ig2 or + Ig2) are the fifth to eighth supercurrent limiters. The time required to reach the positive overcurrent set values Ig1oc and Ig2oc of +35 to 35 (points f4 and f5 in the figure) is from time t6 to time t6 and t8 after the time t1. .

また、第3及び第4超限流遮断器33,34の動作点、すなわち逆方向短絡電流Ima2(逆Ima2又は−Ima2)が当該第3及び第4超限流遮断器33,34の逆方向過電流設定値Ima2Rである−2.2(同図の点r3)に達するまでの時間が、短絡発生から前記時間t1よりも後の時間t7となっている。
以上のように、短絡点1APと短絡点1ANとの間で短絡事故発生時に、第1及び第2超限流遮断器31,32以外の第3乃至第16限流遮断器33〜46に先行して、当該第1及び第2超限流遮断器31,32が遮断動作を開始することで、第3乃至第16超限流遮断器33〜46が遮断動作する前に短絡点1AP,1ANが切り離される。これにより、短絡点1APと短絡点1ANとの間で短絡事故が発生しても、第3乃至第16超限流遮断器33〜46が遮断動作(保護動作)しないので、それら超限流遮断器に保護されている他の健全回路への給電を継続させることができ、システムの安全を確保することができる。
Further, the operating point of the third and fourth supercurrent breakers 33, 34, that is, the reverse short-circuit current Ima2 (reverse Ima2 or -Ima2) is the reverse direction of the third and fourth supercurrent breakers 33, 34. The time required to reach the overcurrent set value Ima2R of -2.2 (point r3 in the figure) is the time t7 after the time t1 after the occurrence of the short circuit.
As described above, when a short circuit accident occurs between the short circuit point 1AP and the short circuit point 1AN, the third to sixteenth current limit circuit breakers 33 to 46 other than the first and second super current limit circuit breakers 31 and 32 are preceded. Then, the first and second supercurrent breakers 31, 32 start the breaking operation, so that the short-circuit points 1AP, 1AN before the third to sixteenth supercurrent breakers 33-46 perform the breaking operation. Is cut off. As a result, even if a short-circuit accident occurs between the short-circuit point 1AP and the short-circuit point 1AN, the third to sixteenth supercurrent limiter breakers 33 to 46 do not perform a cut-off operation (protection operation). The power supply to other healthy circuits protected by the device can be continued, and the safety of the system can be ensured.

なお、前記表1には、短絡点1APと短絡点1ANとの間で短絡事故が発生した時の各超限流遮断器31〜46の動作状態(○又は×で示す)を示している。
(3−4)短絡点1GPと短絡点1GNとの間で短絡事故が発生した場合(図14、図15、図16)
図14は、短絡点1GPと短絡点1GNとの間で短絡事故発生時の短絡電流の流れを電路系統図をベースに記載したものを示し、図15は、その電路系統図に対応するインピーダンスマップを示す。また、図16は、短絡点1GPと短絡点1GNとの間で短絡事故発生時の超限流遮断器での検出電流及び保護動作を示す。
Table 1 shows the operating states (indicated by circles or crosses) of each of the supercurrent breakers 31 to 46 when a short circuit accident occurs between the short circuit point 1AP and the short circuit point 1AN.
(3-4) When a short circuit accident occurs between the short circuit point 1GP and the short circuit point 1GN (FIGS. 14, 15, and 16)
FIG. 14 shows a flow of a short-circuit current when a short-circuit accident occurs between the short-circuit point 1GP and the short-circuit point 1GN based on the circuit diagram, and FIG. 15 shows an impedance map corresponding to the circuit diagram. Indicates. FIG. 16 shows the detection current and the protective operation in the ultra-current limiter when a short-circuit accident occurs between the short-circuit point 1GP and the short-circuit point 1GN.

