JP2005309053A - Double layer intermediate transfer body - Google Patents

Double layer intermediate transfer body Download PDF

Info

Publication number
JP2005309053A
JP2005309053A JP2004125346A JP2004125346A JP2005309053A JP 2005309053 A JP2005309053 A JP 2005309053A JP 2004125346 A JP2004125346 A JP 2004125346A JP 2004125346 A JP2004125346 A JP 2004125346A JP 2005309053 A JP2005309053 A JP 2005309053A
Authority
JP
Japan
Prior art keywords
surface layer
base layer
intermediate transfer
expansion coefficient
linear expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004125346A
Other languages
Japanese (ja)
Inventor
Shigeru Fukuda
茂 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2004125346A priority Critical patent/JP2005309053A/en
Publication of JP2005309053A publication Critical patent/JP2005309053A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a double layer intermediate transfer body excellent in shape uniformity as a whole, which is a double layer intermediate transfer body used as an intermediate transfer body in an electrostatic copying process and using polyimide resin as a base layer. <P>SOLUTION: In the double layer intermediate transfer body having the base layer and a surface layer, the base layer is composed of polyimide resin composed by performing the imido-conversion of polyamic acid composition containing 3, 4, 3', 4'-biphenyl tetracarboxylic acid dual anhydride and paraphenylenediamine, and the linear expansion coefficient of the surface layer is larger than that of the base layer, and displacing amount D expressed by an expression (1) is ≥2 and ≤8. In the expression (1), α<SB>1</SB>shows the linear expansion coefficient of the material of the base layer, h<SB>1</SB>shows the thickness (mm) of the base layer, E<SB>1</SB>shows the Young's modulus of the material of the base layer, α<SB>2</SB>shows the linear expansion coefficient of the material of the surface layer, h<SB>2</SB>shows the thickness (mm) of the surface layer, E<SB>2</SB>shows the Young's modulus of the material of the surface layer, T<SB>2</SB>shows temperature at the time of forming the surface layer or the glass transition point of the material of the surface layer, and T<SB>1</SB>shows temperature at the service time. Relational expressions m=E<SB>1</SB>/E<SB>2</SB>and n=h<SB>1</SB>/h<SB>2</SB>hold. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、静電複写プロセスの中間転写体として用いられ、ポリイミド樹脂を基層に使用した複層中間転写体に関するものである。   The present invention relates to a multilayer intermediate transfer member that is used as an intermediate transfer member in an electrostatic copying process and uses a polyimide resin as a base layer.

静電複写方式を用いた画像形成装置は、光導電性感光体からなる像担持体上に一様な電荷を形成し、画像信号を変調したレーザー光等で静電潜像を形成した後、帯電したトナーで前記静電潜像を現像して可視化したトナー像とする。
上記トナー像を、中間転写体を介して静電的に転写することにより所要の再生画像を得る場合の画像形成装置としては、種々のものが知られている(例えば、特許文献1参照)。
An image forming apparatus using an electrostatic copying system forms a uniform charge on an image carrier made of a photoconductive photosensitive member, and forms an electrostatic latent image with a laser beam or the like that modulates an image signal. The electrostatic latent image is developed with charged toner to obtain a visualized toner image.
Various types of image forming apparatuses are known for obtaining a required reproduced image by electrostatically transferring the toner image via an intermediate transfer member (see, for example, Patent Document 1).

上記のような中間転写体方式を採用した画像形成装置に用いられる中間転写体材料としても、ポリカーボネート樹脂(例えば、特許文献2参照)、PVDF(ポリフッ化ビニリデン、(例えば、特許文献3,4参照)、ポリアルキレンフタレート(例えば、特許文献5参照)などの熱可塑性樹脂の導電性の無端ベルトや、ポリイミド樹脂やポリアミドイミド樹脂(例えば、特許文献6参照)を用いる提案がなされている。
なかでも、全芳香族ポリイミド樹脂は強度が強いため転写部材に好んで用いられている。
As an intermediate transfer material used in an image forming apparatus employing the above intermediate transfer method, polycarbonate resin (for example, see Patent Document 2), PVDF (polyvinylidene fluoride) (for example, see Patent Documents 3 and 4). ), A conductive endless belt of a thermoplastic resin such as polyalkylene phthalate (for example, see Patent Document 5), a polyimide resin, or a polyamideimide resin (for example, see Patent Document 6) has been proposed.
Among these, wholly aromatic polyimide resins are preferred for transfer members because of their high strength.

この中間転写ベルトは、トナーをやりとりするため、帯電防止領域の抵抗値制御が必要であるが、それ以外の要求特性としてベルトの形状均一性がある。なかでも、端部平面度が悪くなるとベルトが蛇行して画像がゆがむだけでなく、ひどい場合にはベルト自身が破損することもある。この端部平面度は±4mm以内、望ましくは±3mm以内が要求される。   The intermediate transfer belt needs to control the resistance value of the antistatic region in order to exchange toner, but other required characteristics include belt shape uniformity. In particular, when the flatness of the end portion deteriorates, not only does the belt meander and the image is distorted, but in a severe case, the belt itself may be damaged. This end flatness is required to be within ± 4 mm, preferably within ± 3 mm.

中間転写体用のポリイミド材料としては、強度の点から、3,4:3’,4’−ビフェニルテトラカルボン酸二無水物とパラフェニレンジアミンとからなるポリイミドを用いる事が多いが、この材料を用いた中間転写体を作製する場合には、端部が内面側に折れ曲がる問題があり、±4mmの範囲にすることは困難であった。   As a polyimide material for an intermediate transfer member, a polyimide composed of 3,4: 3 ′, 4′-biphenyltetracarboxylic dianhydride and paraphenylenediamine is often used from the viewpoint of strength. When the intermediate transfer member used was produced, there was a problem that the end portion was bent to the inner surface side, and it was difficult to make the range within ± 4 mm.

例えば、特許文献7には、導電性カーボンブラックにより付与された半導電性ポリイミド層と実質的電気絶縁性ポリイミド層とからなるポリイミド系多層無端管状フィルムにおいて、該実質的電気絶縁性ポリイミド層の有する線膨張率が、該半導電性ポリイミド層の有する線膨張率に対して0.8〜1.3倍であることを特徴とするポリイミド系多層無端管状フィルムが開示されている。しかし、この場合には、ベルト端部平面度がより大きく内側へ曲がりこむ結果となった。   For example, in Patent Document 7, in a polyimide-based multilayer endless tubular film composed of a semiconductive polyimide layer provided by conductive carbon black and a substantially electrically insulating polyimide layer, the substantially electrically insulating polyimide layer has A polyimide-based multilayer endless tubular film having a linear expansion coefficient of 0.8 to 1.3 times the linear expansion coefficient of the semiconductive polyimide layer is disclosed. However, in this case, the belt end flatness is larger and the inner side is bent.

また、特許文献8,9には、いずれもポリイミド系樹脂を主体とする外層と内層とを有する半導電性ベルトにおいて、少なくとも前記外層は導電性物質を含有しており、この外層と前記内層との50〜400℃における線膨張率の差が30(ppm/℃)以下であり、前記外層より前記内層の線膨張率が大きいことを特徴とする半導電性ベルトが開示されている。しかし、内層の線膨張率を大きくするとベルトの端部が跳ね上がるためベルトの寄り止めがガイドからはずれてしまうという不具合があった。
すなわち、本発明者の実験においては、内層の線膨張率が大きい場合にはより大きくベルト内側へ曲がり込み、端部平面度を一層悪くする結果となった。
特開昭62−206567号公報 特開平06−095521号公報 特開平5−200904号公報 特開平6−228335号公報 特開平6−149081号公報 特許第2560727号明細書 特開2002−086599号公報 特開2002−156835号公報 特開2002−365927号公報
In Patent Documents 8 and 9, both are semiconductive belts having an outer layer and an inner layer mainly composed of a polyimide resin, and at least the outer layer contains a conductive substance. The outer layer, the inner layer, A semiconductive belt is disclosed in which the difference in linear expansion coefficient at 50 to 400 ° C. is 30 (ppm / ° C.) or less, and the linear expansion coefficient of the inner layer is larger than that of the outer layer. However, when the linear expansion coefficient of the inner layer is increased, the end of the belt jumps up, so that there is a problem in that the belt stopper is disengaged from the guide.
That is, in the experiment of the present inventor, when the linear expansion coefficient of the inner layer is large, the inner side of the belt is more bent and the end flatness is further deteriorated.
JP-A-62-206567 Japanese Patent Laid-Open No. 06-095521 Japanese Patent Laid-Open No. 5-200904 JP-A-6-228335 Japanese Patent Laid-Open No. 6-149081 Japanese Patent No. 2560727 JP 2002-086599 A JP 2002-156835 A JP 2002-365927 A

以上から、本発明は、上記従来の課題を解決することを目的とする。すなわち、全体として、形状均一性に優れた複層中間転写体を提供することを目的とする。   In view of the above, an object of the present invention is to solve the above conventional problems. That is, an object of the present invention is to provide a multilayer intermediate transfer body excellent in shape uniformity as a whole.

上記目的を達成すべく鋭意検討した結果、本発明者は、表面層として線膨張率の大きな材料を用い、また、表面層と基層とに要求される特性として、バイメタルでの曲がり量計算に準じた式を満たすようにすることで、形状均一性、特に、端部平面度の優れた中間転写体が得られることを見出し、本発明に想到した。   As a result of diligent studies to achieve the above object, the present inventor used a material having a large linear expansion coefficient as the surface layer, and the characteristics required for the surface layer and the base layer conform to the calculation of the bending amount in the bimetal. By satisfying the above formula, it was found that an intermediate transfer body excellent in shape uniformity, particularly in end flatness was obtained, and the present invention was conceived.

すなわち、本発明は、基層と表面層とを有する複層中間転写体において、
前記基層が、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物とパラフェニレンジアミンとを含有するポリアミック酸組成物をイミド転化させてなるポリイミド樹脂からなり、
前記表面層の線膨張率が基層の線膨張率よりも大きく、
下記式(1)で表される変位量Dが2以上8以下であることを特徴とする複層中間転写体である。
That is, the present invention provides a multilayer intermediate transfer member having a base layer and a surface layer.
The base layer is composed of a polyimide resin obtained by imide conversion of a polyamic acid composition containing 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride and paraphenylenediamine,
The linear expansion coefficient of the surface layer is larger than the linear expansion coefficient of the base layer,
The multilayer intermediate transfer member is characterized in that a displacement amount D represented by the following formula (1) is 2 or more and 8 or less.

Figure 2005309053
Figure 2005309053

上記式(1)中、α1は基層材料の線膨張率(/K)を示し、h1は基層の厚み(mm)を示し、E1は基層材料の縦弾性率(MPa)示し、α2は表面層材料の線膨張率(/K)を示し、h2は表面層の厚み(mm)を示し、E2は表面層材料の縦弾性率(MPa)を示す。また、T2は、「表面層形成時の温度(K)」および「表面層材料のガラス転移点(K)」のうち低い方の温度を示し、T1は使用時の温度(K)を示す。さらに、m=E1/E2、n=h1/h2とする。 In the above formula (1), α 1 indicates the linear expansion coefficient (/ K) of the base layer material, h 1 indicates the thickness (mm) of the base layer, E 1 indicates the longitudinal elastic modulus (MPa) of the base layer material, α 2 indicates the linear expansion coefficient (/ K) of the surface layer material, h 2 indicates the thickness (mm) of the surface layer, and E 2 indicates the longitudinal elastic modulus (MPa) of the surface layer material. T 2 indicates the lower temperature of “temperature (K) during surface layer formation” and “glass transition point (K) of surface layer material”, and T 1 indicates the temperature (K) during use. Show. Further, m = E 1 / E 2 and n = h 1 / h 2 .

また、本発明は、基層と表面層とを有する複層中間転写体において、
前記基層が、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物とパラフェニレンジアミンとを含有するポリアミック酸組成物をイミド転化させてなるポリイミド樹脂からなり、
前記表面層の線膨張率が基層の線膨張率よりも大きく、
端部平面度が±4mm以下であることを特徴とする複層中間転写体である。
Further, the present invention provides a multilayer intermediate transfer member having a base layer and a surface layer,
The base layer is composed of a polyimide resin obtained by imide conversion of a polyamic acid composition containing 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride and paraphenylenediamine,
The linear expansion coefficient of the surface layer is larger than the linear expansion coefficient of the base layer,
A multi-layer intermediate transfer member having an end flatness of ± 4 mm or less.

既述の本発明の複層中間転写体は、導電剤を含有することが好ましく、当該導電剤としては、カーボンブラックを用いることが好ましい。   The multilayer intermediate transfer member of the present invention described above preferably contains a conductive agent, and it is preferable to use carbon black as the conductive agent.

本発明によれば、全体として、形状均一性、特に、端部平面度の均一性に優れた複層中間転写体を提供することができる。   According to the present invention, it is possible to provide a multi-layer intermediate transfer body excellent in shape uniformity, in particular, uniformity in end flatness as a whole.

〔第1の複層中間転写体〕
本発明の第1の複層中間転写体は、基層と表面層とを有し、その基層が、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物とパラフェニレンジアミンとを含有するポリアミック酸組成物(以下、「本発明に係るポリアミック酸組成物」ということがある)をイミド転化させてなるポリイミド樹脂からなる。
なお、ここで、「基層」とは、中間転写体の基材となる部分であり、「表面層」とは、中間転写体として使用した場合にその表面にトナー像が形成される層である。
[First multilayer intermediate transfer member]
The first multilayer intermediate transfer member of the present invention has a base layer and a surface layer, and the base layer contains 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride and paraphenylenediamine. It consists of a polyimide resin obtained by imide conversion of a polyamic acid composition (hereinafter sometimes referred to as “polyamic acid composition according to the present invention”).
Here, the “base layer” is a portion serving as a base material for the intermediate transfer member, and the “surface layer” is a layer on which a toner image is formed when used as an intermediate transfer member. .

ポリイミド樹脂は、種々のポリアミック酸組成物をイミド化して得ることができるが、本発明では、上記本発明に係るポリアミック酸組成物よりなるポリイミド樹脂を基層(基材)とする。当該ポリイミド樹脂は、強度等の実用面において、非常に優れた特性を有している。   The polyimide resin can be obtained by imidizing various polyamic acid compositions. In the present invention, the polyimide resin comprising the polyamic acid composition according to the present invention is used as a base layer (base material). The polyimide resin has very excellent characteristics in practical aspects such as strength.

基層上には表面層が形成されており、当該表面層の線膨張率は、基層の線膨張率よりも大きくなっている。表面層の線膨張率が基層の線膨張率よりも小さいと、中間転写体の端部が跳ね上がるなどして端部平面度が悪くなり、ベルトの蛇行による画像の歪み等の不具合が発生してしまう。   A surface layer is formed on the base layer, and the linear expansion coefficient of the surface layer is larger than the linear expansion coefficient of the base layer. If the linear expansion coefficient of the surface layer is smaller than the linear expansion coefficient of the base layer, the end portion of the intermediate transfer member jumps up and the flatness of the end portion deteriorates, and problems such as image distortion due to belt meandering occur. End up.

また、線膨張率の測定は、島津製作所製熱分析装置TMA−50を用い、昇温速度5℃/minの条件で、30〜400℃上昇させたときのチャートより読み取ることができるが、ガラス転移温度が測定範囲内にある場合にはガラス転移温度までのデータとする。   The linear expansion coefficient can be measured from a chart when the temperature is increased by 30 to 400 ° C. under the condition of a temperature increase rate of 5 ° C./min using a Shimadzu thermal analyzer TMA-50. When the transition temperature is within the measurement range, the data up to the glass transition temperature is used.

基層の厚みは、30〜150μmであることが好ましく、50〜100μmであることが好ましい。また、一般的にはイミド転化後の縦弾性率は5400〜6200(MPa)の範囲となる。
一方、表面層の厚みは、1〜200μmであることが好ましく、5〜150μmであることが好ましい。表面層が1μmより薄いと耐久性の点で問題が生ずることがあり、200μmよりも厚いとロール屈曲部での変形によるベルト表面の応力が集中してしまうために、表面層にクラックが発生するなどの問題が生じることがある。
また、縦弾性率は使用するモノマーの種類や、得られるポリイミド樹脂の分子量によって変化するが、500〜40000(MPa)であることが好ましく、1000〜20000(MPa)であることが好ましい。縦弾性率が500〜40000(MPa)であること、傷つきにくく、駆動ロールへの追従性がよくなるといった利点が得られる。
The thickness of the base layer is preferably 30 to 150 μm, and preferably 50 to 100 μm. Moreover, generally the longitudinal elastic modulus after imide conversion becomes the range of 5400-6200 (MPa).
On the other hand, the thickness of the surface layer is preferably 1 to 200 μm, and preferably 5 to 150 μm. If the surface layer is thinner than 1 μm, there may be a problem in terms of durability. If the surface layer is thicker than 200 μm, the stress on the belt surface due to deformation at the roll bending portion is concentrated, and cracks are generated in the surface layer. Such problems may occur.
Moreover, although a longitudinal elastic modulus changes with the kind of monomer to be used, and the molecular weight of the polyimide resin obtained, it is preferable that it is 500-40000 (MPa), and it is preferable that it is 1000-20000 (MPa). Advantages are that the longitudinal elastic modulus is 500 to 40,000 (MPa), scratch resistance is less, and the followability to the drive roll is improved.

なお、縦弾性率は、幅5mm、長さ80mmで、基層や表面層を構成する材料からなる試験片をチャック間距離が40mmになるように引っ張り試験機(アイコーエンジニアリング製1605N)にセットし、20mm/minで引っ張り、変位量が1mmになった時の応力より計算することで求めることができる。   In addition, the longitudinal elastic modulus is set to a tensile tester (1605N manufactured by Aiko Engineering Co., Ltd.) such that the test piece made of the material constituting the base layer and the surface layer is 5 mm wide and 80 mm long, and the distance between chucks is 40 mm. It can obtain | require by calculating | requiring from the stress when it pulls at 20 mm / min and the displacement amount becomes 1 mm.

本発明の複層中間転写体は、下記式(1)で表される変位量Dが2以上8以下となっている。   In the multilayer intermediate transfer member of the present invention, the displacement D represented by the following formula (1) is 2 or more and 8 or less.

Figure 2005309053
Figure 2005309053

上記式(1)中、α1は基層材料の線膨張率(/K)を示し、h1は基層の厚み(mm)を示し、E1は基層材料の縦弾性率(MPa)示し、α2は表面層材料の線膨張率(/K)を示し、h2は表面層の厚み(mm)を示し、E2は表面層材料の縦弾性率(MPa)を示す。また、T2は、「表面層形成時の温度(K)」および「表面層材料のガラス転移点(K)」のうち低い方の温度を示し、T1は使用時の温度(K)を示す。さらに、m=E1/E2、n=h1/h2とする。
なお、使用時の温度T1とは、複層中間転写体を実際に使用する際の平均温度をいい、通常は、室温(10〜30℃)である。
In the above formula (1), α 1 indicates the linear expansion coefficient (/ K) of the base layer material, h 1 indicates the thickness (mm) of the base layer, E 1 indicates the longitudinal elastic modulus (MPa) of the base layer material, α 2 indicates the linear expansion coefficient (/ K) of the surface layer material, h 2 indicates the thickness (mm) of the surface layer, and E 2 indicates the longitudinal elastic modulus (MPa) of the surface layer material. T 2 indicates the lower temperature of “temperature (K) during surface layer formation” and “glass transition point (K) of surface layer material”, and T 1 indicates the temperature (K) during use. Show. Further, m = E 1 / E 2 and n = h 1 / h 2 .
Note that the temperature T 1 of the use, refers to the average temperature at the time of actually using the multilayer intermediate transfer member, usually a room temperature (10 to 30 ° C.).

変位量Dが2未満であると、基材のみの場合と同様に複層中間転写体が内側に反り、平面度が劣ってしまい、8を超えると、反対に外側に反り平面度が悪くなってしまう。そのため、複層中間転写体として使用するには、変位量Dは、2〜8であることが好ましく、4〜7であることがより好ましい。   If the displacement amount D is less than 2, the multi-layer intermediate transfer member warps inward and flatness is inferior as in the case of the substrate alone, whereas if it exceeds 8, the warping flatness becomes worse on the contrary. End up. Therefore, in order to use as a multilayer intermediate transfer body, the displacement amount D is preferably 2 to 8, and more preferably 4 to 7.

なお、式(1)中のガラス転移温度は、例えば、基層や表面層を構成する材料からなる試験片を、島津製作所製の熱分析装置DSC−50にて、昇温速度5℃/分の条件で、30〜400℃上昇させたときのチャートより読みとることで、求めることができる。   In addition, the glass transition temperature in Formula (1) is the temperature rising rate of 5 degree-C / min for the test piece which consists of the material which comprises a base layer or a surface layer, for example with the thermal analyzer DSC-50 by Shimadzu Corporation. It can be determined by reading from the chart when the temperature is raised by 30 to 400 ° C. under conditions.

本発明の複層中間転写体は、例えば、以下に説明するようにして製造することができる。
まず、複層中間転写体の基材となる基層を形成するために、基層用材料を円筒状金型の表面にディッピング法や流延法で塗布する。当該基層用材料は、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物とパラフェニレンジアミンとを含有するポリアミック酸組成物を溶媒に溶解または分散したものを使用する。
ポリアミック酸組成物(ポリアミド酸)を溶解または分散する溶媒としては、DMF(無水ジメチルホルムアミド)やNMP(N−メチルピロリドン)といったアミド系溶媒やフェノール類等の極性溶媒を使用することが好ましい。このとき、粘度調整等の目的でこれらの溶媒に芳香族系炭化水素等を少量混合してもよい。また、必要に応じてカーボンブラックや金属酸化物といった導電剤を添加してもよい。
The multilayer intermediate transfer member of the present invention can be produced, for example, as described below.
First, in order to form a base layer serving as a base material for a multilayer intermediate transfer member, a base layer material is applied to the surface of a cylindrical mold by a dipping method or a casting method. As the base layer material, a material obtained by dissolving or dispersing a polyamic acid composition containing 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride and paraphenylenediamine in a solvent is used.
As a solvent for dissolving or dispersing the polyamic acid composition (polyamic acid), it is preferable to use an amide solvent such as DMF (anhydrous dimethylformamide) or NMP (N-methylpyrrolidone) or a polar solvent such as phenols. At this time, a small amount of aromatic hydrocarbon or the like may be mixed with these solvents for the purpose of adjusting the viscosity. Moreover, you may add electrically conductive agents, such as carbon black and a metal oxide, as needed.

塗布後、溶液が偏らないように円筒状金型を回転させながら、加熱して溶媒を除去する。ここで、基層の乾燥度が低いと次の塗布時にたれが生じるが、逆に乾燥度が高すぎると表面層が接着しない。そこで、乾燥後の基層の固形分率は50〜90%とすることが好ましく、60〜75%とすることがより好ましい。
なお、当該固形分率は、乾燥後の皮膜付の金型重量と金型重量との皮膜重量とにより、皮膜重量÷(乾燥後の皮膜付の金型重量−金型重量)、で測定することができる。
After application, the solvent is removed by heating while rotating the cylindrical mold so that the solution is not biased. Here, if the dryness of the base layer is low, sagging occurs during the next application, but if the dryness is too high, the surface layer does not adhere. Therefore, the solid content of the base layer after drying is preferably 50 to 90%, and more preferably 60 to 75%.
In addition, the said solid content rate is measured by coating weight / (die weight with coating after drying-die weight) by coating weight of die with coating after drying and coating weight of die. be able to.

所望の乾燥度となった基層上に、表面層を形成するための表面層用材料をディッピング法や流延法で塗布する。当該表面層用材料は、基層を構成する材料より線膨張率が高く、既述の式(1)から算出される変位量Dが所望の範囲となる材料を使用する。当該材料としては、強度など考慮して、ポリアミック酸組成物を溶媒に溶解または分散したものを使用することができる。   A surface layer material for forming a surface layer is applied on the base layer having a desired dryness by a dipping method or a casting method. As the surface layer material, a material having a linear expansion coefficient higher than that of the material constituting the base layer and a displacement amount D calculated from the above-described equation (1) is in a desired range is used. As the material, a material obtained by dissolving or dispersing a polyamic acid composition in a solvent can be used in consideration of strength and the like.

上記ポリアミック酸組成物におけるテトラカルボン酸二無水物としては、ピロメリット酸二無水物、3,4,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物、2,3,3’,4−ビフェニルテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,2’−ビス(3,4−ジカルボキシフェニル)スルホン酸二無水物、ペリレン−3,4,9,10−テトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、エチレンテトラカルボン酸二無水物等が挙げられる。   Examples of the tetracarboxylic dianhydride in the polyamic acid composition include pyromellitic dianhydride, 3,4,3 ′, 4′-benzophenone tetracarboxylic dianhydride, 3,4,3 ′, 4′- Biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4-biphenyltetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalene Tetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,2′-bis (3,4-dicarboxyphenyl) sulfonic dianhydride, perylene-3,4, 9,10-tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, ethylenetetracarboxylic dianhydride and the like can be mentioned.

また、ジアミンとしては、4,4’−ジアミノジフェニルエーテル(オキシジアニリン)、4,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルメタン、3,3’−ジクロロベンジジン、4,4’−ジアミノジフェニルスルフィド、3,3−ジアミノジフェニルスルフォン、1,5−ジアミノナフタレン、m−フェニレンジアミン、p−フェニレンジアミン、3,3’−ジメチル4,4’−ビフェニルジアミン、ベンジジン、3,3’−ジメチルベンジジン、3,3’−ジメトキシベンジジン、4,4’−ジアミノジフェニルスルフォン、4,4’−ジアミノジフェニルプロパン、2,4−ビス(β−アミノ第三ブチル)トルエン、ビス(p−アミノ−第三ブチルフェニル)エーテル、ビス(p−メチル−アミノフェニル)ベンゼン、ビス−p−(1,1−ジメチル−5−アミノ−ベンチル)ベンゼン、1−イソプロピル−2,4−m−フェニレンジアミン、m−キシリレンジアミン、p−キシリレンジアミン、ジ(p−アミノシクロヘキシル)メタン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ジアミノプロピルテトラメチレン、3−メチルヘプタメチレンジアミン、4,4−ジメチルヘプタメチレンジアミン、2,11−ジアミノドデカン、1,2−ビス−3−アミノプロボキシエタン、2,2−ジメチルプロピレンジアミン、3−メトキシヘキサメチレンジアミン、2,5−ジメチルヘプタメチレンジアミン、3−メチルヘプタメチレンジアミン、5−メチルノナメチレンジアミン、2,17−ジアミノエイコサデカン、1,4−ジアミノシクロヘキサン、1,10−ジアミノ−1,10−ジメチルデカン、12−ジアミノオクタデカン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン、ピペラジン等が挙げられる。   Examples of the diamine include 4,4′-diaminodiphenyl ether (oxydianiline), 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylmethane, 3,3′-dichlorobenzidine, 4,4′-diaminodiphenyl. Sulfide, 3,3-diaminodiphenylsulfone, 1,5-diaminonaphthalene, m-phenylenediamine, p-phenylenediamine, 3,3′-dimethyl4,4′-biphenyldiamine, benzidine, 3,3′-dimethylbenzidine 3,3′-dimethoxybenzidine, 4,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenylpropane, 2,4-bis (β-aminotert-butyl) toluene, bis (p-amino-tertiary) Butylphenyl) ether, bis (p-methyl-aminophenyl) Benzene, bis-p- (1,1-dimethyl-5-amino-benzyl) benzene, 1-isopropyl-2,4-m-phenylenediamine, m-xylylenediamine, p-xylylenediamine, di (p- Aminocyclohexyl) methane, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, diaminopropyltetramethylene, 3-methylheptamethylenediamine, 4,4-dimethylheptamethylenediamine, 2,11- Diaminododecane, 1,2-bis-3-aminopropoxyethane, 2,2-dimethylpropylenediamine, 3-methoxyhexamethylenediamine, 2,5-dimethylheptamethylenediamine, 3-methylheptamethylenediamine, 5-methyl Nonamethylene Diamine, 2,17-diaminoeicosadecane, 1,4-diaminocyclohexane, 1,10-diamino-1,10-dimethyldecane, 12-diaminooctadecane, 2,2-bis [4- (4-aminophenoxy) Phenyl] propane, piperazine and the like.

当該表面層用材料には、これらの中から、基層を構成する材料より線膨張率が高く、既述の式(1)から算出される変位量Dが所望の範囲となる材料を使用すればよい。
ポリアミック酸組成物(ポリアミド酸)を溶解または分散する溶媒としては、基層の場合と同様のものを使用することができる。
As the surface layer material, a material having a linear expansion coefficient higher than that of the material constituting the base layer and having a desired amount of displacement D calculated from the above-described equation (1) may be used. Good.
As the solvent for dissolving or dispersing the polyamic acid composition (polyamic acid), the same solvent as in the case of the base layer can be used.

その後、300〜380℃で加熱することでイミド転化反応を行う。反応後のポリイミドフィルムを円筒状金型より取り外し適当な幅に切断することで無端状のベルト、すなわち、本発明の複層中間転写体が製造される。   Then, imide conversion reaction is performed by heating at 300-380 degreeC. After the reaction, the polyimide film is removed from the cylindrical mold and cut to an appropriate width to produce an endless belt, that is, the multilayer intermediate transfer member of the present invention.

〔第2の複層中間転写体〕
本発明の第2の複層中間転写体は、本発明の第1の複層中間転写体と同様に、基層と表面層とを有し、その基層が、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物とパラフェニレンジアミンとを含有するポリアミック酸組成物をイミド転化させてなるポリイミド樹脂からなる。また、本発明の第1の複層中間転写体と同様に、表面層の線膨張率は基層の線膨張率よりも大きくなっている。
[Second multilayer intermediate transfer member]
Similar to the first multilayer intermediate transfer member of the present invention, the second multilayer intermediate transfer member of the present invention has a base layer and a surface layer, and the base layer is 3, 4, 3 ′, 4 ′. -It consists of a polyimide resin formed by imide conversion of a polyamic acid composition containing biphenyltetracarboxylic dianhydride and paraphenylenediamine. Further, like the first multilayer intermediate transfer member of the present invention, the linear expansion coefficient of the surface layer is larger than the linear expansion coefficient of the base layer.

本発明の第2の複層中間転写体においては、端部平面度が±4mmの範囲となっている。端部平面度が±4mmの範囲となっていることで、ベルトの蛇行による画像歪み等を防止し優れた形状均一性を発揮することができる。   In the second multilayer intermediate transfer member of the present invention, the end flatness is in the range of ± 4 mm. When the end flatness is in the range of ± 4 mm, it is possible to prevent image distortion due to the meandering of the belt and to exhibit excellent shape uniformity.

ここで、端部平面度は、例えば、図1に示すようにして測定することができる。まず、外形φ28mmの2本の金属ロール10a,10bを中間転写体20内に入れ、片側の金属ロール10aを固定し、ベルトテンションが均一にかかるように注意しながら、残りの片側の金属ロール10bを39.2Nのテンションで張架する。移動側の金属ロール10bの軸から固定側の金属ロール10aの軸側に200mm入った部分の高さについて、レーザ変位計を用いて軸と平行な方向に測定し、ベルト両端部とその両端のそれぞれより15mmベルト内側に入った部分の高さの差を端部平面度として、求める。
ここで、端部平坦度の数値が「+」の場合は、端部が上がっていることを示す。
なお、上記平面度の測定方法は、例示であり、ベルトの幅等の大小により、測定位置や張架するテンション等も適宜変更する必要がある。
Here, the end flatness can be measured, for example, as shown in FIG. First, two metal rolls 10a and 10b having an outer diameter of 28 mm are placed in the intermediate transfer body 20, the metal roll 10a on one side is fixed, and the remaining metal roll 10b on the other side is taken care so that the belt tension is uniformly applied. Is stretched with a tension of 39.2N. The height of the portion 200 mm from the axis of the moving metal roll 10b to the axis of the fixed metal roll 10a is measured in a direction parallel to the axis using a laser displacement meter. The difference in height of the portion entering the inner side of the 15 mm belt is determined as the end flatness.
Here, when the numerical value of the edge flatness is “+”, it indicates that the edge is raised.
The method for measuring the flatness is merely an example, and the measurement position, the tension to be stretched, and the like need to be appropriately changed depending on the width of the belt and the like.

本発明の第2の複層中間転写体の代表的な構成としては、本発明の第1の複層中間転写体を挙げることができる。   A typical example of the second multilayer intermediate transfer member of the present invention is the first multilayer intermediate transfer member of the present invention.

以上のような本発明の複層中間転写体は、静電複写方式の画像形成装置に用いる転写部材等に用いることができる。また、導電剤を含有させて、複層中間転写体に導電性を付与してもよい。
当該導電剤としては、ケッチエンブラック、アセチレンブラック等のカーボンブラック、アルミニウムやニッケル等の金属、酸化錫等の酸化金属化合物、チタン酸カリウム等が例示できる。これらの導電剤は、単独、あるいは、併用して使用してもよい。特に、ベルトの表面抵抗率の面内バラツキを抑制する等の観点から、カーボンブラックを使用することが好ましい。
導電剤の含有量は、複層中間転写体中、3〜50質量%とすることが好ましく、5〜30質量%とすることがより好ましい。
The multilayer intermediate transfer member of the present invention as described above can be used for a transfer member used in an electrostatic copying type image forming apparatus. Further, a conductive agent may be contained to impart conductivity to the multilayer intermediate transfer member.
Examples of the conductive agent include carbon blacks such as ketjen black and acetylene black, metals such as aluminum and nickel, metal oxide compounds such as tin oxide, and potassium titanate. These conductive agents may be used alone or in combination. In particular, it is preferable to use carbon black from the viewpoint of suppressing in-plane variation in the surface resistivity of the belt.
The content of the conductive agent is preferably 3 to 50% by mass, and more preferably 5 to 30% by mass in the multilayer intermediate transfer member.

本発明を下記実施例により具体的に説明するが、本発明はこれらに限定されるものではない。   The present invention will be specifically described by the following examples, but the present invention is not limited thereto.

(基層用材料)
宇部興産製のユーワニスS(ビフェニールテトラカルボン酸二無水物とパラフェニレンジアミンからなるポリアミド酸のNMP溶液で 固形分率が18wt%)に、カーボンブラック(Special Black 4 Degussa製 pH3,揮発分14質量%)を24phr添加し、ジーナスPY(ジーナス製)を用い分散時の圧力が200MPaになる条件で5パス分散を行った後、目開き20μmのフィルタで凝集塊を取り除き、基層用材料を作製した。基層用材料の線膨張率は27PPM(/K)であった。また、縦弾性率は6000MPaであった。
(Base layer material)
Euvanis S manufactured by Ube Industries (NMP solution of polyamic acid composed of biphenyltetracarboxylic dianhydride and paraphenylenediamine, solid content rate is 18 wt%), carbon black (Special Black 4 Degussa, pH 3, volatile content 14 mass% ) Was added for 24 phr, and 5 pass dispersion was performed under the condition that the pressure during dispersion was 200 MPa using Genus PY (manufactured by Genus), and then the aggregate was removed with a filter having an opening of 20 μm to prepare a base layer material. The linear expansion coefficient of the base layer material was 27 PPM (/ K). The longitudinal elastic modulus was 6000 MPa.

(表面層用材料1)
宇部興産製ユーワニスA(3,4,3’,4’−ビフェニルテトラカルボン酸二無水物とオキシジアニリンとからなるポリアミド酸のNMP溶液で 固形分率が18wt%)にカーボンブラック(Special Black 4 Degussa製 pH3,揮発分14質量%)を22phr添加し、基層用材料と同様に分散を行った。この液を表面層用材料1とする。表面層用材料1の線膨張率は37PPM(/K)であった。また、縦弾性率は4200MPaであった。この材料のガラス転移点温度は290℃であった。
(Surface layer material 1)
Euvanis A manufactured by Ube Industries (NMP solution of polyamic acid composed of 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride and oxydianiline, solid content is 18 wt%) and carbon black (Special Black 4 22 phr of Degussa pH 3, volatile content 14% by mass) was added and dispersed in the same manner as the base layer material. This liquid is designated as surface layer material 1. The linear expansion coefficient of the surface layer material 1 was 37 PPM (/ K). The longitudinal elastic modulus was 4200 MPa. The glass transition temperature of this material was 290 ° C.

(表面層用材料2)
東レ製トレニース#3000(ピロメリット酸二無水物とオキシジアニリンとからなるポリアミド酸の溶液で固形分率が21.8質量%)にカーボンブラック(Special Black 4 Degussa製 pH3,揮発分14質量%)を25phr添加し、基層用材料と同様に分散を行った。この液を表面層用材料2とする。表面層用材料2の線膨張率は44PPM(/K)で、この材料のガラス転移温度は観察できなかった。また、縦弾性率は2800MPaであった。
(Surface layer material 2)
Toray Torenice # 3000 (polyamic acid solution containing pyromellitic dianhydride and oxydianiline, solid content 21.8% by mass) and carbon black (Special Black 4 Degussa, pH 3, volatile content 14% by mass) 25 phr was added and dispersed in the same manner as the base layer material. This liquid is designated as surface layer material 2. The linear expansion coefficient of the surface layer material 2 was 44 PPM (/ K), and the glass transition temperature of this material could not be observed. The longitudinal elastic modulus was 2800 MPa.

(表面層用材料3)
東洋紡製バイロマックスHR14ET(ポリアミドイミドにシリコーン基を付加した樹脂で固形分率が25wt%)にカーボンブラック(Special Black 4 Degussa製 pH3,揮発分14質量%)を14phrとNMPを30質量%添加し、横型ビーズミルを用い分散を行った。この液を表面層用材料3とする。表面層用材料3の線膨張率は59PPM(/K)で、この材料のガラス転移点温度は250℃であった。縦弾性率は1200MPaであった。
(Surface layer material 3)
Toyobo Viromax HR14ET (polyamideimide with a silicone group-added resin with a solid content of 25 wt%) and carbon black (Special Black 4 Degussa pH 3, volatile content 14 mass%) 14 phr and NMP 30 mass% were added. Dispersion was performed using a horizontal bead mill. This liquid is designated as surface layer material 3. The linear expansion coefficient of the surface layer material 3 was 59 PPM (/ K), and the glass transition temperature of this material was 250 ° C. The longitudinal elastic modulus was 1200 MPa.

〔実施例1〕
基層用材料をディップ法でφ302mmのアルミ製金型外面に塗布後、150℃に設定した乾燥機中で回転させながら1時間乾燥を行った。乾燥後の金型を取り出して冷却し、同様にディップ法で表面層用材料1を塗布した。その後、150℃に設定した乾燥機中で回転させながら0.5時間乾燥を行った。その後、320℃まで加熱し、カーボンブラックを含有した無端状ポリイミドフィルム(複層中間転写体)を作製した。
複層中間転写体は、基層の厚みが71μm、表面層の厚みが9μmであり、端部平面度を使用時の温度23℃で測定したところ+1mmであった。
また、この結果を式(1)に当てはめ、T2は表面層用材料のガラス転移温度の290℃、T1は使用時の温度23℃として計算すると、D=5.8であった。
[Example 1]
The base layer material was applied to the outer surface of an aluminum mold having a diameter of φ302 mm by the dipping method, and then dried for 1 hour while being rotated in a dryer set at 150 ° C. The mold after drying was taken out and cooled, and the surface layer material 1 was similarly applied by the dipping method. Then, it dried for 0.5 hour, rotating in the dryer set to 150 degreeC. Then, it heated to 320 degreeC and produced the endless polyimide film (multilayer intermediate transfer body) containing carbon black.
The multilayer intermediate transfer member had a base layer thickness of 71 μm and a surface layer thickness of 9 μm, and its edge flatness measured at 23 ° C. during use was +1 mm.
Further, when this result was applied to the formula (1), T 2 was calculated as 290 ° C. of the glass transition temperature of the material for the surface layer, and T 1 was calculated as 23 ° C. during use, D = 5.8.

〔実施例2〕
基層用材料をディップ法でφ302mmのアルミ製金型外面に塗布後、150℃に設定した乾燥機中で回転させながら1時間乾燥を行った。乾燥後の金型を取り出し冷却後、同様にディップ法で表面層用材料2を塗布した。その後、150℃に設定した乾燥機中で回転させながら0.5時間入れ乾燥を行った。その後、380℃まで加熱し、カーボンブラックを含有した無端状ポリイミドフィルム(複層中間転写体)を作製した。
複層中間転写体は、基層の厚みが75μm、表面層の厚みが5μmであり、端部平面度を使用時の温度23℃で測定したところ+2mmであった。
また、この結果を式(1)に当てはめ、T2は表面層用材料のガラス転移温度の380℃、T1は使用時の温度23℃として計算すると、D=6.4であった。
[Example 2]
The base layer material was applied to the outer surface of an aluminum mold having a diameter of φ302 mm by the dipping method, and then dried for 1 hour while being rotated in a dryer set at 150 ° C. After the dried mold was taken out and cooled, the surface layer material 2 was similarly applied by the dipping method. Thereafter, drying was carried out for 0.5 hours while rotating in a dryer set at 150 ° C. Then, it heated to 380 degreeC and produced the endless polyimide film (multilayer intermediate transfer body) containing carbon black.
The multilayer intermediate transfer member had a base layer thickness of 75 μm and a surface layer thickness of 5 μm, and the end flatness measured at a temperature of 23 ° C. was +2 mm.
When this result was applied to the formula (1), T 2 was calculated as 380 ° C. of the glass transition temperature of the material for the surface layer, and T 1 was calculated as 23 ° C. during use, and D = 6.4.

〔実施例3〕
基層用材料をディップ法でφ302mmのアルミ製金型外面に塗布後、150℃に設定した乾燥機中で回転させながら1時間乾燥を行った。この金型を取り出し冷却後、同様にディップ法で表面層用材料3を塗布した。その後、120℃に設定した乾燥機中で回転させながら0.5時間乾燥を行った。その後、300℃まで加熱し、カーボンブラックを含有した無端状ポリイミドフィルム(複層中間転写体)を作製した。
複層中間転写体は、基層の厚みが74μm、表面層の厚みが7μmであり、端部平面度を測定したところ±0mmであった。
また、この結果を式(1)に当てはめ、T2は表面層用材料のガラス転移温度の250℃、T1は使用時の温度23℃として計算すると、D=5.0であった。
Example 3
The base layer material was applied to the outer surface of an aluminum mold having a diameter of φ302 mm by the dipping method, and then dried for 1 hour while being rotated in a dryer set at 150 ° C. The mold was taken out and cooled, and the surface layer material 3 was similarly applied by the dipping method. Then, it dried for 0.5 hour, rotating in the dryer set to 120 degreeC. Then, it heated to 300 degreeC and produced the endless polyimide film (multilayer intermediate transfer body) containing carbon black.
The multilayer intermediate transfer member had a base layer thickness of 74 μm and a surface layer thickness of 7 μm, and the end flatness measured was ± 0 mm.
Further, when this result was applied to the formula (1), T 2 was calculated as 250 ° C. of the glass transition temperature of the surface layer material, and T 1 was calculated as 23 ° C. during use, it was D = 5.0.

〔比較例1〕
基層用材料をディップ法でφ302mmのアルミ製金型外面に塗布後、150℃に設定した乾燥機中で回転させながら1時間乾燥を行った。その後、340℃まで加熱し、無端状カーボンブラック含有ポリイミドフィルム(中間転写体)を作製した。
単層中間転写体は、厚みが80μmであり、端部平面度を使用の温度23℃で測定したところ−4.7mmであった。
[Comparative Example 1]
The base layer material was applied to the outer surface of an aluminum mold having a diameter of φ302 mm by the dipping method, and then dried for 1 hour while being rotated in a dryer set at 150 ° C. Then, it heated to 340 degreeC and produced the endless carbon black containing polyimide film (intermediate transfer body).
The single-layer intermediate transfer member had a thickness of 80 μm, and the end flatness measured at a use temperature of 23 ° C. was −4.7 mm.

〔比較例2〕
基層用材料をディップ法でφ302mmのアルミ製金型外面に塗布後、150℃に設定した乾燥機中で回転させながら1時間乾燥を行った。この金型を取り出し冷却後、実施例1と同様に表面層用材料1を塗布した。その後、150℃に設定した乾燥機中で回転させながら0.5時間入れ乾燥を行った。その後、320℃まで加熱し、無端状カーボンブラック含有ポリイミドフィルム(複層中間転写体)を作製した。
複層中間転写体は、基層の厚みが67μm、表面層の厚みが13μmであり、端部平面度を使用の温度23℃で測定したところ+4.2mmであった。
また、この結果を式(1)に当てはめ、T2は表面層用材料のガラス転移温度の290℃、T1は使用時の温度23℃として計算すると、D=8.6であった。
[Comparative Example 2]
The base layer material was applied to the outer surface of an aluminum mold having a diameter of φ302 mm by the dipping method, and then dried for 1 hour while being rotated in a dryer set at 150 ° C. The mold was taken out and cooled, and then the surface layer material 1 was applied in the same manner as in Example 1. Thereafter, drying was carried out for 0.5 hours while rotating in a dryer set at 150 ° C. Then, it heated to 320 degreeC and produced the endless carbon black containing polyimide film (multilayer intermediate transfer body).
The multilayer intermediate transfer member had a base layer thickness of 67 μm and a surface layer thickness of 13 μm, and the end flatness measured at a use temperature of 23 ° C. was +4.2 mm.
Further, when this result was applied to the formula (1), T 2 was calculated as 290 ° C. of the glass transition temperature of the material for the surface layer, and T 1 was calculated as 23 ° C. during use, it was D = 8.6.

(比較例3)
基層用材料をディップ法でφ302mmのアルミ製金型外面に塗布後、150℃に設定した乾燥機中で回転させながら1時間乾燥を行った。この金型を取り出し冷却後、実施例2と同様に表面層用材料2を塗布した。その後、150℃に設定した乾燥機中で回転させながら0.5時間入れ乾燥を行った。その後、380℃まで加熱し、無端状カーボンブラック含有ポリイミドフィルム(複層中間転写体)を作製した。
複層中間転写体は、基層の厚みが78.5μm、表面層の厚みが2μmであり、端部平面度を使用の温度23℃で測定したところ−4.5mmであった。
また、この結果を式(1)に当てはめ、T2は表面層用材料のガラス転移温度の380℃、T1は使用時の温度23℃として計算すると、D=1.9であった。
(Comparative Example 3)
The base layer material was applied to the outer surface of an aluminum mold having a diameter of φ302 mm by the dipping method, and then dried for 1 hour while being rotated in a dryer set at 150 ° C. The mold was taken out and cooled, and then the surface layer material 2 was applied in the same manner as in Example 2. Thereafter, drying was carried out for 0.5 hours while rotating in a dryer set at 150 ° C. Then, it heated to 380 degreeC and produced the endless carbon black containing polyimide film (multilayer intermediate transfer body).
The multilayer intermediate transfer member had a base layer thickness of 78.5 μm, a surface layer thickness of 2 μm, and an end flatness measured at a use temperature of 23 ° C. was −4.5 mm.
When this result was applied to the formula (1), T 2 was calculated as 380 ° C. of the glass transition temperature of the material for the surface layer, and T 1 was calculated as 23 ° C. during use, and D = 1.9.

〔比較例4〕
基層用材料をディップ法でφ302mmのアルミ製金型外面に塗布後、150℃に設定した乾燥機中で回転させながら1時間乾燥を行った。この金型を取り出し冷却後、実施例1と同様に表面層用材料1を塗布した。その後、150℃に設定した乾燥機中で回転させながら0.5時間入れ乾燥を行った。その後、320℃まで加熱し、無端状カーボンブラック含有ポリイミドフィルム(複層中間転写体)を作製した。
複層中間転写体は、基層の厚みが41μm、表面層の厚みが39μmであり、端部平面度を使用の温度23℃で測定したところ外側に反り返り測定不能であった。
また、この結果を式(1)に当てはめ、T2は成型温度の380℃、T1は使用時の温度23℃として計算すると、D=22.1であった。
[Comparative Example 4]
The base layer material was applied to the outer surface of an aluminum mold having a diameter of φ302 mm by the dipping method, and then dried for 1 hour while being rotated in a dryer set at 150 ° C. The mold was taken out and cooled, and then the surface layer material 1 was applied in the same manner as in Example 1. Thereafter, drying was carried out for 0.5 hours while rotating in a dryer set at 150 ° C. Then, it heated to 320 degreeC and produced the endless carbon black containing polyimide film (multilayer intermediate transfer body).
The multilayer intermediate transfer member had a base layer thickness of 41 μm and a surface layer thickness of 39 μm. When the end flatness was measured at a use temperature of 23 ° C., it was warped outward and could not be measured.
Further, when this result was applied to the equation (1), T 2 was calculated as a molding temperature of 380 ° C., and T 1 was calculated as a temperature at the time of use of 23 ° C., D = 22.1.

Figure 2005309053
Figure 2005309053

Figure 2005309053
Figure 2005309053

以上のような結果より、ビフェニルテトラカルボン酸二無水物とパラフェニレンジアミンとからなるポリイミドを基層に持つ複層中間転写体において、線膨張率の大きな材料からなる表面層を形成し、D値を2以上8以下とすることで、端部平面度の優れたベルトが得られる事がわかる。また、D値を2以上8以下とする事で端部平面度が±4mm以下のベルトを得られることが判る。   From the above results, in the multilayer intermediate transfer body having a polyimide composed of biphenyltetracarboxylic dianhydride and paraphenylenediamine as a base layer, a surface layer made of a material having a large linear expansion coefficient was formed, and the D value was It can be seen that a belt having excellent end flatness can be obtained by setting it to 2 or more and 8 or less. It can also be seen that by setting the D value to 2 or more and 8 or less, a belt having an end flatness of ± 4 mm or less can be obtained.

これは、ポリイミドが形成された後の冷却時にビフェニルテトラカルボン酸二無水物とパラフェニレンジアミンからなるポリイミドベルト端部は内側へ折れ曲がろうとするが、表面側のポリイミドはビフェニールテトラカルボン酸二無水物とパラフェニレンジアミンよりも線膨張率が大きいためより大きく収縮し、その結果、外側方向への応力が発生し折れ曲がりを防止できると考えられる。
また、線膨張率、縦弾性率、成形時の温度、表面層厚みを最適化することで、端部平面度の優れたベルトを得られる。
This is because the polyimide belt end made of biphenyltetracarboxylic dianhydride and paraphenylenediamine tends to bend inward during cooling after the polyimide is formed, but the polyimide on the surface side is biphenyltetracarboxylic dianhydride. It is considered that the linear expansion coefficient is larger than that of the product and paraphenylenediamine, so that the material contracts more greatly, and as a result, outward stress is generated and bending can be prevented.
Further, by optimizing the linear expansion coefficient, the longitudinal elastic modulus, the molding temperature, and the surface layer thickness, a belt having excellent end flatness can be obtained.

端部平面度の測定法を説明するための概略説明図である。It is a schematic explanatory drawing for demonstrating the measuring method of edge part flatness.

符号の説明Explanation of symbols

10a,10b・・・金属ロール
20・・・中間転写体
10a, 10b ... metal roll 20 ... intermediate transfer member

Claims (2)

基層と表面層とを有する複層中間転写体において、
前記基層が、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物とパラフェニレンジアミンとを含有するポリアミック酸組成物をイミド転化させてなるポリイミド樹脂からなり、
前記表面層の線膨張率が基層の線膨張率よりも大きく、
下記式(1)で表される変位量Dが2以上8以下であることを特徴とする複層中間転写体。
Figure 2005309053
(上記式(1)中、α1は基層材料の線膨張率(/K)を示し、h1は基層の厚み(mm)を示し、E1は基層材料の縦弾性率(MPa)示し、α2は表面層材料の線膨張率(/K)を示し、h2は表面層の厚み(mm)を示し、E2は表面層材料の縦弾性率(MPa)を示す。また、T2は、「表面層形成時の温度(K)」および「表面層材料のガラス転移点(K)」のうち低い方の温度を示し、T1は使用時の温度(K)を示す。さらに、m=E1/E2、n=h1/h2とする。)
In a multilayer intermediate transfer body having a base layer and a surface layer,
The base layer is composed of a polyimide resin obtained by imide conversion of a polyamic acid composition containing 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride and paraphenylenediamine,
The linear expansion coefficient of the surface layer is larger than the linear expansion coefficient of the base layer,
A multilayer intermediate transfer member, wherein the displacement D represented by the following formula (1) is 2 or more and 8 or less.
Figure 2005309053
(In the above formula (1), α 1 indicates the linear expansion coefficient (/ K) of the base layer material, h 1 indicates the thickness (mm) of the base layer, E 1 indicates the longitudinal elastic modulus (MPa) of the base layer material, α 2 represents the linear expansion coefficient (/ K) of the surface layer material, h 2 represents the thickness (mm) of the surface layer, E 2 represents the longitudinal elastic modulus (MPa) of the surface layer material, and T 2. Indicates a lower temperature of “temperature at the time of surface layer formation (K)” and “glass transition point (K) of the surface layer material”, and T 1 indicates a temperature at the time of use (K). m = E 1 / E 2, and n = h 1 / h 2. )
基層と表面層とを有する複層中間転写体において、
前記基層が、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物とパラフェニレンジアミンとを含有するポリアミック酸組成物をイミド転化させてなるポリイミド樹脂からなり、
前記表面層の線膨張率が基層の線膨張率よりも大きく、
端部平面度が±4mm以下であることを特徴とする複層中間転写体。
In a multilayer intermediate transfer body having a base layer and a surface layer,
The base layer is composed of a polyimide resin obtained by imide conversion of a polyamic acid composition containing 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride and paraphenylenediamine,
The linear expansion coefficient of the surface layer is larger than the linear expansion coefficient of the base layer,
A multi-layer intermediate transfer member having an end flatness of ± 4 mm or less.
JP2004125346A 2004-04-21 2004-04-21 Double layer intermediate transfer body Pending JP2005309053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004125346A JP2005309053A (en) 2004-04-21 2004-04-21 Double layer intermediate transfer body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004125346A JP2005309053A (en) 2004-04-21 2004-04-21 Double layer intermediate transfer body

Publications (1)

Publication Number Publication Date
JP2005309053A true JP2005309053A (en) 2005-11-04

Family

ID=35437918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004125346A Pending JP2005309053A (en) 2004-04-21 2004-04-21 Double layer intermediate transfer body

Country Status (1)

Country Link
JP (1) JP2005309053A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025631A (en) * 2007-07-20 2009-02-05 Fuji Xerox Co Ltd Endless belt, belt tensioning and laying device and image forming apparatus
JP2011008267A (en) * 2009-06-29 2011-01-13 Xerox Corp Intermediate transfer member
JP2011017974A (en) * 2009-07-10 2011-01-27 Ricoh Co Ltd Seamless belt for electrophotography, and electrophotographic device using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156835A (en) * 2000-11-16 2002-05-31 Nitto Denko Corp Semiconductive belt
JP2002365927A (en) * 2001-06-06 2002-12-20 Nitto Denko Corp Electrically semiconductive belt and manufacturing method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156835A (en) * 2000-11-16 2002-05-31 Nitto Denko Corp Semiconductive belt
JP2002365927A (en) * 2001-06-06 2002-12-20 Nitto Denko Corp Electrically semiconductive belt and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009025631A (en) * 2007-07-20 2009-02-05 Fuji Xerox Co Ltd Endless belt, belt tensioning and laying device and image forming apparatus
JP2011008267A (en) * 2009-06-29 2011-01-13 Xerox Corp Intermediate transfer member
JP2011017974A (en) * 2009-07-10 2011-01-27 Ricoh Co Ltd Seamless belt for electrophotography, and electrophotographic device using the same

Similar Documents

Publication Publication Date Title
JP2010237672A (en) Layered intermediate transfer member
US8267242B2 (en) Seamless belt
US20130084443A1 (en) Fluoropolyimide intermediate transfer members
JP5784104B2 (en) Semiconductive polyimide resin belt and method of manufacturing semiconductive polyimide resin belt
JP2006259248A (en) Transfer fixing belt
US8252420B2 (en) Polyamideimide polybenzimidazole containing intermediate transfer members
US20110244247A1 (en) Fluoropolyimide single layered intermediate transfer members
JP5856514B2 (en) Metal dialkyldithiophosphate intermediate transfer member
JP2005309053A (en) Double layer intermediate transfer body
JP2008116838A (en) Endless belt made of polyimide resin and image forming apparatus equipped with the same, and method for manufacturing endless belt made of polyimide resin
JP2006272839A (en) Seamless belt and its manufacturing method
JP2019200318A (en) Belt, endless belt, intermediate transfer belt and image formation device
US8465839B2 (en) Polyimide polybenzimidazole intermediate transfer members
JP2012159803A (en) Cylindrically formed body and method for manufacturing the same, cylindrically formed body unit, member for image forming device, image forming device, and resin composition
JP2004284164A (en) Method for manufacturing semiconductive seamless belt
JP5220576B2 (en) Polyimide resin belt and manufacturing method thereof
JP2001242725A (en) Intermediate transfer body and image forming device
JP5157330B2 (en) Manufacturing core body and seamless tubular product
JP5081651B2 (en) Intermediate transfer medium for electrophotography and image forming apparatus using the intermediate transfer medium
JP2005249952A (en) Semiconductive film and method for manufacturing the same
JP6269732B2 (en) Polyimide precursor composition, polyimide molded body, and image forming apparatus
JP5352976B2 (en) Method for producing seamless tubular product
JP2003270967A (en) Transfer fixing belt
JP2018146635A (en) Endless belt for electrophotographic device, image forming apparatus, and endless belt unit
JP2005084169A (en) Polyimide film, transfer roll, transfer carrying belt and intermediate transfer member having the film, and image forming apparatus equipped with same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100112

A131 Notification of reasons for refusal

Effective date: 20100119

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20100323

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20100427

Free format text: JAPANESE INTERMEDIATE CODE: A02