JP2005314157A - Silicon carbide sintered compact and semiconductor using the same, and member for liquid crystal-manufacturing apparatus - Google Patents

Silicon carbide sintered compact and semiconductor using the same, and member for liquid crystal-manufacturing apparatus Download PDF

Info

Publication number
JP2005314157A
JP2005314157A JP2004133488A JP2004133488A JP2005314157A JP 2005314157 A JP2005314157 A JP 2005314157A JP 2004133488 A JP2004133488 A JP 2004133488A JP 2004133488 A JP2004133488 A JP 2004133488A JP 2005314157 A JP2005314157 A JP 2005314157A
Authority
JP
Japan
Prior art keywords
silicon carbide
carbide sintered
sintered body
boron
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004133488A
Other languages
Japanese (ja)
Inventor
Hidehiko Tanaka
英彦 田中
Hiroyuki Matsuo
裕之 松尾
Yoshitaka Ichikawa
佳孝 市川
Yukio Kishi
幸男 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd, National Institute for Materials Science filed Critical Nihon Ceratec Co Ltd
Priority to JP2004133488A priority Critical patent/JP2005314157A/en
Publication of JP2005314157A publication Critical patent/JP2005314157A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Ceramic Products (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a closely packed silicon carbide sintered compact with very little vacancy and a semiconductor using the same, and to provide a member for liquid crystal-manufacturing apparatus. <P>SOLUTION: The silicon carbide sintered compact comprises, as a sintering aid, aluminum and/or an aluminum compound, boron and/or a boron compound, and carbon and/or a compound which can be carbonized, wherein the silicon carbide sintered compact has a relative density of 98% or more. A reflective coating having a reflectance of 75% or more can be easily formed by polishing the surface of the silicon carbide sintered compact to a mirror polished surface having a center line average roughness (Ra) of 15 nm or less. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高緻密な炭化珪素焼結体およびそれを用いた半導体および液晶製造装置用部材に関する。   The present invention relates to a high-density silicon carbide sintered body and a semiconductor and liquid crystal manufacturing apparatus member using the same.

精密光学機器等に使用されるミラーは、主として、ガラスやルビー、サファイア等の単結晶セラミックスが使用されている。しかしながら、ガラスを用いたミラーは強度が弱く、割れやすいという問題がある。また、ルビーやサファイア等の単結晶は、製品が高額になるという問題がある。   Mirrors used in precision optical equipment and the like are mainly made of single crystal ceramics such as glass, ruby, and sapphire. However, the mirror using glass has a problem that the strength is weak and the glass is easily broken. In addition, single crystals such as ruby and sapphire have a problem that the product is expensive.

このような問題を解決するために、近年、ミラー等の光学部品に多結晶セラミックスが用いられてきている(例えば、特許文献1参照)。しかしながら、多結晶セラミックスでは、表面を鏡面研磨した際にそのセラミックス自体が有する空孔(ポア)が研磨面に残存し、この鏡面研磨面に金属を蒸着した面の反射率が十分満足するものが得られないという問題がある。
特開平6−300908号公報
In order to solve such problems, in recent years, polycrystalline ceramics have been used for optical parts such as mirrors (see, for example, Patent Document 1). However, in polycrystalline ceramics, when the surface is mirror-polished, the pores of the ceramic itself remain on the polished surface, and the reflectivity of the surface on which the metal is deposited on this mirror-polished surface is sufficiently satisfactory. There is a problem that it cannot be obtained.
JP-A-6-300908

本発明はこのような事情に鑑みてなされたものであり、空孔が極めて少ない高緻密な炭化珪素焼結体を提供することを目的とする。また、本発明は、このような炭化珪素焼結体を用いた半導体および液晶製造装置用部材を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the highly precise | minute silicon carbide sintered compact with very few void | holes. Another object of the present invention is to provide a semiconductor and liquid crystal manufacturing apparatus member using such a silicon carbide sintered body.

本発明によれば、焼結助剤として、アルミニウムおよび/またはアルミニウム化合物と、ホウ素および/またはホウ素化合物と、炭素および/または炭化可能な化合物と、を含む炭化珪素焼結体であって、
相対密度が98%以上であり、その鏡面研磨面の中心線平均粗さ(Ra)が15nm以下であることを特徴とする炭化珪素焼結体、が提供される。
According to the present invention, there is provided a silicon carbide sintered body containing, as a sintering aid, aluminum and / or an aluminum compound, boron and / or a boron compound, and carbon and / or a carbonizable compound,
A silicon carbide sintered body characterized in that the relative density is 98% or more and the center line average roughness (Ra) of the mirror-polished surface is 15 nm or less.

この炭化珪素焼結体は、炭化珪素粉末に、アルミニウム換算量で0.1〜2.5%のアルミニウムまたはアルミニウム化合物と、ホウ素換算量で0.1〜2.0%のホウ素またはホウ素化合物と、炭素換算量で1.0〜4.0%の炭素または炭化可能な化合物を添加して混合し、これを成形して得られた成形体を、少なくともAlを含む液相によって焼結するように1750〜2100℃での不活性ガス雰囲気において焼成したものであることが好ましい。ここで、この焼成は0.1MPa以上の加圧雰囲気で行われることが好ましい。また、炭化珪素焼結体は、前記成形体を前記焼成条件で焼成した後、さらに1750〜2100℃で0.1MPa以上の不活性ガス雰囲気下で熱処理することにより得られたものであることも好ましい。 This silicon carbide sintered body is obtained by adding 0.1 to 2.5% aluminum or aluminum compound in terms of aluminum and 0.1 to 2.0% boron or boron compound in terms of boron to silicon carbide powder. A liquid phase containing at least Al 8 B 4 C 7 is obtained by adding and mixing 1.0 to 4.0% carbon or a carbonizable compound in terms of carbon and mixing the mixture. It is preferable that it is fired in an inert gas atmosphere at 1750 to 2100 ° C. so as to sinter. Here, this firing is preferably performed in a pressurized atmosphere of 0.1 MPa or more. In addition, the silicon carbide sintered body may be obtained by firing the molded body under the firing conditions and then performing a heat treatment at 1750 to 2100 ° C. in an inert gas atmosphere of 0.1 MPa or more. preferable.

本発明によれば、上記炭化珪素焼結体からなることを特徴とする半導体および液晶製造装置用部材、が提供される。
この半導体および液晶製造装置用部材の好適な例としては、炭化珪素焼結体の所定の面が鏡面研磨処理され、その鏡面研磨面に反射率が75%以上となる金属膜が設けられているミラー部材が挙げられる。
According to the present invention, there is provided a member for a semiconductor and liquid crystal manufacturing apparatus, characterized by comprising the silicon carbide sintered body.
As a preferable example of the semiconductor and liquid crystal manufacturing apparatus member, a predetermined surface of the silicon carbide sintered body is mirror-polished, and a metal film having a reflectance of 75% or more is provided on the mirror-polished surface. A mirror member is mentioned.

本発明に係る炭化珪素焼結体は、空孔が極めて少なく、高緻密で表面粗さが小さいために、反射率の高い金属膜を形成することが容易となる。   Since the silicon carbide sintered body according to the present invention has very few pores, is highly dense, and has a small surface roughness, it is easy to form a metal film having a high reflectance.

以下、本発明について詳細に説明する。本発明に係る炭化珪素焼結体は、炭化珪素粉末に、焼結助剤としてアルミニウムおよび/またはアルミニウム化合物(つまり、アルミニウムとアルミニウム化合物の一方か両方)と、ホウ素および/またはホウ素化合物と、炭素および/または炭化可能な化合物とが含まれる。これは、製造プロセスの焼結段階において、Al組成を主成分とする液相を高温で発生させて、炭化珪素の焼結を促進させるためである。 Hereinafter, the present invention will be described in detail. The silicon carbide sintered body according to the present invention includes silicon carbide powder, aluminum and / or aluminum compound (that is, one or both of aluminum and aluminum compound), boron and / or boron compound, and carbon as a sintering aid. And / or carbonizable compounds. This is to promote the sintering of silicon carbide by generating a liquid phase mainly composed of Al 8 B 4 C 7 at a high temperature in the sintering stage of the manufacturing process.

アルミニウム化合物としてはAl、AlB、AlB12が、ホウ素化合物としてはBCが、炭素としては黒鉛粉末が、炭化可能な化合物としてはフェノール樹脂等の各種樹脂材料が、それぞれ好適に用いられる。 As the aluminum compound, Al 3 C 4 , AlB 2 , and AlB 12 are preferable, B 4 C as the boron compound, graphite powder as the carbon, and various resin materials such as a phenol resin as the carbonizable compound, respectively. Used.

これら焼結助剤の添加量は、アルミニウム換算量で0.1〜2.5%、ホウ素換算量で0.1〜2.0%、炭素換算量で1.0〜4.0%とすることが好ましい。焼結助剤がこの範囲よりも少ない場合は、焼結中にAl組成を主成分とする液相が生成せず、緻密な焼結体を得ることが困難である。また焼結助剤がこの範囲よりも多い場合は、炭化珪素粒子が過度に粗大化するために、鏡面研磨面の中心線平均粗さ(Ra)を15nm以下とすることが困難となる。 The addition amount of these sintering aids is 0.1 to 2.5% in terms of aluminum, 0.1 to 2.0% in terms of boron, and 1.0 to 4.0% in terms of carbon. It is preferable. When the sintering aid is less than this range, a liquid phase mainly composed of the Al 8 B 4 C 7 composition is not generated during sintering, and it is difficult to obtain a dense sintered body. When the sintering aid is larger than this range, the silicon carbide particles are excessively coarsened, so that it is difficult to set the center line average roughness (Ra) of the mirror-polished surface to 15 nm or less.

本発明に係る炭化珪素焼結体は、相対密度が98%以上であり、その鏡面研磨面の中心線平均粗さ(Ra)を15nm以下とする。これにより、この鏡面研磨面に金属を蒸着して反射膜を形成した場合に、精密光学機器等に使用されるミラーとして好適な光学的特性である75%以上という反射率を得ることが容易となる。   The silicon carbide sintered body according to the present invention has a relative density of 98% or more, and the center line average roughness (Ra) of the mirror-polished surface is 15 nm or less. As a result, when a reflective film is formed by depositing metal on this mirror-polished surface, it is easy to obtain a reflectance of 75% or more, which is an optical characteristic suitable as a mirror used in precision optical equipment and the like. Become.

本発明に係る炭化珪素焼結体の製造方法は、次の通りである。最初に、炭化珪素粉末に、アルミニウム換算量で0.1〜2.5%のアルミニウムまたはアルミニウム化合物と、ホウ素換算量で0.1〜2.0%のホウ素またはホウ素化合物と、炭素換算量で1.0〜4.0%の炭素または炭化可能な化合物を添加して混合し、これを公知の成形方法、例えば、一軸プレス成形やCIP成形により所定の形状に成形する。   The manufacturing method of the silicon carbide sintered body according to the present invention is as follows. First, in silicon carbide powder, 0.1 to 2.5% aluminum or aluminum compound in terms of aluminum, 0.1 to 2.0% boron or boron compound in terms of boron, and carbon equivalent 1.0 to 4.0% of carbon or a carbonizable compound is added and mixed, and this is molded into a predetermined shape by a known molding method such as uniaxial press molding or CIP molding.

こうして作製した成形体を焼成処理する。その方法としては、(a)少なくともAlを含む液相によって焼結するように1750〜2100℃での不活性ガス雰囲気において焼成する方法、(b)前記(a)の焼成を0.1MPa以上の加圧雰囲気で行う方法、(c)前記(a)により得られた炭化珪素焼結体をさらに1750〜2100℃で0.1MPa以上の不活性ガス雰囲気下で熱処理する方法、が好適に用いられる。なお、前記(a)は、所謂、常圧焼結法である。前記(b)の処理方法を、以下、「直接加圧熱処理法」といい、前記(c)の処理方法を、以下、「間接加圧熱処理法」ということとする。 The molded body thus produced is fired. The method includes (a) a method of firing in an inert gas atmosphere at 1750 to 2100 ° C. so as to sinter in a liquid phase containing at least Al 8 B 4 C 7 , and (b) the firing of (a). A method of performing in a pressurized atmosphere of 0.1 MPa or more, (c) a method of further heat-treating the silicon carbide sintered body obtained by the above (a) at 1750 to 2100 ° C. in an inert gas atmosphere of 0.1 MPa or more, Are preferably used. Note that (a) is a so-called atmospheric pressure sintering method. Hereinafter, the treatment method (b) is referred to as “direct pressure heat treatment method”, and the treatment method (c) is hereinafter referred to as “indirect pressure heat treatment method”.

炭化珪素の焼成温度を1750〜2100℃としたのは、1750℃より低い場合には緻密な炭化珪素焼結体が得られ難く、一方、2100℃より高い場合には炭化珪素粒子が粗大化し過ぎてしまうために、後に鏡面研磨を行う際に中心線平均粗さ(Ra)を15nm以下とすることが困難になるためである。また、焼結工程は、所定の密度が得られる限りにおいて、常圧焼結法を用いることが製造コスト面では有利である。直接加圧熱処理法や間接加圧熱処理法では、常圧焼結法と比較して製造コストは高くなるが、より高緻密の焼結体を得られるという利点がある。なお、直接加圧熱処理法と間接加圧熱処理法では、不活性ガス雰囲気の圧力を0.1PMa未満とすると、気孔を消滅させる効果が得られ難い。   The reason why the firing temperature of silicon carbide is 1750 to 2100 ° C. is that when it is lower than 1750 ° C., it is difficult to obtain a dense silicon carbide sintered body, whereas when it is higher than 2100 ° C., silicon carbide particles are too coarse. Therefore, when mirror polishing is performed later, it is difficult to make the center line average roughness (Ra) 15 nm or less. In addition, as long as a predetermined density is obtained, it is advantageous in terms of production cost to use the atmospheric pressure sintering method in the sintering process. The direct pressure heat treatment method and the indirect pressure heat treatment method have a manufacturing cost higher than that of the normal pressure sintering method, but have an advantage that a denser sintered body can be obtained. In the direct pressure heat treatment method and the indirect pressure heat treatment method, if the pressure of the inert gas atmosphere is less than 0.1 PMa, it is difficult to obtain the effect of eliminating the pores.

次に、本発明を実施例および比較例により具体的に説明する。
(試料製造方法)
原料の炭化珪素粉末に、下記表1に示した各種の焼結助剤と、成形助剤(バインダー)としてのポリビニルブチラールと、2−プロパノールを所定量添加し、混合した。次いで、こうして得られたスラリーをスプレードライヤーで顆粒とし、得られた顆粒をCIP成形した。得られた成形体を、非酸化物セラミックスの焼結に好適に用いられる炭素抵抗加熱炉を用い、アルゴン雰囲気下、表1に示した温度条件で焼結した。
Next, the present invention will be specifically described with reference to examples and comparative examples.
(Sample manufacturing method)
A predetermined amount of various sintering aids shown in Table 1 below, polyvinyl butyral as a molding aid (binder), and 2-propanol were added to the raw material silicon carbide powder and mixed. Next, the slurry thus obtained was granulated with a spray dryer, and the obtained granule was CIP-molded. The obtained molded body was sintered under a temperature condition shown in Table 1 in an argon atmosphere using a carbon resistance heating furnace suitably used for sintering non-oxide ceramics.

なお、一般的に炭化珪素粉末は不純物として酸化珪素を含んでおり、この酸化珪素は炭化珪素の焼結を阻害する。そこで、酸化珪素による焼結阻害を防止するために、1400℃から1600℃までの間は真空雰囲気として数時間保持することにより、酸化珪素を顆粒中のCと反応させる。その後、1600℃以上では再びアルゴン雰囲気に戻す。   In general, silicon carbide powder contains silicon oxide as an impurity, and this silicon oxide inhibits the sintering of silicon carbide. Therefore, in order to prevent sintering inhibition due to silicon oxide, silicon oxide is reacted with C in the granules by maintaining a vacuum atmosphere for several hours between 1400 ° C. and 1600 ° C. Thereafter, the atmosphere is returned to the argon atmosphere again at 1600 ° C. or higher.

(評価方法)
得られた焼結体の相対密度はアルキメデス法により、焼結体中のAl相の同定はXRDにより、鏡面研磨面の中心線平均粗さ(Ra)は接触式表面粗さ計により、それぞれ評価した。また、焼結体の鏡面研磨面にAl膜を蒸着し、その面に633nmの波長の光をあててその反射率を測定した。
(Evaluation methods)
The relative density of the obtained sintered body was determined by the Archimedes method, the Al 8 B 4 C 7 phase in the sintered body was identified by XRD, and the center line average roughness (Ra) of the mirror-polished surface was the contact surface roughness. Each was evaluated by the total. Further, an Al film was deposited on the mirror polished surface of the sintered body, and the reflectance was measured by applying light having a wavelength of 633 nm to the surface.

(試験結果)
試験結果を表1に並記する。表1から明らかなように、実施例1〜7では75%以上の良好な反射率を示し、特に直接加圧熱処理法または間接加圧熱処理法により作製された実施例4〜7では、高い相対密度および85%以上の高い反射率を示した。
(Test results)
The test results are listed in Table 1. As is apparent from Table 1, Examples 1 to 7 show a good reflectance of 75% or more, and in Examples 4 to 7 produced by the direct pressure heat treatment method or the indirect pressure heat treatment method, in particular, a high relative The density and high reflectivity of 85% or more were shown.

これに対して比較例1〜6では、緻密な焼結体を得ることができなかった。比較例1〜3では焼結体中にAlが認められなかったことから、アルミニウム成分、ホウ素成分、カーボン成分のいずれかの添加量が少ないために、焼結中にAlが生成せず、緻密化が進まなかったものと考えられる。一方、比較例4〜6では、アルミニウム成分、ホウ素成分、カーボン成分のいずれかの添加量が必要以上であるために、炭化珪素粒子の粗大化が過度に進行し、このために鏡面研磨面の中心線平均粗さ(Ra)を15nm以下に加工することができず、75%より低い反射率を示した。 In contrast, in Comparative Examples 1 to 6, a dense sintered body could not be obtained. In Comparative Examples 1 to 3, since Al 8 B 4 C 7 was not observed in the sintered body, the amount of any of the aluminum component, boron component, and carbon component was small, so that Al 8 B It is considered that B 4 C 7 was not generated and densification did not proceed. On the other hand, in Comparative Examples 4 to 6, since the addition amount of any one of the aluminum component, boron component, and carbon component is more than necessary, the coarsening of the silicon carbide particles proceeds excessively. The center line average roughness (Ra) could not be processed to 15 nm or less, and the reflectance was lower than 75%.

比較例7では焼成温度が低いために、比較例9では加圧熱処理温度が低いために、ともに緻密化が不十分であった。比較例8,10,11では98%以上の相対密度が得られたが、比較例8では焼成温度が高いために、比較例10,11では加圧熱処理温度が高いために、ともに炭化珪素粒子が粗大化し過ぎ、このために鏡面研磨面の中心線平均粗さ(Ra)を15nm以下に加工することができず、75%より低い反射率を示した。   In Comparative Example 7, the firing temperature was low, and in Comparative Example 9, the pressure heat treatment temperature was low. In Comparative Examples 8, 10, and 11, a relative density of 98% or more was obtained. However, in Comparative Example 8, the firing temperature was high, and in Comparative Examples 10 and 11, the pressure heat treatment temperature was high. Thus, the center line average roughness (Ra) of the mirror-polished surface could not be processed to 15 nm or less, and the reflectance was lower than 75%.

Figure 2005314157
Figure 2005314157

本発明は、露光装置におけるステージ位置測定用ミラー等、精密光学機器用のミラーに好適である。   The present invention is suitable for a mirror for precision optical equipment such as a stage position measuring mirror in an exposure apparatus.

Claims (6)

焼結助剤として、アルミニウムおよび/またはアルミニウム化合物と、ホウ素および/またはホウ素化合物と、炭素および/または炭化可能な化合物と、を含む炭化珪素焼結体であって、
相対密度が98%以上であり、その鏡面研磨面の中心線平均粗さ(Ra)が15nm以下であることを特徴とする炭化珪素焼結体。
A silicon carbide sintered body containing, as a sintering aid, aluminum and / or an aluminum compound, boron and / or a boron compound, and carbon and / or a carbonizable compound,
A silicon carbide sintered body having a relative density of 98% or more and a center line average roughness (Ra) of the mirror-polished surface of 15 nm or less.
炭化珪素粉末に、アルミニウム換算量で0.1〜2.5%のアルミニウムまたはアルミニウム化合物と、ホウ素換算量で0.1〜2.0%のホウ素またはホウ素化合物と、炭素換算量で1.0〜4.0%の炭素または炭化可能な化合物を添加して混合し、これを成形して得られた成形体を、少なくともAlを含む液相によって焼結するように1750〜2100℃での不活性ガス雰囲気において焼成したものであることを特徴とする請求項1に記載の炭化珪素焼結体。 To silicon carbide powder, 0.1 to 2.5% aluminum or aluminum compound in terms of aluminum, 0.1 to 2.0% boron or boron compound in terms of boron, and 1.0 in terms of carbon was added to 4.0% carbon or carbonizable compounds are mixed, 1750~ a molded body obtained by molding this to sinter by liquid phase containing at least Al 8 B 4 C 7 The silicon carbide sintered body according to claim 1, wherein the sintered body is fired in an inert gas atmosphere at 2100 ° C. 前記焼成が0.1MPa以上の加圧雰囲気で行われたことを特徴とする請求項2に記載の炭化珪素焼結体。   The silicon carbide sintered body according to claim 2, wherein the firing is performed in a pressurized atmosphere of 0.1 MPa or more. 炭化珪素粉末に、アルミニウム換算量で0.1〜2.5%のアルミニウムまたはアルミニウム化合物と、ホウ素換算量で0.1〜2.0%のホウ素またはホウ素化合物と、炭素換算量で1.0〜4.0%の炭素または炭化可能な化合物を添加して混合し、これを成形して得られた成形体を、少なくともAlを含む液相によって焼結するように1750〜2100℃での不活性ガス雰囲気において焼成し、さらに1750〜2100℃で0.1MPa以上の不活性ガス雰囲気下で熱処理することにより得られたものであることを特徴とする請求項1に記載の炭化珪素焼結体。 To silicon carbide powder, 0.1 to 2.5% aluminum or aluminum compound in terms of aluminum, 0.1 to 2.0% boron or boron compound in terms of boron, and 1.0 in terms of carbon was added to 4.0% carbon or carbonizable compounds are mixed, 1750~ a molded body obtained by molding this to sinter by liquid phase containing at least Al 8 B 4 C 7 It is obtained by baking in an inert gas atmosphere at 2100 ° C, and further heat-treating at 1750-2100 ° C in an inert gas atmosphere of 0.1 MPa or more. Silicon carbide sintered body. 請求項1から請求項4のいずれか1項の炭化珪素焼結体からなることを特徴とする半導体および液晶製造装置用部材。   A member for a semiconductor and liquid crystal manufacturing apparatus, comprising the silicon carbide sintered body according to any one of claims 1 to 4. 前記炭化珪素焼結体の所定の面が鏡面研磨処理され、その鏡面研磨面に反射率が75%以上となる金属膜が設けられていることを特徴とする請求項5に記載の半導体および液晶製造装置用部材。   6. The semiconductor and the liquid crystal according to claim 5, wherein a predetermined surface of the silicon carbide sintered body is mirror-polished, and a metal film having a reflectance of 75% or more is provided on the mirror-polished surface. Manufacturing equipment member.
JP2004133488A 2004-04-28 2004-04-28 Silicon carbide sintered compact and semiconductor using the same, and member for liquid crystal-manufacturing apparatus Pending JP2005314157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004133488A JP2005314157A (en) 2004-04-28 2004-04-28 Silicon carbide sintered compact and semiconductor using the same, and member for liquid crystal-manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004133488A JP2005314157A (en) 2004-04-28 2004-04-28 Silicon carbide sintered compact and semiconductor using the same, and member for liquid crystal-manufacturing apparatus

Publications (1)

Publication Number Publication Date
JP2005314157A true JP2005314157A (en) 2005-11-10

Family

ID=35441963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004133488A Pending JP2005314157A (en) 2004-04-28 2004-04-28 Silicon carbide sintered compact and semiconductor using the same, and member for liquid crystal-manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP2005314157A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05246764A (en) * 1991-12-19 1993-09-24 Nippon Steel Corp High-purity dense silicon carbide sintered body, substrate for reflection mirror and production thereof
JPH06300907A (en) * 1993-04-16 1994-10-28 Nippon Steel Corp Parts for optical purpose and x-ray formed by using silicon carbide sintered compact and their production
JPH09268062A (en) * 1996-03-29 1997-10-14 Nippon Steel Corp Silicon carbide sintered compact and its production
JPH11292631A (en) * 1998-04-16 1999-10-26 Natl Inst For Res In Inorganic Materials Low-temperature sintering of silicon carbide powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05246764A (en) * 1991-12-19 1993-09-24 Nippon Steel Corp High-purity dense silicon carbide sintered body, substrate for reflection mirror and production thereof
JPH06300907A (en) * 1993-04-16 1994-10-28 Nippon Steel Corp Parts for optical purpose and x-ray formed by using silicon carbide sintered compact and their production
JPH09268062A (en) * 1996-03-29 1997-10-14 Nippon Steel Corp Silicon carbide sintered compact and its production
JPH11292631A (en) * 1998-04-16 1999-10-26 Natl Inst For Res In Inorganic Materials Low-temperature sintering of silicon carbide powder

Similar Documents

Publication Publication Date Title
JP4987238B2 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and aluminum nitride sintered body manufacturing method
JP6651628B2 (en) High thermal conductivity silicon nitride sintered body and method for producing the same
JPH1045461A (en) Corrosion resistant member
US7566675B2 (en) Corrosion-resistant material manufacturing method
KR100494188B1 (en) Aluminium nitride ceramics, members for use in a system for producing semiconductors, corrosion resistant members and conductive members
JPH02145484A (en) Sintered silicon nitride
JP2012206913A (en) Magnesium fluoride-sintered body, method for manufacturing the same, and member for semiconductor manufacturing apparatus
JPH06300907A (en) Parts for optical purpose and x-ray formed by using silicon carbide sintered compact and their production
JP2001158660A (en) Optically transmitting rare earth-aluminum garnet sintered product and production method therefor
JP4758617B2 (en) High-density silicon carbide ceramics and method for producing the same
WO2015025951A1 (en) Porous ceramic and method for producing same
JP2007283435A (en) Silicon-carbide-based polishing plate, manufacturing method, and polishing method for semiconductor wafer
KR102603574B1 (en) Pressureless sintered SiC ceramics with 1~30 Ωcm electrical resistivity, its composition, and method for producing the same
JP4540598B2 (en) Ceramics for glass molds
JP2002220282A (en) Aluminum nitride sintered compact and method of manufacture
JP2005314157A (en) Silicon carbide sintered compact and semiconductor using the same, and member for liquid crystal-manufacturing apparatus
JP2003246676A (en) Sialon ceramic porous body and manufacturing method thereof
JP2001089270A (en) Method of producing silicon impregnated silicon carbide ceramic member
JP4803877B2 (en) Silicon carbide sintered body and method for producing the same
JP3732966B2 (en) Corrosion resistant material
JP2003292372A (en) Ceramic sintered compact and production method therefor
JP3602931B2 (en) Low hardness silicon nitride sintered body and semiconductor manufacturing parts using the same
JP4936724B2 (en) Silicon nitride sintered body, semiconductor manufacturing apparatus member using the same, and liquid crystal manufacturing apparatus member
JPH09278524A (en) Production of silicon carbide sintered compact
JP2007031269A (en) Machinable glass ceramic and process for production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110803