図14及び図15に示すように、短絡点1GPと短絡点1GNとの間で短絡事故が発生すると、各々の回路網からは当該回路網の回路定数によって決まる短絡電流がそれぞれ流出し、短絡点1GPと短絡点1GNとの間に短絡電流(合計電流)IΣが流れる。ここで、短絡電流IΣは下記式のようになる。
IΣ=I1bΣ+I1cΣ
I1bΣ=Ib1+Ima1(=I1aΣ)
I1cΣ=Im+I2cΣ
I2cΣ=Ig2+I2bΣ
I2bΣ=Ib2+Ima2(=I2aΣ)
ここで、電流Ib1,Ib2は、正方向電流であり、それぞれ第1及び第2蓄電池1,2から短絡点1GP,1GNに向かう短絡電流となり、電流Ima1,Ima2は、逆方向電流であり、それぞれ第1及び第2動力3,4の電動機負荷等に起因して、短絡点1GP,1GNに向かう短絡電流となり、電流Ig2は、正方向電流であり、第2発電機6から短絡点1GP,1GNに向かう短絡電流であり、電流Imは、逆方向電流であり、電動機7から短絡点1GP,1GNに向かう短絡電流となる。
As shown in FIGS. 14 and 15, when a short circuit accident occurs between the short circuit point 1GP and the short circuit point 1GN, a short circuit current determined by a circuit constant of the circuit network flows out from each circuit network. A short circuit current (total current) IΣ flows between 1GP and the short circuit point 1GN. Here, the short-circuit current IΣ is expressed by the following equation.
IΣ = I1bΣ + I1cΣ
I1bΣ = Ib1 + Ima1 (= I1aΣ)
I1cΣ = Im + I2cΣ
I2cΣ = Ig2 + I2bΣ
I2bΣ = Ib2 + Ima2 (= I2aΣ)
Here, the currents Ib1 and Ib2 are forward currents, which are short-circuit currents from the first and second storage batteries 1 and 2 to the short-circuit points 1GP and 1GN, respectively, and the currents Ima1 and Ima2 are reverse-direction currents, respectively. Due to the motor loads of the first and second powers 3 and 4, the short-circuit current is directed toward the short-circuit points 1 GP and 1 GN. The current Ig 2 is a positive current, and the short-circuit points 1 GP and 1 GN from the second generator 6. The current Im is a reverse current and is a short-circuit current from the electric motor 7 toward the short-circuit points 1GP and 1GN.

このとき、短絡点1GP,1GNの近傍に配置されている第5及び第6超限流遮断器35,36には、短絡電流IΣが流れる。そして、各短絡電流の短絡事故発生時からの変化は図16に示すようになる。
この図16に示すように各短絡電流が変化するとき、第5及び第6超限流遮断器35,36に短絡電流(合計電流)IΣが流れ、その短絡電流(合計電流)IΣは、短絡発生から時間t1後にその第5及び第6超限流遮断器35,36の逆方向過電流設定値Ig1である−0.4に達し(同図の動作点r1に達し)、この時に第5及び第6超限流遮断器35,36が遮断動作を開始する。
At this time, a short-circuit current IΣ flows through the fifth and sixth supercurrent interrupters 35 and 36 disposed in the vicinity of the short-circuit points 1GP and 1GN. And the change from the time of the occurrence of a short circuit accident of each short circuit current is as shown in FIG.
As shown in FIG. 16, when each short-circuit current changes, a short-circuit current (total current) IΣ flows through the fifth and sixth supercurrent breakers 35, 36, and the short-circuit current (total current) IΣ is short-circuited. At time t1 after the occurrence, the reverse overcurrent set value Ig1 of -0.4 (the operating point r1 in the figure) of the fifth and sixth supercurrent interrupters 35, 36 is reached (at the operating point r1 in the figure), And the 6th supercurrent limit circuit breakers 35 and 36 start the breaking operation.

一方、第13及び第14超限流遮断器43,44の動作点、すなわち逆方向短絡電流I1cΣ(逆I1cΣ又は−I1cΣ)が当該第13及び第14超限流遮断器43,44の逆方向過電流設定値I1cRである−6(同図の点r2)に達するまでの時間が、短絡発生から前記時間t1よりも後の時間t2となっている。
また、第15及び第16超限流遮断器45,46の動作点、すなわち正方向短絡電流I2cΣ(正I2cΣ又は+I2cΣ)が当該第15及び第16超限流遮断器45,46の正方向過電流設定値I2cocである+11(同図の点f2)に達するまでの時間が、短絡発生から前記時間t1よりも後の時間t4となっている。
On the other hand, the operating points of the thirteenth and fourteenth supercurrent breakers 43, 44, that is, the reverse short-circuit current I1cΣ (reverse I1cΣ or -I1cΣ) is the reverse direction of the thirteenth and fourteenth supercurrent breakers 43, 44. The time required to reach the overcurrent set value I1cR of −6 (point r2 in the figure) is the time t2 after the time t1 after the occurrence of the short circuit.
Further, the operating point of the fifteenth and sixteenth supercurrent breakers 45, 46, that is, the positive short-circuit current I2cΣ (positive I2cΣ or + I2cΣ) is the positive overshoot of the fifteenth and sixteenth supercurrent breakers 45, 46. The time until reaching the current set value I2coc +11 (point f2 in the figure) is the time t4 after the time t1 from the occurrence of the short circuit.

