JP2005310617A - Nonaqueous electrolyte secondary battery and its manufacturing method - Google Patents

Nonaqueous electrolyte secondary battery and its manufacturing method Download PDF

Info

Publication number
JP2005310617A
JP2005310617A JP2004127848A JP2004127848A JP2005310617A JP 2005310617 A JP2005310617 A JP 2005310617A JP 2004127848 A JP2004127848 A JP 2004127848A JP 2004127848 A JP2004127848 A JP 2004127848A JP 2005310617 A JP2005310617 A JP 2005310617A
Authority
JP
Japan
Prior art keywords
electrode plate
positive electrode
group
secondary battery
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004127848A
Other languages
Japanese (ja)
Inventor
Shusaku Goto
周作 後藤
Shinya Yamahira
真也 山平
Takashi Yao
剛史 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004127848A priority Critical patent/JP2005310617A/en
Publication of JP2005310617A publication Critical patent/JP2005310617A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having a high capacity and excellent cycle characteristics and productivity, without causing a capacity drop due to the breakage of an electrode plate in a process to apply compression molding to a group of flat type electrodes having a group constitution, and the breakage of the electrode plate during the repetition of charge and discharge, while the nonaqueous electrolyte secondary battery is equipped with a group of flat type windings comprising a linear portion and a curved portion which are composed of positive and negative electrodes containing active materials capable of reversibly occluding and releasing an lithium ion, and a separator, and a nonaqueous electrolyte. <P>SOLUTION: Before winding the positive electrode, the negative electrode, and the electrolyte to form a group of electrodes, a solvent is brought into contact with a portion corresponding to the curved portion of the positive electrode plate, and the positive electrode plate density of the curved portion is made lower than that of the straight line portion. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、非水電解液二次電池及びその製造方法に関し、さらに詳しくは角形の非水電解液二次電池に関し、高容量でサイクル寿命特性や生産性に優れた非水電解液二次電池およびその製造方法に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery and a method for manufacturing the same, and more particularly to a rectangular non-aqueous electrolyte secondary battery, and relates to a non-aqueous electrolyte secondary battery having high capacity and excellent cycle life characteristics and productivity. And a manufacturing method thereof.

近年、携帯型情報機器の小型軽量化、高性能化の急速な進展により、その駆動電源として、4V級の高い作動電圧を有し、高エネルギー密度化に適した非水電解液二次電池の開発・実用化が積極的に行われている。   In recent years, with the rapid progress of miniaturization, weight reduction, and high performance of portable information devices, non-aqueous electrolyte secondary batteries that have a high operating voltage of 4V as a driving power source and are suitable for high energy density Development and practical use are being actively carried out.

非水電解液二次電池の正極活物質としては、層状岩塩構造を有するLiCoO2、LiNiO2、スピネル構造を有するLiMn24等のリチウム含有遷移金属化合物が用いられており、負極活物質には、天然黒鉛、球状・繊維状の人造黒鉛、難黒鉛化性炭素(ハードカーボン)、易黒鉛化性炭素(ソフトカーボン)等の炭素材料が採用されている。 As the positive electrode active material of the non-aqueous electrolyte secondary battery, lithium-containing transition metal compounds such as LiCoO 2 having a layered rock salt structure, LiNiO 2 , and LiMn 2 O 4 having a spinel structure are used. Employs carbon materials such as natural graphite, spherical and fibrous artificial graphite, non-graphitizable carbon (hard carbon), and graphitizable carbon (soft carbon).

高エネルギー密度化を実現するための有効な手段として、正極活物質の高密度充填化、高容量の負極活物質の採用、セパレータの薄型化の他、極板群構造や機構部品の最適化による取り組みがなされ、エネルギー密度の向上が遂げられている(例えば、特許文献1参照)。   Effective means for realizing high energy density include high density packing of positive electrode active material, adoption of high capacity negative electrode active material, thinning of separator, optimization of electrode plate group structure and mechanical parts Efforts have been made and energy density has been improved (see, for example, Patent Document 1).

例えば、正極活物質の高密度充填化においては、正極板中の結着剤や導電材の量を可能な限り少なくし、極板中の正極活物質量を多くしたり、また群構成前に行う極板圧延工程で、可能な限り高密度充填を行っている。
特開2003−109592号公報
For example, in the high-density filling of the positive electrode active material, the amount of the binder and conductive material in the positive electrode plate is reduced as much as possible, the amount of the positive electrode active material in the electrode plate is increased, or before the group configuration In the electrode plate rolling process, high density filling is performed as much as possible.
JP 2003-109592 A

しかしながら、これらの取組みだけでは高容量でサイクル特性や生産性に優れる非水電解液二次電池を提供することは困難であった。例えば正極活物質以外の結着剤や導電材を減らすと、極板作製や群構成工程で合剤の剥がれが生じたり、サイクル特性などの放電特性が低下するという問題が発生した。   However, it has been difficult to provide a non-aqueous electrolyte secondary battery having high capacity and excellent cycle characteristics and productivity only by these efforts. For example, if the binder and the conductive material other than the positive electrode active material are reduced, there arises a problem that the mixture is peeled off during the electrode plate production and the group constitution process, and the discharge characteristics such as the cycle characteristics are deteriorated.

また、高密度充填化を狙うあまり極板圧延を過度に実施してしまい、極板に大きなダメージが与えられ、特に角形電池において群構成、成形工程で、あるいは充放電を繰り返している間に捲回群の曲線部分の頂点付近で極板が切れ、容量低下を引き起こす場合があった。   In addition, excessively rolling the electrode plate to aim at high density packing, the electrode plate is seriously damaged, and particularly in the case of a square battery, the group structure, the molding process, or while charging and discharging are repeated. In some cases, the electrode plate was cut near the apex of the curved portion of the rotation group, causing a decrease in capacity.

本発明は、このような従来の課題を解決するものであり、特に角形非水電解液二次電池において、高容量でサイクル寿命特性や生産性に優れた非水電解液二次電池及びその製造方法を提供することを目的とする。   The present invention solves such conventional problems, and particularly in a rectangular nonaqueous electrolyte secondary battery, a nonaqueous electrolyte secondary battery having high capacity and excellent cycle life characteristics and productivity, and production thereof It aims to provide a method.

上記の課題を解決するために、本発明の非水電解液二次電池は、リチウムイオンを可逆的に吸蔵・脱離し得る活物質を含有する正極及び負極、セパレータからなる直線部分と曲線部分からなる扁平型の捲回群と、非水電解液とを備える非水電解液二次電池であって、前記曲線部分の正極板密度が直線部分の正極板密度より低くなっていることを特徴とする非水電解液二次電池であり、前記曲線部分の正極板密度が前記捲回群の直線部分の正極板密度より1%以上低いことが好ましい。   In order to solve the above problems, the non-aqueous electrolyte secondary battery of the present invention includes a positive electrode and a negative electrode containing an active material capable of reversibly occluding and desorbing lithium ions, and a linear portion and a curved portion made of a separator. A non-aqueous electrolyte secondary battery comprising a flat wound group and a non-aqueous electrolyte, characterized in that the positive electrode plate density in the curved portion is lower than the positive electrode plate density in the straight portion. Preferably, the positive electrode plate density of the curved portion is 1% or more lower than the positive electrode plate density of the linear portion of the wound group.

また、リチウムイオンを可逆的に吸蔵・脱離し得る活物質を含有する正極及び負極、セパレータからなる略直線部分と曲線部分からなる扁平型の捲回群と、非水電解液とを備える非水電解液二次電池の製造方法であって、極板群に捲回する前に、正極板の曲線部分に相当する部分に溶剤を接触させて、この部分の結着剤をごく僅か膨潤させることにより、直線部分の正極板密度より低くすることを特徴とする非水電解液二次電池の製造方法。   A non-aqueous solution comprising a positive and negative electrodes containing an active material capable of reversibly occluding and desorbing lithium ions, a flat wound group consisting of a substantially linear portion and a curved portion made of a separator, and a non-aqueous electrolyte. A method of manufacturing an electrolyte secondary battery, in which a solvent is brought into contact with a portion corresponding to a curved portion of a positive electrode plate before being wound around the electrode plate group, and the binder in this portion is slightly swollen. The manufacturing method of the nonaqueous electrolyte secondary battery characterized by making it lower than the positive electrode plate density of a linear part.

このように低正極密度部分を捲回群の曲線部分に設けることで、群構成、扁平型の極板群に圧縮成形する工程での極板切れや、あるいは充放電を繰り返している間の極板切れによる容量低下を伴うことなく、高容量でサイクル寿命特性や生産性に優れた非水電解液二次電池を提供することができる。   By providing the low positive electrode density part in the curved part of the winding group in this way, the electrode is broken during the process of compression molding into a group structure, a flat type electrode plate group, or during repeated charging and discharging. It is possible to provide a non-aqueous electrolyte secondary battery having a high capacity and excellent cycle life characteristics and productivity without being accompanied by a reduction in capacity due to cutting of the plate.

本発明によれば、直線部分と曲線部分からなる扁平型の捲回群において曲線部分の正極板密度を直線部分の正極板密度より低くすることにより、群構成、扁平型の極板群に圧縮成形する工程での極板切れや、あるいは充放電を繰り返している間の極板切れによる容量低下を伴うことなく、高容量でサイクル寿命特性や生産性に優れた非水電解液二次電池を提供することができる。   According to the present invention, in a flat wound group consisting of a straight portion and a curved portion, the positive electrode plate density of the curved portion is made lower than the positive electrode plate density of the straight portion, thereby compressing the group structure into a flat electrode plate group. A non-aqueous electrolyte secondary battery with high capacity and excellent cycle life characteristics and productivity without loss of capacity due to electrode breakage in the molding process or electrode plate breakage during repeated charging and discharging. Can be provided.

本発明のリチウム二次電池の形状としては、正極板、負極板及びセパレータからなる捲回群が扁平形である主に角形、扁平形の形状で、例えば図1に示す様な角形非水電解液電池である。この図1の断面図を用いて、本発明の実施の形態について説明する。   As the shape of the lithium secondary battery of the present invention, the wound group consisting of a positive electrode plate, a negative electrode plate and a separator is a flat, mainly rectangular, flat shape, for example, a rectangular non-aqueous electrolysis as shown in FIG. It is a liquid battery. An embodiment of the present invention will be described with reference to the sectional view of FIG.

図1に示すように、正極板14と負極板16とがセパレータ15を介在して楕円状に捲回された極板群が、有底角型の電池ケース11に収容されており、封口板12の内部端子に電気的に接続されており、封口板12と電池ケース11とをレーザー溶接した後、封口板12に設けた注液孔から非水電解液を注液した後、注液栓をレーザーで封口している。   As shown in FIG. 1, an electrode plate group in which a positive electrode plate 14 and a negative electrode plate 16 are wound in an elliptical shape with a separator 15 interposed therebetween is accommodated in a bottomed rectangular battery case 11, and a sealing plate After the sealing plate 12 and the battery case 11 are laser-welded, the nonaqueous electrolyte is injected from the injection hole provided in the sealing plate 12, and then the injection plug Is sealed with a laser.

この正極板14は、アルミニウム製の箔やラス加工やエッチング処理された箔からなる集電体13の片側または両面に正極活物質と結着剤及び導電剤を溶剤に混練分散させたペーストを塗布、乾燥、圧延して作製することができる。そして、正極板14の厚みは130μm〜200μmの厚みで、柔軟性があることが好ましい。   This positive electrode plate 14 is coated with a paste in which a positive electrode active material, a binder and a conductive agent are kneaded and dispersed in a solvent on one side or both sides of a current collector 13 made of an aluminum foil, a lath processed or etched foil, or the like. It can be produced by drying, rolling. The thickness of the positive electrode plate 14 is preferably 130 μm to 200 μm and flexible.

正極活物質としては、例えば、リチウムイオンをゲストとして受け入れ得るリチウム含有遷移金属化合物が使用される。例えば、コバルト、マンガン、ニッケル、クロム、鉄およびバナジウムから選ばれる少なくとも一種類の金属とリチウムとの複合金属酸化物、LiCoO2、LiMnO2、LiNiO2、LiCoxNi(1-x)2(0<x<1)、LiCrO2、αLiFeO2、LiVO2等が好ましい。 As the positive electrode active material, for example, a lithium-containing transition metal compound that can accept lithium ions as a guest is used. For example, a composite metal oxide of at least one metal selected from cobalt, manganese, nickel, chromium, iron, and vanadium and lithium, LiCoO 2 , LiMnO 2 , LiNiO 2 , LiCo x Ni (1-x) O 2 ( 0 <x <1), LiCrO 2 , αLiFeO 2 , LiVO 2 and the like are preferable.

結着剤としては、分散媒に混練分散できるものであれば特に限定されるものではないが、例えば、フッ素系結着材やアクリルゴム、変性アクリルゴム、スチレンーブタジエンゴム(SBR)、アクリル系重合体、ビニル系重合体等を単独、或いは二種類以上の混合物または共重合体として用いることができる。フッ素系結着剤としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデンと六フッ化プロピレンの共重合体やポリテトラフルオロエチレン樹脂のディスパージョンが好ましい。   The binder is not particularly limited as long as it can be kneaded and dispersed in a dispersion medium. For example, a fluorine binder, acrylic rubber, modified acrylic rubber, styrene-butadiene rubber (SBR), acrylic A polymer, a vinyl polymer or the like can be used alone or as a mixture or copolymer of two or more. As the fluorine-based binder, for example, polyvinylidene fluoride, a copolymer of vinylidene fluoride and propylene hexafluoride, and a dispersion of polytetrafluoroethylene resin are preferable.

導電剤としてはアセチレンブラック、グラファイト、炭素繊維等を単独、或いは二種類以上の混合物が好ましく、また必要に応じて増粘剤を加えることができ、増粘剤としてはエチレン−ビニルアルコール共重合体、カルボキシメチルセルロース、メチルセルロースなどが好ましい。   As the conductive agent, acetylene black, graphite, carbon fiber or the like is preferably used alone or as a mixture of two or more kinds, and a thickener can be added as necessary. As the thickener, an ethylene-vinyl alcohol copolymer is used. Carboxymethylcellulose, methylcellulose and the like are preferable.

分散媒としては、結着剤が溶解可能な溶剤が適切で、有機系結着剤の場合は、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、テトラヒドロフラン、ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルスルホルアミド、テトラメチル尿素、アセトン、メチルエチルケトン等の有機溶剤を単独またはこれらを混合した混合溶剤が好ましく、水系結着剤の場合は水または温水が好ましい。   As the dispersion medium, a solvent in which the binder can be dissolved is suitable. In the case of an organic binder, N-methyl-2-pyrrolidone, N, N-dimethylformamide, tetrahydrofuran, dimethylacetamide, dimethyl sulfoxide, hexa An organic solvent such as methylsulfuramide, tetramethylurea, acetone or methyl ethyl ketone is preferably used alone or as a mixed solvent thereof. In the case of an aqueous binder, water or warm water is preferred.

また、上記ペーストの混練分散時に、各種分散剤、界面活性剤、安定剤等を必要に応じて添加することも可能である。   In addition, various dispersants, surfactants, stabilizers, and the like can be added as necessary when the paste is kneaded and dispersed.

塗着乾燥は、特に限定されるものではなく、上記のように混練分散させたスラリー状合剤を、例えば、スリットダイコーター、リバースロールコーター、リップコーター、ブレードコーター、ナイフコーター、グラビアコーター、ディップコーター等を用いて、容易に塗着することができ、自然乾燥に近い乾燥が好ましいが、生産性を考慮すると70℃〜200℃の温度で5時間〜10分間乾燥させるのが好ましい。   The coating and drying is not particularly limited, and the slurry mixture kneaded and dispersed as described above, for example, slit die coater, reverse roll coater, lip coater, blade coater, knife coater, gravure coater, dip It can be easily applied using a coater or the like, and drying close to natural drying is preferable, but considering productivity, it is preferable to dry at a temperature of 70 ° C. to 200 ° C. for 5 hours to 10 minutes.

圧延は、ロールプレス機によって所定の厚みになるまで、線圧1000〜2000kg/cmで数回圧延を行うか、線圧を変えて圧延するのが好ましい。   Rolling is preferably performed several times at a linear pressure of 1000 to 2000 kg / cm or by changing the linear pressure until a predetermined thickness is reached by a roll press.

また、負極板16は、負極集電体17の片側または両面に負極活物質と結着剤、必要に応じて導電剤を溶剤に混練分散させたペーストを塗布、乾燥、圧延して作製することができる。そして、負極板の厚みは正極板と同様に140μm〜210μmの厚みで、柔軟性があることが好ましい。   The negative electrode plate 16 is prepared by applying, drying, and rolling a paste obtained by kneading and dispersing a negative electrode active material, a binder, and, if necessary, a conductive agent in a solvent on one or both sides of the negative electrode current collector 17. Can do. And the thickness of a negative electrode plate is 140 micrometers-210 micrometers similarly to a positive electrode plate, and it is preferable that it has a softness | flexibility.

この負極集電体17として用いる銅または銅合金は、特に限定されるものではなく、圧延箔、電解箔などが挙げることができ、その形状も箔、孔開き箔、エキスパンド材、ラス材等であっても構わない。   The copper or copper alloy used as the negative electrode current collector 17 is not particularly limited, and examples thereof include rolled foil, electrolytic foil, and the shape thereof is foil, perforated foil, expanded material, lath material, and the like. It does not matter.

負極活物質としては、例えば、リチウムイオンを可逆的に吸蔵、脱離し得る黒鉛型結晶構造を有するグラファイトを含む材料、例えば天然黒鉛や球状・繊維状の人造黒鉛、難黒鉛化性炭素(ハードカーボン)、易黒鉛化性炭素(ソフトカーボン)等の炭素材料が好ましく、特に、格子面(002)の面間隔(d002)が0.3350〜0.3400nmである黒鉛型結晶構造を有する炭素材料を使用することがより好ましい。 Examples of the negative electrode active material include materials containing graphite having a graphite type crystal structure capable of reversibly occluding and desorbing lithium ions, such as natural graphite, spherical and fibrous artificial graphite, non-graphitizable carbon (hard carbon). ) And carbon materials such as graphitizable carbon (soft carbon) are preferable, and in particular, a carbon material having a graphite-type crystal structure in which the lattice spacing ( 002 ) has an interval (d 002 ) of 0.3350 to 0.3400 nm. More preferably, is used.

結着剤、分散媒および必要に応じて加えることができる導電剤、増粘剤は正極と同様のものを使用することができる。   As the binder, the dispersion medium, and the conductive agent and thickener that can be added as necessary, the same materials as those for the positive electrode can be used.

セパレータ15としては、厚さ15μm〜30μmのポリエチレン樹脂、ポリプロピレン樹脂などの微多孔性ポリオレフイン系樹脂の単層やポリエチレン樹脂の両側にポリプロピレン樹脂を積層したものが好ましい。   The separator 15 is preferably a single layer of microporous polyolefin resin such as polyethylene resin or polypropylene resin having a thickness of 15 μm to 30 μm or a laminate of polypropylene resin on both sides of the polyethylene resin.

電池ケース11としては、上端が開口している有底の角型ケースであり、その材質は、耐圧強度の観点からマンガン、銅等の金属を微量含有するアルミニウム合金や安価なニッケルメッキを施した鋼鈑が好ましい。   The battery case 11 is a bottomed rectangular case with an open upper end, and the material thereof is an aluminum alloy containing a trace amount of metal such as manganese or copper or inexpensive nickel plating from the viewpoint of pressure strength. A steel plate is preferred.

本発明の非水電解液二次電池は、このようにして作製した正極板14と負極板16とをセパレータ15を介して絶縁されている状態で扁平状に捲回した極板群を作製するとき、その群の曲線部分になる正極板密度が直線部分の正極板密度より低くする。その製造方法としては、極板群の曲線部分に相当する正極板部分に溶剤を塗布し、この部分の結着剤をごく僅か膨潤させることにより、極板群の直線部分に相当する正極板部分より低密度化された部分を作製することができる。   The non-aqueous electrolyte secondary battery of the present invention produces an electrode plate group in which the positive electrode plate 14 and the negative electrode plate 16 thus manufactured are wound in a flat shape with the separator 15 interposed therebetween. At that time, the density of the positive electrode plate, which becomes the curved portion of the group, is made lower than the density of the positive electrode plate of the straight portion. As a manufacturing method thereof, a positive electrode plate portion corresponding to a linear portion of the electrode plate group is obtained by applying a solvent to the positive electrode plate portion corresponding to the curved portion of the electrode plate group and slightly swelling the binder of this portion. A portion with a lower density can be produced.

また、正極板に接触させる溶剤は活物質を分散させている分散媒等が好ましく、さらにはメタノール、エタノール等のアルコール類、ジメチルエーテル、メチルエチルエーテル、ジエチルエーテル等のエーテル類、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどのカーボネート類、ジメチルケトン、メチルエチルケトン、ジエチルケトン等のケトン類等の揮発性溶媒が望ましい。   The solvent to be contacted with the positive electrode plate is preferably a dispersion medium in which an active material is dispersed, alcohols such as methanol and ethanol, ethers such as dimethyl ether, methyl ethyl ether, and diethyl ether, dimethyl carbonate, methyl ethyl Volatile solvents such as carbonates such as carbonate and diethyl carbonate, and ketones such as dimethyl ketone, methyl ethyl ketone, and diethyl ketone are desirable.

また、溶剤を正極板に接触させる方法としては、ハケ、ヘラ等による塗布や、スプレーによる塗布等が好ましい。   In addition, as a method of bringing the solvent into contact with the positive electrode plate, application by brush, spatula or the like, application by spraying, or the like is preferable.

さらに、正極板に塗布する溶剤の量は、その塗布した部分の正極板密度が塗布していない部分の正極板密度より1%以上低くすることができる量が好ましく、さらに好ましくは2%以上低くできる量が好ましい。   Furthermore, the amount of the solvent applied to the positive electrode plate is preferably such that the density of the positive electrode plate in the applied part can be 1% or more lower than the density of the positive electrode plate in the non-coated part, more preferably 2% or more lower. The amount that can be produced is preferred.

溶剤を塗布した部分の正極板密度の低減量が、塗布していない部分の正極板密度と比べて1%未満の場合、密度低減が不十分で、極板捲回時のダメージを軽減することができず、構成時、またはその後の群成形のプレス時に極板切れを引き起こす可能性が生じる。
また群構成時、その後のプレス時に極板切れを引き起こさなくても、電池作製後、充放電を行っている間に極板切れが生じ、容量低下を引き起こす可能性が生じる。
If the amount of reduction in the density of the positive electrode plate in the part where the solvent is applied is less than 1% compared to the density of the positive electrode plate in the part where the solvent is not applied, the density reduction is insufficient and the damage when winding the electrode plate is reduced. May not be possible and may cause electrode plate breakage during construction or subsequent pressing of group forming.
Moreover, even if it does not cause electrode plate breakage at the time of the group configuration or subsequent pressing, electrode plate breakage may occur during charging / discharging after the battery is manufactured, which may cause a decrease in capacity.

このようにして作製した極板群を、乾燥した後、電池ケース11に収納するか、または極板群を電池ケース11に収納した後、乾燥する。   The electrode plate group thus produced is dried and then stored in the battery case 11, or the electrode plate group is stored in the battery case 11 and then dried.

この乾燥条件としては、低湿度、高温の雰囲気であることが好ましいが、温度が高すぎるとセパレータに熱収縮が生じたり、微多孔孔が潰れたりして電池特性に悪影響を及ぼすので、具体的には露点が−30℃〜−80℃であり、温度が80〜120℃であることが好ましい。   The drying condition is preferably an atmosphere of low humidity and high temperature. However, if the temperature is too high, the separator may be thermally contracted or the microporous pores may be crushed, which adversely affects battery characteristics. The dew point is preferably -30 ° C to -80 ° C and the temperature is preferably 80 ° C to 120 ° C.

電解液としては、非水溶媒に電解質を溶解することにより調整される。前記非水溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、1,2−ジクロロエタン、1,3−ジメトキシプロパン、4−メチル−2−ペンタノン、1,4−ジオキサン、アセトニトリル、プロピオニトリル、ブチロニトリル、バレロニトリル、ベンゾニトリル、スルホラン、3−メチル−スルホラン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルホルムアミド、リン酸トリメチル、リン酸トリエチル等を用いることができ、これらの非水溶媒は、単独或いは二種類以上の混合溶媒として、使用することができる。   The electrolyte is adjusted by dissolving the electrolyte in a non-aqueous solvent. Examples of the non-aqueous solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, 1,2-dichloroethane, 1,3-dimethoxypropane, 4- Methyl-2-pentanone, 1,4-dioxane, acetonitrile, propionitrile, butyronitrile, valeronitrile, benzonitrile, sulfolane, 3-methyl-sulfolane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethylformamide, dimethylsulfoxide, dimethylformamide, Trimethyl phosphate, triethyl phosphate, and the like can be used, and these nonaqueous solvents can be used alone or as a mixed solvent of two or more kinds.

非水電解液に含まれる電解質としては、例えば、電子吸引性の強いリチウム塩を使用し、例えば、LiPF6、LiBF4、LiClO4、LiAsF6、LiCF3SO3、LiN(SO2CF32、LiN(SO2252、LiC(SO2CF33等が挙げられる。これらの電解質は、一種類で使用しても良く、二種類以上組み合わせて使用しても良い。これらの電解質は、前記非水溶媒に対して0.5〜1.5Mの濃度で溶解させることが好ましい。 As the electrolyte contained in the non-aqueous electrolyte, for example, a lithium salt having a strong electron withdrawing property is used. For example, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2 CF 3 ) 3 and the like. These electrolytes may be used alone or in combination of two or more. These electrolytes are preferably dissolved at a concentration of 0.5 to 1.5 M in the non-aqueous solvent.

以上のように作製することにより、群構成、成形工程での極板切れや、あるいは充放電を繰り返している間の極板切れによる容量低下を伴うことなく、高容量でサイクル寿命特性や生産性に優れた非水電解液二次電池を提供することができる。   By manufacturing as described above, high capacity and cycle life characteristics and productivity are not accompanied by capacity loss due to group composition, electrode plate breakage in the molding process, or electrode plate breakage during repeated charging and discharging. It is possible to provide a non-aqueous electrolyte secondary battery excellent in the above.

本発明を実施例と比較例を用いて詳細に説明するが、これらは、本発明を何ら限定するものではない。   The present invention will be described in detail using examples and comparative examples, but these do not limit the present invention.

(実施例1)
まず、正極板14は、正極活物質としてコバルト酸リチウムを100重量部、導電剤としてアセチレンブラックを2重量部、結着剤としてポリフッ化ビニリデン樹脂を固形分で3重量部を加え、N−メチル−2−ピロリドンを溶剤として混練分散させてペーストを作製した。このペーストを、厚さ15μmの帯状のアルミニウム箔からなる集電体13に連続的に間欠塗着を行い乾燥し、線圧1000Kg/cmで3回圧延を行った。
(Example 1)
First, the positive electrode plate 14 was prepared by adding 100 parts by weight of lithium cobaltate as a positive electrode active material, 2 parts by weight of acetylene black as a conductive agent, and 3 parts by weight of a polyvinylidene fluoride resin as a binder, and adding N-methyl A paste was prepared by kneading and dispersing -2-pyrrolidone as a solvent. This paste was continuously applied intermittently to a current collector 13 made of a strip-shaped aluminum foil having a thickness of 15 μm, dried, and rolled three times at a linear pressure of 1000 kg / cm.

そして、アルミニウム製の正極リードをスポット溶接して取付け、さらに内部短絡を防止するためのポリプロピレン樹脂製絶縁テープを貼付することにより、幅寸法42mm、長さ300mm、厚さ0.145mmの正極板14を作製した。   A positive electrode plate 14 having a width dimension of 42 mm, a length of 300 mm, and a thickness of 0.145 mm is obtained by spot welding an aluminum positive electrode lead and attaching a polypropylene resin insulating tape for preventing an internal short circuit. Was made.

このようにして作製した正極板14が、負極板およびセパレータと扁平型に捲回群にしたときに捲回群の曲線部分に相当する部分にエチルメチルカーボネートを1箇所あたり4mg塗布した。   When the positive electrode plate 14 thus produced was wound into a flat group with the negative electrode plate and the separator, 4 mg of ethyl methyl carbonate was applied to each portion corresponding to the curved portion of the wound group.

次に、負極板16は、負極活物質としてリチウムを吸蔵、放出可能な鱗片状黒鉛を100重量部、結着剤としてスチレンブタジエンラバー(SBR)の水溶性デイスパージョンを固形分として1重量部、増粘剤としてカルボキシメチルセルロースを1重量部、溶剤として水を加え、混練分散させてペースト状合剤を作製した。このペーストを、厚さ10μmの帯状の銅箔からなる集電体17に連続的に間欠塗着を行い、110℃で30分間乾燥し、線圧110Kg/cmで3回圧延を行った。   Next, the negative electrode plate 16 has 100 parts by weight of scaly graphite capable of occluding and releasing lithium as a negative electrode active material, and 1 part by weight of a water-soluble dispersion of styrene butadiene rubber (SBR) as a binder. Then, 1 part by weight of carboxymethyl cellulose as a thickener and water as a solvent were added and kneaded and dispersed to prepare a paste mixture. This paste was continuously applied intermittently to a current collector 17 made of a strip-shaped copper foil having a thickness of 10 μm, dried at 110 ° C. for 30 minutes, and rolled three times at a linear pressure of 110 kg / cm.

そして、ニッケル製の負極リードをスポット溶接して取付け、さらに内部短絡を防止するためのポリプロピレン樹脂製絶縁テープを貼付することにより、幅寸法43mm、長さ400mm、厚さ0.142mmの負極板16を作製した。   A negative electrode plate 16 having a width of 43 mm, a length of 400 mm, and a thickness of 0.142 mm is attached by spot welding of a negative electrode lead made of nickel and further affixing an insulating tape made of polypropylene resin for preventing an internal short circuit. Was made.

このようにして作製した正極板14と負極板16とが厚さ20μmのポリエチレン樹脂製の微多孔性セパレータ15を介して絶縁された状態で楕円状に捲回した電極群の長辺面から6.5MPaの圧力条件にて5秒間プレスすることにより扁平型の極板群を得た。   The positive electrode plate 14 and the negative electrode plate 16 produced in this way are 6 from the long side surface of the electrode group wound in an elliptical shape with the microporous separator 15 made of polyethylene resin having a thickness of 20 μm being insulated. A flat electrode plate group was obtained by pressing for 5 seconds under a pressure condition of 5 MPa.

この扁平状の極板群をマンガン、銅等の金属を微量含有する3000系のアルミニウム合金製で、肉厚0.25mmで、幅寸法6.3mm、長さ寸法34.0mm、総高50.0mmの形状にプレス成型により作製した有底角型の電池ケース11内に収納した。   This flat electrode plate group is made of a 3000 series aluminum alloy containing trace amounts of metals such as manganese and copper, has a thickness of 0.25 mm, a width dimension of 6.3 mm, a length dimension of 34.0 mm, and a total height of 50. It was housed in a bottomed rectangular battery case 11 produced by press molding into a 0 mm shape.

露点−30℃、温度90℃で2時間乾燥させることによって、カールフィシャー式水分計を用いた測定で、極板群の含有水分量を500ppmから70ppmに下げた。   By drying for 2 hours at a dew point of −30 ° C. and a temperature of 90 ° C., the moisture content of the electrode plate group was reduced from 500 ppm to 70 ppm as measured using a Karl Fischer moisture meter.

さらに、封口板12と電池ケース11とをレーザ溶接した後、封口板12に設けた注液孔より、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)を2:1で混合した混合溶媒に、LiPF6を1.0Mの濃度で溶解させた非水電解液を注液した後、注液栓をレーザで封口して、電池容量が1000mAhを設計値とする角型の本発明電池Aを作製した。 Furthermore, after laser-welding the sealing plate 12 and the battery case 11, from a liquid injection hole provided in the sealing plate 12, to a mixed solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are mixed at a ratio of 2: 1. After injecting a non-aqueous electrolyte in which LiPF 6 was dissolved at a concentration of 1.0 M, the injection cap was sealed with a laser, and a square battery of the present invention A having a design capacity of 1000 mAh was produced. did.

(実施例2)
正極板14が負極板およびセパレータと扁平型の捲回群にしたときに捲回群の曲線部分に相当する部分にエチルメチルカーボネートを1箇所あたり2mg塗布した以外は、実施例1と同じようにして本発明電池Bを作製した。
(Example 2)
When the positive electrode plate 14 was flattened with the negative electrode plate and the separator, the same procedure as in Example 1 was performed except that 2 mg of ethyl methyl carbonate was applied to the portion corresponding to the curved portion of the wound group. Inventive battery B was prepared.

(実施例3)
正極板14が負極板およびセパレータと扁平型の捲回群にしたときに捲回群の曲線部分に相当する部分にエチルメチルカーボネートを1箇所あたり8mg塗布した以外は、実施例1と同じようにして本発明電池Cを作製した。
(Example 3)
When the positive electrode plate 14 was flattened with the negative electrode plate and the separator, the same procedure as in Example 1 was performed except that 8 mg of ethyl methyl carbonate was applied to the portion corresponding to the curved portion of the wound group. Inventive battery C was prepared.

(実施例4)
正極板14が負極板およびセパレータと扁平型の捲回群にしたときに捲回群の曲線部分に相当する部分にエチルメチルカーボネートを1箇所あたり1mg塗布した以外は、実施例1と同じようにして本発明電池Dを作製した。
Example 4
When the positive electrode plate 14 was flattened with the negative electrode plate and the separator, the same procedure as in Example 1 was performed except that 1 mg of ethyl methyl carbonate was applied to the portion corresponding to the curved portion of the wound group. Inventive battery D was prepared.

(比較例1)
正極板14が負極板およびセパレータと扁平型の捲回群にしたときに捲回群の曲線部分に相当する部分に何も塗布しなかったこと以外は、実施例1と同じように作製した電池Eを比較例とした。
(Comparative Example 1)
A battery produced in the same manner as in Example 1 except that when the positive electrode plate 14 was formed into a flat wound group with the negative electrode plate and the separator, nothing was applied to the portion corresponding to the curved portion of the wound group. E was used as a comparative example.

以上正極板処理の異なる5種類の電池A〜Eについて、正極板の強度とサイクル寿命特性の比較を行った。   The strength of the positive electrode plate and the cycle life characteristics were compared for the five types of batteries A to E with different positive electrode plate treatments.

正極板の強度試験は電池ケースに収納する前の扁平型の極板群から正極板を取り出し、極板切れの確認を行い、切れの無い物にいては、捲回群の最内周側に位置する正極板の折り返し部分について、折り返し部分の稜線を中心に引っ張り強度を測定することで評価した。また、サイクル寿命試験は、20℃で充電電流1000mA、充電電圧4.2Vの定電流定電圧充電で終止電流100mAまで充電した後、放電電流1000mA、放電終止電圧3.0Vまでの放電を1000回まで繰り返すことで評価した。   For the strength test of the positive electrode plate, take out the positive electrode plate from the flat electrode plate group before storing it in the battery case, check for electrode plate breakage, and if there is no break, place it on the innermost side of the winding group. The folded portion of the positive electrode plate positioned was evaluated by measuring the tensile strength around the ridge line of the folded portion. The cycle life test was conducted at 20 ° C. with a charging current of 1000 mA and a charging voltage of 4.2 V at a constant current and a constant voltage of charging to a final current of 100 mA, and then a discharge current of 1000 mA and a discharge voltage of 3.0 V was discharged 1000 times. It evaluated by repeating until.

各電池の極板切れの数、引っ張り強度およびサイクル寿命で正極板の切れたサイクル数を表1に示す。極板切れ数の評価は100枚正極板を取り出したうちの、切れていた枚数を示す。   Table 1 shows the number of electrode plate breakage, the tensile strength and the cycle life of each battery. Evaluation of the number of electrode plates cut out indicates the number of pieces out of 100 positive plates taken out.

また、表1に正極板密度低減量を示すが、これは正極板のエチルメチルカーボネートを塗布した部分の正極板密度低減量を、比較例電池を基準として示したものである。   Table 1 shows the amount of reduction in the positive electrode plate density, which shows the amount of positive electrode plate density reduction in the portion of the positive electrode plate coated with ethyl methyl carbonate, based on the comparative battery.

なお、正極板密度の測定は、所定寸法当たりの体積でその質量を割ることにより算出し、正極集電体の体積と質量は除外した。   In addition, the measurement of the positive electrode plate density was calculated by dividing the mass by the volume per predetermined dimension, and the volume and mass of the positive electrode current collector were excluded.

Figure 2005310617
Figure 2005310617

表1に示す通り、エチルメチルカーボネートを塗布した本発明電池A〜Cは極板切れがなく、また引っ張り強度も比較電池Eに比べて高い値を示し、切れにくいことを示した。   As shown in Table 1, the batteries A to C of the present invention coated with ethyl methyl carbonate were not broken, and the tensile strength was higher than that of the comparative battery E, indicating that it was difficult to break.

さらに、サイクル寿命試験においても比較電池Eは正極板切れが、捲回群の曲線部分の頂点付近で発生したが、本発明電池A〜Dは1000サイクルまで極板切れは発生しなかった。   Further, in the cycle life test, the comparative battery E was broken in the positive electrode plate near the top of the curved portion of the wound group, but the batteries A to D of the present invention did not break the electrode plate until 1000 cycles.

これは、エチルメチルカーボネートを塗布することにより正極板密度を低減することができ、極板を曲げるとき集電体のアルミ箔にかかる応力を低減できるためと考えられる。また、溶剤を正極板に塗布することにより活物質同士または活物質と導電材との間に溶剤が浸透し、結着性が若干低下するためと考えられる。   This is presumably because the density of the positive electrode plate can be reduced by applying ethyl methyl carbonate, and the stress applied to the aluminum foil of the current collector can be reduced when the electrode plate is bent. Further, it is considered that the solvent permeates between the active materials or between the active material and the conductive material by applying the solvent to the positive electrode plate, and the binding property is slightly lowered.

扁平型捲回群の直線部分の正極板密度に対する、曲線部分の正極板密度の低減量は1%以上あれば十分で、上限は捲回群が電池ケースに収納できる範囲内で、好ましくは10%以下である。   The amount of reduction in the positive electrode plate density in the curved portion relative to the positive electrode plate density in the straight portion of the flat wound group is sufficient if it is 1% or more, and the upper limit is within the range that the wound group can be stored in the battery case, preferably 10 % Or less.

本発明によれば、群構成、成形工程での極板切れや、あるいは充放電を繰り返している間の極板切れによる容量低下を伴うことなく、高容量でサイクル寿命特性や生産性に優れた非水電解液二次電池を得ることができ、ポータブル用電源として有用である。   According to the present invention, high capacity and excellent cycle life characteristics and productivity are achieved without the group structure, electrode plate breakage in the molding process, or capacity reduction due to electrode plate breakage during repeated charging and discharging. A non-aqueous electrolyte secondary battery can be obtained and is useful as a portable power source.

本発明のリチウム二次電池の縦断面図Longitudinal sectional view of the lithium secondary battery of the present invention

符号の説明Explanation of symbols

11 電池ケース
12 封口板
13 正極集電体
14 正極板
15 セパレータ
16 負極板
17 負極集電体
DESCRIPTION OF SYMBOLS 11 Battery case 12 Sealing plate 13 Positive electrode collector 14 Positive electrode plate 15 Separator 16 Negative electrode plate 17 Negative electrode collector

Claims (3)

リチウムイオンを可逆的に吸蔵・脱離し得る活物質を含有する正極及び負極、セパレータからなる略直線部分と曲線部分からなる扁平型の捲回群と、非水電解液とを備える非水電解液二次電池であって、前記曲線部分の正極板密度が直線部分の正極板密度より低くなっていることを特徴とする非水電解液二次電池。 A non-aqueous electrolyte comprising: a positive electrode and a negative electrode containing an active material capable of reversibly occluding and desorbing lithium ions; a flat wound group consisting of a substantially linear portion and a curved portion consisting of a separator; and a non-aqueous electrolyte A non-aqueous electrolyte secondary battery, wherein the positive electrode plate density in the curved portion is lower than the positive electrode plate density in the linear portion. 前記曲線部分の正極板密度が前記捲回群の直線部分の正極板密度より1%以上低いことを特徴とする請求項1に記載の非水電解液二次電池。 The nonaqueous electrolyte secondary battery according to claim 1, wherein a density of the positive electrode plate in the curved portion is 1% or more lower than a density of the positive electrode plate in the linear portion of the wound group. リチウムイオンを可逆的に吸蔵・脱離し得る活物質を含有する正極及び負極、セパレータからなる略直線部分と曲線部分からなる扁平型の捲回群と、非水電解液とを備える非水電解液二次電池の製造方法であって、極板群に捲回する前に、正極板の曲線部分に相当する部分に溶剤を接触させて、直線部分の正極板密度より低くすることを特徴とする非水電解液二次電池の製造方法。 A non-aqueous electrolyte comprising: a positive electrode and a negative electrode containing an active material capable of reversibly occluding and desorbing lithium ions; a flat wound group consisting of a substantially linear portion and a curved portion consisting of a separator; and a non-aqueous electrolyte A method of manufacturing a secondary battery, characterized in that a solvent is brought into contact with a portion corresponding to a curved portion of a positive electrode plate before being wound around an electrode plate group so as to be lower than a positive electrode plate density of a linear portion. A method for producing a non-aqueous electrolyte secondary battery.
JP2004127848A 2004-04-23 2004-04-23 Nonaqueous electrolyte secondary battery and its manufacturing method Pending JP2005310617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004127848A JP2005310617A (en) 2004-04-23 2004-04-23 Nonaqueous electrolyte secondary battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004127848A JP2005310617A (en) 2004-04-23 2004-04-23 Nonaqueous electrolyte secondary battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005310617A true JP2005310617A (en) 2005-11-04

Family

ID=35439132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004127848A Pending JP2005310617A (en) 2004-04-23 2004-04-23 Nonaqueous electrolyte secondary battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005310617A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006244834A (en) * 2005-03-02 2006-09-14 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2012174582A (en) * 2011-02-23 2012-09-10 Denso Corp Manufacturing method and manufacturing apparatus of wound type battery
US9012054B2 (en) 2010-12-13 2015-04-21 Sony Corporation Secondary battery, battery pack, electronic apparatus, electric tool, electric vehicle, and power storage system
JP2015099725A (en) * 2013-11-20 2015-05-28 トヨタ自動車株式会社 Lithium ion secondary battery and manufacturing method of the same
CN110970653A (en) * 2018-09-28 2020-04-07 三洋电机株式会社 Nonaqueous electrolyte secondary battery
WO2023071538A1 (en) * 2021-10-29 2023-05-04 宁德时代新能源科技股份有限公司 Electrode assembly, battery, electric device, and method for manufacturing electrode assembly
US11791494B2 (en) 2018-09-28 2023-10-17 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006244834A (en) * 2005-03-02 2006-09-14 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US9012054B2 (en) 2010-12-13 2015-04-21 Sony Corporation Secondary battery, battery pack, electronic apparatus, electric tool, electric vehicle, and power storage system
US9742024B2 (en) 2010-12-13 2017-08-22 Sony Corporation Secondary battery, battery pack, electronic apparatus, electric tool, electric vehicle, and power storage system
JP2012174582A (en) * 2011-02-23 2012-09-10 Denso Corp Manufacturing method and manufacturing apparatus of wound type battery
JP2015099725A (en) * 2013-11-20 2015-05-28 トヨタ自動車株式会社 Lithium ion secondary battery and manufacturing method of the same
CN110970653A (en) * 2018-09-28 2020-04-07 三洋电机株式会社 Nonaqueous electrolyte secondary battery
JP2020057458A (en) * 2018-09-28 2020-04-09 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP7086807B2 (en) 2018-09-28 2022-06-20 三洋電機株式会社 Non-aqueous electrolyte secondary battery
US11374263B2 (en) 2018-09-28 2022-06-28 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US11791494B2 (en) 2018-09-28 2023-10-17 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
WO2023071538A1 (en) * 2021-10-29 2023-05-04 宁德时代新能源科技股份有限公司 Electrode assembly, battery, electric device, and method for manufacturing electrode assembly

Similar Documents

Publication Publication Date Title
JP4608735B2 (en) Non-aqueous electrolyte secondary battery charging method
KR102362887B1 (en) Method of pre-lithiating an anode for lithium secondary battery and Lithium metal laminate for being used therefor
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
WO2010113419A1 (en) Nonaqueous electrolyte, and nonaqueous electrolyte secondary battery using same
WO2011080884A1 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR101520138B1 (en) Anode active agent and electrochemical device comprising the same
JP2006294282A (en) Manufacturing method of lithium-ion secondary battery
JP4867213B2 (en) Method for producing non-aqueous electrolyte secondary battery
KR20110079707A (en) Nonaqueous electrolyte, and nonaqueous electrolyte secondary battery using same
KR20190083304A (en) A method of pre-lithiating anode and Anode manufactured therefrom
JP6275694B2 (en) Nonaqueous electrolyte secondary battery
JP2008027831A (en) Battery
JP2007141482A (en) Nonaqueous electrolyte winding type secondary battery
JPWO2002091514A1 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JP2009081067A (en) Non-aqueous secondary battery
JP2013114847A (en) Lithium ion secondary batty and method for manufacturing the same
JP2001283861A (en) Battery electrode and nonaqueous electrolyte battery
JP2005310617A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP2004158441A (en) Nonaqueous electrolyte secondary battery
JP2004030939A (en) Manufacturing method of lithium secondary battery
JP4561034B2 (en) Manufacturing method of non-aqueous electrolyte battery
JP4240960B2 (en) Lithium secondary battery and manufacturing method thereof
JP2006244921A (en) Separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP6658182B2 (en) Electrode structure and lithium secondary battery
JPH10261406A (en) Carbon electrode and nonaqueous electrolyte secondary battery using it for negative electrode