JP2005322674A - Light emitting diode using phosphor - Google Patents

Light emitting diode using phosphor Download PDF

Info

Publication number
JP2005322674A
JP2005322674A JP2004137335A JP2004137335A JP2005322674A JP 2005322674 A JP2005322674 A JP 2005322674A JP 2004137335 A JP2004137335 A JP 2004137335A JP 2004137335 A JP2004137335 A JP 2004137335A JP 2005322674 A JP2005322674 A JP 2005322674A
Authority
JP
Japan
Prior art keywords
light
phosphor
emitting diode
light emitting
emits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004137335A
Other languages
Japanese (ja)
Inventor
Norifuku Kanekiyo
▲乗▼福 金清
Shunkei Park
俊圭 朴
Zaikei Ryu
在▲けい▼ 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004137335A priority Critical patent/JP2005322674A/en
Publication of JP2005322674A publication Critical patent/JP2005322674A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Led Devices (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting diode which emits light having a color tone close to arbitrary white light by properly mixing a white phosphor, epoxy resin, etc. <P>SOLUTION: The light emitting diode contains a phosphor which absorbs at least part of the excitation light from a light emitting diode chip having an emission wavelength of 430 to 480 nm and is excited by the excitation light and then emits light. The light emitting diode chip consists of a nitride compound semiconductor, and the phosphor is excited by blue color emitted from the light emitting diode chip as excitation light and then emits white light. In order to obtain white light, the phosphor is made by mixing two kinds of phosphors, that is, a phosphor which simultaneously emits blue light and yellowish green light by excitation and a phosphor which emits red light by excitation at a desired mixing ratio. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本願発明は、バックライト、照明用光源、発光ディスプレイ、各種のインジケータなどに利用される白色系発光ダイオードに係わるものであり、特に、光源となる発光素子である発光ダイオードチップからの光を蛍光体を利用して波長変換し、高輝度、高効率な白色に近い光を得る、白色系発光ダイオード及びそれを用いた発光表示装置又は該白色系発光ダイオードの製造方法に関するものである。   The present invention relates to a white light-emitting diode used for a backlight, a light source for illumination, a light-emitting display, various indicators, and the like, and in particular, emits light from a light-emitting diode chip, which is a light-emitting element serving as a light source. The present invention relates to a white light-emitting diode, a light-emitting display device using the same, and a method for manufacturing the white light-emitting diode.

従来一般的に白色系発光ダイオードは、青色に発光する発光ダイオードチップ上に、その光の一部を励起源として黄緑色及至黄色に励起発光する蛍光体を塗布し、発光ダイオードチップの青色光と蛍光体による黄緑色及至黄色の励起発光の両光から白色光を得ている。ここで白色系発光とは、一般的に、その波長が400nmから800nmまで均一に分布されたものを言う。現在実用化されている白色系発光蛍光体は単一の蛍光体ではなく、2種もしくは3種以上の蛍光体を適当な割合で混合したものであって、励起光スペクトルの主ピークが400nmから530nmまでの光の一部を吸収,励起することによって白色に発光するように、これらの蛍光体を混合したものである。   Conventionally, a white light emitting diode is generally applied to a light emitting diode chip that emits blue light by applying a phosphor that emits excitation light from yellow green to yellow using a part of the light as an excitation source. White light is obtained from both yellow-green and yellow-excited light emitted by the phosphor. Here, white light emission generally means that the wavelength is uniformly distributed from 400 nm to 800 nm. The white light-emitting phosphor currently in practical use is not a single phosphor but a mixture of two or more phosphors at an appropriate ratio, and the main peak of the excitation light spectrum is from 400 nm. These phosphors are mixed so as to emit white light by absorbing and exciting part of light up to 530 nm.

また、特に近年、紫,近紫外発光ダイオードチップを用いて、R(Red),G(Green),B(Blue)蛍光体を励起する形式の白色発光ダイオードの研究が盛んであるが、このような紫、近紫外発光ダイオードチップ自体が青色発光ダイオードチップよりも輝度の面で劣り、白色発光ダイオードとしての発光効率が非常に低いのが難点である。
次に、現在実用化されている白色発光ダイオードの一般的な励起光源、発光原理、その方法による長所及び短所を表にすると、次の表1のようになる。
In recent years, research on white light emitting diodes that excite R (Red), G (Green), and B (Blue) phosphors using violet and near ultraviolet light emitting diode chips has been actively conducted. The purple and near ultraviolet light emitting diode chip itself is inferior in luminance to the blue light emitting diode chip, and the light emission efficiency as a white light emitting diode is very low.
Next, Table 1 shows the general excitation light source, the light emission principle, and the advantages and disadvantages of the white light emitting diode that are currently in practical use.

Figure 2005322674
Figure 2005322674

一方、従来公知のYAG(イットリウム・アルミニウム・ガーネット)系蛍光体は、発光色調が限られ、白色光ダイオードとしての白色の再現範囲が狭いこと、蛍光体自身に黄色の強い体色があり、青色光の一部を白色に吸収するといった欠点があった。また、紫,近紫外発光ダイオードチップを用いて、R,G,B蛍光体を励起して白色光を得る方式の発光ダイオードは、発光強度が低いという欠点があった。
なお、現在最も早くより多く実用化され、産業界に寄与している白色系発光ダイオード用の白色光蛍光体は、青色発光ダイオードチップ(LED chip)に対して(Y1-p-q-rGdpCeqSmr3(Al1-sGas5O12、0≦p≦0.8、0.003≦q≦0.2、0.003≦r≦0.08、0≦s≦1で表わされるYAG系蛍光体がある。
特許第2927279号公報 特開2003−179259号公報
On the other hand, conventionally known YAG (yttrium, aluminum, garnet) phosphors have a limited emission color tone, a narrow white reproduction range as white light diodes, and a strong yellow body color in the phosphor itself. There was a drawback that part of the light was absorbed in white. In addition, a light emitting diode of a type that obtains white light by exciting R, G, and B phosphors using a violet and near ultraviolet light emitting diode chip has a drawback of low light emission intensity.
The white light phosphor for white light emitting diodes, which is currently the first and most practically used and contributes to the industry, is compared to the blue light emitting diode chip (LED chip) (Y 1-pqr Gd p Ce q Sm r ) 3 (Al 1 -s Ga s ) 5 O 12 , 0 ≦ p ≦ 0.8, 0.003 ≦ q ≦ 0.2, 0.003 ≦ r ≦ 0.08, 0 ≦ s ≦ 1 There are YAG-based phosphors represented.
Japanese Patent No. 2927279 JP 2003-179259 A

現在実用化されている前述の青色励起発光用YAG蛍光体は、白色の再現範囲が狭く、更に他色の光を吸収すると言う欠点もある。また、青色発光波長が445乃至480nmの青色光の少なくとも一部を吸収して励起発光する蛍光体は、前述のYAG系蛍光体しかないのが現状である。
一方、波長が390nmから410nmの青紫色光の少なくとも一部を吸収して励起発光する蛍光体、すなわち、赤色(R),緑色(G),青色(B)の3原色同時励起発光による白色光用蛍光体は従来から存在するが、青紫色光源用発光ダイードチップの方が青色光源用発光ダイードチップよりも輝度(光度)が低く、白色光用蛍光体として特定用途向けにしか採用されていない。
The above-described YAG phosphor for blue excitation light emission that is currently in practical use has a drawback that the white reproduction range is narrow and light of other colors is absorbed. Further, at present, the only phosphor that absorbs and emits at least part of blue light having a blue emission wavelength of 445 to 480 nm is the aforementioned YAG phosphor.
On the other hand, a phosphor that excites and emits light by absorbing at least part of blue-violet light having a wavelength of 390 to 410 nm, that is, white light by simultaneous excitation emission of the three primary colors of red (R), green (G), and blue (B). However, the light emitting dye chip for blue-violet light source has lower luminance (luminance) than the light emitting diode chip for blue light source, and is used only for specific applications as a phosphor for white light.

青紫色光の発光ダイオードチップは、青色光の発光ダイオードチップに比較して価格的にも高価であり、前述のごとく輝度(光度)の面でも対比できないほど低い。また、白色光用蛍光体としては、短波長、すなわち、青色光よりも紫色光により励起発光する蛍光体のほうが開発しやすく、白色光の輝度(光度)の高低を問わなければ、現在、市場でかなり流通している。   The blue-violet light emitting diode chip is more expensive than the blue light emitting diode chip, and is low in brightness (luminosity) as described above. In addition, as a phosphor for white light, a phosphor that excites and emits light with a violet light rather than a short wavelength, that is, blue light is easier to develop. It is quite in circulation.

第1図及び第2図により、従来公知の緑色光蛍光体及び赤色光蛍光体におけるピーク励起光波長と励起発光波長との関係を説明する。
従来の緑色光蛍光体は第1図に示すように、紫色光波長である波長254乃至365nm、ピーク励起光(Excitation)波長が330nmであり、良好な励起発光(Emission)のピーク波長は514nmである。また、使用されている蛍光体の一般的な組成式は(Zn,Cd)S:Cu,AlまたはZnS:Cu,Au,Alである。
1 and 2, the relationship between the peak excitation light wavelength and the excitation emission wavelength in the conventionally known green light phosphor and red light phosphor will be described.
As shown in FIG. 1, the conventional green light phosphor has a purple wavelength of 254 to 365 nm, a peak excitation light (Excitation) wavelength of 330 nm, and a good excitation light emission (Emission) peak wavelength of 514 nm. is there. The general composition formula of the phosphor used is (Zn, Cd) S: Cu, Al or ZnS: Cu, Au, Al.

赤色光蛍光体は第2図に示すように、紫色光波長である波長254乃至365nmの励起光に対して、ピーク励起光波長が330nmであり、良好な励起発光のピーク波長は624nmである。この場合に、使用されている蛍光体の一般的な組成式はY2O2S:Euである。
ここで、緑色、赤色の各蛍光体は共に、波長が445乃至480nmの青色励起光では励起されないことが判る。
本願発明の白色系蛍光体は、上記蛍光体に代わるもので、特に演色評価用標準光D65(昼光色)と相関色温度:6500K、色度図(Color Diagram)座標:x=0.3127、y=0.3290を得るための白色系発光ダイオードを提供するためのものである。
As shown in FIG. 2, the red light phosphor has a peak excitation light wavelength of 330 nm with respect to excitation light having a wavelength of 254 to 365 nm which is a violet light wavelength, and a peak wavelength of good excitation light emission is 624 nm. In this case, the general composition formula of the phosphor used is Y 2 O 2 S: Eu.
Here, it can be seen that both the green and red phosphors are not excited by blue excitation light having a wavelength of 445 to 480 nm.
The white phosphor of the present invention is an alternative to the above phosphor, and in particular, the color rendering standard light D 65 (daylight color) and correlated color temperature: 6500K, chromaticity diagram coordinates: x = 0.3127, y = This is to provide a white light emitting diode for obtaining 0.3290.

本願発明は、上述の点に鑑み、波長が430nmから480nmの青色光の少なくとも一部を吸収して、青色光と黄緑色光を同時励起発光する蛍光体と、同じく青色光の一部を吸収して、赤色光を励起発光する蛍光体とを用い、これを所望の配合比に混合して、白色光用蛍光体とする蛍光体を提供することにある。
また、これら混合された白色光用蛍光体とエポキシ樹脂等を一定割合にて混合することにより、所望の色調をもった光を得る発光ダイオードを提供することにある。
更に本願発明は、上記の白色蛍光体とエポキシ樹脂等を適宜に混合することによって、任意の白色光に近い色調の光を得る発光ダイオードの製造方法を提供するものである。
In view of the above points, the present invention absorbs at least a part of blue light having a wavelength of 430 nm to 480 nm, and simultaneously absorbs blue light and yellow-green light, and also absorbs part of the blue light. Then, it is providing the fluorescent substance which uses the fluorescent substance which excites and emits red light, mixes this with a desired compounding ratio, and makes it a fluorescent substance for white light.
Another object of the present invention is to provide a light emitting diode that obtains light having a desired color tone by mixing these mixed phosphors for white light and epoxy resin at a certain ratio.
Furthermore, the present invention provides a method of manufacturing a light emitting diode that obtains light of a color tone close to arbitrary white light by appropriately mixing the above-described white phosphor and epoxy resin.

本願発明の特徴的構成は、発光波長が430乃至480nmの発光ダイオードチップからの励起光の少なくとも一部を吸収して励起発光する蛍光体を有する発光ダイオードにおいて、前記発光ダイオードチップは窒化物系化合物半導体からなり、該発光ダイオードチップからの青色光が励起光となって白色に励起発光する蛍光体を有し、該蛍光体は青色と黄緑色に同時励起発光する蛍光体と赤色に励起発光する蛍光体との2種類の蛍光体を、所望の配合比に混合して白色光を得るものであることを特徴とする発光ダイオードである。
また、上記青色と黄緑色とに同時励起発光する蛍光体は、発光ダイオードチップからの励起光の少なくとも一部を吸収して励起発光する蛍光体であって、その組成が(Y,Gd)3Al5O12で表され、上記赤色に励起発光する蛍光体は、発光ダイオードチップからの励起光の少なくとも一部を吸収して励起発光し、その組成がZnSeで表される蛍光体であることを特徴とする。
そして、青色と黄緑色に同時励起発光する蛍光体と赤色に励起発光する蛍光体を、所望の配合比に混合し、該混合された蛍光体とエポキシ樹脂とを所望の配合比で混合して、白色発光用蛍光体とすることを特徴とする。
更に、主剤と硬化剤を混合した液状のエポキシ樹脂またはシリコーン樹脂である液状母体樹脂の重量100wt%に対して、上記青色と黄緑色に同時励起発光する蛍光体(Y,Gd)3Al5O12を配合比で50%乃至90%の範囲と、上記赤色に励起発光する蛍光体ZnSeを配合比で50%乃至10%の範囲とで100%になるように、2.0wt%乃至40wt%の範囲で配合して白色用蛍光体とする。
本願発明の方法に係るプリント基板に多様な多数の層に鍍金されてなる印刷回路基板やリードフレームの上に、青色発光ダイオードチップを、導電性や非導電性の接着剤で接着固定させて搭載し、該青色発光ダイオードチップ上の電極等と、印刷回路基板やリードフレームの上に鍍金された回路パターンとを連結し、青色と黄緑色に同時励起発光する蛍光体及び赤色に励起発光する蛍光体を所望の配合比に混合した白色蛍光体と、エポキシ樹脂等とを利用して白色発光ができる発光ダイオード製品を製造する方法において、透明モールディング用粉末エポキシ樹脂と該白色蛍光体とを混合して混合物を準備する段階と、この混合物に所定の圧力を加えて一定の形状に成形する段階と、既に形成された発光ダイオードチップ部分に該混合物をトランスファーモールディングする段階と、切断機を利用して個別製品に切断して発光ダイオード製品を製造する段階を備えたことを特徴とする、白色光を発光する発光ダイオード製品の製造方法である。
その他に、発光ダイオードのリードカップ内に搭載された発光ダイオードチップと、該発光ダイオードチップを導電性ワイヤーで電気的に接続されたインナー・リードと、前記リードカップ内に充填されたポッティング部材と、該ポッティング部材、発光ダイオードチップ、導電性ワイヤー及びマウント・リードとインナー・リードの少なくとも一部を被覆するモールド部材とを有する発光ダイオードであって、該発光ダイオードチップが窒化物系化合物半導体であり、かつ前記ポッティング部材が青色と黄緑色に同時励起発光する黄緑発光蛍光体と赤色に励起発光する発光蛍光体とを所望の配合比に混合した白色蛍光体と、エポキシ樹脂等を利用したものであることを特徴とする発光ダイオードとすることができる。
A characteristic configuration of the present invention is a light emitting diode having a phosphor that emits excitation light by absorbing at least part of excitation light from a light emitting diode chip having an emission wavelength of 430 to 480 nm, and the light emitting diode chip is a nitride compound. It is made of a semiconductor and has a phosphor that emits white light by exciting blue light from the light-emitting diode chip, and the phosphor emits red light and a phosphor that simultaneously emits blue and yellow-green light. The light emitting diode is characterized in that two types of phosphors, ie, phosphors, are mixed in a desired blending ratio to obtain white light.
In addition, the phosphor that simultaneously emits light in blue and yellow-green is a phosphor that emits excitation light by absorbing at least part of the excitation light from the light-emitting diode chip, and the composition thereof is (Y, Gd) 3 The phosphor expressed by Al 5 O 12 and excited to emit red light absorbs at least part of the excitation light from the light-emitting diode chip and emits excitation light, and its composition is expressed by ZnSe. It is characterized by.
Then, the phosphor that simultaneously emits and emits light in blue and yellow-green and the phosphor that emits and emits red light are mixed in a desired mixing ratio, and the mixed phosphor and the epoxy resin are mixed in a desired mixing ratio. It is characterized by using a phosphor for white light emission.
Furthermore, the phosphor (Y, Gd) 3 Al 5 O that emits light simultaneously excited in blue and yellow green with respect to 100 wt% of the liquid base resin, which is a liquid epoxy resin or silicone resin in which the main agent and the curing agent are mixed. 2.0 wt% to 40 wt% so that the blending ratio of 12 is 100% with the range of 50% to 90% and the phosphor ZnSe that excites and emits red light is 50% to 10%. In the range described above, a white phosphor is obtained.
A blue light-emitting diode chip is mounted on a printed circuit board or lead frame that is plated on a printed circuit board according to the method of the present invention by bonding with a conductive or non-conductive adhesive. In addition, the electrode on the blue light emitting diode chip and the circuit pattern plated on the printed circuit board or the lead frame are connected to each other, and a phosphor that emits light simultaneously excited in blue and yellow green and a fluorescent light that emits light in red. In a method of manufacturing a light emitting diode product capable of emitting white light by using a white phosphor mixed with a desired mixing ratio and an epoxy resin, the powder epoxy resin for transparent molding and the white phosphor are mixed. Preparing a mixture, applying a predetermined pressure to the mixture, forming the mixture into a fixed shape, and applying the mixture to the already formed light emitting diode chip portion. The method comprising Nsu fur molding, by using a cutting machine characterized by comprising a step of manufacturing a light emitting diode products cut into individual products, a method of manufacturing a light emitting diode products which emits white light.
In addition, a light emitting diode chip mounted in the lead cup of the light emitting diode, an inner lead electrically connected to the light emitting diode chip with a conductive wire, a potting member filled in the lead cup, A light emitting diode having the potting member, the light emitting diode chip, a conductive wire and a mold member that covers at least a part of the mount lead and the inner lead, and the light emitting diode chip is a nitride-based compound semiconductor; In addition, the potting member uses a white phosphor in which a yellow-green light-emitting phosphor that simultaneously emits blue and yellow-green light and a light-emitting phosphor that emits light in red are mixed in a desired mixing ratio, and an epoxy resin. It can be set as the light emitting diode characterized by there.

本願発明によれば、演色評価用標準光D65(昼光色)を所望の値で簡単に得ることができる。したがって、この白色用蛍光体は黄緑色から赤色までの発光色調を持った白色発光ダイオードとなる。
本願発明は、現状蛍光体よりも発光輝度が高く、白色の再現範囲が広く、かつ高価な希土類元素を使用しない。安価な、青色と黄緑色とを同時励起発光する黄緑色蛍光体と赤色光蛍光体とを、所望の配合比に混ぜ合わせた白色用蛍光体として利用することができる。
本願発明はまた、このような白色用蛍光体と混合樹脂との混合比率を選択することにより、所望の色合いの白色光を得る発光ダイオードとすることができる。
According to the present invention, the color rendering evaluation standard light D 65 (daylight color) can be easily obtained at a desired value. Therefore, the white phosphor becomes a white light emitting diode having a light emitting color tone from yellowish green to red.
The present invention does not use rare earth elements that have higher luminance than the current phosphors, have a wide white reproduction range, and are expensive. An inexpensive yellow-green phosphor and red-light phosphor that simultaneously emits blue and yellow-green light can be used as a white phosphor in which a desired blending ratio is mixed.
The present invention can also be a light emitting diode that obtains white light of a desired color by selecting the mixing ratio of the white phosphor and the mixed resin.

本願発明は、上述の課題を可能ならしめたものであり、本願発明の実施の形態を図3〜図7により説明する。
図3は、本願発明に係る青色及び黄緑色に同時励起発光する蛍光体の、励起光スペクトルと励起発光スペクトルとの関係を示している。
同図から明らかなように青色及び黄緑色に同時励起発光する蛍光体は、波長が440nmのピーク励起光(Excitation)で励起発光(Emission)する蛍光体であって、青色領域のピーク発光波長469nmと黄緑色領域のピーク発光波長553nmが得られている。
The present invention makes it possible to achieve the above-mentioned problems, and an embodiment of the present invention will be described with reference to FIGS.
FIG. 3 shows the relationship between the excitation light spectrum and the excitation emission spectrum of the phosphor that simultaneously emits blue and yellow green light according to the present invention.
As is clear from the figure, the phosphor that simultaneously emits and emits light in blue and yellow-green is a phosphor that emits and emits light with peak excitation light (Excitation) having a wavelength of 440 nm, and has a peak emission wavelength of 469 nm in the blue region. And a peak emission wavelength of 553 nm in the yellow-green region is obtained.

同様に、赤色発光蛍光体は図4に示すように、波長が450nmのピーク励起光(Excitation)で発光(Emission)する励起発光で、赤色領域のピーク発光波長647nmが得られている。
本願発明の基本的構成は、この青色と黄緑色に同時励起発光する蛍光体と赤色に励起発光する蛍光体を所望の配合比に混合して、エポキシ樹脂(Epoxy Resin)又はシリコーン樹脂(Silicone Resin)[以下、エポキシ樹脂等と呼ぶ。]に所望の配合比で混合して白色光用蛍光体とすることを特徴とする発光ダイオードである。
Similarly, as shown in FIG. 4, the red light-emitting phosphor is excited by light emission (Emission) with peak excitation light (Excitation) having a wavelength of 450 nm, and a peak light emission wavelength of 647 nm in the red region is obtained.
The basic configuration of the present invention is to mix the phosphor that simultaneously emits and emits light in blue and yellow-green and the phosphor that emits and emits red light in a desired blending ratio, and epoxy resin (Epoxy Resin) or silicone resin (Silicone Resin) [Hereinafter referred to as epoxy resin or the like.] To a white light-emitting phosphor by mixing at a desired mixing ratio.

図5は、上記本願発明の青色と黄緑色に同時励起発光する蛍光体と、赤色に励起発光する蛍光体との、適宜の混合比率によって得られる白色光の再現範囲を示すCIE色度図(Color Diagram)である。
同図のA点を含むA線は、青色と黄緑色に同時励起発光する蛍光体を示し、その組成は[(Y,Gd)3Al5O12]で表される。また、E点を含むE線は赤色に励起発光する蛍光体を示し、その組成は[ZnSe]で表される。そして、B〜D点は夫々、青色と黄緑色に同時励起発光する蛍光体と赤色に励起発光する蛍光体との混合比率を変えた状態での、CIE色度図を示している。
FIG. 5 is a CIE chromaticity diagram showing a reproduction range of white light obtained by an appropriate mixing ratio of the phosphor that simultaneously emits light in blue and yellow-green and the phosphor that emits light in red according to the present invention. Color Diagram).
The A line including the A point in the figure shows a phosphor that emits light by simultaneous excitation in blue and yellow-green, and its composition is represented by [(Y, Gd) 3 Al 5 O 12 ]. An E line including an E point indicates a phosphor that emits red light and has a composition represented by [ZnSe]. Points B to D show CIE chromaticity diagrams in a state where the mixing ratio of the phosphor that simultaneously emits light in blue and yellow-green and the phosphor that emits light in red is changed.

すなわち、B点を含むB線は、青色と黄緑色に同時励起発光する蛍光体[(Y,Gd)3Al5O12]を85%、赤色に励起発光する蛍光体[ZnSe]を15%の配合比率で混合し、これらの蛍光体を、液状母体樹脂重量に対して2.0wt%乃至10wt%の範囲で配合し、波長470nmの励起光で励起発光させたCIE色度図(Color Diagram)である。
同様に、C点を含むC線は青色と黄緑色に同時励起発光する蛍光体[(Y,Gd)3Al5O12]を80%、赤色に励起発光する蛍光体[ZnSe]を20%の配合比率で混合し、これらの蛍光体を液状母体樹脂重量に対して2.0wt%乃至10wt%の範囲で配合し、波長470nmの励起光で励起発光させたCIE色度図(Color Diagram)である。
That is, the B line including the point B has 85% phosphor [(Y, Gd) 3 Al 5 O 12 ] that simultaneously emits light in blue and yellow-green, and 15% phosphor [ZnSe] that emits light in red. The CIE chromaticity diagram (Color Diagram) was prepared by mixing these phosphors in the range of 2.0 wt% to 10 wt% with respect to the weight of the liquid matrix resin and exciting them with excitation light having a wavelength of 470 nm. It is.
Similarly, C line including C point is 80% of phosphor [(Y, Gd) 3 Al 5 O 12 ] that simultaneously emits light in blue and yellow-green, and 20% of phosphor [ZnSe] that emits light in red. In the CIE chromaticity diagram (Color Diagram), these phosphors were mixed in the range of 2.0 wt% to 10 wt% with respect to the weight of the liquid matrix resin, and excited and emitted with excitation light having a wavelength of 470 nm. is there.

また、D点を含むD線も同様に、上記青色と黄緑色に同時励起発光する蛍光体を75%、赤色に励起発光する蛍光体を25%の配合比率で配合し、これを液状母体樹脂重量に対して2.0wt%乃至10wt%の範囲で配合し、波長470nmの光で励起発光させたCIE色度図(Color Diagram)である。
すなわち、A点〜E点を含む各線分は、対応する混合された又は単体の蛍光体と、これらの蛍光体が混合される液状母体樹脂との混合重量比を変え、これによって変化する各色度値を表示している。そして、これらの実測値は、後述する実施例1における表2に示されたものである。
Similarly, for the D-line including point D, 75% of the phosphors that simultaneously emit light in blue and yellow-green are blended in a blending ratio of 25%, and the phosphor that emits light in red emits 25%. It is a CIE chromaticity diagram (Color Diagram) that is blended in the range of 2.0 wt% to 10 wt% with respect to the weight and excited and emitted with light having a wavelength of 470 nm.
That is, each line segment including the points A to E changes the mixing weight ratio between the corresponding mixed or simple substance phosphor and the liquid matrix resin to which these phosphors are mixed, and changes each chromaticity. The value is displayed. These measured values are shown in Table 2 in Example 1 described later.

このように、青色と黄緑色に同時励起発光する蛍光体と、赤色に励起発光する蛍光体との混合比率を変え、本願発明が目的とする色再現範囲に入りうるように、各蛍光体同士の絶対混合比率と、エポキシ樹脂等に対するこれら混合された各蛍光体の混合比率の両方を決めれば、所望のCIE色度図(Color Diagram)のx値とy値とを得ることができる。   In this way, the phosphors that simultaneously emit light in blue and yellow-green and the phosphor that emits light in red are changed so that the phosphors can enter the target color reproduction range. If both the absolute mixing ratio and the mixing ratio of each of the mixed phosphors with respect to the epoxy resin or the like are determined, a desired CIE chromaticity diagram x value and y value can be obtained.

図8は、上面発光タイプ(TOP type)の発光ダイオードの断面図を示す。
発光ダイオードのハウジング(Housing)ケース2内の一方の電極に、GaN/SiC半導体構造を持つ発光ダイオードチップ4を導電性ペースト(銀ペースト)3でダイボンディングして固定させ、導電性ワイヤー5としての金線を発光ダイオードチップ4の電極とリードフレーム1に設けられた電極とに接続させてある。そして、ハウジングケース2内に所望に配合された蛍光体を、所望の色合いを得る適正な重量比で樹脂と混合した蛍光体混合樹脂6として注入し、発光ダイオードチップ4や導電性ワイヤー5を外部から保護する。
FIG. 8 is a cross-sectional view of a top-type light emitting diode (TOP type).
A light emitting diode chip 4 having a GaN / SiC semiconductor structure is fixed by die bonding with a conductive paste (silver paste) 3 to one electrode in a housing 2 of the light emitting diode. A gold wire is connected to the electrode of the light emitting diode chip 4 and the electrode provided on the lead frame 1. Then, the phosphor blended in the housing case 2 in a desired manner is injected as a phosphor mixed resin 6 mixed with the resin at an appropriate weight ratio to obtain a desired color, and the light emitting diode chip 4 and the conductive wire 5 are externally attached. Protect from.

実験で検証した結果と各資料における蛍光体の成分及び混合比を下記の表2に示す。
ここで、青色及び黄緑色に同時励起発光する蛍光体(Y,Gd)3Al5O12をYG(%)と記し、赤色に励起発光する蛍光体ZnSeをR(%)と記す。また、エポキシ樹脂の重量比100wt%に対する上記混合(Blend)された蛍光体の重量比をRP(wt%)と記す。
この表における試料No.1〜No.4は、上記の各蛍光体の混合比のYG(%)が100でR(%)が0であり、前記図5におけるA線上にCIE色度図(Color Diagram)のx値とy値が存在する。
また、試料No.17〜No.20は、同様に上記混合比のYG(%)が0でR(%)が100であり、同様に図5におけるE線上にCIE色度図(Color Diagram)のx値とy値が存在する。
Table 2 below shows the results verified in the experiment and the phosphor components and mixing ratios in each material.
Here, the phosphor (Y, Gd) 3 Al 5 O 12 that simultaneously emits light in blue and yellow-green is denoted as YG (%), and the phosphor ZnSe that emits light in red is denoted as R (%). The weight ratio of the phosphor blended with respect to the weight ratio of the epoxy resin of 100 wt% is denoted as RP (wt%).
Sample No. in this table. 1-No. No. 4 shows that the YG (%) of the mixing ratio of each phosphor is 100 and R (%) is 0, and the x value and y value of the CIE chromaticity diagram (Color Diagram) are on the A line in FIG. Exists.
Sample No. 17-No. Similarly, YG (%) of the above mixture ratio is 0 and R (%) is 100, and similarly, the x value and y value of the CIE chromaticity diagram (Color Diagram) exist on the E line in FIG. .

Figure 2005322674
Figure 2005322674

上記の表2における資料No.5〜No.16は、本願発明が目的の1つとするところの蛍光体の構成と、該蛍光体とエポキシ樹脂との混合比率を含むものである。
資料No.5〜No.8において、これらの蛍光体の混合比はYG(%):R(%)が85:15であり、RP(wt%)は3.0〜6.0であって、図5におけるB線上における各CIE色度図座標(x,y)を得ることができる。
ここで、上記のデータから演色評価標準光D65(昼光色)の色温度6,000K 近傍での(x,y)値を得ることができる。
Document No. 2 in Table 2 above. 5-No. No. 16 includes the structure of the phosphor as one of the objects of the present invention and the mixing ratio of the phosphor and the epoxy resin.
Document No. 5-No. 8, the mixing ratio of these phosphors is YG (%): R (%) is 85:15, and RP (wt%) is 3.0 to 6.0, on the B line in FIG. Each CIE chromaticity diagram coordinate (x, y) can be obtained.
Here, the (x, y) value in the vicinity of the color temperature of 6,000 K of the color rendering evaluation standard light D 65 (daylight color) can be obtained from the above data.

資料No.9〜No.12は、これらの蛍光体の混合比YG(%):R(%)が80:20であり、RP(wt%)は3.0〜6.0であって、図5におけるC線上の各CIE色度図座標(x,y)を得ることができる。
資料No.13〜No.16は、これらの蛍光体の混合比YG(%):R(%)が75:25であり、RP(wt%)は3.0〜6.0であって、同図のD線上の各CIE色度図座標(x,y)を得ることができる。
Document No. 9-No. 12, the mixing ratio YG (%): R (%) of these phosphors is 80:20, and RP (wt%) is 3.0 to 6.0. CIE chromaticity diagram coordinates (x, y) can be obtained.
Document No. 13-No. No. 16 has a mixing ratio YG (%): R (%) of these phosphors of 75:25 and RP (wt%) of 3.0 to 6.0. CIE chromaticity diagram coordinates (x, y) can be obtained.

図6と図7には実際に実測した白色発光スペクトラムの波形を示す。
図6は従来公知のYAG系蛍光体の白色発光スペクトラムであり、図7は本願発明に係る蛍光体の白色発光スペクトラムの一例である。この図6と図7を比較すると判るごとく、図7は図6に比べて赤色成分が高く演色性が良い結果となっている。特に、上記実施例のデータから演色評価用標準光D65(昼光色)の色温度:6,000K以下で色度図座標:x=0.3127、y=0.3290に非常に近似していることが判る。
6 and 7 show the waveforms of the white emission spectrum actually measured.
FIG. 6 is a white emission spectrum of a conventionally known YAG phosphor, and FIG. 7 is an example of a white emission spectrum of the phosphor according to the present invention. As can be seen from a comparison between FIG. 6 and FIG. 7, FIG. 7 shows a higher red component and better color rendering than FIG. In particular, it can be seen from the data of the above examples that the color temperature of the color rendering standard light D 65 (daylight color) is 6,000 K or less, and the chromaticity diagram coordinates are very close to x = 0.3127 and y = 0.3290.

図9は砲弾型発光ダイオードの断面図である。この発光ダイオードの発光素子としては、発光波長が430乃至480nm、半値幅30nmのGaN/SiC半導体構造を持つ発光ダイオードチップ用いた。この発光ダイオードチップ9を、銀メッキされた金属製リ−ドフレ−ムの先端にカップを有するマウントリードに、導電性ペースト8である銀ペースト(Ag paste)でダイボンディング(Die Bonding)した。発光ダイオードチップ9の電極とインナーリード7とを直径が25μmから30μmの金線からなる導電性ワイヤー10でワイヤーボンディング(Wire Bonding)して電気的に導通させた。   FIG. 9 is a cross-sectional view of a bullet-type light emitting diode. As the light emitting element of this light emitting diode, a light emitting diode chip having a GaN / SiC semiconductor structure with an emission wavelength of 430 to 480 nm and a half width of 30 nm was used. The light-emitting diode chip 9 was die-bonded to a mount lead having a cup at the tip of a silver-plated metal lead frame with silver paste (Ag paste) as a conductive paste 8. The electrode of the light-emitting diode chip 9 and the inner lead 7 were electrically connected by wire bonding with a conductive wire 10 made of a gold wire having a diameter of 25 μm to 30 μm.

このようにして製作された発光ダイオードチップ9の上に、図5のCIE色度図(Color Diagram)に示すA線(前記の黄緑色光蛍光体)とE線(前記の赤色光蛍光体)の2種類の蛍光体、すなわち、青色と黄緑色に同時励起発光する蛍光体と赤色に励起発光する蛍光体を所望の配合比に混合したものを施す。すなわち、該所望の配合比に混合した蛍光体をエポキシ樹脂に所望の配合比で混合して、所望のCIE色度図座標x,yを得ることができるように、上記の黄緑色発光蛍光体(Y,Gd)3Al5O12と上記の赤色発光蛍光体ZnSeの配合比を、B線、C線、D線のいずれかの線上のCIE色度図座標x,yにより決める。そして、エポキシ樹脂に対する蛍光体の絶対比率を変えることにより、本願発明の色再現範囲に入りうるエポキシ樹脂に対する各蛍光体の相関比率と絶対混合比率を決め、所望のCIE色度図(Color Diagram)のx値とy値を得る。 On the light-emitting diode chip 9 manufactured in this manner, the A line (the yellow-green phosphor) and the E-line (the red phosphor) shown in the CIE chromaticity diagram of FIG. These two types of phosphors, that is, a phosphor that simultaneously emits and emits light in blue and yellow-green and a phosphor that emits and emits red light in a desired mixing ratio are applied. That is, the above-mentioned yellow-green light-emitting phosphor is mixed so that the desired CIE chromaticity diagram coordinates x, y can be obtained by mixing the phosphor mixed in the desired blend ratio with the epoxy resin at the desired blend ratio. The compounding ratio of (Y, Gd) 3 Al 5 O 12 and the red light emitting phosphor ZnSe is determined by the CIE chromaticity diagram coordinates x, y on any of the B, C, and D lines. Then, by changing the absolute ratio of the phosphor to the epoxy resin, the correlation ratio and the absolute mixing ratio of each phosphor to the epoxy resin that can fall within the color reproduction range of the present invention are determined, and a desired CIE chromaticity diagram (Color Diagram) Get the x and y values of.

このようにして、青色と黄緑色に同時励起発光する蛍光体と赤色発光蛍光体を、エポキシ樹脂に所望の色合いを得る適正な重量比にして樹脂と混合した混合樹脂を、発光ダイオードチップが配置されたマウントリード上のカップ内にポッティング(Potting)する。
ここで言う樹脂とは、エポキシ樹脂またはシリコーン樹脂である。
ポッティング後、蛍光体が含有された樹脂を所定の温度と時間で硬化反応させる。さらに発光ダイオードチップを保護する目的でモールド(Molding)部材として透光性樹脂成型部であるレンズ形成用樹脂12を形成する。モールド部材は、砲弾型の型枠の中に蛍光体のポッティング部が形成されたリードフレームを挿入し、透光性樹脂を混入後、所定の温度と時間にて硬化反応させる。
In this way, the light-emitting diode chip arranges a mixed resin in which a phosphor that simultaneously emits light in blue and yellow-green and a red light-emitting phosphor are mixed with a resin in an appropriate weight ratio to obtain a desired color in an epoxy resin. Potting into the cup on the mounted mount lead.
The resin referred to here is an epoxy resin or a silicone resin.
After potting, the resin containing the phosphor is cured at a predetermined temperature and time. Further, for the purpose of protecting the light emitting diode chip, a lens forming resin 12 which is a translucent resin molding portion is formed as a molding member. The mold member is inserted into a shell-shaped mold frame with a lead frame having a phosphor potting portion formed therein, mixed with a translucent resin, and cured at a predetermined temperature and time.

図10は本願発明に係る他の発光ダイオード(またはSMD type LEDとも言う)を示す断面図である。
図10において、図面中の符号18は蛍光体を混合した樹脂で成型された部分であり、該蛍光体は、図5のA線(黄緑色発光蛍光体)とE線(赤色発光蛍光体)の2種類の蛍光体、すなわち、青色と黄緑色に同時励起発光する蛍光体と赤色に励起発光する蛍光体を所望の配合比に混合(Blend)し、これをエポキシ樹脂(Epoxy Resin)に所望の配合比で混合したものである。この蛍光体が所望のCIE色度図座標x,yを得ることができるように、黄緑色発光蛍光体[(Y,Gd)3Al5O12]と赤色発光蛍光体[ZnSe]の配合比を、図5におけるB線、C線、D線より選択し、該線上のいずれかのCIE色度図座標x,yを決め、それに合わせてエポキシ樹脂に対する蛍光体の絶対比率を変える。
FIG. 10 is a cross-sectional view showing another light-emitting diode (or SMD type LED) according to the present invention.
In FIG. 10, reference numeral 18 in the drawing is a portion molded from a resin mixed with phosphors, and the phosphors are A line (yellow-green light-emitting phosphor) and E line (red light-emitting phosphor) in FIG. These two types of phosphors, that is, phosphors that simultaneously emit and emit blue and yellow-green light and phosphors that emit and emit red light, are blended in a desired blending ratio (Blend), and this is used as an epoxy resin (Epoxy Resin). Are mixed at a blending ratio of The blending ratio of the yellow-green phosphor [(Y, Gd) 3 Al 5 O 12 ] and the red phosphor [ZnSe] so that the phosphor can obtain the desired CIE chromaticity diagram coordinates x and y. Is selected from the B line, C line, and D line in FIG. 5, and any CIE chromaticity diagram coordinate x, y on the line is determined, and the absolute ratio of the phosphor to the epoxy resin is changed accordingly.

下記の表3は、このようにエポキシ樹脂に混合する蛍光体の絶対比率を変えることによって、所望の色合いを得ることができる実際の検証結果を示すものである。同表において、試料No.1〜No.7はいずれもYG(%):R(%)が85:15の蛍光体を用いている。そして、これらの黄緑色に励起発光する蛍光体[(Y,Gd)3Al5O12]であるYG(%)と赤色に励起発光する蛍光体[ZnSe]であるR(%)との比率を85:15とした蛍光体を、エポキシ樹脂の重量比100(wt%)に対してRP(wt%)が25〜60まで変化させて、CIE色度図座標x値とy値とを得たものである。 Table 3 below shows actual verification results in which a desired color can be obtained by changing the absolute ratio of the phosphor mixed in the epoxy resin. In the same table, sample No. 1-No. 7 uses a phosphor having YG (%): R (%) of 85:15. The ratio of YG (%), which is a phosphor [(Y, Gd) 3 Al 5 O 12 ], which excites and emits yellow-green light, and R (%), which is a phosphor [ZnSe], which excites and emits red light. The CIE chromaticity diagram coordinate x value and y value are obtained by changing the RP (wt%) from 25 to 60 with respect to the epoxy resin weight ratio of 100 (wt%). It is a thing.

Figure 2005322674
Figure 2005322674

図10の符号16は発光素子である発光ダイオードチップであり、符号17は金またはアルミニウーム製の導電性ワイヤーで、符号13は印刷回路基板の基材である。印刷回路基板は、必要に応じて各々の材質で各層が鍍金され一定のパタ−ンをなしている印刷回路基材と、これと似通った役割をするリードフレームの金属メッキ層14に、発光波長430乃至480nmの青色を発光するダイオードチップ16を銀ペーストなどの導電性ペースト15の接着剤等を利用して接着固定させる。この接着剤が硬化されるように特性に合うよう一定の温度条件、例えば100乃至150℃の温度で30分乃至1時間程度放置した後、青色を発光するダイオードチップ16に位置した電極と印刷回路基板やリードフレームにあるパターン部分を導電性ワイヤー17で連結する。   Reference numeral 16 in FIG. 10 denotes a light emitting diode chip as a light emitting element, reference numeral 17 denotes a conductive wire made of gold or aluminum, and reference numeral 13 denotes a substrate of a printed circuit board. The printed circuit board has a light emitting wavelength on the printed circuit board substrate in which each layer is plated with each material as necessary to form a certain pattern, and the metal plating layer 14 of the lead frame that plays a similar role. The diode chip 16 emitting blue light of 430 to 480 nm is bonded and fixed using an adhesive of the conductive paste 15 such as silver paste. An electrode and a printed circuit positioned on the diode chip 16 that emits blue light after being left to stand for about 30 minutes to 1 hour at a certain temperature condition, for example, at a temperature of 100 to 150 ° C. so that the adhesive is cured. Pattern portions on the substrate and the lead frame are connected by a conductive wire 17.

この際、青色を発光するダイオードの種類とその製造方法に応じて、導電状態に作って与える方法とその形状は多様に変えられるものである。これらの工程は、印刷回路基板やリードフレームに形成されているパターンに応じて1回に生産し得る個数が変更できるように回路が構成される。1回のトランスファ成型で得られる発光ダイオードの個数は自由に変更できるように回路が構成されている。   At this time, depending on the kind of the diode emitting blue light and the manufacturing method thereof, the method of forming and giving the conductive state and the shape thereof can be variously changed. In these steps, the circuit is configured so that the number that can be produced at one time can be changed according to the pattern formed on the printed circuit board or the lead frame. The circuit is configured so that the number of light emitting diodes obtained by one transfer molding can be freely changed.

一方、トランスファ成型用透明粉末エポキシ樹脂に図5のA線(黄緑色発光蛍光体)とE線(赤色発光蛍光体)の2種類の蛍光体、すなわち、青色と黄緑色に同時励起発光する蛍光体と赤色に同時励起発光する蛍光体を所望の配合比に混合し、エポキシ樹脂に所望の配合比で混合して所望のCIE色度図座標x,yを得ることができるようにする。そのため、黄緑色発光蛍光体[(Y,Gd)3Al5 O12]と赤色発光蛍光体[ZnSe]の配合比をB線、C線、D線のいずれかのCIE色度図座標x値とy値に定め、そして、エポキシ樹脂に対する蛍光体の絶対比率を変えることにより、本願発明の色再現範囲に入りうるエポキシ樹脂に対する各蛍光体の相関比率と絶対混合比率を決めれば、所望のCIE色度図(Color Diagram)のx値とy値が得られる。 On the other hand, two types of phosphors, A line (yellowish green phosphor) and E ray (red phosphor), shown in FIG. The phosphor and the phosphor that simultaneously emits red light are mixed at a desired blending ratio, and mixed with the epoxy resin at a desired blending ratio so that desired CIE chromaticity diagram coordinates x, y can be obtained. Therefore, the blending ratio of yellow-green phosphor [(Y, Gd) 3 Al 5 O 12 ] and red phosphor [ZnSe] is the CIE chromaticity diagram coordinate x value of any of B-line, C-line, and D-line. If the correlation ratio and the absolute mixing ratio of each phosphor to the epoxy resin that can fall within the color reproduction range of the present invention are determined by changing the absolute ratio of the phosphor to the epoxy resin, and the desired CIE The x value and y value of the chromaticity diagram are obtained.

従来公知の緑色発光蛍光体の励起スペクトルおよび発光スペクトルを示す。The excitation spectrum and emission spectrum of a conventionally known green light emitting phosphor are shown. 従来公知の赤色発光蛍光体の励起スペクトルおよび発光スペクトルを示す。The excitation spectrum and emission spectrum of a conventionally known red light emitting phosphor are shown. 本願発明に使用した青色励起光と青色及び黄緑色に同時励起発光する蛍光体との、励起スペクトルおよび発光スペクトルを示す。The excitation spectrum and emission spectrum of the blue excitation light used in the present invention and a phosphor that simultaneously emits blue and yellow-green light are shown. 本願発明に使用した青色励起光と赤色に同時励起発光する蛍光体との、励起スペクトルおよび発光スペクトルを示す。The excitation spectrum and emission spectrum of the blue excitation light used in the present invention and the phosphor that simultaneously emits red light are shown. 本願発明の青色と黄緑色に同時励起発光する蛍光体と赤色に励起発光する蛍光体とを所望の配合比に混合して得られる白色発光の色再現範囲を示す図である。It is a figure which shows the color reproduction range of the white light emission obtained by mixing the fluorescent substance which excites light emission simultaneously in blue and yellow-green of this invention, and the fluorescent substance which excites light emission in red by desired compounding ratio. YAG系蛍光体の白色発光スペクトラムである。It is a white emission spectrum of a YAG phosphor. 本願発明の白色発光ダイオ−ドの白色発光スペクトラムである。It is a white light emission spectrum of the white light emitting diode of the present invention. 本願発明に使用した青色と黄緑色に同時励起発光する蛍光体と赤色発光蛍光体を応用した白色系発光ダイオ−ドの上面発光タイプ(TOP type)の発光ダイ−ドの断面図である。It is sectional drawing of the light emitting diode of the top surface type (TOP type) of the white type light emitting diode which applied the fluorescent substance and the red light emitting fluorescent substance which are simultaneously used for this invention in the blue and yellow green light emission. 本願発明に使用した青色と黄緑色に同時励起発光する蛍光体と赤色発光蛍光体を応用した白色系発光ダイオ−ドの砲弾型断面図である。FIG. 3 is a bullet-shaped cross-sectional view of a white light emitting diode to which a phosphor and a red light emitting phosphor that simultaneously emit light in blue and yellow green used in the present invention are applied. 本願発明に使用した青色と黄緑色に同時励起発光する蛍光体と赤色に励起発光する蛍光体を応用した、白色系発光ダイオ−ドのトランスファモ−ドタイプの発光ダイオード(またはSMD typeとも言う)の断面図である。A white light emitting diode transfer mode type light emitting diode (or SMD type) using the phosphor that emits simultaneously excited light in blue and yellow-green and the phosphor that emits red light in the present invention. It is sectional drawing.

符号の説明Explanation of symbols

1 リードフレーム
2 ハウジングケース
3,8,15 導電性ペースト
4,9,16 発光ダイオードチップ
5,10,17 導電性ワイヤー
6,18 蛍光体混合樹脂
7 インナーリード
12 レンズ形成用樹脂
13 印刷回路基板の基材
DESCRIPTION OF SYMBOLS 1 Lead frame 2 Housing case 3, 8, 15 Conductive paste 4, 9, 16 Light emitting diode chip 5, 10, 17 Conductive wire 6,18 Phosphor mixed resin 7 Inner lead 12 Lens formation resin 13 Printed circuit board Base material

Claims (6)

発光波長が430乃至480nmの発光ダイオードチップからの励起光の少なくとも一部を吸収して励起発光する蛍光体を有する発光ダイオードにおいて、前記発光ダイオードチップは窒化物系化合物半導体からなり、該発光ダイオードチップからの青色光が励起光となって白色に励起発光する蛍光体を有し、該蛍光体は青色と黄緑色に同時励起発光する蛍光体と赤色に励起発光する蛍光体との2種類の蛍光体を、所望の配合比に混合して白色光を得るものであることを特徴とする発光ダイオード。 In a light emitting diode having a phosphor that emits excitation light by absorbing at least a part of excitation light from a light emitting diode chip having an emission wavelength of 430 to 480 nm, the light emitting diode chip is made of a nitride compound semiconductor, and the light emitting diode chip The phosphor has a phosphor that emits white light as excitation light, and the phosphor has two types of fluorescent light, a phosphor that simultaneously emits light in blue and yellow-green, and a phosphor that emits light in red. A light emitting diode characterized in that a body is mixed in a desired mixing ratio to obtain white light. 上記青色と黄緑色とに同時励起発光する蛍光体は、発光ダイオードチップからの励起光の少なくとも一部を吸収して励起発光する蛍光体であって、その組成が(Y,Gd)3Al5O12で表され、上記赤色に励起発光する蛍光体は、発光ダイオードチップからの励起光の少なくとも一部を吸収して励起発光し、その組成がZnSeで表される蛍光体であることを特徴とする請求項1記載の発光ダイオード。 The phosphor that simultaneously emits light in blue and yellow-green is a phosphor that emits excitation light by absorbing at least part of the excitation light from the light-emitting diode chip, and has a composition of (Y, Gd) 3 Al 5 The phosphor expressed by O 12 and excited to emit red light absorbs at least a part of the excitation light from the light emitting diode chip and emits excitation light, and the composition is a phosphor represented by ZnSe. The light emitting diode according to claim 1. 上記2種の、すなわち、青色と黄緑色に同時励起発光する蛍光体と赤色に励起発光する蛍光体を、所望の配合比に混合し、該混合された蛍光体とエポキシ樹脂とを所望の配合比で混合して、白色発光用蛍光体とすることを特徴とする請求項2記載の発光ダイオード。 The above-mentioned two types, that is, phosphors that simultaneously emit light in blue and yellow-green and phosphors that emit light in red are mixed in a desired blending ratio, and the blended phosphor and epoxy resin are blended in a desired composition. The light emitting diode according to claim 2, wherein the phosphor is mixed in a ratio to obtain a phosphor for white light emission. 主剤と硬化剤を混合した液状のエポキシ樹脂またはシリコーン樹脂である液状母体樹脂の重量100wt%に対して、上記青色と黄緑色に同時励起発光する蛍光体(Y,Gd)3Al5O12を配合比で50%乃至90%の範囲と、上記赤色に励起発光する蛍光体ZnSeを配合比で50%乃至10%の範囲とで100%になるように、2.0wt%乃至40wt%の範囲で配合して白色用蛍光体とすることを特徴とする請求項3記載の発光ダイオード。 The phosphor (Y, Gd) 3 Al 5 O 12 that emits light simultaneously excited in blue and yellow-green is used for 100 wt% of the liquid base resin, which is a liquid epoxy resin or silicone resin mixed with the main agent and the curing agent. The range of 2.0 wt% to 40 wt% so that the blending ratio is 50% to 90% and the phosphor ZnSe that excites and emits red light is 100% with the blending ratio of 50% to 10%. The light-emitting diode according to claim 3, wherein a white phosphor is blended. プリント基板に多様な多数の層に鍍金されてなる印刷回路基板やリードフレームの上に、青色発光ダイオードチップを、導電性や非導電性の接着剤で接着固定させて搭載し、該青色発光ダイオードチップ上の電極等と、印刷回路基板やリードフレームの上に鍍金された回路パターンとを連結し、青色と黄緑色に同時励起発光する蛍光体及び赤色に励起発光する蛍光体を所望の配合比に混合した白色蛍光体と、エポキシ樹脂等とを利用して白色発光ができる発光ダイオード製品を製造する方法において、透明モールディング用粉末エポキシ樹脂と該白色蛍光体とを混合して混合物を準備する段階と、この混合物に所定の圧力を加えて一定の形状に成形する段階と、既に形成された発光ダイオードチップ部分に該混合物をトランスファーモールディングする段階と、切断機を利用して個別製品に切断して発光ダイオード製品を製造する段階を備えたことを特徴とする、白色光を発光する発光ダイオード製品の製造方法。 A blue light-emitting diode chip is mounted on a printed circuit board or a lead frame, which is plated on a printed circuit board in various layers, by bonding and fixing with a conductive or non-conductive adhesive. Connect the electrodes etc. on the chip with the circuit pattern plated on the printed circuit board or lead frame, and combine the phosphors that emit blue and yellow green simultaneously and the phosphors that excite and emit red Preparing a mixture by mixing a powder epoxy resin for transparent molding and the white phosphor in a method for producing a light emitting diode product capable of emitting white light using an epoxy resin or the like mixed with a white phosphor And applying a predetermined pressure to the mixture to form it into a certain shape, and transferring the mixture to the already formed light emitting diode chip portion. Phase and, then cut into individual products by using a cutting machine characterized by comprising a step of manufacturing a light emitting diode products, the manufacturing method of the light emitting diode products emitting white light ring. 発光ダイオードのリードカップ内に搭載された発光ダイオードチップと、該発光ダイオードチップを導電性ワイヤーで電気的に接続されたインナー・リードと、前記リードカップ内に充填されたポッティング部材と、該ポッティング部材、発光ダイオードチップ、導電性ワイヤー及びマウント・リードとインナー・リードの少なくとも一部を被覆するモールド部材とを有する発光ダイオードであって、該発光ダイオードチップが窒化物系化合物半導体であり、かつ前記ポッティング部材が青色と黄緑色に同時励起発光する黄緑発光蛍光体と赤色に励起発光する発光蛍光体とを所望の配合比に混合した白色蛍光体と、エポキシ樹脂等を利用したものであることを特徴とする発光ダイオード。


A light emitting diode chip mounted in a lead cup of the light emitting diode, an inner lead in which the light emitting diode chip is electrically connected by a conductive wire, a potting member filled in the lead cup, and the potting member A light emitting diode having a light emitting diode chip, a conductive wire and a mount lead and a mold member covering at least part of the inner lead, the light emitting diode chip being a nitride compound semiconductor, and the potting The member uses a white phosphor in which a yellow-green light emitting phosphor that simultaneously emits light in blue and yellow-green and a light-emitting phosphor that emits light in red are mixed at a desired mixing ratio, and an epoxy resin or the like. A light emitting diode characterized.


JP2004137335A 2004-05-06 2004-05-06 Light emitting diode using phosphor Pending JP2005322674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004137335A JP2005322674A (en) 2004-05-06 2004-05-06 Light emitting diode using phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004137335A JP2005322674A (en) 2004-05-06 2004-05-06 Light emitting diode using phosphor

Publications (1)

Publication Number Publication Date
JP2005322674A true JP2005322674A (en) 2005-11-17

Family

ID=35469741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004137335A Pending JP2005322674A (en) 2004-05-06 2004-05-06 Light emitting diode using phosphor

Country Status (1)

Country Link
JP (1) JP2005322674A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027511A1 (en) * 2009-09-02 2011-03-10 株式会社 東芝 White led, backlight using same, and liquid crystal display device
KR101320514B1 (en) * 2007-08-21 2013-10-22 삼성전자주식회사 Light emitting diode package by chip on board
WO2020000519A1 (en) * 2018-06-27 2020-01-02 朗昭创新控股(深圳)有限公司 Phosphor glue, phosphor film and preparation method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101320514B1 (en) * 2007-08-21 2013-10-22 삼성전자주식회사 Light emitting diode package by chip on board
WO2011027511A1 (en) * 2009-09-02 2011-03-10 株式会社 東芝 White led, backlight using same, and liquid crystal display device
JPWO2011027511A1 (en) * 2009-09-02 2013-01-31 株式会社東芝 White LED, backlight using the same, and liquid crystal display device
US8872421B2 (en) 2009-09-02 2014-10-28 Kabushiki Kaisha Toshiba White LED, backlight using the same, and liquid crystal display device
WO2020000519A1 (en) * 2018-06-27 2020-01-02 朗昭创新控股(深圳)有限公司 Phosphor glue, phosphor film and preparation method therefor

Similar Documents

Publication Publication Date Title
US7488990B2 (en) Using multiple types of phosphor in combination with a light emitting device
US7759683B2 (en) White light emitting diode
JP4989936B2 (en) Lighting device
EP1830418B1 (en) Light emitting device
KR100605211B1 (en) Phosphor and white led using the same
US9231170B2 (en) Phosphor LED
US20070194695A1 (en) White light emitting device
US7791265B2 (en) Red-emitting luminescent substance and light source comprising such a luminescent substance
JP2008541422A (en) Method for manufacturing white light-emitting diode using phosphor
US20060249739A1 (en) Multi-wavelength white light emitting diode
JP2008187188A (en) Light emitting device
JP2011159809A (en) White light-emitting device
JP5323308B2 (en) Light emitting module
JPWO2016159141A1 (en) Light emitting device
JP5106761B2 (en) High color rendering LED lamp unit
US20090152574A1 (en) Multi-wavelength white light-emitting structure
JP4534717B2 (en) Light emitting device
KR100558080B1 (en) Fluorescent material, white light emitting diode using the same material and method for making the same diode
JP2006351600A (en) White light emitting diode and its manufacturing method
JP6405738B2 (en) Light emitting device
CN100385690C (en) White light illuminating method and apparatus capable of regulating colour temp.
JP5341154B2 (en) High color rendering LED lamp unit
JP2006233183A (en) Blue-light-emitting phosphor and light-emitting module using the same
KR20050089490A (en) White color light emitting diode using violet light emitting diode
WO2007001117A2 (en) White light emitting diode based on mixing of tri-color phosphors

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060330

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060330

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105