また、第7及び第8超限流遮断器37,38の動作点、すなわち正方向短絡電流Ig2(正Ig2又は+Ig2)が当該第7及び第8超限流遮断器37,38の正方向過電流設定値Ig2ocである+6(同図の点f4)に達するまでの時間が、短絡発生から前記時間t1及びt2よりも後の時間t8となっている。
また、第9乃至第12超限流遮断器39〜42の動作点、すなわち正方向短絡電流I1aΣ又はI1bΣ(正I1aΣ若しくは+I1aΣ又は正I1bΣ若しくは+I1bΣ),I2aΣ又はI2bΣ(正I2aΣ若しくは+I2aΣ又は正I2bΣ若しくは+I2bΣ)が当該第9乃至第12超限流遮断器39〜42の正方向過電流設定値I1aoc,I2aocである+15(同図の点f1,f3)に達するまでの時間が、短絡発生から前記時間t1よりも後の時間t3及びt5となっている。
Further, the operating point of the seventh and eighth supercurrent breakers 37, 38, that is, the positive short-circuit current Ig2 (positive Ig2 or + Ig2) exceeds the positive direction of the seventh and eighth supercurrent breakers 37, 38. The time until the current set value Ig2oc reaches +6 (point f4 in the figure) is the time t8 after the time t1 and t2 after the occurrence of the short circuit.
In addition, the operating points of the ninth to twelfth supercurrent breakers 39 to 42, that is, the positive direction short-circuit current I1aΣ or I1bΣ (positive I1aΣ or + I1aΣ or positive I1bΣ or + I1bΣ), I2aΣ or I2bΣ (positive I2aΣ or + I2aΣ or positive I2bΣ Alternatively, the time from when the short circuit occurs until + I2bΣ) reaches +15 (points f1 and f3 in the figure) that are the positive overcurrent set values I1aoc and I2aoc of the ninth to twelfth supercurrent breakers 39 to 42 Times t3 and t5 are later than the time t1.

また、第1乃至第4超限流遮断器31〜34の動作点、すなわち逆方向短絡電流Ima1,Ima2(逆Ima1又は−Ima1,逆Ima2又は−Ima2)が当該第1乃至第4超限流遮断器31〜34の逆方向過電流設定値Ima1R,Ima2Rである−2.2(同図の点r3,r4)に達するまでの時間が、短絡発生から前記時間t1よりも後の時間t6及びt7となっている。   Further, the operating points of the first to fourth supercurrent limiters 31 to 34, that is, the reverse short-circuit currents Ima1 and Ima2 (reverse Ima1 or -Ima1, reverse Ima2 or -Ima2) are the first to fourth supercurrent limiters. The time until the reverse overcurrent set values Ima1R and Ima2R of the circuit breakers 31 to 34 are −2.2 (points r3 and r4 in the same figure) is reached at time t6 after the time t1 and after the time t1 t7.

以上のように、短絡点1GPと短絡点1GNとの間で短絡事故発生時に、第5及び第6超限流遮断器35,36以外の第1乃至第4及び第7乃至第16限流遮断器31〜34,37〜46に先行して、当該第5及び第6超限流遮断器35,36が遮断動作を開始することで、第1乃至第4及び第7乃至第16限流遮断器31〜34,37〜46が遮断動作する前に短絡点1GP,1GNが切り離される。これにより、短絡点1GPと短絡点1GNとの間で短絡事故が発生しても、第1乃至第4及び第7乃至第16限流遮断器31〜34,37〜46が遮断動作(保護動作)しないので、それら超限流遮断器に保護されている他の健全回路への給電を継続させることができ、システムの安全を確保することができる。   As described above, when a short-circuit accident occurs between the short-circuit point 1GP and the short-circuit point 1GN, the first to fourth and seventh to sixteenth current limit interrupts other than the fifth and sixth supercurrent limiters 35, 36 Prior to the devices 31 to 34 and 37 to 46, the first and fourth and seventh to sixteenth current limiting interrupts are performed by the fifth and sixth supercurrent limiting circuit breakers 35 and 36 starting the interrupting operation. The short-circuit points 1GP and 1GN are disconnected before the devices 31 to 34 and 37 to 46 are cut off. Thereby, even if a short-circuit accident occurs between the short-circuit point 1GP and the short-circuit point 1GN, the first to fourth and seventh to sixteenth current-limiting circuit breakers 31 to 34 and 37 to 46 are interrupted (protective operation). ), It is possible to continue supplying power to other healthy circuits protected by the current limiting circuit breaker, and to ensure the safety of the system.

また、発電機5は、蓄電池1、動力3及び電動機7へ電力を供給することを目的とするから、通常運転状態では逆方向に電流が流れることはなく、発電機5の出力端で異常が発生したときのみ逆流が発生する。このようなことから、本実施形態のように、発電機5の回路の前後に設けた第5及び第6超限流遮断器35,36の逆方向過電流設定値Ig1Rを−0.4といったように小さい値に設定することで、発電機5の出力端の異常による僅かな逆方向電流の発生を速やかに検出して、速やかに回路を遮断することができるようになる。   Further, since the generator 5 is intended to supply electric power to the storage battery 1, the power 3 and the electric motor 7, current does not flow in the reverse direction in the normal operation state, and an abnormality occurs at the output end of the generator 5. Backflow occurs only when it occurs. For this reason, as in this embodiment, the reverse overcurrent set value Ig1R of the fifth and sixth ultracurrent breakers 35 and 36 provided before and after the circuit of the generator 5 is set to −0.4. By setting such a small value, it is possible to quickly detect the occurrence of a slight reverse current due to an abnormality in the output end of the generator 5, and to quickly shut down the circuit.

なお、前記表1には、短絡点1GPと短絡点1GNとの間で短絡事故が発生した時の各超限流遮断器31〜46の動作状態(○又は×で示す)を示している。
(4)効果の説明
次に本実施形態における効果を説明する。
前述したように、回路網の要所に第1乃至第16超限流遮断器31〜46を配置し、その第1乃至第16超限流遮断器31〜46(具体的には変流器31a〜46a)の過電流設定値を正方向及び逆方向それぞれについて個別に設定(その値の大きさも含めて設定)している。具体的には、正常動作運転状態に回路網を流れる定格電流、充電電流又は回生電流で第1乃至第16超限流遮断器31〜46が遮断動作しないように、正方向過電流設定値及び逆方向過電流設定値を設定している。
In addition, the said Table 1 has shown the operation state (it shows by (circle) or x) of each supercurrent limit circuit breaker 31-46 when a short circuit accident generate | occur | produces between the short circuit point 1GP and the short circuit point 1GN.
(4) Description of Effects Next, effects of the present embodiment will be described.
As described above, the first to sixteenth supercurrent limiter breakers 31 to 46 are arranged at the important points of the network, and the first to sixteenth supercurrent limiter breakers 31 to 46 (specifically, current transformers). The overcurrent set values 31a to 46a) are individually set for the forward direction and the reverse direction (including the magnitudes of the values). Specifically, the positive direction overcurrent set value and the first over 16th current limiting circuit breakers 31 to 46 are not interrupted by the rated current, the charging current or the regenerative current flowing through the network in the normal operation state. The reverse overcurrent set value is set.

これにより、第1乃至第16超限流遮断器31〜46は、回路網で短絡事故が発生したときの正方向又は逆方向の短絡電流を的確に検出して、速やかに遮断動作をすることができる。これにより、速やかに選択保護動作が行われる、すなわち必要最小限の超限流遮断器だけが遮断動作して、短絡事故発生点が速やかに切り離される。この結果、他の健全回路への給電を継続させ、システムの安全を確保することができるようになる。   Thereby, the 1st thru | or 16th super current limit circuit breakers 31-46 detect the short circuit current of the normal direction or a reverse direction when a short circuit accident generate | occur | produces in a circuit network accurately, and perform interruption | blocking operation | movement rapidly. Can do. As a result, the selective protection operation is promptly performed, that is, only the necessary minimum current limiting circuit breaker is interrupted, and the short-circuit accident occurrence point is quickly disconnected. As a result, power supply to other healthy circuits can be continued and the safety of the system can be ensured.

一方、従来方式についていうと、超限流遮断器の過電流設定値が正方向及び逆方向で同一値(絶対値で同一値)となっているので、回路網で短絡事故が発生したとき、選択保護動作させることが極めて困難、すなわち必要最小限の超限流遮断器だけを動作させることが困難となり、全ての超限流遮断器が動作してしまうこともあり、この場合、システムを全停電に至ることも予想される。本発明では、このような問題も発生しない。   On the other hand, regarding the conventional method, since the overcurrent set value of the supercurrent breaker is the same value in the forward direction and the reverse direction (same value in absolute value), when a short circuit accident occurs in the network, It is extremely difficult to operate with selective protection, that is, it is difficult to operate only the minimum necessary current limiting circuit breaker, and all the current limiting circuit breakers may operate. A power outage is also expected. In the present invention, such a problem does not occur.

(5)他の実施形態の説明
以上、本発明の実施形態を説明した。しかし、本発明は、前述の実施形態として実現されることに限定されるものではない。
すなわち、前記実施形態では、短絡点1BP,1BN,CP,CN,1AP,1AN,1GP,1GNを特定して、その短絡点について短絡事故が発生した場合を説明した。しかし、これに限定されないことはいうまでもない。本発明は、他の部分で短絡事故が発生した場合にも適用できる。
(5) Description of Other Embodiments The embodiment of the present invention has been described above. However, the present invention is not limited to being realized as the above-described embodiment.
That is, in the above-described embodiment, the case where the short circuit point 1BP, 1BN, CP, CN, 1AP, 1AN, 1GP, 1GN is specified and a short circuit accident occurs at the short circuit point has been described. However, it goes without saying that the present invention is not limited to this. The present invention can also be applied when a short circuit accident occurs in another part.

例えば、図1、図2等に示すように、1号系における短絡点1BP,1BNについて対称となる2号系の短絡点2BP,2BN、1号系における短絡点1AP,1ANについて対称となる2号系の短絡点2AP,2AN、1号系における短絡点1GP,1GNについて対称となる2号系の短絡点2GP,2GNについて、それぞれ短絡事故が発生した場合でも本発明を適用できる。   For example, as shown in FIGS. 1 and 2, etc., the second system short circuit points 2BP and 2BN that are symmetric with respect to the first system short circuit points 1BP and 1BN are symmetric with respect to the short circuit points 1AP and 1AN with the second system. The present invention can be applied even when a short-circuit accident occurs at the second-system short-circuit points 2GP and 2GN that are symmetrical with respect to the second-system short-circuit points 2GP and 2GN, respectively.

また、前述の実施形態では過電流設定値を具体的な値として説明した。しかし、これに限定されるものではなく、他の値であってもよい。   In the above-described embodiment, the overcurrent set value has been described as a specific value. However, it is not limited to this, and other values may be used.

本発明が適用される直流給電回路網を示す電路系統図である。1 is an electric circuit diagram showing a DC power supply network to which the present invention is applied. 前記図1の電路系統図に対応するインピーダンスマップである。It is an impedance map corresponding to the electric circuit system diagram of the said FIG. 定格電流と過電流設定値との関係を示す図である。It is a figure which shows the relationship between a rated current and an overcurrent setting value. 正常動作時の回路網の電流の流れを示す電路系統図である。It is an electric circuit diagram which shows the flow of the electric current of the circuit network at the time of normal operation. 短絡点1BP,1BNで短絡事故が発生したときの電流の流れを示す電路系統図である。It is an electric circuit system diagram which shows the flow of an electric current when a short circuit accident generate | occur | produces in the short circuit points 1BP and 1BN. 前記図5の電路系統図に対応するインピーダンスマップである。6 is an impedance map corresponding to the electric circuit diagram of FIG. 短絡点1BP,1BNで短絡事故が発生したときの各超限流遮断器の遮断動作の説明に使用した図である。It is the figure used for description of interruption | blocking operation | movement of each supercurrent limiter circuit breaker when a short circuit accident generate | occur | produces in the short circuit points 1BP and 1BN. 短絡点CP,CNで短絡事故が発生したときの電流の流れを示す電路系統図である。It is an electric circuit system diagram which shows the flow of an electric current when a short circuit accident generate | occur | produces in the short circuit points CP and CN. 前記図8の電路系統図に対応するインピーダンスマップである。It is an impedance map corresponding to the electric circuit system diagram of the said FIG. 短絡点CP,CNで短絡事故が発生したときの各超限流遮断器の遮断動作の説明に使用した図である。It is the figure used for description of the interruption | blocking operation | movement of each supercurrent limiter circuit breaker when a short circuit accident generate | occur | produces in the short circuit points CP and CN. 短絡点1AP,1ANで短絡事故が発生したときの電流の流れを示す電路系統図である。It is an electric circuit system diagram which shows the flow of an electric current when a short circuit accident generate | occur | produces in the short circuit points 1AP and 1AN. 前記図11の電路系統図に対応するインピーダンスマップである。12 is an impedance map corresponding to the electric circuit diagram of FIG. 11. 短絡点1AP,1ANで短絡事故が発生したときの各超限流遮断器の遮断動作の説明に使用した図である。It is the figure used for description of the interruption | blocking operation | movement of each supercurrent limit circuit breaker when a short circuit accident generate | occur | produces in the short circuit points 1AP and 1AN. 短絡点1GP,1GNで短絡事故が発生したときの電流の流れを示す電路系統図である。It is an electric circuit system diagram which shows the flow of an electric current when a short circuit accident generate | occur | produces in the short circuit points 1GP and 1GN. 前記図14の電路系統図に対応するインピーダンスマップである。It is an impedance map corresponding to the electric circuit system diagram of the said FIG. 短絡点1GP,1GNで短絡事故が発生したときの各超限流遮断器の遮断動作の説明に使用した図である。It is the figure used for description of the interruption | blocking operation | movement of each supercurrent limiting circuit breaker when a short circuit accident generate | occur | produces in the short circuit points 1GP and 1GN. 電路系統図(直流給電回路網)の一部を示す図である。It is a figure which shows a part of electric circuit system diagram (DC feeding network). 遮断器の保護動作特性を示す特性図である。It is a characteristic view which shows the protection operation characteristic of a circuit breaker. 短絡発生時の電流挙動を示す特性図である。It is a characteristic view which shows the electric current behavior at the time of short circuit generation | occurrence | production.

符号の説明Explanation of symbols

1,2 蓄電池
3,4 動力
5,6 発電機
7 電動機
11〜22 遮断器(気中遮断器)
31〜46 超限流遮断器
31a〜46a 変流器(電流検出器)
31c〜46c 限流ヒューズ
DESCRIPTION OF SYMBOLS 1, 2 Storage battery 3, 4 Power 5, 6 Generator 7 Electric motor 11-22 Circuit breaker (air circuit breaker)
31-46 Current limiting circuit breaker 31a-46a Current transformer (current detector)
31c-46c Current limiting fuse

Claims (1)

複数の電気機器と、当該複数の電気機器に対応させて配置され、かつ過電流を検出して遮断動作する遮断装置とを備えた直流給電回路網を保護する直流給電回路網の保護システムにおいて、
前記遮断装置が過電流を検出して遮断動作するための遮断動作電流値の大きさを、当該遮断装置内を流れる正方向電流及び逆方向電流毎に設定することを特徴とする直流給電回路網の保護システム。
In a protection system for a DC power supply circuit network that protects a DC power supply circuit network that includes a plurality of electrical devices and a circuit breaker that is disposed in correspondence with the plurality of electrical devices and detects an overcurrent,
A DC power supply network characterized in that a magnitude of a breaking operation current value for causing the breaking device to perform a breaking operation by detecting an overcurrent is set for each of a forward current and a backward current flowing in the breaking device. Protection system.
JP2004138762A 2004-05-07 2004-05-07 DC feeding network protection system Expired - Fee Related JP4120618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004138762A JP4120618B2 (en) 2004-05-07 2004-05-07 DC feeding network protection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004138762A JP4120618B2 (en) 2004-05-07 2004-05-07 DC feeding network protection system

Publications (2)

Publication Number Publication Date
JP2005323444A true JP2005323444A (en) 2005-11-17
JP4120618B2 JP4120618B2 (en) 2008-07-16

Family

ID=35470295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004138762A Expired - Fee Related JP4120618B2 (en) 2004-05-07 2004-05-07 DC feeding network protection system

Country Status (1)

Country Link
JP (1) JP4120618B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046331A1 (en) * 2010-10-07 2012-04-12 東芝三菱電機産業システム株式会社 Failure detecting apparatus
CN102608482A (en) * 2010-12-30 2012-07-25 通用电气公司 Methods and systems involving monitoring circuit connectivity
US10109841B2 (en) 2015-06-22 2018-10-23 Kabushiki Kaisha Toshiba Storage cell system, storage cell module and method for operating storage cell system
WO2020145028A1 (en) * 2019-01-09 2020-07-16 株式会社デンソー Energization control device
CN111460750A (en) * 2019-12-24 2020-07-28 华能龙开口水电有限公司 Automatic generating system and method for protection setting values of generator and transformer

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046331A1 (en) * 2010-10-07 2012-04-12 東芝三菱電機産業システム株式会社 Failure detecting apparatus
CN103140765A (en) * 2010-10-07 2013-06-05 东芝三菱电机产业***株式会社 Failure detecting apparatus
JPWO2012046331A1 (en) * 2010-10-07 2014-02-24 東芝三菱電機産業システム株式会社 Failure detection device
US9153953B2 (en) 2010-10-07 2015-10-06 Toshiba Mitsubishi-Electric Industrial Systems Corporation Fault detection apparatus
CN102608482A (en) * 2010-12-30 2012-07-25 通用电气公司 Methods and systems involving monitoring circuit connectivity
US10109841B2 (en) 2015-06-22 2018-10-23 Kabushiki Kaisha Toshiba Storage cell system, storage cell module and method for operating storage cell system
WO2020145028A1 (en) * 2019-01-09 2020-07-16 株式会社デンソー Energization control device
JP2020114074A (en) * 2019-01-09 2020-07-27 株式会社デンソー Energization control device
JP7014191B2 (en) 2019-01-09 2022-02-01 株式会社デンソー Energization control device
CN111460750A (en) * 2019-12-24 2020-07-28 华能龙开口水电有限公司 Automatic generating system and method for protection setting values of generator and transformer
CN111460750B (en) * 2019-12-24 2023-06-13 华能龙开口水电有限公司 Automatic generation system and method for protection setting values of generator and transformer

Also Published As

Publication number Publication date
JP4120618B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
JP6297619B2 (en) DC circuit breaker
US5305174A (en) Method of and device for protecting electrical power system
JP2782854B2 (en) Fuel cell protection device
US9450397B2 (en) Circuit breaking arrangement
US3873887A (en) Alternating-current power delivery system
CN108879623B (en) Multi-voltage-level direct current network system and control protection method
EP2979291B1 (en) Circuit breaking arrangement
US20220085596A1 (en) Protection apparatus and protection method for photovoltaic power generation system
JP4328860B2 (en) Fault current limiter and power system using the same
JP4120618B2 (en) DC feeding network protection system
Prigmore et al. Triggered current limiters—Their arc flash mitigation and damage limitation capabilities
KR20150130182A (en) Fault current limiter
JP5295635B2 (en) Surge protection device
CN114128067A (en) DC distribution board
JP4120540B2 (en) DC feeding network protection method and DC feeding network protection system
JP2998711B2 (en) Distributed power supply with sag protection
JPWO2019012588A1 (en) Power conditioner, power system, and reactive power suppression method for power system
JP2014055902A (en) Dc power supply facility for nuclear power plant
JP7159236B2 (en) Short circuit breaker for DC power supply equipment
JP2016201920A (en) Power storage system
JP2009159713A (en) Protection system of power supply circuit
Escobar et al. A methodology to coordinate solid-state fault current limiters with conventional protective devices
Smith et al. An Investigation into the Limitations of the Combined dv/dt and di/dt Protection Technique for Compact dc Distribution Systems
JP2010039797A (en) Overcurrent protection system of dc feeding power source
KR101454295B1 (en) Fault current limiter for compact current limiting resistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4120618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees