JP2005319558A - Cutting edge replaceable-type finishing radius end mill - Google Patents

Cutting edge replaceable-type finishing radius end mill Download PDF

Info

Publication number
JP2005319558A
JP2005319558A JP2004141227A JP2004141227A JP2005319558A JP 2005319558 A JP2005319558 A JP 2005319558A JP 2004141227 A JP2004141227 A JP 2004141227A JP 2004141227 A JP2004141227 A JP 2004141227A JP 2005319558 A JP2005319558 A JP 2005319558A
Authority
JP
Japan
Prior art keywords
cutting edge
end mill
tool
radius
radius end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004141227A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Nagashima
由光 長島
Shojiro Toma
昭次郎 當麻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2004141227A priority Critical patent/JP2005319558A/en
Publication of JP2005319558A publication Critical patent/JP2005319558A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Milling Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting edge replaceable-type finishing radius end mill which can improve the surface roughness of a workpiece material at the time of copy machining. <P>SOLUTION: In the cutting edge replaceable-type finishing radius end mill 1, the shape of a cutting edge of an insert 3 is formed so as to satisfy the following relationships: 0.31D≤r1≤0.45D, and D≥8 mm, where r1 represents a radius of an external-side arcuate cutting edge, and D represents a tool diameter. Further the radius end mill has the other internal-side arcuate cutting edge which has the same tangent as that of the external-side arcuate cutting edge at a lowermost point of the same, and has a radius r2 extending toward the center of a rotation axis and satisfying the following relationship: r1>r2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、刃先交換式仕上げ用ラジアスエンドミルにおける切屑形成の形態と排出改善に関するものであり、特に工具ホルダーの剛性を維持したまま、切削加工における切屑の工具及び被削材への溶着を防止する切屑収納溝を備えるとともに、切屑排出に適した一定形状の切屑を形成するのに適した切刃を備えた刃先交換式仕上げ用ラジアスエンドミルに関するものである。   TECHNICAL FIELD The present invention relates to chip formation and discharge improvement in a radius end mill for replaceable cutting edges, and in particular, prevents welding of chips to a tool and a work material in cutting while maintaining the rigidity of a tool holder. The present invention relates to a radius end mill for exchangeable cutting edge including a chip storage groove and a cutting blade suitable for forming a chip having a fixed shape suitable for chip discharge.

プレス型やプラ型等の金型仕上げ加工では、ボールエンドミル等の切削工具を用いて倣い加工を行う。この倣い加工の時は、被削材の表面は平坦な領域と凹凸を有する領域とが共存している。最終的な仕上げ面粗さの狙い値が5μm程度になるように加工条件を設定するが、実際の加工後はこの狙い値とは異なり、約20〜30μm前後の面粗さを示すため、金型の品質としての面粗さを満足することが出来ず、後工程で手作業による磨き加工が行われる。これは、工具形状及びピックフィードにより定義される面粗さの理論値が、工具形状及び加工条件より算出されるものであることから、この理論値と測定値とに大きな差が生じるためである。この面粗さの差が生じる原因は、切削工具と被削材との間において擦れや溶着などが発生し、被削材面粗さに悪影響を与え、時には切削工具の切刃部に生じるチッピングや欠損が原因となる場合もある。そこで、特許文献1、2に切刃部の形状に工夫を加え、被削材面粗さの改善又は切刃部のチッピングや欠損を回避するための技術が開示されている。
特許文献1は、仕上げ加工用に用いるスローアウエイ式エンドミルにおいて、切刃部の形状が、外周刃と略垂直に位置する底刃と、底刃コーナーに外周刃と底刃に接する略1/4円弧からなるコーナーアール刃とを備えた切刃チップを記載している。更に、底刃は僅かな中低勾配をもつことが開示されている。しかし、底刃は僅かな中低勾配しか持たないため、被削材と工具間では切屑の噛み込みや、擦れや溶着が発生し、平面加工における仕上げ加工では一般的なボールエンドミルと同等程度の表面粗さとなってしまう。
特許文献2は、ラジアスエンドミルの回転軸中心近傍に中低勾配を有する内周刃を設けた技術が開示されている。この技術により、工具先端に周速が零となる点を作らないことから耐欠損性を向上させ、工具の長寿命化を提案している。しかしながら、上記形状では、工具の最下点、即ち周速が零ではないが非常に遅い速度で被削材と工具が接触する点があり、擦れや溶着を完全には抑制することが出来ずい。特許文献2には、被削材の面粗さの改善案については何ら考察がなされていない。
特許文献3、4には、インサートの固定方法に関する技術が開示されている。特許文献3は、インサートを工具本体に強固に固定する技術がボールエンドミル、ラジアスエンドミルなどについて開示されている。特許文献4でも、インサートの取り付け精度向上に関する技術が開示されている。
In mold finishing such as a press die and a plastic die, copying is performed using a cutting tool such as a ball end mill. At the time of this copying, the surface of the work material has both a flat region and a region having unevenness. The processing conditions are set so that the final finished surface roughness target value is about 5 μm. However, after actual processing, the surface roughness is about 20-30 μm, which is different from this target value. The surface roughness as mold quality cannot be satisfied, and manual polishing is performed in the subsequent process. This is because the theoretical value of the surface roughness defined by the tool shape and pick feed is calculated from the tool shape and machining conditions, so that there is a large difference between this theoretical value and the measured value. . The cause of this difference in surface roughness is that the cutting tool and the work material are rubbed and welded, which adversely affects the surface roughness of the work material and sometimes chipping that occurs at the cutting edge of the cutting tool. It can also be caused by defects. Therefore, Patent Documents 1 and 2 disclose a technique for improving the surface roughness of the work material or avoiding chipping or chipping of the cutting edge part by devising the shape of the cutting edge part.
Patent Document 1 discloses a throwaway type end mill used for finishing, in which the shape of the cutting edge portion is a bottom blade that is positioned substantially perpendicular to the outer peripheral edge, and approximately 1/4 that the bottom edge is in contact with the outer peripheral edge and the bottom edge. A cutting edge tip having a corner radius blade made of an arc is described. Furthermore, it is disclosed that the bottom blade has a slight medium to low slope. However, since the bottom blade has only a slight medium to low gradient, chip biting, rubbing and welding occur between the work material and the tool. It becomes surface roughness.
Patent Document 2 discloses a technique in which an inner peripheral blade having a medium to low gradient is provided in the vicinity of the rotational axis center of a radius end mill. By this technique, since the point where the peripheral speed becomes zero is not made at the tip of the tool, it is proposed that the fracture resistance is improved and the tool life is extended. However, with the above shape, there is a point at which the work material and the tool come into contact at the lowest point of the tool, that is, the peripheral speed is not zero, but at a very slow speed, and it is not possible to completely suppress rubbing and welding. . In Patent Document 2, no consideration is given to a plan for improving the surface roughness of the work material.
Patent Documents 3 and 4 disclose techniques related to a method for fixing an insert. Patent Document 3 discloses a technique for firmly fixing an insert to a tool body for a ball end mill, a radius end mill, and the like. Patent Document 4 also discloses a technique related to improvement of the mounting accuracy of the insert.

特開平8−281513号公報JP-A-8-281513 特開平11−70405号公報Japanese Patent Application Laid-Open No. 11-70405 特開平11−239911号公報JP-A-11-239911 実開平6−53012号公報Japanese Utility Model Publication No. 6-53012

本発明は、刃先交換式の仕上げ用ラジアスエンドミルにおいて、被削材の表面が平坦な領域や凹凸を有する領域などが共存している倣い加工時においても、被削材の面粗さを改善することである。このため。切削工具と被削材との間において生じる擦れや溶着などの発生を防止し、切削工具の切刃部の強度を改善して耐チッピングや耐欠損を改善した刃先交換式の仕上げ用ラジアスエンドミルを提供することにある。   The present invention improves the surface roughness of a work material in a radius end mill for exchanging cutting edges, even during profiling in which a work material has a flat surface or an uneven surface. That is. For this reason. A radius end mill with a replaceable edge that prevents chipping and chipping by preventing the occurrence of rubbing and welding between the cutting tool and the work material and improving the strength of the cutting edge of the cutting tool. It is to provide.

本発明のラジアスエンドミルは、軸線回りに回転される工具本体の先端部に、該軸線を含む平面方向に延びるスリット状のインサート取付座が形成され、このインサート取付座に、外周側に略円弧状に延びる切刃を備えたインサートが、該切刃を工具先端側に突出させて着脱可能に取り付けられてなる刃先交換式仕上げ用ラジアスエンドミルにおいて、該インサートの切刃の形状は、外周側の該円弧状切刃の半径をr1とし、工具直径をDとした時、0.31D≦r1≦0.45D、D≧8mmで形成され、該円弧状切刃の最下点において同一接線を有し、回転軸中心に向かう内周刃の半径がr2を有する他の円弧状切刃が形成され、r1>r2の関係を有して形成されていることを特徴とする刃先交換式仕上げ用ラジアスエンドミルである。本構成を採用することによって、被削材の表面が平坦な領域や凹凸を有する領域などが共存している倣い加工時においても、被削材の面粗さを改善することができる。更に切削工具と被削材との間において生じる擦れや溶着などの発生を防止し、切削工具の切刃部の強度を改善して耐チッピングや耐欠損を改善し、被削材面粗さを改善することができる。   In the radius end mill of the present invention, a slit-like insert mounting seat extending in the plane direction including the axis is formed at the tip of the tool body rotated around the axis, and the insert mounting seat has a substantially arc shape on the outer peripheral side. In a radius end mill for exchangeable cutting edge, in which an insert having a cutting blade extending in the direction is detachably attached by projecting the cutting blade toward the tool tip side, the shape of the cutting edge of the insert is When the radius of the arcuate cutting edge is r1 and the tool diameter is D, it is formed with 0.31D ≦ r1 ≦ 0.45D, D ≧ 8 mm, and has the same tangent at the lowest point of the arcuate cutting edge Radial end mill for exchangeable cutting edge, characterized in that another arcuate cutting edge having a radius of r2 of the inner peripheral edge toward the rotation axis center is formed and has a relation of r1> r2. IsBy adopting this configuration, it is possible to improve the surface roughness of the work material even at the time of profiling in which an area where the surface of the work material is flat or an area having unevenness coexists. Furthermore, it prevents the occurrence of rubbing and welding between the cutting tool and the work material, improves the strength of the cutting edge of the cutting tool, improves chipping resistance and chipping resistance, and improves the surface roughness of the work material. Can be improved.

本発明の刃先交換式の仕上げ用ラジアスエンドミルは、インサートの他の円弧状切刃の半径r2が、0.1≦r2≦5(mm)の関係を有して形成されていることが好ましい。   In the radius end mill for finishing according to the present invention, the radius r2 of the other arcuate cutting edge of the insert is preferably formed so as to have a relationship of 0.1 ≦ r2 ≦ 5 (mm).

本発明は、被削材の表面が平坦な領域や凹凸を有する領域などが共存している倣い加工時においても、被削材の面粗さを改善する。切削工具と被削材との間において生じる擦れや溶着などの発生を防止し、切削工具の切刃部の強度を改善して耐チッピングや耐欠損を改善した刃先交換式の仕上げ用ラジアスエンドミルを提供することができる。本発明の適用によって被削材面粗さを改善することができる。   The present invention improves the surface roughness of a work material even at the time of profiling in which an area where the surface of the work material is flat or an area having unevenness coexists. A radius end mill with a replaceable cutting edge that prevents the occurrence of rubbing and welding between the cutting tool and the work material and improves the strength of the cutting edge of the cutting tool to improve chipping resistance and chipping resistance. Can be provided. By applying the present invention, the surface roughness of the work material can be improved.

図1から図4に本発明の刃先交換式仕上げ用ラジアスエンドミルの実施例を図示する。図1は刃先交換式仕上げ用ラジアスエンドミルの正面図であり、図2は本発明の刃先交換式仕上げ用ラジアスエンドミルのインサートの正面図、図3はインサートの側面図である。図4に示す様に、本発明の刃先交換式仕上げ用ラジアスエンドミルに装着するインサートの切刃の形状は、外周側の該円弧状切刃の半径をr1、円弧中心をfとし、工具直径をDとした時、0.31D≦r1≦0.45Dで形成されている。これは、r1が0.31D未満の場合はr1が小さすぎて、傾斜面の加工において良好な面粗さが得られないためである。またr1が0.45Dを超えて大きい場合は半径が大きすぎて、円弧状切刃の最下点において十分な周速度を得られないため、被削材表面の面粗さが悪化するためである。好ましくはr1は0.33D程度に設定すると良好な被削材表面の面粗さが得られる。ここで、本発明の工具直径Dはφ8mm以上を対象とする。また、該円弧状切刃の最下点において同一接線を有し、回転軸中心に向かう内周刃の半径がr2、円弧中心をgとする他の円弧状切刃が形成され、r1>r2の関係を有して形成されることが必要である。工具回転軸中心の形状が中低部を有する形状となることで、工具最下点の周速が0となる点を排除し、r1とr2とを規定して、更にr1>r2の関係を有する切刃を形成することにより、高品質な被削材の表面粗さを得ることが可能である。特に、r2を有する内周刃を備えている事は、被削材の表面に凹凸を有する倣い加工時において、被削材の面粗さを改善することに有効である。これは、工具最下点における切刃のすかし形状が、被削材の表面粗さに悪影響を及ぼさない程度に形成でき、切刃の耐チッピングや耐欠損性に好適に作用するからである。ここで、円弧中心fとgは、工具最下点cの接線に垂直な直線上にある。
図3に示す様に、本発明の仕上げ用ラジアスエンドミルの切刃形状は直刃形状とし、すくい面を平らな面とすることが好ましい。この理由は、仕上げ用工具においては、刃先強化を行うよりも切れ味を向上させ、切削抵抗を低減させる必要性があることによる。また、すくい角を0度とすることが好ましい。これによって、切削抵抗を更に低減させることができる。
1 to 4 show an embodiment of a radius end mill for exchanging blade edge according to the present invention. FIG. 1 is a front view of a radius end mill for blade edge replacement type finishing, FIG. 2 is a front view of an insert of the radius end mill for blade edge replacement type finishing of the present invention, and FIG. 3 is a side view of the insert. As shown in FIG. 4, the shape of the cutting edge of the insert attached to the radius end mill for exchangeable cutting edge according to the present invention is such that the radius of the arcuate cutting edge on the outer peripheral side is r1, the center of the arc is f, and the tool diameter is When D, 0.31D ≦ r1 ≦ 0.45D. This is because when r1 is less than 0.31D, r1 is too small to obtain good surface roughness in the processing of the inclined surface. In addition, when r1 is larger than 0.45D, the radius is too large and a sufficient peripheral speed cannot be obtained at the lowest point of the arcuate cutting edge, so that the surface roughness of the work material surface is deteriorated. is there. Preferably, when r1 is set to about 0.33D, good surface roughness of the work material can be obtained. Here, the tool diameter D of the present invention is targeted for φ8 mm or more. Further, another arc-shaped cutting edge having the same tangent at the lowest point of the arc-shaped cutting edge, the radius of the inner peripheral edge toward the rotation axis center being r2, and the arc center being g is formed, and r1> r2 It is necessary to form the following relationship. Since the shape of the center of the tool rotation axis has a middle and low part, the point at which the peripheral speed at the lowest point of the tool becomes 0 is eliminated, r1 and r2 are defined, and the relationship of r1> r2 is further established. By forming the cutting edge having, it is possible to obtain a high-quality surface roughness of the work material. In particular, the provision of the inner peripheral edge having r2 is effective in improving the surface roughness of the work material during the copying process in which the surface of the work material has irregularities. This is because the watermark shape of the cutting edge at the lowest point of the tool can be formed to such an extent that it does not adversely affect the surface roughness of the work material, and acts favorably on chipping resistance and chipping resistance of the cutting edge. . Here, the arc centers f and g are on a straight line perpendicular to the tangent to the tool lowest point c.
As shown in FIG. 3, it is preferable that the cutting edge shape of the finishing radius end mill of the present invention is a straight blade shape and the rake face is a flat surface. The reason for this is that in the finishing tool, it is necessary to improve the sharpness and to reduce the cutting resistance rather than to enhance the cutting edge. The rake angle is preferably 0 degree. Thereby, cutting resistance can be further reduced.

図4、5に示す様に、工具内周刃のr2は、0.1≦r2≦5(mm)の関係を有して形成されていることが好ましい。上記の範囲内に規定することで、被削材の仕上面の品質を向上させることが可能である。これは、内周刃を上記の範囲内に規定することで、切刃と被削材との接触長さを低減させ、ビビリ振動やチッピングの発生を抑制するとともに、切屑の噛み込みによるキズの発生を低減する効果がある。より好ましくは2≦r2≦3(mm)に設定すると良い。切刃の最下点から回転軸中心に向かって内周側に向かう円弧状の内周刃の1部が直線状をなし、該直線が円弧状内周刃における点dの接線となっている場合、該直線が切刃の最下点における接線となす角度をθ1(以下、スカシ角度と称する。)。ここで、θ1は、5≦θ1≦30度に設定することが好ましい。これによって、被削材の表面が凹凸を有する倣い加工時の傾斜切込みにも適切に対応することが可能となる。θ1を5度未満にすると、内周刃と被削材表面との距離が接近し、内周刃の切屑噛み込みにより、被削材表面にキズが発生する不都合が生じるためである。また、θ1が30度を超えて大きい場合には、内周刃が工具軸方向に伸び、工具の作成が困難になる。また、傾斜切込みにおいて内周刃と被削材との距離が広くなり、ビビリ振動やチッピングの発生する不都合が生じるためである。より好ましくは8≦θ1≦15度に設定することが好ましい。また、θ1は幾何学的に、半径がr2を有する円弧中心gに形成される中心角と同値である。   As shown in FIGS. 4 and 5, it is preferable that r2 of the tool inner peripheral edge is formed to have a relationship of 0.1 ≦ r2 ≦ 5 (mm). By defining within the above range, it is possible to improve the quality of the finished surface of the work material. This is because, by defining the inner peripheral edge within the above range, the contact length between the cutting edge and the work material is reduced, chatter vibration and chipping are suppressed, and scratches caused by chip biting are reduced. This has the effect of reducing the occurrence. More preferably, 2 ≦ r2 ≦ 3 (mm) is set. A part of the arc-shaped inner peripheral blade from the lowest point of the cutting edge toward the inner peripheral side toward the center of the rotation axis forms a straight line, and the straight line is a tangent to the point d on the arc-shaped inner peripheral blade. In this case, the angle formed by the straight line and the tangent at the lowest point of the cutting edge is θ1 (hereinafter referred to as a skew angle). Here, θ1 is preferably set to 5 ≦ θ1 ≦ 30 degrees. As a result, it is possible to appropriately cope with an inclined cut at the time of copying in which the surface of the work material has irregularities. This is because if θ1 is less than 5 degrees, the distance between the inner peripheral blade and the surface of the work material approaches, and there is a disadvantage that scratches occur on the surface of the work material due to the biting of chips of the inner peripheral blade. When θ1 is larger than 30 degrees, the inner peripheral blade extends in the tool axis direction, making it difficult to create a tool. In addition, the distance between the inner peripheral blade and the work material is increased in the inclined cutting, and inconveniences such as chatter vibration and chipping occur. More preferably, it is set to 8 ≦ θ1 ≦ 15 degrees. Further, θ1 is geometrically equivalent to the central angle formed at the arc center g having a radius r2.

図6、7に示す様に、本発明の刃先交換式仕上げ用ラジアスエンドミルに装着するインサートの切刃の形状は、外周刃である該円弧状切刃から工具最下点cを通って内周刃である該他の円弧状切刃に向かうに従って、法線方向の逃げ角が大きくなることが好ましい。これは、工具外周刃から最下点cを通って内周刃に至る各点において、工具回転数が一定の場合、切削速度が異なるためである。切削速度が異なる場合、逃げ角が一定だと工具の摩耗量が切刃各点において異なる。一方で、工具寿命は摩耗量が最も大きくなる時点で判定されるため、夫々切削速度が異なる点において適切な法線方向の逃げ角を設定することで、工具寿命の長寿命化及び高品質な面粗さを得ることが出来る。ここで言う法線方向の逃げ角とは、例えば図6におけるB−B断面を示した図7の様に、切刃の法線と切刃とのなす角度θ3によって示される。θ3は、外周刃である該円弧状切刃から最下点cを通って内周刃である該他の円弧状切刃に向かうに従って大きくなることが好ましいが、更にθ3は夫々の切刃領域毎に好適な値を有することが好ましい。そこで図6で示される切刃を5つの領域に分割した。第1の直線L1の領域は、切刃の最外周点aからバックテーパ角度βを有して回転軸方向に延びる外周刃領域を示し、この領域のθ3をL1(θ3)で表す。同じく第2の曲線R1aの領域は、切刃の最外周点aから最下点cに向かう円弧部領域を示し、この領域のθ3をR1a(θ3)で表す。第3の曲線R1b領域は、最下点cから最外周点aに向かう円弧部領域を示し、この領域のθ3をR1b(θ3)で表す。第4の曲線R2領域は、切刃の最下点cから円弧中心gに形成される中心角θ1で形成される円弧部領域を示し、この領域のθ3をR2(θ3)で表す。第5の直線L2領域は、直線状をなす内周刃領域を示し、この領域のθ3をL2(θ3)で表す。この時、L1(θ3)≦R1a(θ3)<R1b(θ3)≦R2(θ3)≦L2(θ3)の関係を有して形成されていると良い。好ましくは、L1(θ3)が、3≦L1(θ3)≦13度、R1a(θ3)が、3≦R1a(θ3)≦13度、R1b(θ3)が、5≦R1b(θ3)≦15度、R2(θ3)が、5≦R2(θ3)≦15度、L2(θ3)が、7≦L2(θ3)≦17度である。更に、より好ましくは、L1(θ3)が、5≦L1(θ3)≦9度、R1a(θ3)が、5≦R1a(θ3)≦9度、R1b(θ3)が、7≦R1b(θ3)≦11度、R2(θ3)が、7≦R2(θ3)≦11度、L2(θ3)が、9≦L2(θ3)≦13度にすると良い。
上記の様に数値規定を行う理由は、以下の通りである。即ち、L1領域やR1a領域のθ3は切削速度が高いため、θ3が小さいと摩耗進行が早く進み、逆にθ3が大きすぎるとチッピング等が発生するためである。また、R1b領域やR2領域においては切削速度が低いため、逃げ角を小さくすることで工具と被削材の接触面を減少させ、切削抵抗を低下させることが出来る。この領域では外周刃領域よりも小さなθ3を有することが望ましい。また、切屑の噛み込み防止のため、直線L2領域のθ3は、R1b領域やR2領域のθ3よりも小さなθ3を有することが望ましい。上記の場合において、曲線R1aと曲線R1bの円弧長さの和は、点fを中心とした半径r1の円周の1/4に相当し、曲線R1a領域から曲線R1b領域に移行する途中には、点aから点cへ向かう間に位置する境界点bによって両者が区別される。また、曲線R1bの円弧を形成する中心角をθ2とすると、曲線R1aの円弧を形成する中心角は、90−θ2で表される。更にθ2の角度範囲は、10≦θ2≦45度に規定することが好ましい。θ2を上記の範囲に規定する理由は、θ2が10度未満の場合には、境界点bでの周速が遅いため、好適なθ3を得ることが出来ない。また、θ2が45度を超えて大きい場合には、点bにおける切刃の周速が速くなり、ここでも好適なθ3を得ることが出来ないためである。
As shown in FIGS. 6 and 7, the shape of the cutting edge of the insert attached to the radius end mill for replaceable cutting edge according to the present invention is such that the circular cutting edge which is the outer peripheral blade passes through the tool lowest point c to the inner periphery. The clearance angle in the normal direction is preferably increased toward the other arcuate cutting edge which is a blade. This is because, at each point from the tool outer peripheral blade to the inner peripheral blade through the lowest point c, the cutting speed is different when the tool rotation number is constant. When the cutting speed is different, the wear amount of the tool is different at each point of the cutting edge when the clearance angle is constant. On the other hand, since the tool life is determined when the amount of wear becomes the largest, by setting an appropriate normal direction clearance angle at different cutting speeds, the tool life can be extended and high quality can be achieved. Surface roughness can be obtained. Here, the clearance angle in the normal direction is indicated by an angle θ3 formed by the normal line of the cutting edge and the cutting edge as shown in FIG. 7 showing the BB cross section in FIG. θ3 is preferably increased from the arcuate cutting edge as the outer peripheral edge toward the other arcuate cutting edge as the inner peripheral edge through the lowest point c, and further, θ3 is each cutting edge region. It is preferable to have a suitable value for each. Therefore, the cutting blade shown in FIG. 6 was divided into five regions. The region of the first straight line L1 indicates an outer peripheral blade region extending in the rotation axis direction with a back taper angle β from the outermost peripheral point a of the cutting blade, and θ3 of this region is represented by L1 (θ3). Similarly, the region of the second curve R1a indicates an arc portion region from the outermost peripheral point a to the lowest point c of the cutting edge, and θ3 of this region is represented by R1a (θ3). The third curve R1b region indicates an arc portion region from the lowest point c to the outermost peripheral point a, and θ3 of this region is represented by R1b (θ3). The fourth curve R2 region indicates an arc portion region formed by a central angle θ1 formed from the lowest point c of the cutting edge to the arc center g, and θ3 of this region is represented by R2 (θ3). The fifth straight line L2 region indicates a linear inner peripheral blade region, and θ3 of this region is represented by L2 (θ3). At this time, it may be formed so as to have a relationship of L1 (θ3) ≦ R1a (θ3) <R1b (θ3) ≦ R2 (θ3) ≦ L2 (θ3). Preferably, L1 (θ3) is 3 ≦ L1 (θ3) ≦ 13 degrees, R1a (θ3) is 3 ≦ R1a (θ3) ≦ 13 degrees, and R1b (θ3) is 5 ≦ R1b (θ3) ≦ 15 degrees. , R2 (θ3) is 5 ≦ R2 (θ3) ≦ 15 degrees, and L2 (θ3) is 7 ≦ L2 (θ3) ≦ 17 degrees. More preferably, L1 (θ3) is 5 ≦ L1 (θ3) ≦ 9 degrees, R1a (θ3) is 5 ≦ R1a (θ3) ≦ 9 degrees, and R1b (θ3) is 7 ≦ R1b (θ3). ≦ 11 degrees, R2 (θ3) is preferably 7 ≦ R2 (θ3) ≦ 11 degrees, and L2 (θ3) is preferably 9 ≦ L2 (θ3) ≦ 13 degrees.
The reason why the numerical values are specified as described above is as follows. That is, θ3 in the L1 region and the R1a region has a high cutting speed, so if θ3 is small, wear progresses quickly, and conversely if θ3 is too large, chipping or the like occurs. Further, since the cutting speed is low in the R1b region and the R2 region, the contact surface between the tool and the work material can be reduced by reducing the clearance angle, and the cutting resistance can be reduced. In this region, it is desirable to have θ3 smaller than that of the outer peripheral blade region. In order to prevent chips from getting caught, it is desirable that θ3 in the straight line L2 region has θ3 smaller than θ3 in the R1b region and the R2 region. In the above case, the sum of the arc lengths of the curve R1a and the curve R1b corresponds to ¼ of the circumference of the radius r1 with the point f as the center, and during the transition from the curve R1a region to the curve R1b region. The boundary point b located between the point a and the point c is distinguished from each other. If the central angle forming the arc of the curve R1b is θ2, the central angle forming the arc of the curve R1a is represented by 90−θ2. Furthermore, the angle range of θ2 is preferably defined as 10 ≦ θ2 ≦ 45 degrees. The reason for defining θ2 within the above range is that when θ2 is less than 10 degrees, the peripheral speed at the boundary point b is slow, and thus a suitable θ3 cannot be obtained. Further, when θ2 is larger than 45 degrees, the peripheral speed of the cutting edge at point b is increased, and a suitable θ3 cannot be obtained here.

本発明のラジアスエンドミルは、2番逃げの角度を有することも可能である。図7に示す様に、2番逃げの角度をθ4とすると、θ4は15≦θ4≦30度の範囲にすることが好ましい。この理由は、工具ヒール部と被削材とが接触する可能性を回避するためである。切刃稜線部から2番逃げの開始点までの距離Hは、工具直径に依存して変化させる必要がある。H値、1/100D≦H≦1/10Dの範囲とすると良い。   The radius end mill of the present invention can also have a second relief angle. As shown in FIG. 7, when the angle of the second relief is θ4, θ4 is preferably in the range of 15 ≦ θ4 ≦ 30 degrees. The reason for this is to avoid the possibility of contact between the tool heel portion and the work material. The distance H from the cutting edge ridge line portion to the starting point of the second relief needs to be changed depending on the tool diameter. It is good to set it as the range of H value and 1 / 100D <= H <= 1 / 10D.

本発明例1から12の仕上げ用ラジアスエンドミルのインサートを超硬合金にて作製し、金型加工を想定し、被削材表面に傾斜部と平坦部とを併せ持つ倣い加工における切削試験を行った。また、比較例14、15のインサートも作製した。夫々の切刃形状の仕様を表1に示した。また、従来例16のラジアスエンドミルは、工具径がφ30mm、コーナーR切刃の円弧半径が3mmのものを使用し、従来例17のボールエンドミルは、工具径がφ30mm、切刃の円弧半径が15mmのものを使用した。評価対象は、被削材の平坦加工部及び傾斜角5度の加工面部とし、各工具での仕上面の最大表面粗さRmax値を評価した。表1に各工具での最大表面粗さも併記した。なお、切削条件の半径方向切込み量は、試験対象とする工具の直径に対して適切な値を規定し、試験を行った。   The finishing radius end mill inserts of Examples 1 to 12 of the present invention were made of cemented carbide, and a cutting test was performed in a copying process in which both the inclined portion and the flat portion were formed on the surface of the work material, assuming die processing. . In addition, inserts of Comparative Examples 14 and 15 were also produced. The specifications of each cutting edge shape are shown in Table 1. The radius end mill of Conventional Example 16 uses a tool diameter of 30 mm and the corner radius of the cutting edge of the corner R is 3 mm. The Ball End Mill of Conventional Example 17 uses a tool diameter of 30 mm and the radius of the cutting edge of 15 mm. I used one. Evaluation targets were a flat processed portion of the work material and a processed surface portion having an inclination angle of 5 degrees, and the maximum surface roughness Rmax value of the finished surface of each tool was evaluated. Table 1 also shows the maximum surface roughness of each tool. In addition, the cutting amount in the radial direction was determined by specifying an appropriate value for the diameter of the tool to be tested.

Figure 2005319558
Figure 2005319558

(切削条件)
加工方法:倣い加工による仕上げ加工
被削材 :S50C、硬さはHB220
軸方向切込み量:0.3mm
半径方向切込み量:工具直径Dが30mmの時、0.8mm
工具直径Dが20mmの時、0.6mm
工具直径Dが10mmの時、0.4mm
工具直径Dが8mmの時、0.3mm
切削速度:200m/min
1刃当りの送り量:0.375mm/刃
切削油:無し、乾式切削
表1より、本発明例1から4は工具直径をφ30、φ20、φ10、φ8と変化させ、それに伴ってr1値を設定し、その他の工具形状パラメータは同一の値とした工具を製作した。切削試験結果より、本発明が規定したパラメータの範囲内において、工具直径を変化させた場合でも、仕上面最大粗さが10μm以下を示し、良好な被削材の表面状態を得られた。この被削材表面の状態は平坦部、傾斜部共に良好な面粗さであった。これに対して、比較例14及び15は、本発明例1のr1値以外の工具形状パラメータは同一の値とした工具である。表1の結果より、比較例14及び15は、内周刃を備えることによって5度傾斜部の加工に対応はできたものの、比較例14のr1が8.5mmの設定と小さすぎるため、傾斜部において十分なRmaxを得ることが出来なかった。また、比較例14はr1が14mmの設定と大きすぎたため、工具最下点において周速を十分に得ることが出来ず、被削材の表面にキズが発生し、Rmaxが悪化した。
本発明例13は、r1を13.5mmに設定したことにより、被削材表面の面粗さの劣化を満足できるレベルに抑えることができた。また、従来例16では、傾斜部において満足の行く面粗さを得られなかった。これは、工具最下点から回転軸中心に向かう内周刃において、面粗さの改善に対する配慮がなされていないためであると考えられる。従来例17でも、平坦部、傾斜部共に満足の行く面粗さを得られなかった。本発明例5、6は、本発明例1に対してθ1を変えた工具である。本発明例5ではθ1が5度、本発明例6ではθ1が30度として工具の製作を行った。表1より、本発明例5、6は本発明例1よりも若干大きなRmaxを示したが、十分な被削材表面粗さを得ることが出来た。但し、θ1をより大きな値に設定した場合には、より大きなRmaxを示すことが予想される。これは、θ1が30度を超えて大きい場合では、びびり振動やチッピングが発生するためである。一方、θ1が5度未満の場合では、工具の内周切刃と被削材表面との間隔が狭くなり、切屑の噛み込みが発生する不都合が考えられる。
本発明例7はθ2を10度、本発明例8はθ2を45度として工具の製作を行い、本発明例1に対してθ2のみを変化させた。表1の試験結果より、θ2が10≦θ2≦45度の範囲内であれば、良好な仕上面粗さが得られることを確認した。本発明例9から12は、本発明例1のr2値以外の工具形状パラメータは同一の値とした工具である。本発明例9はr2を0.02mm、本発明例10はr2を0.2mm、本発明例11はr2を4mm、本発明例12はr2を6mmとした。表1より、本発明例9では、工具最下点の工具切刃稜線がr1からr2に変化する点において、r2が小さすぎるために平坦部の加工において被削材表面にキズが発生した。また、本発明例10では、本発明例9のr2よりも大きな値であったため、被削材表面にキズは発生せず、良好な面粗さを示した。本発明例11では、本発明例10と同様に、良好な被削材面粗さを示したが、本発明例12では、切屑の噛み込みによるキズが発生し、被削材の面粗さに悪影響を与えた。
(Cutting conditions)
Machining method: Finishing by profiling Work material: S50C, hardness is HB220
Axial depth of cut: 0.3 mm
Radial depth of cut: 0.8mm when tool diameter D is 30mm
0.6mm when tool diameter D is 20mm
0.4mm when tool diameter D is 10mm
0.3mm when tool diameter D is 8mm
Cutting speed: 200 m / min
Feed per tooth: 0.375 mm / blade Cutting oil: None, dry cutting From Table 1, Examples 1 to 4 of the present invention change the tool diameter to φ30, φ20, φ10, and φ8, and accordingly change the r1 value. The tool was set with the same values for the other tool shape parameters. From the cutting test results, even when the tool diameter was changed within the parameter range defined by the present invention, the finished surface maximum roughness was 10 μm or less, and a good surface condition of the work material was obtained. The surface condition of the work material was good surface roughness for both the flat part and the inclined part. On the other hand, Comparative Examples 14 and 15 are tools in which the tool shape parameters other than the r1 value of Example 1 of the present invention have the same value. From the results of Table 1, although Comparative Examples 14 and 15 were able to cope with the machining of the 5-degree inclined portion by providing the inner peripheral blade, the r1 of Comparative Example 14 was too small with the setting of 8.5 mm, A sufficient Rmax could not be obtained in the part. In Comparative Example 14, r1 was too large at a setting of 14 mm, so that a sufficient peripheral speed could not be obtained at the lowest point of the tool, scratches were generated on the surface of the work material, and Rmax was deteriorated.
In Invention Example 13, by setting r1 to 13.5 mm, the deterioration of the surface roughness of the work material surface could be suppressed to a satisfactory level. In Conventional Example 16, satisfactory surface roughness could not be obtained at the inclined portion. This is considered to be because no consideration is given to the improvement of the surface roughness at the inner peripheral blade from the tool lowest point toward the center of the rotation axis. Even in Conventional Example 17, satisfactory surface roughness could not be obtained for both the flat portion and the inclined portion. Invention Examples 5 and 6 are tools in which θ1 is changed from that of Invention Example 1. In Example 5 of the present invention, θ1 was 5 degrees, and in Example 6 of the present invention, θ1 was 30 degrees. From Table 1, Invention Examples 5 and 6 showed Rmax slightly larger than Invention Example 1, but sufficient work material surface roughness was obtained. However, when θ1 is set to a larger value, a larger Rmax is expected. This is because chatter vibration and chipping occur when θ1 exceeds 30 degrees. On the other hand, when θ1 is less than 5 degrees, the interval between the inner peripheral cutting edge of the tool and the surface of the work material is narrowed, and there is a problem that chip biting occurs.
Inventive example 7 manufactured the tool by setting θ2 to 10 degrees, and in inventive example 8 to θ2 of 45 degrees, and only θ2 was changed with respect to inventive example 1. From the test results shown in Table 1, it was confirmed that a good finished surface roughness could be obtained if θ2 was in the range of 10 ≦ θ2 ≦ 45 degrees. Inventive Examples 9 to 12 are tools in which the tool shape parameters other than the r2 value of Inventive Example 1 have the same value. Invention Example 9 had r2 of 0.02 mm, Invention Example 10 had r2 of 0.2 mm, Invention Example 11 had r2 of 4 mm, and Invention Example 12 had r2 of 6 mm. From Table 1, in Example 9 of the present invention, at the point where the tool cutting edge ridge line at the lowest point of the tool changed from r1 to r2, since r2 was too small, scratches were generated on the surface of the work material during machining of the flat portion. In Inventive Example 10, since the value was larger than r2 in Inventive Example 9, no scratch was generated on the surface of the work material, and good surface roughness was exhibited. In Inventive Example 11, similar to Inventive Example 10, good work material surface roughness was shown, but in Inventive Example 12, scratches due to chip biting occurred and the surface roughness of the work material was shown. Adversely affected.

図1は、本発明の刃先交換式仕上げ用ラジアスエンドミルの正面図を示す。FIG. 1 shows a front view of a radius end mill for finish replacement according to the present invention. 図2は、本発明のインサートの正面図を示す。FIG. 2 shows a front view of the insert of the present invention. 図3は、図2に示すインサートの側面図を示す。FIG. 3 shows a side view of the insert shown in FIG. 図4は、図2に示すインサートに符号を付けた説明図を示す。FIG. 4 shows an explanatory diagram in which the reference numerals are assigned to the inserts shown in FIG. 図5は、図2に示すインサートの最下点近傍を拡大した説明図を示す。FIG. 5 shows an enlarged explanatory view of the vicinity of the lowest point of the insert shown in FIG. 図6は、図2に示すインサートの外周刃近傍を拡大した説明図を示す。6 shows an enlarged explanatory view of the vicinity of the outer peripheral edge of the insert shown in FIG. 図7は、図6に示すインサートのB−B断面図を示す。7 shows a BB cross-sectional view of the insert shown in FIG.

符号の説明Explanation of symbols

1:刃先交換式仕上げ用ラジアスエンドミル
2:ホルダー部
3:インサート
4:止めネジ
5:ネジ穴
6:直刃形状切刃
D:工具直径
H:切刃稜線部から2番逃げの開始点までの距離
L1:直線状外周刃
L2:直線状内周刃
R1a:円弧状外周刃
R1b:円弧状外周刃
R2:円弧状内周刃
a:最外周点
b:R1a領域とR1b領域との境界点
c:最下点
d:内周刃上の点
e:工具回転軸と内周刃との交点
f:円弧状外周刃の円弧中心点
g:円弧状内周刃の円弧中心点
r1:円弧状外周刃の円弧半径
r2:円弧状内周刃の円弧半径
β:バックテーパ角
θ1:最下点cの接線と点dの接線とのなす角度
θ2:R1bの中心角
θ3:逃げ角
θ4:2番逃げ角
1: Radius end mill for exchangeable cutting edge 2: Holder part 3: Insert 4: Set screw 5: Screw hole 6: Straight blade-shaped cutting edge D: Tool diameter H: From the edge of the cutting edge to the starting point of the second relief Distance L1: Linear outer peripheral edge L2: Linear inner peripheral edge R1a: Arc-shaped outer peripheral edge R1b: Arc-shaped outer peripheral edge R2: Arc-shaped inner peripheral edge a: Outermost peripheral point b: Boundary point between R1a region and R1b region c : Lowest point d: point on inner peripheral edge e: intersection of tool rotation axis and inner peripheral edge f: arc center point of arc outer peripheral edge g: arc center point of arc inner peripheral edge r1: arc outer periphery Arc radius of the blade r2: Arc radius of the arc-shaped inner peripheral blade β: Back taper angle θ1: Angle formed by the tangent of the lowest point c and the tangent of the point d θ2: Center angle of R1b θ3: Escape angle θ4: No. 2 Clearance angle

Claims (2)

軸線回りに回転される工具本体の先端部に、該軸線を含む平面方向に延びるスリット状のインサート取付座が形成され、このインサート取付座に、外周側に略円弧状に延びる切刃を備えたインサートが、該切刃を工具先端側に突出させて着脱可能に取り付けられてなる刃先交換式仕上げ用ラジアスエンドミルにおいて、該インサートの切刃の形状は、外周側の該円弧状切刃の半径をr1とし、工具直径をDとした時、0.31D≦r1≦0.45D、D≧8mmで形成され、該円弧状切刃の最下点において同一接線を有し、回転軸中心に向かう内周刃の半径がr2を有する他の円弧状切刃が形成され、r1>r2の関係を有して形成されていることを特徴とする刃先交換式仕上げ用ラジアスエンドミル。 A slit-like insert mounting seat extending in the plane direction including the axis is formed at the tip of the tool body rotated around the axis, and the insert mounting seat has a cutting edge extending in a substantially arc shape on the outer peripheral side. In a radius end mill for exchangeable cutting edges, in which the insert is detachably attached with the cutting edge protruding toward the tool tip side, the shape of the cutting edge of the insert is the radius of the arcuate cutting edge on the outer peripheral side. When r1 and the tool diameter is D, it is formed with 0.31D ≦ r1 ≦ 0.45D, D ≧ 8 mm, and has the same tangent at the lowest point of the arcuate cutting edge, and is the inner part toward the rotation axis center. A radius end mill for exchangeable cutting edges, characterized in that another arcuate cutting edge having a radius of peripheral edge r2 is formed and has a relation of r1> r2. 請求項1記載の刃先交換式仕上げ用ラジアスエンドミルにおいて、該インサートの該他の円弧状切刃の半径r2が、0.1≦r2≦5(mm)の関係を有して形成されていることを特徴とする刃先交換式仕上げ用ラジアスエンドミル。
The radius end mill for blade edge replaceable finishing according to claim 1, wherein the radius r2 of the other arcuate cutting edge of the insert is formed to have a relationship of 0.1≤r2≤5 (mm). A radius end mill for finishing with replaceable blades.
JP2004141227A 2004-05-11 2004-05-11 Cutting edge replaceable-type finishing radius end mill Pending JP2005319558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004141227A JP2005319558A (en) 2004-05-11 2004-05-11 Cutting edge replaceable-type finishing radius end mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004141227A JP2005319558A (en) 2004-05-11 2004-05-11 Cutting edge replaceable-type finishing radius end mill

Publications (1)

Publication Number Publication Date
JP2005319558A true JP2005319558A (en) 2005-11-17

Family

ID=35467206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004141227A Pending JP2005319558A (en) 2004-05-11 2004-05-11 Cutting edge replaceable-type finishing radius end mill

Country Status (1)

Country Link
JP (1) JP2005319558A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009056533A (en) * 2007-08-31 2009-03-19 Hitachi Tool Engineering Ltd Long neck radius endmill
JP2009202239A (en) * 2008-02-26 2009-09-10 Kyocera Corp Rotary tool
JP2010110859A (en) * 2008-11-06 2010-05-20 Dijet Ind Co Ltd Cutting edge exchange type end mill and throw away tip
JP2010162677A (en) * 2009-01-19 2010-07-29 Hitachi Tool Engineering Ltd Small-diameter cbn ball end mill
EP2422907A1 (en) 2010-08-27 2012-02-29 Sandvik Intellectual Property AB A milling insert, a tool and a device for milling
JP2013511394A (en) * 2009-11-17 2013-04-04 ケンナメタル インコーポレイテッド Optimization of the cutting edge shape of a rounded nose end mill
US20160074947A1 (en) * 2014-09-15 2016-03-17 Iscar, Ltd. End Mill Convex Radial Relief Surface and Corner Having Circular Arc Profile
JP2021504157A (en) * 2017-11-30 2021-02-15 イスカル リミテッド Milling inserts capable of single-sided three-way indexing with a high ratio of void volume to material volume and insert mills for that purpose

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009056533A (en) * 2007-08-31 2009-03-19 Hitachi Tool Engineering Ltd Long neck radius endmill
JP2009202239A (en) * 2008-02-26 2009-09-10 Kyocera Corp Rotary tool
JP2010110859A (en) * 2008-11-06 2010-05-20 Dijet Ind Co Ltd Cutting edge exchange type end mill and throw away tip
JP2010162677A (en) * 2009-01-19 2010-07-29 Hitachi Tool Engineering Ltd Small-diameter cbn ball end mill
JP2013511394A (en) * 2009-11-17 2013-04-04 ケンナメタル インコーポレイテッド Optimization of the cutting edge shape of a rounded nose end mill
US9308591B2 (en) 2009-11-17 2016-04-12 Leonid B. Sharivker Optimization of cutting edge geometry in rounded nose end mills
CN102407370A (en) * 2010-08-27 2012-04-11 山特维克知识产权股份有限公司 Milling insert and tool and device for milling
EP2422907A1 (en) 2010-08-27 2012-02-29 Sandvik Intellectual Property AB A milling insert, a tool and a device for milling
US8596934B2 (en) 2010-08-27 2013-12-03 Sandvik Intellectual Property Ab Milling insert, a tool and a device for milling
US20160074947A1 (en) * 2014-09-15 2016-03-17 Iscar, Ltd. End Mill Convex Radial Relief Surface and Corner Having Circular Arc Profile
US9517515B2 (en) * 2014-09-15 2016-12-13 Iscar, Ltd. End mill convex radial relief surface and corner having circular arc profile
JP2021504157A (en) * 2017-11-30 2021-02-15 イスカル リミテッド Milling inserts capable of single-sided three-way indexing with a high ratio of void volume to material volume and insert mills for that purpose
JP7324750B2 (en) 2017-11-30 2023-08-10 イスカル リミテッド Single-sided, three-way indexable milling insert with high void volume to material volume ratio and insert mill therefor

Similar Documents

Publication Publication Date Title
JP4304935B2 (en) Cutting tools and throwaway inserts
JP5088678B2 (en) Long neck radius end mill
JP5614511B2 (en) Ball end mill and insert
JP2007030074A (en) Radius end mill and cutting method
JP7342027B2 (en) turning inserts
KR20110135853A (en) Cutting tip replacement type rotary tool
JPWO2011092883A1 (en) Cutting insert, cutting tool, and method of manufacturing a cut product using the same
JP2008279547A (en) Groove working method and formed rotary cutting tool
JP2011073129A (en) Boring drill
JP2005111651A (en) Tip, milling cutter, and machining method using the same
KR101617972B1 (en) Drill body of indexable drill
JP6318579B2 (en) Insert and insertable ball end mill with insert
JP2005319558A (en) Cutting edge replaceable-type finishing radius end mill
CN105710427B (en) Milling cutter tool and machining method using same
JP5939208B2 (en) Ball end mill
JP2010076088A (en) Cutting tool
JP2009184043A (en) Stepped twist drill and method of manufacturing the same
JP6179165B2 (en) Radius end mill
JPWO2018074542A1 (en) Cutting insert and cutting edge exchangeable rotary cutting tool
JP2006088232A (en) Ball end mill
JP2009184044A (en) Stepped twist drill and method of manufacturing the same
JP6930245B2 (en) Cutting insert
JP2005319544A (en) Hole machining tool, and method of grinding outer periphery of the tool
US7540696B1 (en) Spot drilling insert
JP2013013962A (en) Cbn end mill

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080307

A521 Written amendment

Effective date: 20080502

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081128