JP2005302977A - Multilayer ceramic capacitor - Google Patents

Multilayer ceramic capacitor Download PDF

Info

Publication number
JP2005302977A
JP2005302977A JP2004116392A JP2004116392A JP2005302977A JP 2005302977 A JP2005302977 A JP 2005302977A JP 2004116392 A JP2004116392 A JP 2004116392A JP 2004116392 A JP2004116392 A JP 2004116392A JP 2005302977 A JP2005302977 A JP 2005302977A
Authority
JP
Japan
Prior art keywords
rare earth
ceramic capacitor
multilayer ceramic
earth compound
barium titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004116392A
Other languages
Japanese (ja)
Other versions
JP4165434B2 (en
Inventor
Tadashi Onomi
忠 小野美
Kazuhiro Komatsu
和博 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004116392A priority Critical patent/JP4165434B2/en
Publication of JP2005302977A publication Critical patent/JP2005302977A/en
Application granted granted Critical
Publication of JP4165434B2 publication Critical patent/JP4165434B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent defect in the internal structure, e.g. delamination or crack, and to reduce temperature variation rate of capacitance without lowering the capacitance. <P>SOLUTION: A process for manufacturing a multilayer ceramic capacitor comprises a first step for laying a dielectric layer 12 having a rare earth compound as a subcomponent and an internal electrode 13 containing metal powder and the rare earth compound alternately in layers to produce a multilayer body, and a second step for sintering the multilayer body wherein the addition rate of rare earth compound in the internal electrode 13 is not lower than the addition rate of rare earth compound in the dielectric layer 12. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、温度変化に対する静電容量の変化が少なく、比誘電率の高い積層セラミックコンデンサに関するものである。   The present invention relates to a multilayer ceramic capacitor having a small change in capacitance with a change in temperature and a high relative dielectric constant.

従来の積層セラミックコンデンサの製造方法について説明する。   A conventional method for manufacturing a multilayer ceramic capacitor will be described.

金属粒子と、共材となる誘電体磁器粒子とを含有する電極ペーストを使用することにより内部電極を構成する金属粒子の異常粒子成長を抑制し、デラミネーションならびにクラックの発生を防止することにより所望の静電容量を得る方法は例えば特開昭57−30308号公報(以下に記載の特許文献1)に公知である。   By using an electrode paste containing metal particles and dielectric ceramic particles as a co-material, it is possible to suppress abnormal particle growth of the metal particles constituting the internal electrode, and to prevent delamination and cracking. For example, Japanese Patent Laid-Open No. 57-30308 (Patent Document 1 described below) discloses a method for obtaining the electrostatic capacity.

また、内部電極ペーストに希土類酸化物などのキュリー点を変えるための物質を含ませておいて、これを焼成時に磁器層に拡散し、比誘電率の異なる複数の磁器層を得ることによってその集合体として静電容量の温度変化率を小さくすることは特開平5−36569号公報(以下に記載の特許文献2)に公知である。   In addition, the internal electrode paste contains a substance for changing the Curie point such as rare earth oxide, and this is diffused into the ceramic layer during firing to obtain a plurality of ceramic layers having different relative dielectric constants. It is known in Japanese Patent Laid-Open No. 5-36569 (Patent Document 2 described below) to reduce the temperature change rate of capacitance as a body.

この特開平5−36569号公報の方法では、まずチタン酸バリウム系磁器原料粉末を用意し、有機バインダーを加えてスラリー状にし、ドクターブレード法でグリーンシートを複数枚作成する。   In the method disclosed in Japanese Patent Laid-Open No. 5-36569, barium titanate-based porcelain raw material powder is first prepared, an organic binder is added to form a slurry, and a plurality of green sheets are prepared by a doctor blade method.

一方Pd粉末にキュリー点を変えるための物質として希土類酸化物を含む導電性ペーストと含まない導電性ペーストを準備し、グリーンシート上に印刷して内部電極とした後、このグリーンシートを積層して積層体を作成し、焼成する。   On the other hand, a conductive paste containing a rare earth oxide and a conductive paste containing no rare earth oxide are prepared as substances for changing the Curie point to Pd powder, printed on the green sheet to form an internal electrode, and then the green sheet is laminated. A laminate is prepared and fired.

その後外部電極を形成し、積層セラミックコンデンサを得る。
特開昭57−30308号公報 特開平5−36569号公報
Thereafter, external electrodes are formed to obtain a multilayer ceramic capacitor.
JP-A-57-30308 JP-A-5-36569

上記特許文献1の方法では、金属粒子の異常粒子成長を抑制し、デラミネーションやクラックの発生を防止することにより所望の静電容量を確保することは出来るが、温度変化による静電容量の変化を抑制することは出来ない。   In the method of Patent Document 1, it is possible to secure a desired capacitance by suppressing abnormal particle growth of metal particles and preventing the occurrence of delamination and cracks. Can not be suppressed.

また、上記特許文献2の方法によると、キュリー点を変えるための物質を焼成時に磁器層に拡散し、キュリー点の異なる複数の磁器層を得ることによってその集合体として静電容量の温度変化率を小さくすることは出来るが、同時に比誘電率が低下してしまい、所望の静電容量が得られないという問題点があった。   Further, according to the method of Patent Document 2, a substance for changing the Curie point is diffused in the ceramic layer at the time of firing, and a plurality of ceramic layers having different Curie points are obtained. However, at the same time, the relative dielectric constant is lowered, and a desired capacitance cannot be obtained.

そこで、本発明は、デラミネーションやクラックなどの内部構造欠陥を防止して所望の静電容量を確保するとともに、比誘電率の低下を起こすことなく、静電容量の温度変化率が小さい積層セラミックコンデンサを容易に製造することが出来る積層セラミックコンデンサの製造方法を提供することを目的とする。   Accordingly, the present invention prevents multilayer structure defects such as delamination and cracks to ensure a desired capacitance, and has a low capacitance temperature change rate without causing a decrease in relative permittivity. It is an object of the present invention to provide a method for manufacturing a multilayer ceramic capacitor that can easily manufacture a capacitor.

この目的を達成するために本発明は、チタン酸バリウム化合物を主成分とし副成分として1種または2種以上の希土類化合物を有するセラミックシートと導電性金属粉末とチタン酸バリウムと前記希土類化合物とを含有した内部電極とを交互に積層した積層体を焼成して得られる積層セラミックコンデンサであって、チタン酸バリウムをBaTiO3、前記希土類化合物をX23(但しXは希土類元素)と表したとき、内部電極中のチタン酸バリウムに対する希土類化合物全体の添加比率が、セラミックシート中のチタン酸バリウムに対する希土類化合物全体の添加比率よりも大きい積層セラミックコンデンサであり、比誘電率の低下を起こすことなく、静電容量の温度変化率が小さい積層セラミックコンデンサを得ることが出来るものである。 In order to achieve this object, the present invention comprises a ceramic sheet comprising a barium titanate compound as a main component and one or more rare earth compounds as subcomponents, a conductive metal powder, barium titanate, and the rare earth compound. A multilayer ceramic capacitor obtained by firing a laminate in which contained internal electrodes are alternately laminated, wherein barium titanate is represented as BaTiO 3 , and the rare earth compound is represented as X 2 O 3 (where X is a rare earth element). When the addition ratio of the whole rare earth compound to the barium titanate in the internal electrode is larger than the addition ratio of the whole rare earth compound to the barium titanate in the ceramic sheet, the dielectric constant is not lowered. It is possible to obtain a monolithic ceramic capacitor with a small capacitance temperature change rate. That.

本発明の積層セラミックコンデンサは、内部電極中に誘電体層中のチタン酸バリウムと希土類化合物との元素比率以上の希土類化合物を有することにより、誘電率の低下を起こすことなく、従って静電容量を低下させることなく静電容量の温度特性が向上した積層セラミックコンデンサを容易に製造することができるものである。   The multilayer ceramic capacitor of the present invention has a rare earth compound having an element ratio equal to or higher than that of barium titanate and rare earth compound in the dielectric layer in the internal electrode. A multilayer ceramic capacitor having an improved capacitance temperature characteristic can be easily manufactured without lowering.

以下、本発明の一実施の形態における積層セラミックコンデンサについて、図面を参照しながら説明する。   Hereinafter, a multilayer ceramic capacitor according to an embodiment of the present invention will be described with reference to the drawings.

図1は、本実施の形態における積層セラミックコンデンサ11の一部切欠斜視図である。図1において、誘電体層12と内部電極13とが交互に積層されて積層体を構成し、内部電極13はその端部が積層体の対向する両端面に交互に露出するよう積層されており、積層体の両端面に形成された一対の外部電極14に交互に接続されている。   FIG. 1 is a partially cutaway perspective view of a multilayer ceramic capacitor 11 according to the present embodiment. In FIG. 1, dielectric layers 12 and internal electrodes 13 are alternately laminated to constitute a laminated body, and the internal electrodes 13 are laminated so that the end portions thereof are alternately exposed at opposite end faces of the laminated body. , And are alternately connected to a pair of external electrodes 14 formed on both end faces of the laminate.

以上のように構成された積層セラミックコンデンサの製造方法について、以下に説明する。   A method for manufacturing the multilayer ceramic capacitor configured as described above will be described below.

まずチタン酸バリウム化合物を主成分とし、チタン酸バリウム100重量部に対して副成分としてDy23を1重量部となる比率で含むとともに、MgO、MnO2などを含む誘電体材料を仮焼し、粉砕後、有機バインダーとしてポリビニルブチラール樹脂、溶剤としてノルマル酢酸ブチル、可塑剤としてベンジルブチルフタレートを混合してスラリーを得る。そしてドクターブレード法などにより、誘電体層12となるセラミックシートを作製する。 First, a dielectric material containing, as a main component, a barium titanate compound and Dy 2 O 3 as an accessory component in an amount of 1 part by weight with respect to 100 parts by weight of barium titanate, and containing MgO, MnO 2 and the like is calcined. After pulverization, a polyvinyl butyral resin as an organic binder, normal butyl acetate as a solvent, and benzyl butyl phthalate as a plasticizer are mixed to obtain a slurry. Then, a ceramic sheet to be the dielectric layer 12 is produced by a doctor blade method or the like.

一方、導電性金属粉末としてNi粉末、有機バインダーとしてポリビニルブチラール樹脂、溶剤としてノルマル酢酸ブチル、可塑剤としてベンジルブチルフタレートに、チタン酸バリウム粉末と、Dy23を(表1)に示す元素比率とし、かつDy23重量比率がNi100重量%に対して0.005重量%、0.01重量%、0.02重量%、0.03重量%混合し、ロールミル等を用いて混練して試料番号2〜9に使用する内部電極となる金属ペーストを作製する。 On the other hand, Ni powder as the conductive metal powder, polyvinyl butyral resin as the organic binder, normal butyl acetate as the solvent, benzyl butyl phthalate as the plasticizer, barium titanate powder and Dy 2 O 3 as shown in Table 1 And a Dy 2 O 3 weight ratio of 0.005 wt%, 0.01 wt%, 0.02 wt%, 0.03% wt% with respect to 100 wt% Ni, and kneading using a roll mill or the like. A metal paste to be an internal electrode used for sample numbers 2 to 9 is prepared.

ここで、比率で0と標記した試料番号1は、その該当する希土類化合物を含まないことを意味する。   Here, the sample number 1 marked with a ratio of 0 means that the corresponding rare earth compound is not included.

上記金属ペーストに混合したNi粉末の平均粒径は0.4μmであり、またチタン酸バリウム粉末の平均粒径は0.1μm、Dy23の平均粒径は0.05μmであり、Ni粉末の平均粒径よりチタン酸バリウム並びに希土類化合物の平均粒径を小さくすることにより、内部電極中の金属粒子の焼結をより効果的に抑制することができるとともに、金属粒子が焼結して形成される内部電極平面の途切れた部分が少なくなるため、静電容量の低下をより効果的に防止することができるものである。 The average particle size of Ni powder mixed with the metal paste is 0.4 μm, the average particle size of barium titanate powder is 0.1 μm, the average particle size of Dy 2 O 3 is 0.05 μm, and Ni powder By making the average particle size of barium titanate and rare earth compounds smaller than the average particle size of the metal particles, sintering of the metal particles in the internal electrode can be more effectively suppressed, and the metal particles are formed by sintering. Since the number of discontinuous portions of the internal electrode plane is reduced, it is possible to more effectively prevent a decrease in capacitance.

たとえばNi粉末の平均粒径0.4μmに対して0.4μm以上の平均粒径を持つチタン酸バリウムを添加した場合には、このチタン酸バリウム粒子が内部電極平面を途切れさせるため、静電容量の低下が起こるため好ましくない。   For example, when barium titanate having an average particle diameter of 0.4 μm or more with respect to the average particle diameter of Ni powder of 0.4 μm is added, the barium titanate particles interrupt the internal electrode plane. This is not preferable because of a decrease in the thickness.

次に、セラミックシートの上に金属ペーストを所望の形状にスクリーン印刷し、内部電極13を形成する。   Next, the metal paste is screen-printed in a desired shape on the ceramic sheet to form the internal electrodes 13.

次いで、セラミックシートのみを複数枚積層したカバー層の上に、内部電極13を形成したセラミックシートを所望の枚数積層し、さらにセラミックシートのみを複数枚積層してカバー層を形成して積層体を得る。   Next, a desired number of ceramic sheets on which internal electrodes 13 are formed are laminated on a cover layer obtained by laminating only a plurality of ceramic sheets, and a plurality of ceramic sheets alone are further laminated to form a cover layer. obtain.

次に、積層体を1.8mm×0.9mm×0.9mmの形状に切断した後、ジルコニア粉末を敷いたジルコニア質のサヤに入れ、350℃まで窒素中で加熱し、有機バインダーを燃焼させ、その後N2+H2中で1250℃で2時間焼成して焼結体を得る。 Next, the laminate is cut into a shape of 1.8 mm × 0.9 mm × 0.9 mm, and then put into a zirconia sheath with zirconia powder and heated to 350 ° C. in nitrogen to burn the organic binder. Thereafter, the sintered body is obtained by firing at 1250 ° C. for 2 hours in N 2 + H 2 .

次に、得られた焼結体の内部電極13の露出した端面に外部電極14として、窒素雰囲気焼成用銅ペーストを塗布し、メッシュ型の連続ベルト炉によって900℃で焼付け、図1に示すような積層セラミックコンデンサを得る。   Next, a copper paste for firing in a nitrogen atmosphere is applied as an external electrode 14 to the exposed end surface of the internal electrode 13 of the obtained sintered body, and baked at 900 ° C. in a mesh type continuous belt furnace, as shown in FIG. A multilayer ceramic capacitor is obtained.

この積層セラミックコンデンサの設計値としては、静電容量1μF以上、静電容量温度特性はEIA規格で規定されたX7R特性である。   The design value of this multilayer ceramic capacitor is a capacitance of 1 μF or more, and the capacitance temperature characteristic is an X7R characteristic defined by the EIA standard.

X7R特性で規定された静電容量温度特性は、−55℃並びに125℃の静電容量を測定し、25℃の時の静電容量を基準として百分率で表した場合、−55℃〜125℃の範囲内で±15%以内であることが求められている。   Capacitance temperature characteristics defined by the X7R characteristics are -55 ° C. to 125 ° C. when the capacitance at −55 ° C. and 125 ° C. is measured and expressed as a percentage based on the capacitance at 25 ° C. Within ± 15%, it is required to be within ± 15%.

得られた積層セラミックコンデンサについて、静電容量ならびに−55℃〜125℃の静電容量温度特性を測定して(表1)に示す。   The obtained multilayer ceramic capacitor was measured for capacitance and capacitance temperature characteristics of −55 ° C. to 125 ° C. and shown in Table 1.

Figure 2005302977
Figure 2005302977

(表1)においてDy23の添加量はNi100重量%に対する重量%を示している。 In (Table 1), the amount of Dy 2 O 3 added is wt% relative to Ni 100 wt%.

(表1)から明らかなように、内部電極中のチタン酸バリウムと希土類化合物(Dy23)の元素比率がセラミックシート中のチタン酸バリウムと希土類化合物(Dy23)の元素比率以上の試料番号4〜8では静電容量の低下を起こすことなく、静電容量の温度特性を改善することができている。 As apparent from (Table 1), the element ratio of barium titanate and rare earth compound (Dy 2 O 3 ) in the internal electrode is greater than the element ratio of barium titanate and rare earth compound (Dy 2 O 3 ) in the ceramic sheet. Sample Nos. 4 to 8 can improve the temperature characteristics of the capacitance without causing a decrease in the capacitance.

これに対して内部電極中のチタン酸バリウムと希土類化合物の元素比率がセラミックシート中のチタン酸バリウムと希土類化合物の元素比率より小さい試料番号1〜3では静電容量は満足しているが、静電容量温度特性は規格値を外れている。また、Niに対する希土類添加量が0.02重量%より多い試料番号9は静電容量温度特性は規格値内であるが、静電容量が低下している。   In contrast, Sample Nos. 1 to 3 in which the element ratio of barium titanate to the rare earth compound in the internal electrode is smaller than the element ratio of barium titanate to the rare earth compound in the ceramic sheet are satisfactory in electrostatic capacity. The capacitance-temperature characteristic is out of the standard value. Sample No. 9 in which the amount of rare earth added to Ni is more than 0.02% by weight has the capacitance temperature characteristic within the standard value, but the capacitance is lowered.

これは、下記の作用による。   This is due to the following action.

即ち、セラミックシート中の希土類化合物はいわゆるコアシェル構造を形成することにより誘電率の向上並びに静電容量温度特性の改善に寄与する作用を有する。   That is, the rare earth compound in the ceramic sheet has a function of contributing to improvement of dielectric constant and capacitance temperature characteristics by forming a so-called core-shell structure.

そこで希土類化合物を用いることで高誘電率で良好な温度特性を有する積層セラミックコンデンサを得ることができるが、内部電極を構成する金属粒子の異常粒子成長を抑制するために内部電極中に添加したチタン酸バリウムが積層セラミックコンデンサの焼結時に拡散し、セラミックシート中のコアシェル構造の効果が薄まって静電容量温度特性が劣化するため、セラミックシート中と同じ希土類化合物を同じ比率以上で添加することによりコアシェル構造を保持し、誘電率を低下させることなく静電容量温度特性を改善することができるものである。   Therefore, a rare earth compound can be used to obtain a multilayer ceramic capacitor having a high dielectric constant and good temperature characteristics, but titanium added to the internal electrode in order to suppress abnormal particle growth of the metal particles constituting the internal electrode. By adding the same rare earth compound in the ceramic sheet in the same ratio or more because barium oxide diffuses during the sintering of the multilayer ceramic capacitor, the effect of the core-shell structure in the ceramic sheet is diminished and the capacitance temperature characteristics deteriorate. The core-shell structure is maintained, and the capacitance temperature characteristic can be improved without lowering the dielectric constant.

内部電極中のチタン酸バリウムがセラミック中に拡散してコアシェル構造に影響する度合いはセラミック層がたとえば2μm以下と薄いほど拡散の影響を受けやすく顕著であり、従って本発明の効果は、多層薄層化した積層セラミックコンデンサにおいてさらにその効果を発揮するものである。   The degree to which the barium titanate in the internal electrode diffuses into the ceramic and affects the core-shell structure is more susceptible to diffusion as the ceramic layer is thinner than 2 μm, for example. The effect is further exhibited in the laminated ceramic capacitor.

また、上記実施の形態においては、希土類化合物としてDy23を用いたが、Dy23と他の希土類化合物を組み合わせて用いても同様の効果が得られる。 In the above embodiment, Dy 2 O 3 is used as the rare earth compound, but the same effect can be obtained by using Dy 2 O 3 in combination with another rare earth compound.

さらに他の希土類化合物、例えばGd、Ho、Er、Yb、Yから選ばれた1種または2種以上の元素の化合物についても、セラミックシートと金属ペーストに同様の割合以上で添加することにより、同様の効果を得ることができる。   Further, other rare earth compounds such as compounds of one or more elements selected from Gd, Ho, Er, Yb, and Y can be similarly added by adding them to the ceramic sheet and the metal paste at the same ratio or more. The effect of can be obtained.

本発明にかかる積層セラミックコンデンサは、内部電極中に誘電体層中の希土類化合物以上の割合の希土類化合物を有することにより、誘電率の低下を起こすことなく、従って静電容量を低下させることなく静電容量の温度特性を向上することができるという効果を有し、大容量の積層セラミックコンデンサ等に有用である。   The multilayer ceramic capacitor according to the present invention has a rare earth compound in a proportion higher than that of the rare earth compound in the dielectric layer in the internal electrode, so that the dielectric constant does not decrease, and thus the electrostatic capacity does not decrease. This has the effect of improving the temperature characteristics of the capacitance, and is useful for large-capacity multilayer ceramic capacitors and the like.

本発明の実施の形態1における積層セラミックコンデンサの一部切欠斜視図1 is a partially cutaway perspective view of a multilayer ceramic capacitor according to a first embodiment of the present invention.

符号の説明Explanation of symbols

11 積層セラミックコンデンサ
12 誘電体層
13 内部電極
14 外部電極
11 Multilayer Ceramic Capacitor 12 Dielectric Layer 13 Internal Electrode 14 External Electrode

Claims (5)

チタン酸バリウム化合物を主成分とし副成分として1種または2種以上の希土類化合物を有するセラミックシートと、導電性金属粉末とチタン酸バリウムと前記希土類化合物とを含有した内部電極とを交互に積層した積層体を焼成して得られる積層セラミックコンデンサであって、前記チタン酸バリウムをBaTiO3、前記希土類化合物をX23(但しXは希土類元素)と表したとき、前記内部電極中のチタン酸バリウムに対する希土類化合物全体の添加比率が、前記セラミックシート中のチタン酸バリウムに対する希土類化合物全体の添加比率よりも大きい積層セラミックコンデンサ。 A ceramic sheet having a barium titanate compound as a main component and one or more rare earth compounds as subcomponents, and conductive metal powder, barium titanate, and internal electrodes containing the rare earth compound were alternately stacked. A multilayer ceramic capacitor obtained by firing a multilayer body, wherein the barium titanate is represented by BaTiO 3 and the rare earth compound is represented by X 2 O 3 (where X is a rare earth element). A multilayer ceramic capacitor in which an addition ratio of the whole rare earth compound to barium is larger than an addition ratio of the whole rare earth compound to barium titanate in the ceramic sheet. 内部電極に含有するチタン酸バリウム並びに希土類化合物の平均粒径は、導電性金属粉末の平均粒径より小さい請求項1に記載の積層セラミックコンデンサ。 The multilayer ceramic capacitor according to claim 1, wherein an average particle diameter of barium titanate and the rare earth compound contained in the internal electrode is smaller than an average particle diameter of the conductive metal powder. 希土類化合物は、Gd、Dy、Ho、Er、Yb、Yのうちから選ばれた1種または2種以上の元素の化合物である請求項1に記載の積層セラミックコンデンサ。 2. The multilayer ceramic capacitor according to claim 1, wherein the rare earth compound is a compound of one or more elements selected from Gd, Dy, Ho, Er, Yb, and Y. 内部電極に含有する希土類化合物の合計量は、導電性金属粉末100重量%に対して0.02重量%以下である請求項1に記載の積層セラミックコンデンサ。 2. The multilayer ceramic capacitor according to claim 1, wherein the total amount of rare earth compounds contained in the internal electrode is 0.02% by weight or less with respect to 100% by weight of the conductive metal powder. 導電性金属粉末は、卑金属を主成分とするものである請求項1に記載の積層セラミックコンデンサ。 The multilayer ceramic capacitor according to claim 1, wherein the conductive metal powder is mainly composed of a base metal.
JP2004116392A 2004-04-12 2004-04-12 Multilayer ceramic capacitor Expired - Fee Related JP4165434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004116392A JP4165434B2 (en) 2004-04-12 2004-04-12 Multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004116392A JP4165434B2 (en) 2004-04-12 2004-04-12 Multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JP2005302977A true JP2005302977A (en) 2005-10-27
JP4165434B2 JP4165434B2 (en) 2008-10-15

Family

ID=35334122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004116392A Expired - Fee Related JP4165434B2 (en) 2004-04-12 2004-04-12 Multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP4165434B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082636A (en) * 2013-10-24 2015-04-27 京セラ株式会社 Multilayer electronic component
CN105719834A (en) * 2014-12-23 2016-06-29 三星电机株式会社 Multilayer ceramic electronic component and method of manufacturing the same
WO2024018720A1 (en) * 2022-07-22 2024-01-25 株式会社村田製作所 Multilayer ceramic capacitor and method for producing multilayer ceramic capacitor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082636A (en) * 2013-10-24 2015-04-27 京セラ株式会社 Multilayer electronic component
CN105719834A (en) * 2014-12-23 2016-06-29 三星电机株式会社 Multilayer ceramic electronic component and method of manufacturing the same
KR20160076841A (en) * 2014-12-23 2016-07-01 삼성전기주식회사 multilayer ceramic electronic component and method of manufacturing the same
KR101659182B1 (en) * 2014-12-23 2016-09-22 삼성전기주식회사 multilayer ceramic electronic component and method of manufacturing the same
US10269492B2 (en) 2014-12-23 2019-04-23 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component and method of manufacturing the same
CN105719834B (en) * 2014-12-23 2020-05-05 三星电机株式会社 Multilayer ceramic electronic component and method for manufacturing the same
WO2024018720A1 (en) * 2022-07-22 2024-01-25 株式会社村田製作所 Multilayer ceramic capacitor and method for producing multilayer ceramic capacitor

Also Published As

Publication number Publication date
JP4165434B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
JP4805938B2 (en) Dielectric porcelain, manufacturing method thereof, and multilayer ceramic capacitor
JP4786604B2 (en) Dielectric porcelain and multilayer ceramic capacitor using the same
JP5668037B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP6624473B2 (en) Multilayer ceramic capacitors
JP5804064B2 (en) Manufacturing method of multilayer ceramic capacitor
KR101514229B1 (en) Multi layer ceramic capacitor and method for manufacturing thereof
JP4191496B2 (en) Dielectric porcelain composition and electronic component
JP2006111466A (en) Dielectric ceramic composition and electronic component
JP2018022750A (en) Multilayer ceramic capacitor
JP2005294314A (en) Multilayer ceramic capacitor
WO2017094882A1 (en) Dielectric porcelain composition, layered ceramic capacitor, and layered ceramic capacitor production method
JP2014162679A (en) Dielectric ceramic composition, and electronic part
JP2018133501A (en) Multilayer ceramic capacitor and method for manufacturing the same
KR101973414B1 (en) Dielectric composition for low temperature sintering, multilayer ceramic electronic device including the same and method for fabricating the multilayer ceramic electronic device
JP4661203B2 (en) Ceramic electronic component and manufacturing method thereof
JP2005029423A (en) Dielectric ceramic composition and electronic component
JP4888572B2 (en) Conductive paste and method for manufacturing electronic component
JP5857116B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP5153288B2 (en) Dielectric porcelain composition and electronic component
JP4165434B2 (en) Multilayer ceramic capacitor
JP2010212503A (en) Laminated ceramic capacitor
JP2005347288A (en) Method of manufacturing multilayered ceramic capacitor
JP5000088B2 (en) Method for manufacturing dielectric ceramic composition and method for manufacturing ceramic capacitor
JP2011187674A (en) Laminated ceramic electronic component, laminated ceramic capacitor, and laminated positive temperature coefficient thermistor
JP2002231560A (en) Dielectric ceramic and laminated ceramic capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees