JP2005302621A - Fuel cell separator material and manufacturing method of the same - Google Patents

Fuel cell separator material and manufacturing method of the same Download PDF

Info

Publication number
JP2005302621A
JP2005302621A JP2004119744A JP2004119744A JP2005302621A JP 2005302621 A JP2005302621 A JP 2005302621A JP 2004119744 A JP2004119744 A JP 2004119744A JP 2004119744 A JP2004119744 A JP 2004119744A JP 2005302621 A JP2005302621 A JP 2005302621A
Authority
JP
Japan
Prior art keywords
fuel cell
molded body
graphite
separator material
cell separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004119744A
Other languages
Japanese (ja)
Other versions
JP4410020B2 (en
Inventor
Masato Nakazawa
政登 中澤
Setsuo Yoshimoto
節男 吉本
Kunihiro Fujitsuka
公仁弘 藤塚
Koichiro Kawakami
康一郎 川上
Kazutomo Kato
千智 加藤
Hiroya Nakaji
宏弥 中路
Koichiro Yamashita
浩一郎 山下
Yasuyuki Asai
康之 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Toyota Motor Corp
Original Assignee
Tokai Carbon Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd, Toyota Motor Corp filed Critical Tokai Carbon Co Ltd
Priority to JP2004119744A priority Critical patent/JP4410020B2/en
Publication of JP2005302621A publication Critical patent/JP2005302621A/en
Application granted granted Critical
Publication of JP4410020B2 publication Critical patent/JP4410020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell separator material with excellent battery characteristics, of which, flooding is restrained by applying a hydrophilic treatment depending on an air blast treatment on a surface layer part of a graphite/hardened resin molded body with a specific condition, and to provide a manufacturing method of the same. <P>SOLUTION: The fuel cell separator material is made of the graphite/hardened resin molded body, on the surface layer part of which, a hydrophilic treatment depending on the air blast treatment is applied, and a wet tension of the surface measured by using a wet tension testing liquid is 40 mN/m or higher. The fuel cell separator material is manufactured by kneading graphite powder having an average grain size of 10 to 80 μm and thermosetting resin with a weight ratio of 90:10 to 75:25, crushing the kneaded substance, filling the powder formed by adjusting the grain size of the crushed grains in 150 mesh or smaller into a molding die on which an indented part for flow passage in reversed shape is formed in advance, and pressure molding it, and by applying the air blast treatment by spraying an abrasive with a Vickers hardness of 300 to 2,500 and an average grain size of 5 to 100 μm with a spraying pressure of 0.1 to 1.0 MPa and a density of 0.02 to 3.0 g/cm<SP>2</SP>, on the surface layer part of the molded body released from the molding die, from a position distant from the surface layer part by 50 to 1,000 mm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば、自動車用電源をはじめ小型分散型電源などに使用される燃料電池用のセパレータ材とその製造方法に関する。   The present invention relates to a separator material for a fuel cell used for, for example, a power source for automobiles and a small distributed power source, and a manufacturing method thereof.

燃料電池は、燃料が有する化学エネルギーを直接電気エネルギーに変換するもので、電気エネルギーへの変換効率が高く、特に固体高分子形燃料電池は他の燃料電池に比較して低温でかつ高出力の発電が可能であるため、自動車の電源をはじめ小型の移動型電源や定置型電源として実用化されつつある。固体高分子形燃料電池は、通常、スルホン酸基を有するフッ素樹脂系イオン交換膜のような高分子イオン交換膜からなる電解質膜と、その両面に白金などの触媒を担持させた触媒電極と、それぞれの電極に水素などの燃料ガスあるいは酸素や空気などの酸化剤ガスを供給するガス供給用の凹凸を設けたセパレータなどからなる単セルを積層したスタック、及びその外側に設けた2つの集電体から構成されている。   A fuel cell directly converts chemical energy contained in fuel into electrical energy, and has high conversion efficiency into electrical energy. In particular, polymer electrolyte fuel cells have a lower temperature and higher output than other fuel cells. Since power generation is possible, it is being put into practical use as a small mobile power source and stationary power source including an automobile power source. The polymer electrolyte fuel cell is usually an electrolyte membrane made of a polymer ion exchange membrane such as a fluororesin ion exchange membrane having a sulfonic acid group, and a catalyst electrode carrying a catalyst such as platinum on both sides thereof, A stack in which a single cell made of a separator provided with gas supply irregularities for supplying a fuel gas such as hydrogen or an oxidant gas such as oxygen or air is stacked on each electrode, and two current collectors provided on the outside thereof Consists of the body.

単セルの構造は、図1に示すように、例えばフッ素系樹脂により形成されたイオン交換膜からなる電解質膜5を挟んで配置される一対の電極3、4(カソード3、アノード4)と、これをさらに両側から挟む緻密質のカーボン材からなるセパレータ1、セパレータの端部にはガス溝と平行方向に設置されたシール材6とから構成されている。電極3、4は白金などの触媒を担持させた炭素短繊維からなる多孔質体あるいは触媒を担持したカーボンブラックを樹脂で結着したものなどから形成されている。   As shown in FIG. 1, the unit cell has a pair of electrodes 3, 4 (cathode 3, anode 4) disposed with an electrolyte membrane 5 made of an ion exchange membrane formed of, for example, a fluorine-based resin interposed therebetween, The separator 1 is formed of a dense carbon material sandwiched between both sides, and a sealing material 6 is provided at the end of the separator in a direction parallel to the gas groove. The electrodes 3 and 4 are formed of a porous body made of short carbon fibers carrying a catalyst such as platinum or a carbon black carrying a catalyst bound with a resin.

セパレータ1には複数の凹凸形状の溝2が形成され、溝2とカソード3との間に形成される空間を酸化剤ガス(空気などの酸素含有ガス)流路とし、溝2とアノード4との間に形成される空間を燃料ガス(例えば水素ガスや水素ガスを主成分とする混合ガスなど)流路として、燃料ガスと酸化剤ガスとが電極に接触して起こる化学反応を利用して、電極間から電流を取り出すようになっている。そして、この単セルを通常数十層に積層して電池スタックが形成されている。   A plurality of concave and convex grooves 2 are formed in the separator 1, and a space formed between the grooves 2 and the cathode 3 is used as an oxidant gas (oxygen-containing gas such as air) flow path. Using the chemical reaction that occurs when the fuel gas and oxidant gas are in contact with the electrodes, the space formed between the electrodes is used as a flow path for fuel gas (for example, hydrogen gas or a mixed gas containing hydrogen gas as a main component). The current is taken out from between the electrodes. And this battery cell is formed by laminating | stacking this single cell into several dozen layers normally.

したがって、電池性能の向上を図るためにはスタック中の各単セル間が密着するように組立て、かつ発電中も良好な接触状態が維持されてセパレータと電極との接触電気抵抗を小さくするとともに、単セル間のガスリークや単セル外へのガスリークを防止することが重要となる。   Therefore, in order to improve battery performance, it is assembled so that each single cell in the stack is in close contact, and a good contact state is maintained even during power generation to reduce the contact electrical resistance between the separator and the electrode, It is important to prevent gas leakage between single cells and gas leakage outside the single cells.

また、セパレータには、燃料ガスと酸化剤ガスとを完全に分離した状態で電極に供給するために高度のガス不透過性が要求され、また、発電効率を高くするために電池の内部抵抗を小さくすることが必要である。更に、材質強度が充分でないとセパレータの破損や欠損が生じ、電池性能が低下するばかりではなく、ガスリークの可能性もある。特に、電池の作動温度である60〜100℃程度の温度においても充分な材質強度を備えていることが重要である。   The separator is required to have a high degree of gas impermeability in order to supply the fuel gas and oxidant gas to the electrode in a completely separated state, and the internal resistance of the battery is increased in order to increase power generation efficiency. It is necessary to make it smaller. Furthermore, if the material strength is not sufficient, the separator is damaged or lost, and not only the battery performance is deteriorated, but also gas leakage may occur. In particular, it is important that sufficient material strength is provided even at a temperature of about 60 to 100 ° C., which is the operating temperature of the battery.

すなわち、固体高分子形燃料電池の高出力化と小型化を図るためにセパレータに要求される特性は、セパレータの厚さを薄くしても十分な強度が確保されること、電気抵抗が低いこと、ガス不透過性に優れていること、などの材質特性が必要となる。このような材質特性が要求されるセパレータ材には、従来から炭素質系の材料が用いられており、黒鉛などの炭素粉末と熱硬化性樹脂を結合材として成形した炭素/硬化樹脂成形体が好適に使用されている。   In other words, the characteristics required of a separator for achieving high output and miniaturization of a polymer electrolyte fuel cell are that sufficient strength is ensured even if the thickness of the separator is reduced, and electric resistance is low. Material properties such as excellent gas impermeability are required. For separator materials that require such material characteristics, carbonaceous materials have been used conventionally, and carbon / cured resin molded bodies formed by using carbon powder such as graphite and a thermosetting resin as a binder are used. It is preferably used.

例えば、本出願人は炭素質粉末100重量部に対し、熱硬化性樹脂を10〜100重量部の割合で加えて混練し、硬化して得られた炭素/硬化樹脂成形体を金属薄板の表裏両面に熱圧接合して被着し、この硬化樹脂成形体にガス流通溝を形成する固体高分子形燃料電池セパレータ部材の製造方法(特許文献1)、平均粒子径50μm以下、最大粒子径100μm以下、アスペクト比3以下の黒鉛粉末60〜85重量%に不揮発分60%以上の熱硬化性樹脂15〜40重量%を加えて加圧混練し、混練物を粉砕して型に充填し減圧脱気したのち加圧成形し、成形体を所定形状に加工した後150〜280℃の温度で加熱硬化する、あるいは150〜280℃の温度で加熱硬化した後所定形状に加工する、固体高分子形燃料電池用セパレータ部材の製造方法(特許文献2)などを開発、提案している。   For example, the present applicant adds 10 to 100 parts by weight of a thermosetting resin to 100 parts by weight of carbonaceous powder, kneads and cures the carbon / cured resin molded body obtained by curing the front and back of the metal thin plate. A method for producing a polymer electrolyte fuel cell separator member which is bonded by hot-pressure bonding on both surfaces and forms gas flow grooves in the cured resin molded body (Patent Document 1), average particle diameter of 50 μm or less, maximum particle diameter of 100 μm Hereinafter, 15 to 40% by weight of a thermosetting resin having a non-volatile content of 60% or more is added to 60 to 85% by weight of graphite powder having an aspect ratio of 3 or less, and the mixture is pressure-kneaded. Solid polymer form that is molded after pressurization and processed into a predetermined shape and then heat-cured at a temperature of 150-280 ° C, or heat-cured at a temperature of 150-280 ° C and then processed into a predetermined shape Of fuel cell separator The manufacturing method (patent document 2) etc. are developed and proposed.

燃料電池の発電機構は、セルのアノード側に供給された水素ガス(燃料ガス)とカソード側に供給された酸素ガス(酸化剤ガス)とが、下記の反応によって生ずる電子(e- )の流れを電気エネルギーとして外部に取り出すものである。
アノード;H2 →2H+ +2e-
カソード;1/2O2 +2H+ +2e- →H2
全反応 ;H2 +1/2O2 →H2
The power generation mechanism of the fuel cell is a flow of electrons (e ) generated by the following reaction between hydrogen gas (fuel gas) supplied to the anode side of the cell and oxygen gas (oxidant gas) supplied to the cathode side. Is taken out as electrical energy.
Anode; H 2 → 2H + + 2e
Cathode: 1 / 2O 2 + 2H + + 2e → H 2 O
Total reaction: H 2 + 1 / 2O 2 → H 2 O

すなわち、アノード側に供給された水素ガスは触媒電極上でイオン化(H+ )されて、H+ は電解質膜を介して水(xH2 O)とともにカソード側へ移動し、カソードにおいて酸素ガス(O2 )と反応してH2 Oを生成する。したがって、この電池反応を円滑に進行させるためには、電解質膜を適度な湿潤状態に保持して水素ガスをイオン化する必要があり、通常、水素ガスおよび酸素ガスに電池の運転温度に近い温度の飽和水蒸気を含ませて加湿することにより湿潤状態を維持している。 That is, hydrogen gas supplied to the anode side is ionized (H + ) on the catalyst electrode, and H + moves to the cathode side together with water (xH 2 O) through the electrolyte membrane, and oxygen gas (O 2 ) to form H 2 O. Therefore, in order to allow the battery reaction to proceed smoothly, it is necessary to ionize the hydrogen gas while maintaining the electrolyte membrane in an appropriate wet state. Usually, the hydrogen gas and oxygen gas have a temperature close to the battery operating temperature. The wet state is maintained by humidifying with saturated water vapor.

また、上記の電池反応により生成した水は、過剰の反応ガスとともに電池系外に排出されるため、セル内を流れる反応ガス中の水分の量は電池反応の進行とともに反応ガスの流れ方向に沿って次第に増加することになる。すなわち、出口側における反応ガスには、入口側に比べて生成水に相当する量の水蒸気を余分に含むことになる。   In addition, since the water generated by the battery reaction is discharged out of the battery system together with the excess reaction gas, the amount of water in the reaction gas flowing in the cell follows the flow direction of the reaction gas as the battery reaction proceeds. Will gradually increase. That is, the reaction gas at the outlet side contains an extra amount of water vapor corresponding to the generated water as compared with the inlet side.

したがって、電解質膜を湿潤状態に維持するために添加した加湿用の飽和水蒸気に、生成水が蒸気として加わることになるため過飽和状態になり、水滴が凝縮してくることになる。このようにして反応ガス中に水滴が生じると、水の表面張力が大きいことからセパレータのガス流通溝に停滞し、さらに流通溝を塞いで反応ガスの流れを阻害するフラッディング現象が生じて電池反応が円滑に進まず、発電性能が低下する問題が起こる。   Therefore, since the generated water is added as steam to the humidified saturated water vapor added to maintain the electrolyte membrane in a wet state, it becomes supersaturated and water droplets are condensed. When water droplets are generated in the reaction gas in this way, the surface tension of the water is so large that it stagnates in the gas flow groove of the separator, and further flooding phenomenon that blocks the flow groove and inhibits the flow of the reaction gas occurs. Does not proceed smoothly, and there is a problem that the power generation performance decreases.

この問題を解決するためには、セパレータ表面の水に対する濡れ性を向上させることによりガス流通溝に停滞した水滴を反応ガス流に伴って排出除去する手段が有望である。例えば、特許文献3にはカーボン粉末と熱硬化性樹脂粉末の原材料に酸化ケイ素や酸化アルミニウムなどの親水性物質を混合して、親水性を備えた燃料電池用セパレータの製造方法が提案されている。   In order to solve this problem, a means for discharging and removing the water droplets stagnating in the gas flow groove by the reaction gas flow by improving the wettability of the separator surface with respect to water is promising. For example, Patent Document 3 proposes a method for producing a separator for a fuel cell having hydrophilicity by mixing a hydrophilic material such as silicon oxide or aluminum oxide with carbon powder and thermosetting resin powder raw materials. .

また、特許文献4には燃料電池用セパレータの原素材に対し、親水化ガス中で親水化処理を行うことにより、セパレータ表面における水を使用した液滴法による表面接触角を3〜70°とした燃料電池用セパレータが、特許文献5には成形体の表面に水との接触角が40°以下となる表面改質処理を施した燃料電池用セパレータおよび成形体表面に紫外線オゾンを照射して酸化処理するその製造法が提案されている。   Patent Document 4 discloses that the surface contact angle by a droplet method using water on the separator surface is 3 to 70 ° by hydrophilizing the raw material of the fuel cell separator in a hydrophilizing gas. In Japanese Patent Application Laid-Open No. H10-260707, the surface of the molded body is subjected to surface modification treatment so that the contact angle with water is 40 ° or less, and the surface of the molded body is irradiated with ultraviolet ozone. Its production method for oxidation treatment has been proposed.

また、特許文献6には燃料電池の各セパレータのガス流通溝の内表面に親水性塗膜が形成されていることを特徴とする固体高分子電解質型燃料電池が提案されている。これは、ガス流通溝の内表面の少なくとも一部に親水性を持たせることを特徴とするもので、親水性部分を設ける方法としては (1)親水性塗膜を形成する方法、あるいは、(2) 内表面を粗面化して親水性を付与する方法、が開示されている。このうち、内表面の粗面化は、内表面に微細な凹凸形状を形成して生成水との接触面積を大きくすることにより親水性の向上を図るもので、粗面化手段にはサンドブラスト法、電解処理、粒子研磨、オゾン処理などが例示されている。   Patent Document 6 proposes a solid polymer electrolyte fuel cell characterized in that a hydrophilic coating film is formed on the inner surface of the gas flow groove of each separator of the fuel cell. This is characterized in that at least a part of the inner surface of the gas flow groove has hydrophilicity, and as a method of providing the hydrophilic portion, (1) a method of forming a hydrophilic coating film, or ( 2) A method of roughening the inner surface to impart hydrophilicity is disclosed. Among these, the roughening of the inner surface is intended to improve hydrophilicity by forming a fine uneven shape on the inner surface and increasing the contact area with the generated water. Examples include electrolytic treatment, particle polishing, and ozone treatment.

更に、特許文献7には表面の少なくとも一部に親水性官能基を有する導電性カーボンと、バインダーとを加圧成形した高分子電解質形燃料電池用セパレータと酸化処理して導電性カーボンの表面に親水性官能基を付与する製造法が、特許文献8には常圧放電プラズマ処理する燃料電池用セパレータの親水化処理方法が、特許文献9には黒鉛粉と樹脂からなる燃料電池セパレータの表面がフレーム処理により親水性が付与された燃料電池セパレータが開示されている。
特開平11−297337号公報 特開2000−021421号公報 特開平10−003931号公報 国際公開WO99/40642号公報 特開2000−243410号公報 特開2001−093539号公報 特開2001−283873号公報 特開2002−025570号公報 特開2002−313356号公報
Further, Patent Document 7 discloses a polymer electrolyte fuel cell separator formed by pressure-forming conductive carbon having a hydrophilic functional group on at least a part of the surface and a binder, and oxidizing the surface of the conductive carbon. Patent Document 8 discloses a manufacturing method for imparting a hydrophilic functional group, Patent Document 8 discloses a method for hydrophilizing a fuel cell separator subjected to atmospheric pressure discharge plasma processing, and Patent Document 9 describes a surface of a fuel cell separator made of graphite powder and resin. A fuel cell separator to which hydrophilicity is imparted by flame treatment is disclosed.
JP-A-11-297337 JP 2000-021421 A JP-A-10-003931 International Publication No. WO99 / 40642 JP 2000-243410 A JP 2001-093539 A JP 2001-283873 A JP 2002-025570 A JP 2002-313356 A

しかしながら、セパレータ材の表面を親水化処理して水との濡れ性を向上させた場合、処理後の時間の経過とともに濡れ性が次第に低下してくる場合があることが認められた。そこで、本出願人はセパレータの材質表面を親水化処理して水との濡れ性を向上させ、安定化する方策について鋭意研究を行った結果、成形時に用いた離型剤が完全に除去されずに、成形体表面に一部が付着残留すると、水との濡れ性が次第に低下してくることを確認した。   However, when the surface of the separator material is hydrophilized to improve the wettability with water, it has been found that the wettability may gradually decrease with the passage of time after the treatment. Therefore, as a result of earnest research on measures to improve the wettability with water by hydrophilizing the material surface of the separator and stabilizing it, the mold release agent used at the time of molding was not completely removed. Furthermore, it was confirmed that when a part of the molded body remained adhered, the wettability with water gradually decreased.

すなわち、黒鉛粉末と熱硬化性樹脂との混練物を金型などの成形型に充填して熱圧成形する場合、金型からの離型を容易にするために、通常、金型表面には撥水性の高いフッ素系離型剤やシリコン系離型剤が塗布される。そして、成形体を金型から取り出した際に成形体表面には撥水性の高い離型剤の一部が付着残留してくる。成形体表面に残留した離型剤は除去し難く、例えば有機溶剤で洗浄しても簡単には除去できない。その結果、成形体は水との濡れ性が低下してフラッディング現象を起こし易く、発電性能の低下を招くことになる。なお、ガス流路の幅や深さが小さくなるほど、このフラッディング現象が顕著になり、セパレータ表面の撥水層の存在がより問題となる。   That is, when filling a kneaded product of graphite powder and a thermosetting resin into a mold such as a mold and performing hot pressure molding, the mold surface is usually placed on the mold surface in order to facilitate release from the mold. A fluorine-based release agent or a silicon-based release agent with high water repellency is applied. And when taking out a molded object from a metal mold | die, a part of mold release agent with high water repellency adheres and remains on the surface of a molded object. The mold release agent remaining on the surface of the molded body is difficult to remove and cannot be easily removed by washing with, for example, an organic solvent. As a result, the wettability of the molded body is reduced and the flooding phenomenon is likely to occur, resulting in a decrease in power generation performance. As the width and depth of the gas flow path become smaller, this flooding phenomenon becomes more prominent, and the presence of the water repellent layer on the separator surface becomes more problematic.

そこで、本発明者らは、物理的方法により成形体表面に付着残留した離型剤を除去する方法について鋭意研究を行った結果、エアブラスト処理により成形体の表面に付着残留した離型剤を効果的に除去し得ることを確認した。   Therefore, as a result of intensive studies on a method for removing the release agent adhered and remaining on the surface of the molded body by a physical method, the inventors have found that the release agent adhered and remained on the surface of the molded body by air blast treatment. It was confirmed that it could be removed effectively.

本発明はこの知見に基づいて開発されたもので、その目的は成形体表面に付着残留した離型剤などの撥水層を物理的手段により除去して、水との濡れ性の向上を図ることによりフラッディング現象を防止して、優れた電池性能を有する燃料電池用のセパレータ材とその製造方法を提供することにある。   The present invention has been developed based on this finding, and its purpose is to remove the water repellent layer such as a release agent remaining on the surface of the molded body by physical means to improve the wettability with water. Accordingly, an object of the present invention is to provide a fuel cell separator material having excellent battery performance by preventing a flooding phenomenon and a method for manufacturing the same.

すなわち、上記の目的を達成するための本発明による燃料電池用セパレータ材は、黒鉛粉末を熱硬化性樹脂により結合した黒鉛/硬化樹脂成形体からなり、その表層部がエアブラスト処理による親水化処理が施されたものであることを構成上の特徴とする。   That is, the fuel cell separator material according to the present invention for achieving the above object is composed of a graphite / cured resin molded body obtained by bonding graphite powder with a thermosetting resin, and the surface layer portion thereof is hydrophilized by air blast treatment. It is a feature of the construction that is given.

また、親水化するエアブラスト処理は、研削材を0.02〜3.0g/cm2 の噴射密度で吹き付ける処理であり、研削材はビッカース硬度300〜2500、平均粒子径5〜100μmであり、研削材は表層面から50〜1000mmの位置から噴射する処理であり、更に、親水化処理により、濡れ張力試験液による表面の濡れ張力が40mN/m以上であることを特徴とする。 Further, the air blasting treatment for hydrophilization is a treatment for spraying the abrasive at an injection density of 0.02 to 3.0 g / cm 2 , and the abrasive has a Vickers hardness of 300 to 2500 and an average particle diameter of 5 to 100 μm. The abrasive is a process of spraying from a position of 50 to 1000 mm from the surface, and the wet tension of the surface by the wet tension test solution is 40 mN / m or more by the hydrophilization process.

また、本発明による燃料電池用セパレータ材の製造方法は、平均粒子径10〜80μmの黒鉛粉末と熱硬化性樹脂を90:10〜75:25の重量比で混練した後混練物を解砕し、解砕粒を150メッシュ以下に粒度調整した成形粉を、予め反転形状で流路用の凹凸部が形成された成形型に充填して熱圧成形し、次いで、離型した成形体の表層部に、表層面から50〜1000mm離れた位置からビッカース硬度が300〜2500、平均粒子径が5〜100μmの研削材を、0.1〜1.0MPaの噴射圧で0.02〜3.0g/cm2 の噴射密度で吹き付ける、エアブラスト処理を施すことを構成上の特徴とする。 The method for producing a separator for a fuel cell according to the present invention comprises kneading a graphite powder having an average particle size of 10 to 80 μm and a thermosetting resin in a weight ratio of 90:10 to 75:25, and then crushing the kneaded product. The molded powder whose particle size was adjusted to 150 mesh or less was crushed and filled in a mold in which the irregularities for the flow path were formed in a reverse shape in advance, and then hot-pressure molded, and then the surface layer portion of the molded body that was released In addition, a grinding material having a Vickers hardness of 300 to 2500 and an average particle size of 5 to 100 μm from a position 50 to 1000 mm away from the surface layer surface is 0.02 to 3.0 g / in at an injection pressure of 0.1 to 1.0 MPa. A structural feature is to perform an air blasting treatment with a spray density of cm 2 .

本発明の燃料電池用セパレータ材は、黒鉛/硬化樹脂成形体の成形型からの離型面の表層部が、エアブラスト処理による親水化処理が施されたものであるから、水との濡れ性が高く、フラッディング現象を起こすことなく、電池性能を高位に保持することが可能である。更に、化学的処理と異なり、処理後に多量の廃液処理をする必要がない。また、本発明の製造方法によれば、特定の条件下にエアブラスト処理することにより表層部の撥水層が効果的に除去され、優れた電池性能を有するセパレータ材の製造が可能になる。   The separator material for a fuel cell of the present invention has a wettability with water since the surface layer portion of the release surface from the mold of the graphite / cured resin molded body has been subjected to a hydrophilic treatment by air blast treatment. Therefore, the battery performance can be maintained at a high level without causing a flooding phenomenon. Further, unlike chemical treatment, it is not necessary to treat a large amount of waste liquid after treatment. In addition, according to the production method of the present invention, the water-repellent layer in the surface layer portion is effectively removed by performing an air blast treatment under specific conditions, and a separator material having excellent battery performance can be produced.

本発明の燃料電池用セパレータ材は、黒鉛粉末を熱硬化性樹脂により結合して一体化した黒鉛/硬化樹脂成形体からなり、この黒鉛/硬化樹脂成形体を厚さ1〜3mm程度の板状に成形し、その表裏両面あるいは片面に燃料ガス及び酸化剤ガスの流路となる深さ0.5〜1mm程度の溝が多数形成されたものである。そして、この黒鉛/硬化樹脂成形体が水との濡れ性を向上させるために、その表層部がエアブラスト処理による親水化処理が施されたものであることを特徴とする。   The fuel cell separator material of the present invention is composed of a graphite / cured resin molded body obtained by combining graphite powder with a thermosetting resin and integrated, and the graphite / cured resin molded body is a plate having a thickness of about 1 to 3 mm. And formed with a number of grooves having a depth of about 0.5 to 1 mm that serve as fuel gas and oxidant gas flow paths on both the front and back surfaces or one surface. And in order to improve the wettability with water, this graphite / cured resin molded body is characterized in that the surface layer portion is subjected to a hydrophilization treatment by an air blast treatment.

黒鉛粉末には人造黒鉛、天然黒鉛、膨張黒鉛、あるいは、これらの混合物などが用いられる。また、熱硬化性樹脂としては、例えば固体高分子型燃料電池の作動温度である80〜120℃の温度に耐える耐熱性、pH2〜3程度のスルフォン酸や硫酸に耐え得る耐酸性があればよく、フェノール系樹脂、フラン系樹脂、エポキシ系樹脂、フェノール−エポキシ系樹脂などの熱硬化性樹脂を単独または混合して使用することができる。なお、成形性、耐酸性、耐熱性、コスト面などからフェノール系樹脂が好適である。   As the graphite powder, artificial graphite, natural graphite, expanded graphite, or a mixture thereof is used. Further, the thermosetting resin only needs to have heat resistance that can withstand the temperature of 80 to 120 ° C., which is the operating temperature of the polymer electrolyte fuel cell, and acid resistance that can withstand sulfonic acid or sulfuric acid having a pH of about 2 to 3. Thermosetting resins such as phenol resins, furan resins, epoxy resins and phenol-epoxy resins can be used alone or in combination. A phenolic resin is preferable in terms of moldability, acid resistance, heat resistance, cost, and the like.

黒鉛粉末と熱硬化性樹脂は所定の重量比で混合され、均一に混練される。混練物は離型剤を塗布した金型などの成形型に充填され、熱圧成形により所望のセパレータ形状の成形体が得られる。本発明の燃料電池用セパレータ材は表面の親水性を向上させるために、この黒鉛/硬化樹脂成形体の成形型からの離型面の表層部にエアブラスト処理による親水化処理が施されたものである。   The graphite powder and the thermosetting resin are mixed at a predetermined weight ratio and uniformly kneaded. The kneaded product is filled in a mold such as a mold coated with a release agent, and a molded article having a desired separator shape is obtained by hot-pressure molding. In order to improve the hydrophilicity of the surface of the separator material for a fuel cell of the present invention, the surface layer portion of the release surface from the mold of the graphite / cured resin molded body is subjected to a hydrophilic treatment by air blast treatment. It is.

エアブラスト処理は、黒鉛/硬化樹脂成形体の表層部に研削材を噴射して、成形体の離型面の極く表層部に存在する離型剤などの撥水層を除去するために行うものであり、エアブラスト処理により表層部の撥水層が除去されるとともに表層部にはメカノケミカル変化が生じて、親水性が改善されて水との濡れ性の向上が図られる。その結果、JIS K6768「プラスチック−フィルム及びシート−濡れ張力試験方法」の濡れ張力試験液による表面の濡れ張力は40mN/m以上に親水化処理され、かつ長時間に亘って親水性が保持される。   The air blast treatment is performed in order to remove a water repellent layer such as a release agent present on the surface layer portion of the release surface of the molded body by injecting an abrasive to the surface layer portion of the graphite / cured resin molded body. Thus, the water repellent layer in the surface layer portion is removed by air blasting, and a mechanochemical change occurs in the surface layer portion to improve hydrophilicity and improve wettability with water. As a result, the surface wetting tension with the wetting tension test solution of JIS K6768 “Plastic-Film and Sheet-Wetting Tension Test Method” is hydrophilized to 40 mN / m or more, and the hydrophilicity is maintained for a long time. .

なお、エアブラスト処理は黒鉛/硬化樹脂成形体の極く表層部のみをブラストするものであるから、厚さ変化は殆どなく、寸法精度上の支障を生じることはない。また、黒鉛粒子の脱落などによる材質上のダメージを受けることもなく、強度低下を招くこともない。更に、エアブラスト処理によって表層部の撥水層とともに極く薄く絶縁性樹脂層も除去されるから、黒鉛粒子の露出割合も多くなり接触抵抗を小さくすることができ、また表面撥水層の除去と濡れ性の向上によりセパレータの外周シール面の接着剤との接着力も大きくなり、ガスシール性も向上する。   Note that the air blasting process blasts only the extremely surface layer portion of the graphite / cured resin molding, so that there is almost no change in thickness, and there is no problem in dimensional accuracy. Further, the material is not damaged due to the dropping of the graphite particles, and the strength is not lowered. In addition, the air blasting process removes the insulating resin layer as well as the water-repellent layer on the surface layer, so the exposed ratio of graphite particles increases and the contact resistance can be reduced, and the surface water-repellent layer is removed. As a result of the improvement in wettability, the adhesive strength with the adhesive on the outer peripheral seal surface of the separator is increased, and the gas sealability is also improved.

このセパレータ材を製造する本発明の燃料電池用セパレータ材の製造方法は、平均粒子径10〜80μmの黒鉛粉末と熱硬化性樹脂を90:10〜75:25の重量比で混練した後混練物を解砕し、解砕粒を150メッシュ以下に粒度調整した成形粉を、予め反転形状で流路用の凹凸部が形成された成形型に充填して熱圧成形し、次いで、離型した成形体の表層部に、表層面から50〜1000mm離れた位置からビッカース硬度が300〜2500、平均粒子径が5〜100μmの研削材を、0.1〜1.0MPaの噴射圧で0.02〜3.0g/cm2 の噴射密度で吹き付ける、エアブラスト処理を施すことを特徴とする。 The method for producing a separator material for a fuel cell of the present invention for producing this separator material comprises kneading a graphite powder having an average particle diameter of 10 to 80 μm and a thermosetting resin at a weight ratio of 90:10 to 75:25. , Pulverized grains are adjusted to a particle size of 150 mesh or less, filled in a mold in which the concavo-convex part for the flow path is formed in a reverse shape in advance, hot-pressed, and then released A grinding material having a Vickers hardness of 300 to 2500 and an average particle diameter of 5 to 100 μm from a position 50 to 1000 mm away from the surface layer is applied to a surface layer portion of the body at an injection pressure of 0.1 to 1.0 MPa and 0.02 to 0.02 mm. An air blast treatment is performed by spraying at an injection density of 3.0 g / cm 2 .

原料となる黒鉛粉末は人造黒鉛、天然黒鉛、膨張黒鉛、あるいは、これらの混合物などが用いられ、平均粒子径10〜80μm、好ましくは平均粒径20〜60μm程度の黒鉛粉末を使用する。また、熱硬化性樹脂にはフェノール系樹脂、フラン系樹脂、エポキシ系樹脂、フェノール−エポキシ系樹脂などの熱硬化性樹脂を単独または混合して用いられ、好ましくはフェノール系樹脂が用いられる。   Artificial graphite, natural graphite, expanded graphite, or a mixture thereof is used as the raw material graphite powder, and graphite powder having an average particle size of 10 to 80 μm, preferably an average particle size of about 20 to 60 μm is used. Further, thermosetting resins such as phenol resins, furan resins, epoxy resins, phenol-epoxy resins and the like are used alone or in combination, and phenol resins are preferably used.

黒鉛粉末と熱硬化性樹脂との混合割合は、黒鉛/硬化樹脂成形体の電気抵抗の低位化を図るためには電気抵抗の高い熱硬化性樹脂の混合割合をできるだけ少なくすることが好ましい。しかしながら、結合材となる熱硬化性樹脂の混合割合を少なくすると成形性が悪化するために、成形体の強度が低下するとともにガス不透過性に優れた成形体を得ることが困難となり、更に成形体の表面平滑性が低下して均質性も劣ることになる。   The mixing ratio of the graphite powder and the thermosetting resin is preferably as low as possible in order to reduce the electric resistance of the graphite / cured resin molded body. However, if the mixing ratio of the thermosetting resin used as the binder is reduced, the moldability deteriorates, so that it becomes difficult to obtain a molded body having a reduced strength and a gas impermeable property. The surface smoothness of the body is lowered and the homogeneity is also inferior.

このような観点から、黒鉛粉末と熱硬化性樹脂の混合割合を90:10〜75:25の重量比に設定する。混合する熱硬化性樹脂の重量比が25重量部を越えると電気抵抗が増大し、一方10重量部未満では混練物の流動性が低く成形性が悪化して、成形体の形状精度や強度およびガス不透過性などの低下を招くためである。   From such a viewpoint, the mixing ratio of the graphite powder and the thermosetting resin is set to a weight ratio of 90:10 to 75:25. When the weight ratio of the thermosetting resin to be mixed exceeds 25 parts by weight, the electrical resistance increases. On the other hand, when the weight ratio is less than 10 parts by weight, the flowability of the kneaded product is low and the moldability deteriorates, and the shape accuracy and strength of the molded body are reduced. This is because gas impermeability and the like are reduced.

黒鉛粉末と熱硬化性樹脂との混練は、熱硬化性樹脂をアルコールやエーテルなどの揮発性有機溶媒に溶解した低粘度の熱硬化性樹脂溶液を用いて混練し、次いで混練物を乾燥して有機溶媒を除去する方法が、より均一な混練物を得るうえで好ましい。なお、混練にはニーダー、加圧型ニーダー、2軸スクリュー式ニーダーなどの通常用いられる適宜な混練機が使用される。   The graphite powder and the thermosetting resin are kneaded using a low-viscosity thermosetting resin solution obtained by dissolving the thermosetting resin in a volatile organic solvent such as alcohol or ether, and then the kneaded product is dried. The method of removing the organic solvent is preferable for obtaining a more uniform kneaded product. For kneading, an appropriate kneader that is usually used such as a kneader, a pressure kneader, or a twin screw kneader is used.

混練物の表面は樹脂被膜で覆われているため導電性が低くなるので、混練物を解砕して黒鉛部を露出させることにより導電性の低下を抑制する。なお、解砕により材質性状の異方性の是正を図ることもできる。解砕粒は150メッシュ以下に粒度調整して成形粉とする。   Since the surface of the kneaded material is covered with the resin coating, the conductivity is lowered. Therefore, the decrease in the conductivity is suppressed by crushing the kneaded material to expose the graphite portion. It is also possible to correct the material property anisotropy by crushing. The pulverized granule is adjusted to a particle size of 150 mesh or less to form a molding powder.

成形粉は予め反転形状で流路用の凹凸部を形成した成形型に充填して、熱圧成形することにより所望形状のセパレータ材となる板状成形体が作製される。例えば、撥水性の高いフッ素系オイルやシリコン系オイルなどの離型剤を塗布した金型に成形粉を充填し、温度150〜250℃、圧力20〜40MPaの条件で熱圧成形して、黒鉛/硬化樹脂成形体が作製される。この場合、酸化剤ガスおよび燃料ガスのガス流路となる溝部は、反転形状で流路用の凹凸部が形成された金型を用いることにより熱圧成形時に形成される。   The molding powder is filled in a molding die having an inverted shape and formed with uneven portions for flow passages in advance, and a plate-like molded body that becomes a separator material having a desired shape is produced by hot-pressure molding. For example, molding powder is filled in a mold coated with a release agent such as fluorine-based oil or silicon-based oil having high water repellency, and hot-pressure molded under conditions of a temperature of 150 to 250 ° C. and a pressure of 20 to 40 MPa. / A cured resin molding is produced. In this case, the groove portion serving as the gas flow path for the oxidant gas and the fuel gas is formed at the time of hot-pressure molding by using a mold having an inverted shape and an uneven portion for the flow path.

このようにして作製した黒鉛/硬化樹脂成形体は、離型面の表層部に撥水性の離型剤の一部が付着残存するために親水性が極めて低い。そこで、成形体表面の撥水層を除去するためにエアブラスト処理を施す。エアブラスト処理は、成形型から離型した成形体の離型面に研削材を噴射することにより行われる。   The graphite / cured resin molded body thus produced has extremely low hydrophilicity because part of the water-repellent release agent remains attached to the surface layer portion of the release surface. Therefore, an air blast treatment is performed to remove the water repellent layer on the surface of the molded body. The air blasting process is performed by injecting an abrasive onto the release surface of the molded body that has been released from the mold.

エアブラスト処理は、研削材をある程度の広がりをもって被研削面に衝突させる必要があるため、ブラストする成形体の離型面から50〜1000mm離れた位置から研削材を噴射させて被研削面に吹き付ける。この距離が50mm未満であると、研削材が充分に広がる前に被研削面に到達するので微細に研削することが困難となり、例えばガス流路の溝壁を充分にブラストすることができなくなる。一方、1000mmを越えると、研削材の広がりが大きくなり過ぎて、研削材の当たりが弱くなって効果的に親水化できなくなり、被研削面を親水化するためには噴射動力を極めて大きくしなければならない。また、均一にブラストすることができずにブラストされている部分とされていない部分とが生じ易くなる。   In the air blast treatment, it is necessary to cause the abrasive to collide with the surface to be ground with a certain extent. Therefore, the abrasive is sprayed from a position 50 to 1000 mm away from the release surface of the molded body to be blasted and sprayed onto the surface to be ground. . If this distance is less than 50 mm, it reaches the surface to be ground before the abrasive spreads sufficiently, so that it becomes difficult to finely grind, and for example, the groove wall of the gas channel cannot be sufficiently blasted. On the other hand, if it exceeds 1000 mm, the spread of the abrasive becomes too large and the contact with the abrasive becomes weak, making it impossible to effectively make the surface hydrophilic. In order to make the surface to be ground hydrophilic, the injection power must be made extremely large. I must. Moreover, it cannot be blasted uniformly, but it is easy to produce the blasted part and the non-blasted part.

研削材は、アルミナ、鉄、珪砂など樹脂より硬質なものが用いられるが、硬度の高い炭化珪素などは研削量が多くなり、また研削面が荒れるので好ましくない。一方、硬度の低い銅、亜鉛、プラスチックなどはセパレータ表層部の撥水層の除去に多大の圧力を要し、極めて効率が悪く、研削材としては適さない。そのため、研削材はビッカース硬度が300〜2500のものが好適である。   As the abrasive, a material harder than a resin such as alumina, iron, or silica sand is used. However, silicon carbide or the like having high hardness is not preferable because the grinding amount increases and the ground surface becomes rough. On the other hand, copper, zinc, plastic, etc. with low hardness require a great deal of pressure to remove the water-repellent layer on the separator surface layer, and are extremely inefficient and are not suitable as abrasives. Therefore, it is preferable that the abrasive has a Vickers hardness of 300 to 2500.

また、研削材の粒度は、微細かつ均等にブラストするために平均粒子径が5〜100μmの研削材が使用される。研削材の平均粒子径が100μmより大きくなると被研削面が粗くなるので、セパレータとして積層する際に、密着性が悪く接触抵抗が増大することとなり、更に、ガスリークや黒鉛粒子の脱落も起こり易くなるためである。しかし、平均粒子径が5μmより小さくなると、セパレータ表層部の撥水層の除去に時間を要するばかりではなく、エアブラスト処理時に研削材が飛散し易くなり、作業環境の悪化をもたらすこととなり、更に、研削材を回収して循環使用することが困難となる。   Moreover, in order to blast finely and uniformly, the abrasive with an average particle diameter of 5-100 micrometers is used. When the average particle diameter of the abrasive becomes larger than 100 μm, the surface to be ground becomes rough, so when laminating as a separator, the adhesion is poor and the contact resistance increases, and further, gas leakage and dropping of graphite particles are likely to occur. Because. However, if the average particle size is smaller than 5 μm, not only will it take time to remove the water-repellent layer on the separator surface layer part, but the abrasive will be easily scattered during the air blast treatment, resulting in a worse working environment. Therefore, it becomes difficult to collect and reuse the abrasive.

研削材は圧縮空気を利用して噴射され、被研削面がエアブラスト処理される。研削材の噴射は、0.1〜1.0MPaの噴射圧で、0.02〜3.0g/cm2 の噴射密度で被研削面に吹き付けることにより行われる。 The abrasive is sprayed using compressed air, and the surface to be ground is air blasted. The abrasive is sprayed by spraying it onto the surface to be ground at a spray pressure of 0.1 to 1.0 MPa and a spray density of 0.02 to 3.0 g / cm 2 .

研削材の噴射圧力は研削される表層面からの距離によって異なるが、表層面からの距離が50〜1000mmの場合、噴射圧が0.1MPa未満では表層面にかかる圧力が低いためにブラスト処理を十分に行うことができず、一方1.0MPaを越えると圧力が高いために表層面を均一にブラストすることができなくなる。   The spray pressure of the abrasive varies depending on the distance from the surface to be ground, but when the distance from the surface is 50 to 1000 mm, the blast treatment is performed because the pressure on the surface is low when the spray pressure is less than 0.1 MPa. On the other hand, when the pressure exceeds 1.0 MPa, the surface layer cannot be uniformly blasted because the pressure is high.

また、表層面がブラスト処理される際の被研削面の単位面積当たりの研削材の噴射量である噴射密度は、0.02〜3.0g/cm2 の範囲に設定される。噴射密度が0.02g/cm2 を下回るとブラスト処理が不十分となり、また3.0g/cm2 を越えるとブラストされる速度が速くなるためにブラスト処理が不均一になるとともに寸法精度が低下することになる。 Moreover, the spray density, which is the spray amount of the abrasive per unit area of the surface to be ground when the surface layer is blasted, is set in the range of 0.02 to 3.0 g / cm 2 . When the spray density is less than 0.02 g / cm 2 , the blasting treatment is insufficient, and when it exceeds 3.0 g / cm 2 , the blasting speed increases, resulting in non-uniform blasting and reduced dimensional accuracy. Will do.

なお、噴射密度は被研削面の単位面積当たりに噴射される研削材の噴射量、(研削材の噴射量)/(被研削面の面積)であり、これは、噴射密度=(研削材の噴射量)/(被研削面の面積)=(時間当たりの噴射量)/(移動速度)×(移動ピッチ)で表すことができる。すなわち、エアブラスト装置における単位時間当たりの研削材の噴射量、噴射口の移動速度および噴射口の移動ピッチを設定することにより変更することができる。   The injection density is the injection amount of the abrasive that is injected per unit area of the surface to be ground, (the injection amount of the abrasive) / (the area of the surface to be ground). (Injection amount) / (area of surface to be ground) = (injection amount per time) / (moving speed) × (moving pitch). That is, it can be changed by setting the injection amount of the abrasive per unit time in the air blast device, the movement speed of the injection port, and the movement pitch of the injection port.

このようにしてエアブラスト処理された表層部の被研削面に残った研削材は圧縮空気で除去したのち、更に吸引除去し、次いで、水またはアルコールやケトンなどの有機溶剤で超音波洗浄および乾燥して、本発明の燃料電池用セパレータ材が製造される。   The grinding material remaining on the surface to be ground in the air blast treatment in this way is removed with compressed air, and then suctioned and removed, followed by ultrasonic cleaning and drying with water or an organic solvent such as alcohol or ketone. Thus, the fuel cell separator material of the present invention is manufactured.

以下、本発明の実施例を比較例と対比して具体的に説明する。   Examples of the present invention will be specifically described below in comparison with comparative examples.

黒鉛/硬化樹脂成形体の作製
平均粒子径40μmの人造黒鉛粉末100重量部と、フェノール樹脂〔住友ベークライト(株)製PR−311〕を樹脂固形分が70重量%になるようにメタノールに溶解した溶液30重量部(黒鉛粉末とフェノール樹脂の重量比率83:17)とを2軸ニーダーで30分間混練し、室温で真空乾燥してメタノールおよび揮発性成分を除去した後、混練物を解砕し、解砕粒を粒度50メッシュ以下に調整して成形粉とした。
Preparation of graphite / cured resin molded body 100 parts by weight of artificial graphite powder having an average particle size of 40 μm and phenol resin (PR-311 manufactured by Sumitomo Bakelite Co., Ltd.) were dissolved in methanol so that the resin solid content was 70% by weight. 30 parts by weight of the solution (graphite powder to phenol resin weight ratio 83:17) was kneaded with a twin-screw kneader for 30 minutes, vacuum-dried at room temperature to remove methanol and volatile components, and the kneaded product was crushed. The crushed grains were adjusted to a particle size of 50 mesh or less to obtain a molding powder.

成形粉をフッ素系の離型剤を塗布した金型に充填して、圧力30MPa、温度180℃の条件で熱圧成形したのち金型から離型して、縦200mm、横200mm、厚さ2mmの黒鉛/硬化樹脂成形体からなる板状成形体を作製した。この板状成形体を有機溶剤HCFC−141bに浸漬したのち拭き取り洗浄した。   The molding powder is filled into a mold coated with a fluorine-based mold release agent, hot-press molded under conditions of a pressure of 30 MPa and a temperature of 180 ° C., and then released from the mold to be 200 mm long, 200 mm wide, and 2 mm thick. A plate-like molded body made of a graphite / cured resin molded body was prepared. The plate-like molded body was immersed in an organic solvent HCFC-141b and then wiped and washed.

実施例1〜2、比較例1〜7
この板状成形体の離型面にビッカース硬度2200のアルミナ粉末を研削材として、離型面からの距離、アルミナ粉末の平均粒子径、噴射圧、噴射密度を変えてエアブラスト処理を施した。
Examples 1-2 and Comparative Examples 1-7
An air blast treatment was performed on the release surface of the plate-like molded body using alumina powder having a Vickers hardness of 2200 as an abrasive and changing the distance from the release surface, the average particle diameter of the alumina powder, the injection pressure, and the injection density.

このようにエアブラスト処理を施した黒鉛/硬化樹脂板状成形体の材質特性を下記の方法により測定し、その結果を処理条件とともに表1に示した。なお、アルミナ粉末の噴射密度を変更するためのアルミナ粉末の単位時間当たりの噴射量、噴射口の移動速度および噴射口の移動ピッチの設定値も表1に示した。また。比較例7はエアブラスト処理を施さない黒鉛/硬化樹脂板状成形体の材質特性を示した。   The material properties of the graphite / cured resin plate-like molded article thus subjected to the air blast treatment were measured by the following method, and the results are shown in Table 1 together with the treatment conditions. Table 1 also shows the set values of the injection amount of alumina powder per unit time for changing the injection density of the alumina powder, the movement speed of the injection openings, and the movement pitch of the injection openings. Also. The comparative example 7 showed the material characteristic of the graphite / cured resin plate-shaped molded object which does not perform an air blast process.

(1)表面濡れ性(mN/m);
JIS K6768「プラスチック−フィルム及びシート−濡れ張力試験方法」により測定した。
(2)水との濡れ性;
成形体面に水滴を滴下して、発生した水玉の状態を目視にて観察し、次の3段階で評価した。
○…効果あり、 △…やや効果あり、 ×…効果なし
(3)接触抵抗(mΩ・cm2 );
0.8MPaの圧力を負荷した条件下で測定した。
(4)曲げ強度(MPa );
JIS R1618に準じて測定した。
(5)表面粗さRa、Rz(μm);
(株)東京精密製の表面粗さ測定機にて測定した。
(6)厚さ減少量(μm);
ブラスト処理前後の厚さを均等に16点ダイアルゲージで測定し、平均値の変化から厚さ減少量を求めた。
(厚さ減少量)=(処理前の厚さの平均値)−(処理後の厚さの平均値)
(1) Surface wettability (mN / m);
It was measured according to JIS K6768 “Plastic-film and sheet-wetting tension test method”.
(2) wettability with water;
Water droplets were dropped on the surface of the molded body, and the state of the generated polka dots was visually observed and evaluated in the following three stages.
○… Effective, △… Slightly effective, ×… No effect
(3) Contact resistance (mΩ · cm 2 );
The measurement was performed under the condition of applying a pressure of 0.8 MPa.
(4) Bending strength (MPa);
It measured according to JIS R1618.
(5) Surface roughness Ra, Rz (μm);
It was measured with a surface roughness measuring machine manufactured by Tokyo Seimitsu Co., Ltd.
(6) Thickness reduction (μm);
The thickness before and after the blast treatment was uniformly measured with a 16-point dial gauge, and the thickness reduction amount was obtained from the change in the average value.
(Thickness reduction) = (average thickness before processing)-(average thickness after processing)

Figure 2005302621
Figure 2005302621

表1より、実施例1は表面張力50mN/mの濡れ試薬が濡れており、水との濡れ性も良い。また、接触抵抗、曲げ強度、表面粗さなども良好なレベルにあり、厚さ減少量も小さく寸法精度上支障は生じない。   From Table 1, Example 1 is wet with a wetting reagent having a surface tension of 50 mN / m and has good wettability with water. Further, the contact resistance, bending strength, surface roughness, etc. are also at a good level, the thickness reduction amount is small, and there is no problem in dimensional accuracy.

実施例2は実施例1に比べて噴射密度の小さい条件でブラスト処理した場合であるが、表面張力50mN/mの濡れ試薬ははじいたが40mN/mの濡れ試薬には濡れており、水との濡れ性も良く、接触抵抗、曲げ強度、表面粗さ、厚さ減少量なども問題ないレベルにある。   Example 2 is a case where the blasting treatment was performed under a condition where the spray density was lower than that of Example 1, but the wet reagent with a surface tension of 50 mN / m repelled but was wet with a wet reagent with 40 mN / m, and water and The wettability is also good, and the contact resistance, bending strength, surface roughness, thickness reduction amount, etc. are at a satisfactory level.

比較例はエアブラスト処理を本発明で特定する処理条件外で実施した場合であり、比較例1はアルミナ粉末の噴射密度を小さくした条件でブラスト処理したものであるが濡れ性が低下しており、接触抵抗も高くなった。逆に、噴射密度を高くした比較例2では曲げ強度が低下し、表面粗さ、厚さ減少量が大きくなった。   The comparative example is a case where the air blast treatment is performed outside the processing conditions specified in the present invention, and the comparative example 1 is a blast treatment under the condition that the spray density of the alumina powder is reduced, but the wettability is lowered. The contact resistance also increased. On the contrary, in Comparative Example 2 in which the injection density was increased, the bending strength was lowered, and the surface roughness and thickness reduction amount were increased.

比較例3はアルミナ粉末の噴射口の位置を40mmに設定してエアブラスト処理した場合であるが、噴射圧を0.1MPaに低く設定したが濡れ性が悪く、厚さ減少量も若干大きくなった。   Comparative Example 3 is a case in which the position of the injection port of alumina powder is set to 40 mm and air blasting is performed. However, although the injection pressure is set low to 0.1 MPa, the wettability is poor and the thickness reduction amount is slightly increased. It was.

比較例4は噴射圧を1.2MPaと大きくした条件でブラスト処理した場合であり、噴射口の位置を1000mmまで離したが、亀裂が生じてしまった。   Comparative Example 4 is a case where blasting was performed under a condition where the injection pressure was increased to 1.2 MPa. The position of the injection port was separated up to 1000 mm, but a crack occurred.

アルミナ粉末の粒径を3μmと小さくした比較例5では濡れ性が低く、更に、アルミナ粉末が凝集したり、飛散して作業性が悪化した。逆に、粒径が120μmと大きい比較例6では噴射圧および噴射密度を小さく設定したが、表面粗さが大きくなり、厚さ減少量が大きくなった。なお、エアブラスト処理を施さない比較例7は濡れ性が極めて低く、接触抵抗も高くなった。   In Comparative Example 5 in which the particle size of the alumina powder was reduced to 3 μm, the wettability was low, and further, the alumina powder was agglomerated or scattered to deteriorate the workability. On the contrary, in Comparative Example 6 having a large particle size of 120 μm, the injection pressure and the injection density were set small, but the surface roughness increased and the thickness reduction amount increased. In addition, the comparative example 7 which does not perform an air blast process had very low wettability, and contact resistance also became high.

比較例8
実施例1と同じ方法で作製した黒鉛/硬化樹脂板状成形体に、(株)トーヨー電機製プラズマ・エースART−202を用い、成形体との間隔10mmで4分間プラズマを照射した。このプラズマ照射処理した黒鉛/硬化樹脂板状成形体を室内に放置して表面濡れ性の経時変化および曲げ強度、接触抵抗を測定し、実施例1と対比して表2に示した。
Comparative Example 8
The graphite / cured resin plate-like molded body produced by the same method as in Example 1 was irradiated with plasma for 4 minutes at a distance of 10 mm from the molded body using Plasma Ace ART-202 manufactured by Toyo Electric Co., Ltd. The plasma-irradiated graphite / cured resin plate-like molded body was left in the room and the surface wettability with time, bending strength, and contact resistance were measured. The results are shown in Table 2 in comparison with Example 1.

Figure 2005302621
Figure 2005302621

実施例1では7日間の表面濡れ性の経時変化が認められなかったのに対して、比較例8ではプラズマ処理直後の56mN/mが1日後には35mN/mになり、7日後には30mN/mにまで低下した。これは、金型に塗布した離型剤の一部が成形体表面に付着して、残留し、プラズマ処理では十分に除去されなかったために、時間の経過とともに表面濡れ性がプラズマ処理を行う前の状態に戻ってしまったものと考えられる。   In Example 1, no change in surface wettability with time was observed for 7 days, whereas in Comparative Example 8, 56 mN / m immediately after plasma treatment became 35 mN / m after 1 day, and 30 mN after 7 days. / M. This is because part of the mold release agent applied to the mold adheres to the surface of the molded body and remains and is not sufficiently removed by the plasma treatment. It is thought that it has returned to the state of.

発電性能試験;
エアブラスト処理を施した実施例1の黒鉛/硬化樹脂板状成形体を用いて溝幅1mm、深さ0.5mmのガス流路およびマニホールドを有するセパレータ板を製作し、固体高分子膜、ガス拡散電極と組み合わせて10セル分の燃料電池を構成した。80℃に温度を上げ、加湿した水素ガスおよび空気をマニホールドから電池内部に送り発電させた。
時間経過後の各セルにおける電圧を測定したところ、平均の電圧は0.65Vで、最大−最小電圧は0.05Vで、バラツキが小さいものであった。これに対して、エアブラスト処理を施していない比較例7と同じ方法による黒鉛/硬化樹脂成形体を用いて製作したセパレータ板で構成した燃料電池では、平均電圧0.52V、最大−最小電圧は0.25Vで、出力が低く、バラツキも大きいものであった。
Power generation performance test;
A separator plate having a gas flow path and a manifold having a groove width of 1 mm and a depth of 0.5 mm was manufactured using the graphite / cured resin plate-shaped molded body of Example 1 subjected to air blast treatment, and a solid polymer film, gas A fuel cell for 10 cells was constructed in combination with the diffusion electrode. The temperature was raised to 80 ° C., and humidified hydrogen gas and air were sent from the manifold into the battery to generate electricity.
When the voltage in each cell after the lapse of time was measured, the average voltage was 0.65V, the maximum-minimum voltage was 0.05V, and the variation was small. On the other hand, in the fuel cell composed of the separator plate manufactured using the graphite / cured resin molded body by the same method as in Comparative Example 7 where the air blast treatment is not performed, the average voltage is 0.52 V, and the maximum-minimum voltage is At 0.25 V, the output was low and the variation was large.

固体高分子型燃料電池の概略構造を示す一部断面図である。1 is a partial cross-sectional view showing a schematic structure of a solid polymer fuel cell.

符号の説明Explanation of symbols

1 セパレータ
2 ガス流路用溝
3 カソード
4 アノード
5 電解質膜
6 シール材
DESCRIPTION OF SYMBOLS 1 Separator 2 Gas channel groove 3 Cathode 4 Anode 5 Electrolyte membrane 6 Sealing material

Claims (6)

黒鉛粉末を熱硬化性樹脂により結合した黒鉛/硬化樹脂成形体からなり、その表層部がエアブラスト処理による親水化処理が施されたものであることを特徴とする燃料電池用セパレータ材。   A separator for a fuel cell, comprising a graphite / cured resin molded body obtained by bonding graphite powder with a thermosetting resin and having a surface layer subjected to a hydrophilization treatment by an air blast treatment. エアブラスト処理が、研削材を0.02〜3.0g/cm2 の噴射密度で吹き付ける処理である請求項1記載の燃料電池用セパレータ材。 The fuel cell separator material according to claim 1, wherein the air blast treatment is a treatment in which the abrasive is sprayed at an injection density of 0.02 to 3.0 g / cm 2 . エアブラスト処理する研削材が、ビッカース硬度300〜2500、平均粒子径5〜100μmである請求項1記載の燃料電池用セパレータ材。   The fuel cell separator material according to claim 1, wherein the abrasive for air blasting has a Vickers hardness of 300 to 2500 and an average particle diameter of 5 to 100 µm. エアブラスト処理する研削材を、表層面から50〜1000mmの位置から噴射する請求項1記載の燃料電池用セパレータ材。   The fuel cell separator material according to claim 1, wherein the abrasive for air blasting is injected from a position of 50 to 1000 mm from the surface. 濡れ張力試験液による表面の濡れ張力が40mN/m以上である請求項1記載の燃料電池用セパレータ材。   The fuel cell separator material according to claim 1, wherein the wetting tension of the surface by the wetting tension test solution is 40 mN / m or more. 平均粒子径10〜80μmの黒鉛粉末と熱硬化性樹脂を90:10〜75:25の重量比で混練した後混練物を解砕し、解砕粒を150メッシュ以下に粒度調整した成形粉を、予め反転形状で流路用の凹凸部が形成された成形型に充填して熱圧成形し、次いで、離型した成形体の表層部に、表層面から50〜1000mm離れた位置からビッカース硬度が300〜2500、平均粒子径が5〜100μmの研削材を、0.1〜1.0MPaの噴射圧で0.02〜3.0g/cm2 の噴射密度で吹き付ける、エアブラスト処理を施すことを特徴とする燃料電池用セパレータ材の製造方法。
After kneading graphite powder having an average particle size of 10 to 80 μm and a thermosetting resin at a weight ratio of 90:10 to 75:25, the kneaded product is crushed, and the molding powder whose particle size is adjusted to 150 mesh or less is obtained. Vickers hardness is measured from a position 50 to 1000 mm away from the surface of the surface layer of the molded body that has been previously filled in a mold in which the concave and convex portions for the flow path are formed in an inverted shape, and then subjected to hot-pressure molding. Applying an air blast treatment in which an abrasive having an average particle size of 5 to 100 μm is sprayed at an injection pressure of 0.1 to 1.0 MPa and an injection density of 0.02 to 3.0 g / cm 2. A method for producing a fuel cell separator material.
JP2004119744A 2004-04-15 2004-04-15 Method for producing separator material for fuel cell Expired - Fee Related JP4410020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004119744A JP4410020B2 (en) 2004-04-15 2004-04-15 Method for producing separator material for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004119744A JP4410020B2 (en) 2004-04-15 2004-04-15 Method for producing separator material for fuel cell

Publications (2)

Publication Number Publication Date
JP2005302621A true JP2005302621A (en) 2005-10-27
JP4410020B2 JP4410020B2 (en) 2010-02-03

Family

ID=35333840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004119744A Expired - Fee Related JP4410020B2 (en) 2004-04-15 2004-04-15 Method for producing separator material for fuel cell

Country Status (1)

Country Link
JP (1) JP4410020B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107989A (en) * 2004-10-07 2006-04-20 Nichias Corp Separator for fuel cell and its manufacturing method
WO2007055236A1 (en) 2005-11-09 2007-05-18 Dic Corporation Process for production of fuel cell separators and fuel cells
JP2007242611A (en) * 2006-02-24 2007-09-20 Gm Global Technology Operations Inc Method of depositing nanoparticle coating on bipolar plate and removing nanoparticle coating from land of bipolar plate
WO2009113717A1 (en) 2008-03-14 2009-09-17 昭和電工株式会社 Fuel cell separator and method of manufacturing the same
US8105726B2 (en) 2006-11-28 2012-01-31 Toyota Jidosha Kabushiki Kaisha Fuel cell separator, method of manufacturing fuel cell separator, and fuel cell
WO2020170733A1 (en) * 2019-02-21 2020-08-27 日清紡ホールディングス株式会社 Fuel cell separator
CN114864983A (en) * 2022-01-27 2022-08-05 上海神力科技有限公司 Flexible graphite polar plate for fuel cell and preparation method and application thereof
CN115228896A (en) * 2022-07-05 2022-10-25 常州工学院 Microwave irradiation recovery device of cadmium telluride thin-film solar cell

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107989A (en) * 2004-10-07 2006-04-20 Nichias Corp Separator for fuel cell and its manufacturing method
EP1947722A4 (en) * 2005-11-09 2011-02-02 Dainippon Ink & Chemicals Process for production of fuel cell separators and fuel cells
WO2007055236A1 (en) 2005-11-09 2007-05-18 Dic Corporation Process for production of fuel cell separators and fuel cells
EP1947722A1 (en) * 2005-11-09 2008-07-23 DIC Corporation Process for production of fuel cell separators and fuel cells
JP2007242611A (en) * 2006-02-24 2007-09-20 Gm Global Technology Operations Inc Method of depositing nanoparticle coating on bipolar plate and removing nanoparticle coating from land of bipolar plate
US8105726B2 (en) 2006-11-28 2012-01-31 Toyota Jidosha Kabushiki Kaisha Fuel cell separator, method of manufacturing fuel cell separator, and fuel cell
WO2009113717A1 (en) 2008-03-14 2009-09-17 昭和電工株式会社 Fuel cell separator and method of manufacturing the same
WO2020170733A1 (en) * 2019-02-21 2020-08-27 日清紡ホールディングス株式会社 Fuel cell separator
JP2020136138A (en) * 2019-02-21 2020-08-31 日清紡ホールディングス株式会社 Fuel cell separator
CN113454819A (en) * 2019-02-21 2021-09-28 日清纺控股株式会社 Fuel cell spacer
CN113454819B (en) * 2019-02-21 2023-11-21 日清纺控股株式会社 Fuel cell separator
CN114864983A (en) * 2022-01-27 2022-08-05 上海神力科技有限公司 Flexible graphite polar plate for fuel cell and preparation method and application thereof
CN115228896A (en) * 2022-07-05 2022-10-25 常州工学院 Microwave irradiation recovery device of cadmium telluride thin-film solar cell
CN115228896B (en) * 2022-07-05 2024-04-26 常州工学院 Microwave irradiation recovery device of cadmium telluride thin film solar cell

Also Published As

Publication number Publication date
JP4410020B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
JP5045867B2 (en) Fuel cell separator
JP4257544B2 (en) Polymer electrolyte fuel cell separator
US6706437B2 (en) Bipolar plates for fuel cell stacks
EP2264817A1 (en) Fuel cell separator and method of manufacturing the same
JP5003914B2 (en) Fuel cell separator
WO2002065567A1 (en) Polymer electrolyte type fuel cell
JP2005197222A (en) Fuel cell separator
JP6052670B2 (en) Fuel cell separator and manufacturing method thereof
JP4702670B2 (en) Separator material for polymer electrolyte fuel cell and manufacturing method thereof
JP4934951B2 (en) FUEL CELL SEPARATOR, MANUFACTURING METHOD THEREOF, AND SOLID POLYMER FUEL CELL USING THE SAME
JP4414631B2 (en) Manufacturing method of fuel cell separator
JP4410020B2 (en) Method for producing separator material for fuel cell
JP2006318717A (en) Polyelectrolyte fuel cell and its manufacturing method
JP5380771B2 (en) FUEL CELL SEPARATOR, METHOD FOR PRODUCING FUEL CELL SEPARATOR, AND FUEL CELL
JP4771248B2 (en) Method for producing separator material for fuel cell
JP4561239B2 (en) Fuel cell separator and fuel cell using the same
JP2003297385A (en) Manufacturing method of fuel cell separator, fuel cell separator and solid high polymer fuel cell
TWI418078B (en) Manufacturing method of solid polymer fuel cell isolation material
WO2002035629A1 (en) Fuel cell separator and production method therefor
WO2016092606A1 (en) Separator for fuel cells and method for manufacturing separator for fuel cells
WO2006038475A1 (en) Fuel cell and separator for fuel cell
KR101195104B1 (en) Production method for fuel cell separator, fuel cell separator, production method for fuel cell separator having gasket, and production method for fuel cell
JPWO2002035630A1 (en) Fuel cell separator
JP2015038840A (en) Fuel cell separator, and method for manufacturing fuel cell separator
JP2016085806A (en) Fuel cell separator and method for manufacturing fuel cell separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091112

R150 Certificate of patent or registration of utility model

Ref document number: 4410020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees