JP2005300015A - Refrigerating cycle device for cooling and refrigeration - Google Patents

Refrigerating cycle device for cooling and refrigeration Download PDF

Info

Publication number
JP2005300015A
JP2005300015A JP2004116820A JP2004116820A JP2005300015A JP 2005300015 A JP2005300015 A JP 2005300015A JP 2004116820 A JP2004116820 A JP 2004116820A JP 2004116820 A JP2004116820 A JP 2004116820A JP 2005300015 A JP2005300015 A JP 2005300015A
Authority
JP
Japan
Prior art keywords
cooling
refrigeration
evaporator
refrigerant
electric control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004116820A
Other languages
Japanese (ja)
Inventor
Yoshinari Kageme
吉成 影目
Takeya Fujiwara
健也 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004116820A priority Critical patent/JP2005300015A/en
Publication of JP2005300015A publication Critical patent/JP2005300015A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress abnormal rising of a cycle high pressure during cooling and refrigeration concurrent operation. <P>SOLUTION: When the cycle high pressure is lower than a predetermined value PHb when setting the cooling and refrigeration concurrent operation, opening and closing of cooling side solenoid valves 18 and 22 are alternately repeated, and an intermittent operation mode of alternately repeating a state of a refrigerant flowing in a cooling evaporator side and a state of the refrigerant flowing in a refrigeration evaporator side is carried out (S40). When the cycle high pressure is higher than the predetermined value PHb when setting the cooling and refrigeration concurrent operation, opened states of the cooling side solenoid valves 18 and 22 are maintained, and a parallel operation mode of passing the refrigerant through the cooling evaporator side and the refrigeration evaporator side in parallel with each other is carried out (S50). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、並列接続された冷房用蒸発器と冷蔵用蒸発器とを有する冷房冷蔵用冷凍サイクル装置に関する。   The present invention relates to a refrigerating cycle apparatus for cooling and refrigerating having a cooling evaporator and a refrigerating evaporator connected in parallel.

従来より、並列接続された冷房用蒸発器と冷蔵用蒸発器とを有し、冷蔵用蒸発器での冷媒温度を冷房用蒸発器での冷媒温度よりも低温となるようにした冷房冷蔵用冷凍サイクル装置は知られている(例えば、特許文献1、2参照)。   Conventionally, it has a cooling evaporator and a refrigeration evaporator connected in parallel, and the refrigerant temperature in the refrigeration evaporator is set to be lower than the refrigerant temperature in the cooling evaporator. Cycle devices are known (see, for example, Patent Documents 1 and 2).

この従来技術では、車両冷房冷蔵用冷凍サイクル装置において、冷房用蒸発器の上流側に温度作動式膨張弁および電磁弁を設け、冷蔵用蒸発器の上流側には、減圧手段として冷蔵用蒸発器の冷媒圧力が所定圧力以下に低下したときに開弁する定圧膨張弁を設けている。   In this prior art, in a refrigeration cycle device for vehicle cooling and refrigeration, a temperature-operated expansion valve and a solenoid valve are provided upstream of the cooling evaporator, and the refrigeration evaporator is provided as a decompression means upstream of the refrigeration evaporator. A constant pressure expansion valve is provided that opens when the refrigerant pressure of the refrigerant drops below a predetermined pressure.

そして、冷房用蒸発器上流側の電磁弁を制御装置のタイマー出力により所定の時間間隔で開閉するようにしている。この電磁弁が閉弁すると、冷房用蒸発器側通路の冷媒流れが遮断されるので、圧縮機の冷媒吸入作用によって冷蔵側低圧圧力(冷蔵用蒸発器の冷媒圧力)が急速に低下する。   The solenoid valve upstream of the cooling evaporator is opened and closed at predetermined time intervals by the timer output of the control device. When this solenoid valve is closed, the refrigerant flow in the cooling evaporator side passage is blocked, and the refrigeration side low pressure (refrigerant pressure in the refrigeration evaporator) rapidly decreases due to the refrigerant suction action of the compressor.

この結果、冷蔵用蒸発器の冷媒圧力が所定圧力、例えば、0.1MPaまで低下すると、今まで閉弁状態にあった定圧膨張弁が開弁するので、冷蔵用蒸発器に定圧膨張弁で減圧された低圧冷媒が流入し、この低圧冷媒が冷蔵庫内の空気から吸熱して蒸発することにより、冷蔵庫内を冷却する。   As a result, when the refrigerant pressure of the refrigeration evaporator drops to a predetermined pressure, for example, 0.1 MPa, the constant pressure expansion valve that has been closed until now opens, so the refrigeration evaporator is depressurized with the constant pressure expansion valve. The cooled low-pressure refrigerant flows in, and the low-pressure refrigerant absorbs heat from the air in the refrigerator and evaporates to cool the inside of the refrigerator.

ここで、サイクル循環冷媒がHFC−134aの場合、冷媒圧力=0.1MPaでの冷媒蒸発温度は−10℃という低温であるので、冷蔵庫内にて缶ジュース等を急速に冷却することができ、製氷機能を発揮することができる。一方、冷房用蒸発器側の冷媒圧力(冷房側低圧圧力)は冷房熱負荷により変動するが、通常は、0.2MPa〜0.4MPa程度の範囲でバランスしている。
特開昭61−280353号公報 特開昭58−33075号公報
Here, when the cycle circulation refrigerant is HFC-134a, the refrigerant evaporation temperature at a refrigerant pressure = 0.1 MPa is a low temperature of −10 ° C., so that can juice can be rapidly cooled in the refrigerator, The ice making function can be demonstrated. On the other hand, the refrigerant pressure on the cooling evaporator side (cooling side low pressure) varies depending on the cooling heat load, but is normally balanced in the range of about 0.2 MPa to 0.4 MPa.
JP 61-280353 A JP 58-33075 A

ところで、上記電磁弁が閉弁しても、冷蔵側低圧圧力が定圧膨張弁の開弁圧力に向かって低下する過程では定圧膨張弁の閉弁状態が維持される。従って、上記電磁弁の閉弁直後の時点では、一時的に、電磁弁と定圧膨張弁がともに閉弁している状態が発生する。この結果、冷凍サイクルでは、高圧側通路と低圧側通路との間が一時的に遮断された状態が発生する。   By the way, even if the electromagnetic valve is closed, the closed state of the constant pressure expansion valve is maintained in the process in which the refrigeration-side low pressure decreases toward the valve opening pressure of the constant pressure expansion valve. Therefore, immediately after the solenoid valve is closed, a state in which both the solenoid valve and the constant pressure expansion valve are temporarily closed occurs. As a result, in the refrigeration cycle, a state occurs in which the high pressure side passage and the low pressure side passage are temporarily interrupted.

そのため、この通路遮断状態が発生したまま、冷房側低圧通路および冷蔵側低圧通路の冷媒が圧縮機を通してサイクル高圧側へ移動することになる。このことが原因となって、上記電磁弁の閉弁直後にサイクル高圧圧力が上昇しやすい。   Therefore, the refrigerant in the cooling side low pressure passage and the refrigeration side low pressure passage moves to the cycle high pressure side through the compressor while the passage blocking state is generated. Due to this, the cycle high pressure tends to increase immediately after the solenoid valve is closed.

特に、高外気温時のような冷房高負荷条件において、車両がアイドル状態となり、凝縮器冷却風量が減少すると、凝縮器の空気側放熱能力が減少するので、凝縮器における空気側放熱能力と冷媒側必要凝縮能力とのバランス上、高圧圧力がより一層上昇する。   In particular, when the vehicle is in an idle state under a cooling high load condition such as when the outside air temperature is high and the condenser cooling air volume decreases, the air side heat dissipation capacity of the condenser decreases. Due to the balance with the required side condensation capacity, the high pressure is further increased.

従って、このサイクルバランス上、高圧圧力が上昇する環境条件下では、上記電磁弁の閉弁直後にサイクル高圧圧力の異常上昇が起こりやすい。そして、サイクル高圧圧力が一旦、高圧スイッチの作動値(サイクル構成部品の保護のための上限値)まで上昇すると、高圧スイッチの作動により圧縮機が停止状態となり、冷房、冷蔵機能が停止するという事態を招いてしまう。   Therefore, due to this cycle balance, an abnormal increase in the cycle high pressure is likely to occur immediately after the solenoid valve is closed under an environmental condition in which the high pressure increases. Then, once the cycle high pressure is increased to the operating value of the high pressure switch (upper limit value for protecting the cycle components), the compressor is stopped by the operation of the high pressure switch, and the cooling and refrigeration functions are stopped. Will be invited.

本発明は、上記点に鑑み、冷房冷蔵同時運転時に、サイクル高圧圧力の異常上昇を抑制することを目的とする。   In view of the above points, an object of the present invention is to suppress an abnormal increase in cycle high pressure during cooling and refrigeration simultaneous operation.

上記目的を達成するため、請求項1に記載の発明では、冷房用蒸発器(20、24)と、
前記冷房用蒸発器(20、24)と並列に設けられた冷蔵用蒸発器(27)と、
前記冷房用蒸発器(20、24)および前記冷蔵用蒸発器(27)を通過した冷媒を吸入して圧縮する圧縮機(10)と、
前記冷房用蒸発器(20、24)の上流側に設けられ、前記冷房用蒸発器(20、24)への流入冷媒を減圧する冷房用減圧装置(19、23)と、
前記冷蔵用蒸発器(27)の上流側に設けられ、前記冷蔵用蒸発器(27)への流入冷媒を減圧する冷蔵用減圧装置(26b、26c、29)と、
前記冷房用蒸発器(20、24)側の冷媒流れを断続する冷房側電気制御弁(18、22)と、
サイクル高圧圧力を検出する高圧圧力検出手段(31)と、
前記高圧圧力検出手段(31)の検出信号が入力され、前記冷房側電気制御弁(18、22)の開閉を制御する制御手段(40)とを備え、
冷房冷蔵同時運転を設定するときに、前記サイクル高圧圧力が所定値(PHb)よりも低い場合は、前記制御手段(40)により前記冷房側電気制御弁(18、22)の開弁状態と閉弁状態とを交互に繰り返して、前記冷房用蒸発器(20、24)側に冷媒が流れる状態と前記冷蔵用蒸発器(27)側に冷媒が流れる状態とを交互に繰り返す間欠運転モードを実行し、
また、冷房冷蔵同時運転を設定するときに、サイクル高圧圧力が前記所定値(PHb)よりも高い場合は、前記制御手段(40)により前記冷房側電気制御弁(18、22)を開弁状態に維持して、前記冷房用蒸発器(20、24)側と前記冷蔵用蒸発器(27)側に冷媒が並列に流れる並列運転モードを実行する冷房冷蔵用冷凍サイクル装置を特徴としている。
In order to achieve the above object, in the invention according to claim 1, a cooling evaporator (20, 24),
A refrigeration evaporator (27) provided in parallel with the cooling evaporator (20, 24);
A compressor (10) that sucks and compresses the refrigerant that has passed through the cooling evaporators (20, 24) and the refrigeration evaporator (27);
A cooling decompression device (19, 23) that is provided upstream of the cooling evaporator (20, 24) and decompresses refrigerant flowing into the cooling evaporator (20, 24);
A refrigeration decompression device (26b, 26c, 29) provided on the upstream side of the refrigeration evaporator (27) and decompressing refrigerant flowing into the refrigeration evaporator (27);
A cooling-side electric control valve (18, 22) for intermittently flowing the refrigerant flow on the cooling evaporator (20, 24) side;
High pressure detection means (31) for detecting cycle high pressure;
A control means (40) for receiving a detection signal of the high pressure detection means (31) and controlling opening and closing of the cooling side electric control valve (18, 22);
When setting the simultaneous cooling and refrigeration operation, if the cycle high pressure is lower than a predetermined value (PHb), the control means (40) causes the cooling electric control valves (18, 22) to be opened and closed. An intermittent operation mode is executed in which the state of the refrigerant flows alternately to the cooling evaporator (20, 24) side and the state of the refrigerant flowing to the refrigeration evaporator (27) side alternately repeats the valve state. And
Further, when setting the simultaneous cooling and refrigeration operation, if the cycle high pressure is higher than the predetermined value (PHb), the control means (40) opens the cooling side electric control valve (18, 22). The cooling and refrigerating cycle apparatus is configured to execute a parallel operation mode in which refrigerant flows in parallel to the cooling evaporator (20, 24) side and the refrigeration evaporator (27) side.

これによると、冷房冷蔵同時運転時に、サイクル高圧圧力が所定値(PHb)よりも高い場合は冷房用蒸発器(20、24)側と冷蔵用蒸発器(27)側に冷媒が並列に流れるので、高圧側通路と低圧側通路との間が一時的に遮断状態となることを回避できる。従って、冷房冷蔵同時運転時に、高圧圧力が異常に上昇することを防止できる。   According to this, when the cycle high pressure is higher than a predetermined value (PHb) during the simultaneous cooling and refrigeration operation, the refrigerant flows in parallel to the cooling evaporator (20, 24) side and the refrigeration evaporator (27) side. Thus, it is possible to avoid a temporary disconnection between the high-pressure side passage and the low-pressure side passage. Therefore, it is possible to prevent the high pressure from rising abnormally during the simultaneous cooling and refrigeration operation.

一方、サイクル高圧圧力が所定値(PHb)よりも低い場合は、冷房側電気制御弁(18、22)の開弁状態と閉弁状態とを交互に繰り返して、冷房用蒸発器(20、24)側に冷媒が流れる状態と冷蔵用蒸発器(27)側に冷媒が流れる状態とを交互に繰り返すから、冷蔵用蒸発器(27)側のみに冷媒が流れる状態において冷蔵用蒸発器(27)側の冷媒圧力を冷蔵機能に必要な所定圧力まで引き下げることにより、従来技術と同様に、冷蔵庫内を製氷可能な低温まで冷却できる。   On the other hand, when the cycle high pressure is lower than the predetermined value (PHb), the cooling-side electric control valves (18, 22) are alternately opened and closed to alternately repeat the cooling evaporators (20, 24). ) Side and the state where the refrigerant flows to the refrigeration evaporator (27) side are alternately repeated. Therefore, the refrigeration evaporator (27) in the state where the refrigerant flows only to the refrigeration evaporator (27) side. By lowering the refrigerant pressure on the side to a predetermined pressure required for the refrigeration function, the refrigerator can be cooled to a low temperature capable of making ice as in the prior art.

請求項2に記載の発明では、請求項1に記載の冷房冷蔵用冷凍サイクル装置において、前記制御手段(40)は、サイクル高圧圧力がサイクル構成部品の保護のための上限値(PHa)まで上昇すると、前記圧縮機(10)の作動を停止するようになっており、
前記所定値(PHb)は、前記上限値(PHa)よりも所定量低い値であることを特徴とする。
According to a second aspect of the present invention, in the refrigeration cycle apparatus for cooling and refrigerating according to the first aspect, the control means (40) increases the cycle high pressure to an upper limit value (PHa) for protecting the cycle components. Then, the operation of the compressor (10) is stopped,
The predetermined value (PHb) is a value lower by a predetermined amount than the upper limit value (PHa).

これによると、冷房冷蔵同時運転時に高圧圧力が所定上限値(PHa)よりも低い所定値(PHb)に上昇すると、間欠運転モードを並列運転モードに自動的に切り替えて高圧圧力の上昇を抑制するから、高圧圧力が所定上限値(PHa)以上に上昇して圧縮機(10)が停止することを未然に防止できる。   According to this, when the high pressure rises to a predetermined value (PHb) lower than the predetermined upper limit (PHa) during the simultaneous cooling and refrigeration operation, the intermittent operation mode is automatically switched to the parallel operation mode to suppress the increase of the high pressure. Therefore, it is possible to prevent the compressor (10) from being stopped due to the high pressure rising above the predetermined upper limit (PHa).

すなわち、冷房冷蔵同時運転時に高圧圧力の異常上昇に起因して、圧縮機(10)の自動停止制御が発生することを未然に防止できる。   That is, it is possible to prevent the automatic stop control of the compressor (10) from occurring due to an abnormal increase in the high pressure during simultaneous cooling and refrigeration operations.

請求項3に記載の発明では、請求項1または2に記載の冷房冷蔵用冷凍サイクル装置において、前記冷蔵用減圧装置として、固定絞り(26b、26c)と、前記固定絞り(26b、26c)と並列に設けられ、前記冷蔵用蒸発器(27)の冷媒圧力が所定開弁圧まで低下すると開弁する圧力応動弁(29)とが設けられ、
更に、前記冷蔵用蒸発器(27)側の冷媒流れを断続する冷蔵側電気制御弁(26a)が前記固定絞り(26b、26c)と直列に設けられ、
前記並列運転モードでは前記冷蔵側電気制御弁(26a)を前記制御手段(40)により開弁状態に維持し、
前記間欠運転モードにおいて前記冷房側電気制御弁(18、22)が開弁するときは前記冷蔵側電気制御弁(26a)を前記制御手段(40)により閉弁状態にすることを特徴とする。
According to a third aspect of the present invention, in the refrigeration cycle apparatus for cooling and refrigerating according to the first or second aspect, as the depressurizing apparatus for refrigeration, a fixed throttle (26b, 26c) and the fixed throttle (26b, 26c) A pressure responsive valve (29) provided in parallel and opened when the refrigerant pressure of the refrigeration evaporator (27) decreases to a predetermined valve opening pressure;
Furthermore, a refrigeration side electric control valve (26a) for intermittently flowing the refrigerant flow on the refrigeration evaporator (27) side is provided in series with the fixed throttles (26b, 26c),
In the parallel operation mode, the refrigeration side electric control valve (26a) is kept open by the control means (40),
When the cooling side electric control valve (18, 22) is opened in the intermittent operation mode, the refrigeration side electric control valve (26a) is closed by the control means (40).

これにより、冷房冷蔵同時運転時の並列運転モードでは開弁状態にある冷蔵側電気制御弁(26a)と固定絞り(26b、26c)とを通して冷蔵用蒸発器(27)に冷媒を流して、冷蔵庫の冷却作用を発揮できる。この場合に、固定絞り(26b、26c)により冷蔵側の冷媒流量を制限することにより冷房側の冷媒流量を確保して冷房性能を確保できる。   Thereby, in the parallel operation mode at the time of the simultaneous cooling and refrigerating operation, the refrigerant is caused to flow to the refrigerating evaporator (27) through the refrigerating side electric control valve (26a) and the fixed throttles (26b, 26c) which are in the open state, and the refrigerator The cooling effect can be demonstrated. In this case, by restricting the refrigerant flow rate on the refrigeration side with the fixed throttles (26b, 26c), the refrigerant flow rate on the cooling side can be ensured to ensure the cooling performance.

また、冷房冷蔵同時運転時の間欠運転モードにおいて冷房側電気制御弁(18、22)の閉弁時には冷蔵側の低圧圧力が低下して圧力応動弁(29)が所定開弁圧で開弁するので、この所定開弁圧を冷房用蒸発器(20、24)側の低圧圧力よりも低い圧力に設定することにより、冷蔵用蒸発器(27)の冷媒蒸発温度を冷房用蒸発器(20、24)より低くできる。   Further, in the intermittent operation mode during the simultaneous cooling and refrigeration operation, when the cooling side electric control valves (18, 22) are closed, the low pressure on the refrigeration side decreases and the pressure responsive valve (29) opens at a predetermined valve opening pressure. By setting the predetermined valve opening pressure to a pressure lower than the low pressure on the cooling evaporator (20, 24) side, the refrigerant evaporation temperature of the refrigeration evaporator (27) is set to the cooling evaporator (20, 24). ) Can be lower.

そして、間欠運転モードにおいて冷房側電気制御弁(18、22)が開弁するときは冷蔵側電気制御弁(26a)を閉弁することにより、固定絞り(26b、26c)を通して温度の高い冷媒が冷蔵用蒸発器(27)に流入することを防止できる。これにより、間欠運転モードの際に、冷蔵庫内を製氷可能な低温まで良好に冷却できる。   When the cooling side electric control valve (18, 22) is opened in the intermittent operation mode, the refrigeration side electric control valve (26a) is closed, so that the refrigerant having a high temperature passes through the fixed throttle (26b, 26c). It can prevent flowing into the refrigeration evaporator (27). Thereby, in the intermittent operation mode, the inside of the refrigerator can be satisfactorily cooled to a low temperature capable of making ice.

なお、間欠運転モードにおいて冷房側電気制御弁(18、22)が閉弁するときは、圧力応動弁(29)が所定開弁圧で開弁するから、冷蔵側電気制御弁(26a)は開弁状態および閉弁状態のいずれに制御してもよい。   When the cooling side electric control valves (18, 22) are closed in the intermittent operation mode, the pressure responsive valve (29) is opened at a predetermined valve opening pressure, so that the refrigeration side electric control valve (26a) is opened. You may control to either a valve state and a valve closing state.

請求項4に記載の発明のように、請求項3に記載の冷房冷蔵用冷凍サイクル装置において、冷房単独運転を設定するときは、前記制御手段(40)により前記冷房側電気制御弁(18、22)を開弁状態に維持するとともに、前記冷蔵側電気制御弁(26a)を閉弁状態に維持すればよい。   As in the invention according to claim 4, in the refrigeration cycle apparatus for cooling and refrigerating according to claim 3, when setting the cooling single operation, the cooling means electric control valve (18, 22) may be maintained in the open state, and the refrigeration side electric control valve (26a) may be maintained in the closed state.

請求項5に記載の発明のように、請求項3または4に記載の冷房冷蔵用冷凍サイクル装置において、冷蔵単独運転を設定するときは、前記制御手段(40)により前記冷房側電気制御弁(18、22)を閉弁状態に維持するとともに、前記圧縮機(10)を前記制御手段(40)により間欠的に作動させればよい。   In the refrigeration cycle apparatus for cooling and refrigeration according to claim 3 or 4 as in the invention described in claim 5, when the refrigeration single operation is set, the control means (40) controls the cooling side electric control valve ( 18 and 22) may be maintained in a closed state, and the compressor (10) may be operated intermittently by the control means (40).

これにより、冷蔵単独運転時には、冷蔵用蒸発器(27)側の冷媒挙動が上記間欠運転モードと実質的に同一となって、冷蔵庫内を製氷可能な低温まで良好に冷却できる。   Thereby, at the time of refrigeration independent operation, the refrigerant | coolant behavior by the side of the evaporator (27) for refrigeration becomes substantially the same as the said intermittent operation mode, and it can cool favorably to the low temperature which can make ice in a refrigerator.

なお、冷蔵単独運転時においても圧縮機(10)の間欠作動に伴って圧力応動弁(29)が所定開弁圧で間欠的に開弁するから、冷蔵側電気制御弁(26a)は冷蔵単独運転時に開弁状態および閉弁状態のいずれに制御してもよい。   Even during the refrigeration operation alone, the pressure responsive valve (29) is intermittently opened at a predetermined valve opening pressure as the compressor (10) is intermittently operated. Therefore, the refrigeration-side electric control valve (26a) is refrigeration only. You may control to either a valve opening state and a valve closing state at the time of a driving | operation.

請求項6に記載の発明では、冷房用蒸発器(20、24)と、
前記冷房用蒸発器(20、24)と並列に設けられた冷蔵用蒸発器(27)と、
前記冷房用蒸発器(20、24)および前記冷蔵用蒸発器(27)を通過した冷媒を吸入して圧縮する圧縮機(10)と、
前記冷房用蒸発器(20、24)の上流側に設けられ、前記冷房用蒸発器(20、24)への流入冷媒を減圧する冷房用減圧装置(19、23)と、
前記冷蔵用蒸発器(27)の上流側に設けられ、前記冷蔵用蒸発器(27)への流入冷媒を減圧する固定絞り(26b、26c)と、
前記冷房用蒸発器(20、24)側の冷媒通路(15、17)に設けられ、前記冷房用蒸発器(20、24)側の冷媒流れを断続する冷房側電気制御弁(18、22)と、
前記冷蔵用蒸発器(27)側の冷媒通路(16)に前記固定絞り(26b、26c)と直列に設けられ、前記冷蔵用蒸発器(27)側の冷媒流れを断続する冷蔵側電気制御弁(26a)と、
前記固定絞り(26b、26c)と並列に設けられ、前記冷蔵用蒸発器(27)の冷媒圧力が所定開弁圧まで低下すると開弁する圧力応動弁(29)と、
前記冷房側電気制御弁(18、22)および前記冷蔵側電気制御弁(26a)の開閉と、前記圧縮機(10)の作動を制御する制御手段(40)とを備え、
冷房冷蔵同時運転を設定するときは、前記制御手段(40)により前記圧縮機(10)を作動させるとともに、前記冷房側電気制御弁(18、22)および前記冷蔵側電気制御弁(26a)を両方とも開弁し、
冷蔵単独運転を設定するときは、前記制御手段(40)により前記冷房側電気制御弁(18、22)を閉弁状態に維持するとともに、前記圧縮機(10)を間欠的に作動させる冷房冷蔵用冷凍サイクル装置を特徴としている。
In invention of Claim 6, the cooling evaporator (20, 24),
A refrigeration evaporator (27) provided in parallel with the cooling evaporator (20, 24);
A compressor (10) that sucks and compresses the refrigerant that has passed through the cooling evaporator (20, 24) and the refrigeration evaporator (27);
A cooling decompression device (19, 23) that is provided upstream of the cooling evaporator (20, 24) and decompresses refrigerant flowing into the cooling evaporator (20, 24);
Fixed throttles (26b, 26c) that are provided upstream of the refrigeration evaporator (27) and depressurize the refrigerant flowing into the refrigeration evaporator (27);
Cooling side electric control valves (18, 22) provided in the refrigerant passages (15, 17) on the cooling evaporator (20, 24) side and intermittently flowing the refrigerant flow on the cooling evaporator (20, 24) side. When,
A refrigeration-side electric control valve provided in series with the fixed throttles (26b, 26c) in the refrigerant passage (16) on the refrigeration evaporator (27) side and intermittently flows the refrigerant flow on the refrigeration evaporator (27) side. (26a)
A pressure responsive valve (29) provided in parallel with the fixed throttles (26b, 26c), and opened when the refrigerant pressure of the refrigeration evaporator (27) decreases to a predetermined valve opening pressure;
Opening and closing of the cooling side electric control valve (18, 22) and the refrigeration side electric control valve (26a), and a control means (40) for controlling the operation of the compressor (10),
When setting the cooling and refrigeration simultaneous operation, the compressor (10) is operated by the control means (40), and the cooling side electric control valves (18, 22) and the refrigeration side electric control valve (26a) are turned on. Both open,
When setting the refrigeration stand-alone operation, the control means (40) maintains the cooling-side electric control valves (18, 22) in a closed state, and the compressor (10) is operated intermittently. It features a refrigeration cycle device.

これによると、冷房冷蔵同時運転時には、冷房側電気制御弁(18、22)および冷房用減圧装置(19、23)を通して冷房用蒸発器(20、24)に冷媒が流れるとともに、
固定絞り(26b、26c)および冷蔵側電気制御弁(26a)を通して冷蔵用蒸発器(27)に冷媒が流れる。
According to this, during the cooling and refrigeration simultaneous operation, the refrigerant flows to the cooling evaporators (20, 24) through the cooling side electric control valves (18, 22) and the cooling decompression devices (19, 23),
The refrigerant flows to the refrigeration evaporator (27) through the fixed throttles (26b, 26c) and the refrigeration side electric control valve (26a).

そのため、冷房冷蔵同時運転時に高圧側通路と低圧側通路との間が一時的に遮断状態となることを回避できるので、高圧圧力が異常に上昇することを防止できる。しかも、冷蔵用蒸発器(27)に冷蔵側電気制御弁(26a)と固定絞り(26b、26c)を通して冷媒が流れることにより、冷蔵庫の冷却作用を発揮できると同時に、固定絞り(26b、26c)により冷蔵側の冷媒流量を制限して冷房側の冷媒流量を確保でき、これにより、冷房性能を確保できる。   Therefore, since it is possible to avoid a temporary disconnection between the high-pressure side passage and the low-pressure side passage during simultaneous cooling and refrigerating operation, it is possible to prevent the high pressure from rising abnormally. In addition, the refrigerant flows through the refrigeration evaporator (27) through the refrigeration side electric control valve (26a) and the fixed throttles (26b, 26c), so that the cooling effect of the refrigerator can be exhibited and at the same time the fixed throttles (26b, 26c). Thus, the refrigerant flow rate on the refrigeration side can be restricted to ensure the refrigerant flow rate on the cooling side, thereby ensuring the cooling performance.

一方、冷蔵単独運転時には、圧縮機(10)の間欠作動の際に冷蔵用蒸発器(27)側のみに冷媒を流して、冷蔵用蒸発器(27)の冷媒圧力を引き下げることにより、冷蔵庫内を製氷可能な低温まで良好に冷却できる。これと同時に、固定絞り(26b、26c)と並列接続された圧力応動弁(29)が冷蔵単独運転時に開弁することにより、圧縮機(10)の負圧運転を確実に防止できる。   On the other hand, during the refrigeration single operation, the refrigerant is allowed to flow only to the refrigeration evaporator (27) side during intermittent operation of the compressor (10), and the refrigerant pressure in the refrigeration evaporator (27) is reduced, thereby Can be cooled well to a low temperature capable of making ice. At the same time, the pressure responsive valve (29) connected in parallel with the fixed throttles (26b, 26c) opens during the refrigeration single operation, so that the negative pressure operation of the compressor (10) can be reliably prevented.

なお、請求項6の冷蔵単独運転時においても圧縮機(10)の間欠作動により圧力応動弁(29)が開弁するから、冷蔵側電気制御弁(26a)は開弁状態および閉弁状態のいずれに制御してもよい。   In addition, since the pressure responsive valve (29) is opened by the intermittent operation of the compressor (10) even in the refrigeration single operation of claim 6, the refrigeration side electric control valve (26a) is in the open state and the closed state. Any of these may be controlled.

請求項7に記載の発明のように、請求項6に記載の冷房冷蔵用冷凍サイクル装置において、前記圧力応動弁(29)を前記固定絞り(26b、26c)、前記冷蔵側電気制御弁(26a)および前記冷蔵用蒸発器(27)からなる直列回路に並列接続してもよい。   As in the invention according to claim 7, in the refrigerating cycle device for cooling and refrigerating according to claim 6, the pressure responsive valve (29) includes the fixed throttle (26b, 26c) and the refrigerating side electric control valve (26a). ) And the refrigeration evaporator (27) may be connected in parallel.

請求項8に記載の発明のように、請求項1ないし7のいずれか1つに記載の冷房冷蔵用冷凍サイクル装置において、前記冷房用蒸発器(20、24)を複数個並列に設け、この複数個の冷房用蒸発器(20、24)側の冷媒通路(15、17)にそれぞれ前記冷房側電気制御弁(18、22)を設けるようにしてもよい。   As in the invention described in claim 8, in the cooling / refrigeration refrigeration cycle apparatus according to any one of claims 1 to 7, a plurality of the cooling evaporators (20, 24) are provided in parallel. The cooling-side electric control valves (18, 22) may be provided in the refrigerant passages (15, 17) on the plurality of cooling evaporators (20, 24) side, respectively.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

(第1実施形態)
図1は第1実施形態による冷房冷蔵用冷凍サイクル装置のサイクル図であり、デュアルエアコンタイプの車両用空調装置に適用した例を示している。ここで、「デュアルエアコンタイプ」とは車室内の前席側領域を空調する前席側空調ユニット21と、車室内の後席側領域を空調する後席側空調ユニット25との両ユニットを備える形式のものである。
(First embodiment)
FIG. 1 is a cycle diagram of the refrigeration cycle apparatus for cooling and refrigerating according to the first embodiment, and shows an example applied to a dual air conditioner type vehicle air conditioner. Here, the “dual air conditioner type” includes both a front seat side air conditioning unit 21 that air-conditions the front seat side area in the vehicle interior and a rear seat side air conditioning unit 25 that air-conditions the rear seat side area in the vehicle interior. Of the form.

図1において、圧縮機10は電磁クラッチ11を有し、この電磁クラッチ11を介して図示しない車両エンジンにより回転駆動される。圧縮機10の吐出側には高圧冷媒の放熱器をなす凝縮器12が接続される。   In FIG. 1, the compressor 10 has an electromagnetic clutch 11, and is driven to rotate by a vehicle engine (not shown) via the electromagnetic clutch 11. A condenser 12 is connected to the discharge side of the compressor 10 as a radiator for high-pressure refrigerant.

圧縮機10から吐出された高圧ガス冷媒は凝縮器12で外気に放熱して凝縮する。凝縮器12の出口側には受液器13が接続され、この受液器13内にて凝縮器12の出口冷媒(凝縮冷媒)の気液が分離される。   The high-pressure gas refrigerant discharged from the compressor 10 dissipates heat to the outside air through the condenser 12 and condenses. A liquid receiver 13 is connected to the outlet side of the condenser 12, and the gas / liquid of the outlet refrigerant (condensed refrigerant) of the condenser 12 is separated in the liquid receiver 13.

受液器13内部に余剰液冷媒を溜めるとともに、受液器13下流側に液冷媒を導出するようになっている。受液器13下流側の高圧液配管14は3つの並列通路に分岐される。すなわち、前席冷房側冷媒通路15と冷蔵側冷媒通路16と後席冷房側冷媒通路17の並列通路が受液器13下流側に設けてある。   The excess liquid refrigerant is stored inside the liquid receiver 13 and the liquid refrigerant is led out downstream of the liquid receiver 13. The high-pressure liquid pipe 14 on the downstream side of the liquid receiver 13 is branched into three parallel passages. That is, a parallel passage of the front seat cooling side refrigerant passage 15, the refrigeration side refrigerant passage 16 and the rear seat cooling side refrigerant passage 17 is provided on the downstream side of the liquid receiver 13.

前席冷房側冷媒通路15には、その上流側から下流側に向かって前席側電気制御弁をなす電磁弁18と、前席側冷房用減圧装置をなす温度作動式膨張弁19と、前席側冷房用蒸発器20が直列に設けてある。温度作動式膨張弁19は、周知のように冷房用蒸発器20の出口冷媒の過熱度に応じて弁体開度を調整し、それにより、冷房用蒸発器20への冷媒流量を調整して冷房用蒸発器20の出口冷媒の過熱度を所定値に維持する。   The front-seat cooling-side refrigerant passage 15 includes an electromagnetic valve 18 that forms a front-seat-side electric control valve from the upstream side toward the downstream side, a temperature-actuated expansion valve 19 that forms a front-seat-side cooling pressure reducing device, A seat-side cooling evaporator 20 is provided in series. As is well known, the temperature-actuated expansion valve 19 adjusts the valve element opening according to the degree of superheat of the outlet refrigerant of the cooling evaporator 20, thereby adjusting the refrigerant flow rate to the cooling evaporator 20. The degree of superheat of the outlet refrigerant of the cooling evaporator 20 is maintained at a predetermined value.

前席側冷房用蒸発器20は、上記した前席側空調ユニット21に配置される。この前席側空調ユニット21内には図示しない前席側空調用送風機によって空気が送風され、この送風空気は前席側冷房用蒸発器20等を通過して車室内の前席側領域へ吹き出される。冷房用蒸発器20には温度作動式膨張弁19で減圧された低圧冷媒が流入し、この低圧冷媒が前席側空調ユニット21内の送風空気から吸熱して蒸発することにより、送風空気を冷却する。   The front seat side cooling evaporator 20 is disposed in the front seat side air conditioning unit 21 described above. Air is blown into the front seat air conditioning unit 21 by a front seat air conditioning blower (not shown), and the blown air passes through the front seat cooling evaporator 20 and blows out to the front seat side region in the vehicle interior. Is done. The low-pressure refrigerant decompressed by the temperature-actuated expansion valve 19 flows into the cooling evaporator 20, and the low-pressure refrigerant absorbs heat from the blowing air in the front seat air conditioning unit 21 and evaporates to cool the blowing air. To do.

後席冷房側冷媒通路17は前席冷房側冷媒通路15と同一構成であり、その上流側から下流側に向かって後席側電気制御弁をなす電磁弁22と、後席側冷房用減圧装置をなす温度作動式膨張弁23と、後席側冷房用蒸発器24が直列に設けてある。   The rear-seat cooling-side refrigerant passage 17 has the same configuration as the front-seat cooling-side refrigerant passage 15, and includes an electromagnetic valve 22 that forms a rear-seat-side electric control valve from the upstream side toward the downstream side, and a rear-seat-side cooling pressure reducing device. A temperature-actuated expansion valve 23 and a rear seat side cooling evaporator 24 are provided in series.

後席側冷房用蒸発器24は、上記した後席側空調ユニット25内に配置される。この後席側空調ユニット25内には図示しない後席側空調用送風機によって空気が送風され、この送風空気は後席側冷房用蒸発器24等を通過して車室内の後席側領域へ吹き出される。   The rear seat side cooling evaporator 24 is disposed in the rear seat side air conditioning unit 25 described above. Air is blown into the rear seat side air conditioning unit 25 by a rear seat side air conditioning blower (not shown), and the blown air passes through the rear seat side cooling evaporator 24 and the like and blows out to the rear seat side region of the vehicle interior. Is done.

一方、冷蔵側冷媒通路16には、その上流側から下流側に向かって複合弁装置26と冷蔵用蒸発器27と逆止弁28が直列に設けてある。そして、複合弁装置26と並列に定圧膨張弁29が設けてある。   On the other hand, in the refrigeration side refrigerant passage 16, a composite valve device 26, a refrigeration evaporator 27, and a check valve 28 are provided in series from the upstream side to the downstream side. A constant pressure expansion valve 29 is provided in parallel with the composite valve device 26.

複合弁装置26は、冷蔵側電気制御弁をなす電磁弁26aと固定絞り26b、26cとを組み合わせたものであり、固定絞り26b、26cは冷房冷蔵同時運転時に冷蔵用減圧装置の役割を果たすとともに、冷房冷蔵同時運転時に冷蔵側冷媒通路16を通過する冷媒流量を冷房側冷媒通路15、17を通過する冷媒流量の所定比率(例えば、10%程度の比率)に制限する役割を果たす。   The composite valve device 26 is a combination of an electromagnetic valve 26a that forms a refrigeration-side electric control valve and fixed throttles 26b and 26c. The fixed throttles 26b and 26c serve as a decompression device for refrigeration during simultaneous cooling and refrigeration operations. The refrigerant flow rate that passes through the refrigeration side refrigerant passage 16 during simultaneous cooling and refrigeration operation is limited to a predetermined ratio (for example, a ratio of about 10%) of the refrigerant flow rate that passes through the cooling side refrigerant passages 15 and 17.

なお、図1の具体例では、電磁弁26aの前後両側に固定絞り26b、26cを設けているが、上記2つの役割を1つの固定絞りで果たすことができる場合は、電磁弁26aの前後の通路のうち片側の通路のみに固定絞りを設ければよい。   In the specific example of FIG. 1, the fixed throttles 26b and 26c are provided on both the front and rear sides of the electromagnetic valve 26a. However, when the above two roles can be achieved by a single fixed throttle, the fixed throttles 26b and 26c are provided on the front and rear sides of the electromagnetic valve 26a. A fixed throttle may be provided only in one of the passages.

また、固定絞り26b、26cは具体的には電磁弁26aのハウジング(図示せず)内に形成される冷媒通路の通路断面積を所定の断面積で絞る小径の絞り通路にて構成できる。これにより、固定絞り26b、26cを電磁弁26aのハウジング内に一体化できる。   Further, the fixed throttles 26b and 26c can be configured by small-diameter throttle passages that specifically throttle the passage sectional area of the refrigerant passage formed in the housing (not shown) of the electromagnetic valve 26a with a predetermined sectional area. Thereby, the fixed throttles 26b and 26c can be integrated into the housing of the electromagnetic valve 26a.

冷蔵用蒸発器27は車室内の適宜な場所に搭載される車載冷蔵庫の断熱ケース30内に配置される。そして、固定絞り26b、26cあるいは定圧膨張弁29で減圧された低圧冷媒が冷蔵用蒸発器27において断熱ケース30内の空気から吸熱して蒸発することにより、断熱ケース30の内部空間を冷却する。   The refrigerator 27 for refrigeration is arrange | positioned in the heat insulation case 30 of the vehicle-mounted refrigerator mounted in the appropriate place in a vehicle interior. The low-pressure refrigerant decompressed by the fixed throttles 26b and 26c or the constant pressure expansion valve 29 absorbs heat from the air in the heat insulation case 30 and evaporates in the refrigeration evaporator 27, thereby cooling the internal space of the heat insulation case 30.

逆止弁28は冷蔵用蒸発器27の出口から圧縮機10の吸入側への一方向のみに冷媒が流れることを許容し、これとは逆方向に冷媒が流れることを防止する。従って、冷房用蒸発器20、24の出口側から温度の高い低圧冷媒が冷媒温度(冷媒圧力)の低い冷蔵用蒸発器27内に流れ込むことを逆止弁28にて防止できる。   The check valve 28 allows the refrigerant to flow only in one direction from the outlet of the refrigeration evaporator 27 to the suction side of the compressor 10, and prevents the refrigerant from flowing in the opposite direction. Therefore, the check valve 28 can prevent the low-pressure refrigerant having a high temperature from flowing into the refrigerating evaporator 27 having a low refrigerant temperature (refrigerant pressure) from the outlet side of the cooling evaporators 20 and 24.

冷蔵用減圧装置をなす定圧膨張弁29は、その下流側圧力(冷蔵用蒸発器27の冷媒圧力)が所定開弁圧以下に低下すると開弁する圧力応動弁である。ここで、定圧膨張弁29の開弁圧は、冷房用蒸発器20、24側の冷媒圧力(冷房側低圧圧力)よりも十分低い値に設定する。   The constant pressure expansion valve 29 constituting the refrigeration decompression device is a pressure responsive valve that opens when its downstream pressure (refrigerant pressure in the refrigeration evaporator 27) drops below a predetermined valve opening pressure. Here, the valve opening pressure of the constant pressure expansion valve 29 is set to a value sufficiently lower than the refrigerant pressure (cooling side low pressure) on the cooling evaporators 20 and 24 side.

具体的には、冷房用蒸発器20、24側の冷媒圧力(冷房側低圧圧力)は通常、0.2MPa〜0.4MPa程度の範囲であるのに反し、定圧膨張弁29の開弁圧は、例えば、0.1MPa程度に設定する。この0.1MPaでの冷媒蒸発温度はHFC−134aの場合−10℃である。   Specifically, the refrigerant pressure on the cooling evaporators 20 and 24 side (cooling side low pressure) is normally in the range of about 0.2 MPa to 0.4 MPa, but the valve opening pressure of the constant pressure expansion valve 29 is For example, it is set to about 0.1 MPa. The refrigerant evaporation temperature at 0.1 MPa is −10 ° C. in the case of HFC-134a.

高圧圧力センサ31は、サイクル高圧圧力を検出する圧力検出手段であって、本例では受液器13出口側の高圧液配管14に配置されているが、受液器13の入口配管部に高圧圧力センサ31を配置してもよい。本例の高圧圧力センサ31は圧力に応じてセンサ出力値が連続的に変化するものであり、例えば、半導体圧力センサのように圧力に応じて電気抵抗値が連続的に変化するものである。   The high pressure sensor 31 is a pressure detection means for detecting the cycle high pressure, and is arranged in the high pressure liquid pipe 14 on the outlet side of the liquid receiver 13 in this example, but the high pressure pressure sensor 31 has a high pressure on the inlet pipe portion of the liquid receiver 13. A pressure sensor 31 may be arranged. The high pressure sensor 31 of the present example has a sensor output value that changes continuously according to the pressure. For example, the electrical resistance value changes continuously according to the pressure, such as a semiconductor pressure sensor.

次に、本実施形態の電制御部の概要を図2により説明すると、空調用制御装置40はマイクロコンピュータおよびその周辺回路等から構成され、ROMに記憶されたプログラムに従って所定の演算処理を行って、空調機器の作動を制御する。   Next, the outline of the electric control unit of this embodiment will be described with reference to FIG. 2. The air conditioning control device 40 is composed of a microcomputer and its peripheral circuits, etc., and performs predetermined arithmetic processing according to a program stored in the ROM. Control the operation of air conditioning equipment.

空調用制御装置40の出力側には、圧縮機10の電磁クラッチ11、電磁弁18、22、26a等が接続されている。図示を省略しているが、実際には、前席側空調ユニット21の電動送風機、内外気切替機構のアクチュエータ、吹出温度制御機構のアクチュエータ、吹出モード切替機構のアクチュエータ、後席側空調ユニット25の電動送風機、吹出温度制御機構のアクチュエータ、吹出モード切替機構のアクチュエータ等も空調用制御装置40の出力側に接続され、これらの各種空調機器の作動が空調用制御装置40により制御される。従って、空調用制御装置40により本発明の制御手段が構成される。   The electromagnetic clutch 11 of the compressor 10, the electromagnetic valves 18, 22, 26a, and the like are connected to the output side of the air conditioning control device 40. Although not shown, actually, the electric blower of the front seat side air conditioning unit 21, the actuator of the inside / outside air switching mechanism, the actuator of the blowing temperature control mechanism, the actuator of the blowing mode switching mechanism, and the rear seat side air conditioning unit 25 The electric blower, the actuator of the blowing temperature control mechanism, the actuator of the blowing mode switching mechanism, and the like are also connected to the output side of the air conditioning control device 40, and the operation of these various air conditioning devices is controlled by the air conditioning control device 40. Therefore, the control means of the present invention is constituted by the air conditioning control device 40.

一方、空調用制御装置40の入力側にはセンサ群41の検出信号および空調操作パネル43の操作信号が入力される。センサ群41としては、前述した高圧圧力センサ31、前席側冷房用蒸発器20の吹出空気温度センサ42a、後席側冷房用蒸発器24の吹出空気温度センサ42b等が接続されている。図示を省略しているが、実際には、周知の外気温度センサ、内気温度センサ、日射センサ、車両エンジンの水温センサ等も空調用制御装置40の入力側に接続され、その検出信号が入力される。   On the other hand, the detection signal of the sensor group 41 and the operation signal of the air conditioning operation panel 43 are input to the input side of the air conditioning control device 40. As the sensor group 41, the above-described high pressure sensor 31, the blown air temperature sensor 42a of the front seat side cooling evaporator 20, the blown air temperature sensor 42b of the rear seat side cooling evaporator 24, and the like are connected. Although not shown, actually, a known outside air temperature sensor, inside air temperature sensor, solar radiation sensor, vehicle engine water temperature sensor, and the like are also connected to the input side of the air conditioning control device 40, and the detection signal is input. The

また、空調操作パネル43には、圧縮機10の作動指令信号を出すエアコンスイッチ(圧縮機作動スイッチ)44、前席側電動送風機の風量切替信号を出す前席側風量切替スイッチ45、後席側電動送風機の風量切替信号を出す後席側風量切替スイッチ46、車室内の設定温度信号を出す温度設定スイッチ47、冷蔵庫作動指令信号を出す冷蔵庫スイッチ48等が設けられている。   The air conditioning operation panel 43 includes an air conditioner switch (compressor operation switch) 44 that outputs an operation command signal for the compressor 10, a front seat air volume switch 45 that outputs an air volume switching signal for the front seat side electric blower, and a rear seat side. A rear-seat-side air volume switching switch 46 that outputs an air volume switching signal for the electric blower, a temperature setting switch 47 that outputs a set temperature signal in the passenger compartment, a refrigerator switch 48 that outputs a refrigerator operation command signal, and the like are provided.

なお、図示を省略しているが、空調操作パネル43には、内外気切替信号を出す内外気切替スイッチ、前席側吹出モード切替信号を出す前席側吹出モード切替スイッチ、後席側吹出モード切替信号を出す後席側吹出モード切替スイッチ等が設けられ、各種操作信号が空調操作パネル43から空調用制御装置40に入力されるようになっている。   Although not shown, the air conditioning operation panel 43 includes an inside / outside air switching switch that outputs an inside / outside air switching signal, a front seat side blowing mode switching switch that outputs a front seat side blowing mode switching signal, and a rear seat side blowing mode. A rear-seat side blowing mode changeover switch or the like that outputs a switching signal is provided, and various operation signals are input from the air conditioning operation panel 43 to the air conditioning control device 40.

次に、上記構成において本実施形態の作動を説明する。空調操作パネル43のエアコンスイッチ44のみが投入され、冷蔵庫スイッチ48が投入されないときは冷凍サイクルは以下述べるように冷房単独運転状態となる。   Next, the operation of this embodiment in the above configuration will be described. When only the air conditioner switch 44 of the air conditioning operation panel 43 is turned on and the refrigerator switch 48 is not turned on, the refrigeration cycle is in a cooling only operation state as described below.

すなわち、エアコンスイッチ44が投入されると、空調用制御装置40の制御出力により冷房用電磁弁18、22に通電され、冷房用電磁弁18、22は開弁状態に維持される。このとき、冷蔵側の複合弁装置26の電磁弁26aは通電されず、閉弁状態に維持される。   That is, when the air conditioner switch 44 is turned on, the cooling electromagnetic valves 18 and 22 are energized by the control output of the air conditioning control device 40, and the cooling electromagnetic valves 18 and 22 are maintained in the open state. At this time, the solenoid valve 26a of the compound valve device 26 on the refrigeration side is not energized and is kept closed.

また、エアコンスイッチ44が投入されると、空調用制御装置40は圧縮機10の電磁クラッチ11に通電して電磁クラッチ11を接続状態にするので、圧縮機10が車両エンジンにより回転駆動される。これにより、冷媒が圧縮機10の吐出側→凝縮器12→受液器13→前席冷房側冷媒通路15および後席冷房側冷媒通路17の並列通路→圧縮機10の吸入側に至る閉回路で循環する。   When the air conditioner switch 44 is turned on, the air conditioning controller 40 energizes the electromagnetic clutch 11 of the compressor 10 to bring the electromagnetic clutch 11 into a connected state, so that the compressor 10 is rotationally driven by the vehicle engine. Thus, the closed circuit in which the refrigerant reaches the discharge side of the compressor 10 → the condenser 12 → the liquid receiver 13 → the parallel passage of the front seat cooling side refrigerant passage 15 and the rear seat cooling side refrigerant passage 17 → the suction side of the compressor 10. Circulate with.

従って、図示しない前席側空調用送風機および後席側空調用送風機を作動させることにより、各送風機の送風空気が前席側冷房用蒸発器20および後席側冷房用蒸発器24で冷却されて冷風となり、この冷風が車室内の前席側および後席側領域へ吹き出され、車室内の前席側および後席側領域を冷房する。この際、温度作動式膨張弁19、23によって各冷房用蒸発器20、24の出口冷媒の過熱度が所定値となるように冷媒流量が調整される。   Accordingly, by operating the front seat air conditioning blower and the rear seat air conditioning blower (not shown), the blown air of each blower is cooled by the front seat cooling evaporator 20 and the rear seat cooling evaporator 24. It becomes cool air, and this cool air is blown out to the front seat side and rear seat side regions in the passenger compartment, thereby cooling the front seat side and rear seat side regions in the passenger compartment. At this time, the refrigerant flow rate is adjusted by the temperature-actuated expansion valves 19 and 23 so that the degree of superheat of the outlet refrigerant of the cooling evaporators 20 and 24 becomes a predetermined value.

また、冷房用蒸発器20、24の吹出空気温度が温度センサ42a、42bにより検出され、この吹出空気温度が目標温度(例えば、3〜4℃)となるように空調用制御装置40の制御出力により電磁クラッチ11(圧縮機10)の作動が断続制御される。ここで、冷房用蒸発器20、24の吹出空気温度制御を、電磁クラッチ11(圧縮機10)の断続制御と電磁弁18、22の開閉制御との組み合わせで行うようにしてもよい。   Further, the temperature of the air blown from the cooling evaporators 20 and 24 is detected by the temperature sensors 42a and 42b, and the control output of the air conditioning controller 40 is set so that the temperature of the blown air becomes a target temperature (for example, 3 to 4 ° C.). Thus, the operation of the electromagnetic clutch 11 (compressor 10) is intermittently controlled. Here, the blown air temperature control of the cooling evaporators 20 and 24 may be performed by a combination of intermittent control of the electromagnetic clutch 11 (compressor 10) and opening / closing control of the electromagnetic valves 18 and 22.

このように、冷房用蒸発器20の吹出空気温度が目標温度となるように圧縮機10の作動を断続制御するため、サイクル低圧圧力は冷房熱負荷の変動に応じて0.2MPa〜0.4MPa程度の範囲でバランスする。因みに、サイクル循環冷媒がHFC−134aの場合、サイクル低圧圧力=0.2MPaは冷媒蒸発温度0℃に対応し、サイクル低圧圧力=0.4MPaは冷媒蒸発温度15℃に対応する。   Thus, in order to intermittently control the operation of the compressor 10 so that the blown air temperature of the cooling evaporator 20 becomes the target temperature, the cycle low pressure is 0.2 MPa to 0.4 MPa according to the variation of the cooling heat load. Balance to a certain extent. Incidentally, when the cycle circulation refrigerant is HFC-134a, the cycle low pressure = 0.2 MPa corresponds to the refrigerant evaporation temperature 0 ° C., and the cycle low pressure = 0.4 MPa corresponds to the refrigerant evaporation temperature 15 ° C.

一方、冷蔵側冷媒通路16に備えられる定圧膨張弁29の開弁圧は、庫内冷蔵物(缶ジュース類等)を急速冷却するための低温を得るために、上記冷房運転時のサイクル低圧圧力に比較して十分低い値、具体的には、0.1MPaに設定している。   On the other hand, the opening pressure of the constant pressure expansion valve 29 provided in the refrigeration side refrigerant passage 16 is the cycle low pressure during the cooling operation in order to obtain a low temperature for rapidly cooling the refrigerated product (can juice, etc.). Is set to a sufficiently low value, specifically 0.1 MPa.

この結果、冷房単独運転時にはサイクル低圧圧力が定圧膨張弁29の開弁圧まで低下せず、従って、定圧膨張弁29は閉弁状態のままである。そのため、冷蔵側冷媒通路16において並列接続された電磁弁26aと定圧膨張弁29がともに閉弁しているので、冷蔵側冷媒通路16には冷媒が流れず、冷凍サイクルは冷房単独運転状態となる。   As a result, the cycle low pressure does not drop to the opening pressure of the constant pressure expansion valve 29 during the cooling single operation, and therefore the constant pressure expansion valve 29 remains closed. Therefore, since both the solenoid valve 26a and the constant pressure expansion valve 29 connected in parallel in the refrigeration side refrigerant passage 16 are closed, the refrigerant does not flow in the refrigeration side refrigerant passage 16, and the refrigeration cycle is in the cooling only operation state. .

次に、空調操作パネル43のエアコンスイッチ44が投入された状態において、冷蔵庫スイッチ48も投入されると、冷房冷蔵同時運転状態が設定される。この冷房冷蔵同時運転状態の作動を図3のフローチャートにより説明する。図3の制御ルーチンは両スイッチ44、48の投入によりスタートし、先ず、ステップS10にて高圧圧力センサ31の検出信号を読み込み、次のステップS20にて高圧圧力センサ31の検出信号に基づいてサイクル高圧圧力PHが予め設定された第1所定値PHa以上であるか判定する。   Next, in the state where the air conditioner switch 44 of the air conditioning operation panel 43 is turned on, when the refrigerator switch 48 is also turned on, the cooling and refrigerating simultaneous operation state is set. The operation in the cooling and refrigeration simultaneous operation state will be described with reference to the flowchart of FIG. The control routine of FIG. 3 starts when both switches 44 and 48 are turned on. First, the detection signal of the high pressure sensor 31 is read in step S10, and the cycle is performed based on the detection signal of the high pressure sensor 31 in the next step S20. It is determined whether the high pressure PH is equal to or higher than a preset first predetermined value PHa.

この第1所定値PHaは、サイクル構成部品の保護のために設定される上限値であって、例えば、3.1MPaに設定される。通常の冷凍サイクル運転時にはサイクル高圧圧力PHが第1所定値PHa未満になっているので、ステップS20の判定がNOとなり、次のステップS30にて高圧圧力センサ31の検出信号に基づいてサイクル高圧圧力PHが第2所定値PHb以上であるか判定する。   The first predetermined value PHa is an upper limit value set for protecting the cycle component, and is set to 3.1 MPa, for example. Since the cycle high pressure PH is less than the first predetermined value PHa during the normal refrigeration cycle operation, the determination in step S20 is NO, and the cycle high pressure is determined based on the detection signal of the high pressure sensor 31 in the next step S30. It is determined whether PH is equal to or greater than a second predetermined value PHb.

ここで、第2所定値PHbは第1所定値PHaよりも所定値低い値、例えば、2.7MPaに予め設定されている。サイクル高圧圧力PHが第2所定値PHbよりも低いときはステップS40に進み、間欠運転モードを設定する。具体的には、冷蔵側電磁弁26aへの通電を遮断して、冷蔵側電磁弁26aは常時閉弁状態に維持する。一方、冷房側電磁弁18、22は空調用制御装置40のタイマー機能によって図4(a)に示すように所定の時間間隔にて開弁状態と閉弁状態を繰り返す。   Here, the second predetermined value PHb is preset to a value lower than the first predetermined value PHa by a predetermined value, for example, 2.7 MPa. When the cycle high pressure PH is lower than the second predetermined value PHb, the process proceeds to step S40, and the intermittent operation mode is set. Specifically, the energization to the refrigeration side electromagnetic valve 26a is cut off, and the refrigeration side electromagnetic valve 26a is normally kept closed. On the other hand, the cooling side electromagnetic valves 18 and 22 repeat the valve opening state and the valve closing state at predetermined time intervals as shown in FIG. 4A by the timer function of the air conditioning control device 40.

図4(a)の時間t1は冷房側電磁弁18、22の開弁時間で、時間t2は冷房側電磁弁18、22の閉弁時間である。冷房側電磁弁18、22の開弁時は、冷房側冷媒通路15、17のみに冷媒が流れ、冷房用蒸発器20、24が車室内の冷房作用を発揮する。   The time t1 in FIG. 4A is the opening time of the cooling side electromagnetic valves 18 and 22, and the time t2 is the closing time of the cooling side electromagnetic valves 18 and 22. When the cooling side electromagnetic valves 18 and 22 are opened, the refrigerant flows only in the cooling side refrigerant passages 15 and 17, and the cooling evaporators 20 and 24 exhibit a cooling action in the vehicle interior.

これに反し、冷房側電磁弁18、22が閉弁すると、冷蔵側冷媒通路16のみならず、冷房側冷媒通路15、17も遮断状態となる。これにより、冷凍サイクルの高圧側通路と低圧側通路との間が一時的に遮断された状態が発生する。   On the contrary, when the cooling side solenoid valves 18 and 22 are closed, not only the refrigeration side refrigerant passage 16 but also the cooling side refrigerant passages 15 and 17 are cut off. As a result, a state occurs in which the high pressure side passage and the low pressure side passage of the refrigeration cycle are temporarily blocked.

そのため、この通路遮断状態が発生したまま、冷房側冷媒通路15、17および冷蔵側冷媒通路16の低圧通路部(蒸発器20、24、27部分)の冷媒が、圧縮機10を通してサイクル高圧側へ移動することになり、サイクル低圧圧力が急速に低下する。   Therefore, the refrigerant in the low-pressure passage portions (evaporators 20, 24, and 27) of the cooling-side refrigerant passages 15 and 17 and the refrigeration-side refrigerant passage 16 passes through the compressor 10 to the cycle high-pressure side while the passage cutoff state is generated. The cycle low pressure will drop rapidly.

そして、冷房側電磁弁18、22の閉弁後、所定時間t0(図4(b)参照)が経過してサイクル低圧圧力が定圧膨張弁29の開弁圧まで低下すると、定圧膨張弁29が開弁するので、冷蔵側冷媒通路16を通過して冷媒が流れる。   When the cycle low pressure decreases to the valve opening pressure of the constant pressure expansion valve 29 after a predetermined time t0 (see FIG. 4B) elapses after the cooling side electromagnetic valves 18 and 22 are closed, the constant pressure expansion valve 29 is Since the valve is opened, the refrigerant flows through the refrigeration side refrigerant passage 16.

ここで、定圧膨張弁29の開弁圧は例えば、0.1MPaという低い値に設定してあって、冷媒がHFC−134aの場合、冷蔵用蒸発器27での冷媒蒸発温度が−10℃という低温になるので、冷蔵庫内の缶ジュース類等の冷蔵物を急速に冷却できるとともに、製氷機能を発揮することも可能である。   Here, the valve opening pressure of the constant pressure expansion valve 29 is set to a low value of, for example, 0.1 MPa, and when the refrigerant is HFC-134a, the refrigerant evaporation temperature in the refrigeration evaporator 27 is −10 ° C. Since the temperature becomes low, refrigerated items such as can juices in the refrigerator can be rapidly cooled and an ice making function can be exhibited.

そして、冷房側電磁弁18、22が再び開弁状態に復帰すると、前述の冷房単独運転時と同様に、サイクル低圧圧力が冷房熱負荷に応じて決まる0.2MPa〜0.4MPa程度の値に上昇するので、定圧膨張弁29は再び閉弁状態に復帰する。   When the cooling side solenoid valves 18 and 22 are returned to the open state again, the cycle low pressure is set to a value of about 0.2 MPa to 0.4 MPa, which is determined according to the cooling heat load, as in the above-described cooling single operation. Since it rises, the constant pressure expansion valve 29 returns to the closed state again.

このとき、固定絞り26a、26bを通過して温度の高い冷媒が冷蔵用蒸発器27内に流入することを冷蔵側電磁弁26aの閉弁により阻止できる。また、冷房用蒸発器20、24の出口側から温度の高い冷媒が冷蔵用蒸発器27内に流入することも逆止弁28により阻止できる。これにより、冷房側電磁弁18、22が開弁してサイクル低圧圧力が上昇した後も冷蔵庫内の低温状態を維持できる。   At this time, it is possible to prevent the refrigerant having a high temperature from flowing into the refrigeration evaporator 27 through the fixed throttles 26a and 26b by closing the refrigeration side electromagnetic valve 26a. Further, the check valve 28 can prevent the refrigerant having a high temperature from flowing into the refrigeration evaporator 27 from the outlet side of the cooling evaporators 20 and 24. Thereby, the low temperature state in the refrigerator can be maintained even after the cooling side electromagnetic valves 18 and 22 are opened and the cycle low pressure is increased.

なお、冷房側電磁弁18、22の開弁時間t1は例えば、60秒程度であり、閉弁時間t2は例えば、15秒程度である。この冷房側電磁弁18、22の開弁時間と閉弁時間の割り振りは、冷房冷蔵同時運転状態における車室内温度の上昇程度と冷蔵庫内温度が目標温度に低下するまでの所要時間等を考慮して決定される。   The opening time t1 of the cooling side electromagnetic valves 18 and 22 is, for example, about 60 seconds, and the closing time t2 is, for example, about 15 seconds. The allocation of the valve opening time and the valve closing time of the cooling side solenoid valves 18 and 22 takes into consideration the degree of increase in the passenger compartment temperature in the simultaneous cooling and refrigeration operation, the time required for the refrigerator temperature to fall to the target temperature, and the like. Determined.

ところで、冷房冷蔵同時運転状態において上記間欠運転モードを実行しているときは、冷房側電磁弁18、22の閉弁直後に冷蔵側冷媒通路16と冷房側冷媒通路15、17が両方とも一時的に遮断状態となるので、このときに、サイクルの高圧圧力PHが上昇しやすい状況が発生する。   By the way, when the intermittent operation mode is executed in the cooling and refrigerating simultaneous operation state, both the refrigerating side refrigerant passage 16 and the refrigerating side refrigerant passages 15 and 17 are temporarily immediately after the cooling side solenoid valves 18 and 22 are closed. Therefore, the high pressure PH of the cycle is likely to increase at this time.

特に、高外気温時のような冷房高負荷条件において、車両アイドル時のように凝縮器冷却風量が低下して凝縮器の空気側放熱能力が低下する条件が重なると、サイクルの高圧圧力PHの異常上昇が起きやすい。   In particular, under conditions of high cooling air load conditions such as when the outside air temperature is high, if the conditions where the condenser cooling air volume decreases and the air side heat radiation capacity of the condenser decreases as in the case of vehicle idling overlap, Abnormal rise is likely to occur.

そこで、サイクルの高圧圧力PHが第2所定値PHbまで上昇すると、ステップS30の判定がYESとなり、ステップS50に進み、並列運転モードを設定する。具体的には、冷房側電磁弁18、22と冷蔵側電磁弁26aを両方とも常時開弁状態に維持する。   Therefore, when the high pressure PH of the cycle increases to the second predetermined value PHb, the determination in step S30 is YES, and the process proceeds to step S50 to set the parallel operation mode. Specifically, both the cooling-side electromagnetic valves 18 and 22 and the refrigeration-side electromagnetic valve 26a are always kept open.

これにより、冷蔵側冷媒通路16と冷房側冷媒通路15、17が両方とも常時開通状態に維持され、冷媒がこの3つの冷媒通路15、16、17を並列に流れる。このため、冷凍サイクルの高圧側と低圧側との間が一時的に遮断状態となることを防止でき、サイクルの高圧圧力PHの異常上昇を未然に防止できる。   As a result, both the refrigeration side refrigerant passage 16 and the cooling side refrigerant passages 15 and 17 are always kept open, and the refrigerant flows in parallel through the three refrigerant passages 15, 16 and 17. For this reason, it can be prevented that the high pressure side and the low pressure side of the refrigeration cycle are temporarily cut off, and an abnormal increase in the high pressure PH of the cycle can be prevented beforehand.

なお、上記並列運転モードでは、冷蔵側冷媒通路16に流入した高圧液冷媒が固定絞り26b、26cにより減圧されて、低温低圧の冷媒となり、この低圧冷媒が冷蔵用蒸発器27で蒸発して冷蔵庫の冷却作用を果たす。   In the parallel operation mode, the high-pressure liquid refrigerant flowing into the refrigeration side refrigerant passage 16 is decompressed by the fixed throttles 26b and 26c to become a low-temperature and low-pressure refrigerant, and the low-pressure refrigerant evaporates in the refrigeration evaporator 27 and is stored in the refrigerator. The cooling function is fulfilled.

しかし、冷房側冷媒通路15、17に常時冷媒が流れているので、サイクル低圧圧力は冷房熱負荷に応じて決まる0.2MPa〜0.4MPa程度の値になっている。従って、冷蔵用蒸発器27での低圧圧力も同じ圧力となるので、冷蔵用蒸発器27での冷媒蒸発温度が0℃以上に上昇することになる。そのため、並列運転モードでは製氷機能を発揮できないが、缶ジュース類の冷却作用には支障がない。   However, since the refrigerant is always flowing through the cooling-side refrigerant passages 15 and 17, the cycle low pressure is about 0.2 MPa to 0.4 MPa determined according to the cooling heat load. Therefore, since the low pressure in the refrigeration evaporator 27 is the same pressure, the refrigerant evaporation temperature in the refrigeration evaporator 27 rises to 0 ° C. or higher. Therefore, the ice making function cannot be exhibited in the parallel operation mode, but there is no problem in cooling the can juice.

一方、冷房側冷媒通路15、17では常時冷媒が流れているので、間欠運転モードの設定時に発生する冷房用蒸発器20、24の吹出空気温度の変動が無くなって、冷房フィーリングを向上できるという利点がある。   On the other hand, since the refrigerant always flows in the cooling-side refrigerant passages 15 and 17, there is no fluctuation in the air temperature of the cooling evaporators 20 and 24 generated when the intermittent operation mode is set, and the cooling feeling can be improved. There are advantages.

また、上記並列運転モードにおいて、固定絞り26b、26cは冷蔵側冷媒通路16を流れる冷媒流量を冷房側冷媒通路15、17を流れる冷媒流量の所定割合(例えば、10%程度)に抑えて、冷房性能を確保する役割も果たす。   Further, in the parallel operation mode, the fixed throttles 26b and 26c reduce the refrigerant flow rate flowing through the refrigeration side refrigerant passage 16 to a predetermined ratio (for example, about 10%) of the refrigerant flow rate flowing through the cooling side refrigerant passages 15 and 17, thereby It also plays a role to ensure performance.

ところで、エアコンスイッチ44を投入せず、冷蔵庫スイッチ48のみを投入することにより、冷蔵単独運転を設定できる。この場合は、冷房側電磁弁18、22および冷蔵側電磁弁26aを両方とも常時閉弁状態に維持する。そして、図4(a)の時間t1と時間t2により圧縮機10を間欠作動させる。すなわち、時間t1の間、電磁クラッチ11の通電を遮断して圧縮機10を停止させ、時間t2の間、電磁クラッチ11に通電して圧縮機10を間欠作動させる。   By the way, the refrigeration single operation can be set by turning on only the refrigerator switch 48 without turning on the air conditioner switch 44. In this case, both the cooling side electromagnetic valves 18 and 22 and the refrigeration side electromagnetic valve 26a are normally kept closed. Then, the compressor 10 is intermittently operated at time t1 and time t2 in FIG. That is, during time t1, the electromagnetic clutch 11 is de-energized to stop the compressor 10, and during time t2, the electromagnetic clutch 11 is energized to intermittently operate the compressor 10.

これにより、時間t2の間に定圧膨張弁29が図4(b)のように開弁して、冷蔵側冷媒通路16に冷媒が間欠的に流れるので、前記間欠運転モードの場合と全く同様に冷蔵庫内を−10℃に冷却できる。   As a result, the constant pressure expansion valve 29 opens during time t2 as shown in FIG. 4B, and the refrigerant intermittently flows into the refrigeration side refrigerant passage 16, so that it is exactly the same as in the intermittent operation mode. The inside of the refrigerator can be cooled to −10 ° C.

ところで、何らかの原因でサイクルの高圧圧力PHが異常に上昇して第1所定値PHaを越えた場合は、ステップS20の判定がYESとなり、ステップS60に進み、電磁クラッチ11の通電を遮断して圧縮機10の作動を停止する。これにより、サイクル構成部品を異常高圧から保護できる。   When the high pressure PH of the cycle rises abnormally for some reason and exceeds the first predetermined value PHa, the determination in step S20 is YES, and the process proceeds to step S60 to cut off the energization of the electromagnetic clutch 11 and compress it. The operation of the machine 10 is stopped. Thereby, a cycle component can be protected from abnormally high pressure.

なお、第1実施形態では、ステップS40にて間欠運転モードにて冷房冷蔵同時運転を実行する場合に、冷蔵側電磁弁26aを常時閉弁すると説明したが、冷房側電磁弁18、22の開弁時のみ冷蔵側電磁弁26aを閉弁し、冷房側電磁弁18、22の閉弁時には冷蔵側電磁弁26aを開弁してもよい。   In the first embodiment, it has been described that the refrigeration side solenoid valve 26a is always closed when the simultaneous cooling and refrigeration operation is performed in the intermittent operation mode in step S40. However, the cooling side solenoid valves 18 and 22 are opened. The refrigeration side electromagnetic valve 26a may be closed only when the valve is closed, and the refrigeration side electromagnetic valve 26a may be opened when the cooling side electromagnetic valves 18 and 22 are closed.

つまり、冷蔵側冷媒通路16の固定絞り26b、26cは元々通路断面積が十分小さく設計してあるので、定圧膨張弁29と固定絞り26b、26cとが冷蔵側冷媒通路16で並列状態になっても、冷房側電磁弁18、22の閉弁時に定圧膨張弁29の下流側圧力(冷蔵側低圧圧力)を定圧膨張弁29の開弁圧以下に十分引き下げることができるからである。   That is, since the fixed throttles 26b and 26c of the refrigeration side refrigerant passage 16 are originally designed to have a sufficiently small cross-sectional area, the constant pressure expansion valve 29 and the fixed throttles 26b and 26c are in parallel with each other in the refrigeration side refrigerant passage 16. This is also because the downstream pressure of the constant pressure expansion valve 29 (refrigeration side low pressure) can be sufficiently reduced below the opening pressure of the constant pressure expansion valve 29 when the cooling side electromagnetic valves 18 and 22 are closed.

また、冷房側電磁弁18、22の開弁時に少なくとも冷蔵側電磁弁26aが閉弁することにより、冷房側電磁弁18、22の開弁時に冷房側低圧冷媒と同一温度の低圧冷媒が冷蔵用蒸発器27に流入することを冷蔵側電磁弁26aの閉弁により防止できる。   Further, when the cooling side electromagnetic valves 18 and 22 are opened, at least the refrigeration side electromagnetic valve 26a is closed, so that the low pressure refrigerant having the same temperature as the cooling side low pressure refrigerant is used for refrigeration when the cooling side electromagnetic valves 18 and 22 are opened. Inflow to the evaporator 27 can be prevented by closing the refrigeration side electromagnetic valve 26a.

また、第1実施形態では、冷蔵単独運転時に冷蔵側電磁弁26aを常時閉弁すると説明したが、上記間欠運転モードと同じ理由から冷蔵単独運転時に冷蔵側電磁弁26aを常時開弁してもよい。   Further, in the first embodiment, it has been described that the refrigeration side electromagnetic valve 26a is always closed during the refrigeration single operation. However, even if the refrigeration side electromagnetic valve 26a is always opened during the refrigeration single operation for the same reason as in the intermittent operation mode. Good.

また、第1実施形態では、高圧圧力検出手段として、圧力に応じて電気的出力値が連続的に変化する圧力センサ31を用いているが、このような圧力センサ31の代わりに、高圧圧力が第2所定値PHbに達したときおよび第1所定値PHaに達したときにそれぞれスイッチ動作を行う2段階作動型の圧力スイッチを高圧圧力検出手段として用いてもよい。   In the first embodiment, the pressure sensor 31 in which the electrical output value continuously changes according to the pressure is used as the high pressure detection means. A two-stage operation type pressure switch that performs a switching operation when the second predetermined value PHb is reached and when the first predetermined value PHa is reached may be used as the high pressure detection means.

(第2実施形態)
第1実施形態では、サイクルの高圧圧力PHが第2所定値PHb未満であると、ステップS40にて間欠運転モードによる冷房冷蔵同時運転を実行し、サイクルの高圧圧力PHが第2所定値PHb以上に上昇すると、ステップS50にて並列運転モードによる冷房冷蔵同時運転を実行するようにしているが、第2実施形態では、このようなサイクル高圧圧力PHに基づく間欠運転モードと並列運転モードの切替を行わず、冷房冷蔵同時運転を常時、並列運転モードで実行するものである。
(Second Embodiment)
In the first embodiment, when the high pressure PH of the cycle is less than the second predetermined value PHb, simultaneous cooling and refrigeration operation in the intermittent operation mode is executed in step S40, and the high pressure PH of the cycle is equal to or higher than the second predetermined value PHb. In step S50, the cooling and refrigeration simultaneous operation in the parallel operation mode is executed. In the second embodiment, switching between the intermittent operation mode and the parallel operation mode based on the cycle high pressure PH is performed. Without performing the cooling and refrigeration simultaneous operation, the parallel operation mode is always performed.

第2実施形態による冷凍サイクルは、基本的に第1実施形態の図1と同じでよいので、冷凍サイクル構成の図示を省略する。   Since the refrigeration cycle according to the second embodiment may be basically the same as that of FIG. 1 of the first embodiment, illustration of the refrigeration cycle configuration is omitted.

第2実施形態による作動を図5のフローチャートに基づいて説明する。図5の制御ルーチンは、車両エンジンの始動(イグニッションスイッチON)によりスタ−トし、ステップS100にて空調操作パネル43のエアコンスイッチ44および冷蔵庫スイッチ48のいずれがONしているか判定する。   The operation according to the second embodiment will be described with reference to the flowchart of FIG. The control routine of FIG. 5 is started by starting the vehicle engine (ignition switch ON), and in step S100, it is determined which of the air conditioner switch 44 and the refrigerator switch 48 of the air conditioning operation panel 43 is ON.

エアコンスイッチ44のみがONしているときはステップS110に進み、冷房単独運転を設定する。具体的には、第1実施形態と同様に、冷房側電磁弁18、22を常時開弁状態に維持し、そして、冷蔵側電磁弁26aを常時閉弁状態に維持する。   When only the air conditioner switch 44 is ON, the process proceeds to step S110 to set the cooling only operation. Specifically, as in the first embodiment, the cooling side electromagnetic valves 18 and 22 are always kept open, and the refrigeration side electromagnetic valve 26a is always kept closed.

このとき、圧縮機10は基本的に作動状態におかれるが、冷房用蒸発器20、24の吹出空気温度の制御のために圧縮機10の作動が断続制御される。これにより、サイクル低圧圧力が定圧膨張弁29の開弁圧以上になっているので、定圧膨張弁29も常時閉弁状態に維持される。   At this time, the compressor 10 is basically in an operating state, but the operation of the compressor 10 is intermittently controlled in order to control the blown air temperature of the cooling evaporators 20 and 24. As a result, since the cycle low pressure is equal to or higher than the valve opening pressure of the constant pressure expansion valve 29, the constant pressure expansion valve 29 is also always kept closed.

次に、両スイッチ44、48がともにONしているときはステップS120に進み、冷房冷蔵同時運転を設定する。具体的には、第1実施形態のステップS50の並列運転モードと同様に、冷蔵側電磁弁26aと冷房側電磁弁18、22の両方を常時開弁状態に維持する。   Next, when both switches 44 and 48 are ON, it progresses to step S120 and air-conditioning simultaneous operation is set. Specifically, as in the parallel operation mode in step S50 of the first embodiment, both the refrigeration side electromagnetic valve 26a and the cooling side electromagnetic valves 18 and 22 are always kept open.

これにより、冷蔵側冷媒通路16と冷房側冷媒通路15、17が両方とも常時開通状態に維持され、冷媒がこの3つの冷媒通路15、16、17を並列に流れる。このため、冷凍サイクルの高圧側と低圧側との間が一時的に遮断状態となることを防止でき、サイクルの高圧圧力PHの異常上昇を未然に防止できる。   As a result, both the refrigeration side refrigerant passage 16 and the cooling side refrigerant passages 15 and 17 are always kept open, and the refrigerant flows in parallel through the three refrigerant passages 15, 16 and 17. For this reason, it can be prevented that the high pressure side and the low pressure side of the refrigeration cycle are temporarily cut off, and an abnormal increase in the high pressure PH of the cycle can be prevented beforehand.

この並列運転モードによる冷房冷蔵同時運転では、冷蔵用蒸発器27での低圧圧力が冷房熱負荷に応じて決まる0.2MPa〜0.4MPa程度の値になっているので、定圧膨張弁29は閉弁状態に維持され、冷蔵庫内の冷却温度は0℃以上の温度となる。   In the simultaneous cooling and refrigeration operation in this parallel operation mode, the low pressure in the refrigeration evaporator 27 has a value of about 0.2 MPa to 0.4 MPa determined according to the cooling heat load, so the constant pressure expansion valve 29 is closed. It is maintained in a valve state, and the cooling temperature in the refrigerator becomes a temperature of 0 ° C. or higher.

そして、第1実施形態と同様に、冷房用蒸発器20、24の吹出空気温度の変動が無くなって、冷房フィーリングを向上できるとともに、固定絞り26b、26cにより冷蔵側冷媒通路16を流れる冷媒流量を制限して、冷房冷蔵同時運転時における冷房性能を確保することができる。   As in the first embodiment, the temperature of the air blown from the cooling evaporators 20 and 24 is not changed, the cooling feeling can be improved, and the refrigerant flow rate flowing through the refrigeration side refrigerant passage 16 by the fixed throttles 26b and 26c. The cooling performance during simultaneous cooling and refrigeration operation can be secured.

次に、冷蔵庫スイッチ48のみがONしているときはステップS130に進み、冷蔵単独運転を設定する。具体的には、冷蔵側電磁弁26aを常時開弁状態に維持し、冷房側電磁弁18、22を常時閉弁状態に維持し、かつ、圧縮機10を間欠作動させる。   Next, when only the refrigerator switch 48 is ON, the process proceeds to step S130, and the refrigeration single operation is set. Specifically, the refrigeration side electromagnetic valve 26a is always kept open, the cooling side solenoid valves 18 and 22 are kept normally closed, and the compressor 10 is operated intermittently.

すなわち、前述の図4(a)の時間t1の間、電磁クラッチ11の通電を遮断して圧縮機10を停止させ、時間t2の間、電磁クラッチ11に通電して圧縮機10を間欠作動させる。これにより、時間t2の間にサイクル低圧圧力が定圧膨張弁29の開弁圧以下の低い圧力に低下して、定圧膨張弁29が図4(b)のように開弁する。従って、冷蔵用蒸発器27には定圧膨張弁29と複合弁装置26との並列通路を通過して冷媒が流れる。   That is, during the time t1 in FIG. 4A described above, the energization of the electromagnetic clutch 11 is interrupted to stop the compressor 10, and during the time t2, the electromagnetic clutch 11 is energized to intermittently operate the compressor 10. . As a result, the cycle low pressure decreases to a low pressure equal to or lower than the valve opening pressure of the constant pressure expansion valve 29 during the time t2, and the constant pressure expansion valve 29 opens as shown in FIG. Therefore, the refrigerant flows through the refrigeration evaporator 27 through the parallel passage of the constant pressure expansion valve 29 and the composite valve device 26.

このように、時間t2の間にサイクル低圧圧力が定圧膨張弁29の開弁圧以下の低い圧力に低下するので、冷蔵用蒸発器27での冷媒蒸発温度が定圧膨張弁29の開弁圧により決まる温度(−10℃)となって、冷蔵庫内を製氷可能な低温に冷却できる。   Thus, the cycle low pressure decreases to a low pressure equal to or lower than the valve opening pressure of the constant pressure expansion valve 29 during the time t2, so that the refrigerant evaporation temperature in the refrigeration evaporator 27 is reduced by the valve opening pressure of the constant pressure expansion valve 29. The temperature is determined (−10 ° C.), and the inside of the refrigerator can be cooled to a low temperature capable of making ice.

ところで、冷蔵側冷媒通路16に複合弁装置26のみを設けて定圧膨張弁29を設けない場合は、この冷蔵単独運転時に、圧縮機10の冷媒吐出能力に比して固定絞り26b、26cの通路断面積が過小(絞り量が過大)になっているので、圧縮機10の吸入圧が負圧になってしまう。   By the way, when only the composite valve device 26 is provided in the refrigeration side refrigerant passage 16 and the constant pressure expansion valve 29 is not provided, the passages of the fixed throttles 26b and 26c are compared with the refrigerant discharge capacity of the compressor 10 during the refrigeration single operation. Since the cross-sectional area is excessively small (the amount of restriction is excessive), the suction pressure of the compressor 10 becomes negative.

しかし、本実施形態においては、固定絞り26b、26cと並列に設けられた定圧膨張弁29が開弁することにより、冷蔵単独運転時における圧縮機10の吸入圧を定圧膨張弁29の開弁圧に維持できる。よって、圧縮機10の吸入圧が負圧になることを確実に防止できる。   However, in this embodiment, the constant pressure expansion valve 29 provided in parallel with the fixed throttles 26b and 26c is opened, so that the suction pressure of the compressor 10 during the refrigeration single operation is changed to the valve opening pressure of the constant pressure expansion valve 29. Can be maintained. Therefore, it is possible to reliably prevent the suction pressure of the compressor 10 from becoming a negative pressure.

つまり、冷房冷蔵同時運転時における冷蔵側冷媒流量を制限するための小さな通路断面積に固定絞り26b、26cを設計しても、冷蔵単独運転時に圧縮機10の負圧運転が生じることを確実に防止できる。なお、圧縮機10の負圧運転は、吸入冷媒の密度低下による圧縮機運転効率の低下、サイクル低圧側通路内への空気侵入等の不具合を招くので、実用上好ましくない。   That is, even if the fixed throttles 26b and 26c are designed to have a small passage cross-sectional area for limiting the refrigerant flow rate during the cooling and refrigeration simultaneous operation, it is ensured that the negative pressure operation of the compressor 10 occurs during the refrigeration single operation Can be prevented. The negative pressure operation of the compressor 10 is not practically preferable because it causes problems such as a decrease in compressor operation efficiency due to a decrease in the density of the suction refrigerant and air intrusion into the cycle low pressure side passage.

ところで、第2実施形態において、何らかの原因でサイクルの高圧圧力PHが異常に上昇して、サイクル構成部品保護のための上限値(第1実施形態の第1所定値PHa相当の圧力で、例えば、3.1MPa)を越えた場合は、第1実施形態のステップS60と同様に電磁クラッチ11の通電を遮断して圧縮機10の作動を停止する。これにより、サイクル構成部品を異常高圧から保護できる。   By the way, in the second embodiment, the high pressure PH of the cycle rises abnormally for some reason, and an upper limit value for protecting the cycle components (at a pressure corresponding to the first predetermined value PHa of the first embodiment, for example, When the pressure exceeds 3.1 MPa), the energization of the electromagnetic clutch 11 is interrupted and the operation of the compressor 10 is stopped as in step S60 of the first embodiment. Thereby, a cycle component can be protected from abnormally high pressure.

なお、第2実施形態によると、第1実施形態の第2所定値PHb相当の高圧圧力を検出する必要がなく、第1実施形態の第1所定値PHa相当の上限値を検出するだけでよいので、高圧圧力検出手段として圧力センサ31の代わりに上限値を検出する単純な圧力スイッチを用いることができる。   According to the second embodiment, it is not necessary to detect a high pressure corresponding to the second predetermined value PHb of the first embodiment, and it is only necessary to detect an upper limit value corresponding to the first predetermined value PHa of the first embodiment. Therefore, a simple pressure switch that detects the upper limit value can be used instead of the pressure sensor 31 as the high pressure detection means.

また、第2実施形態では、冷蔵単独運転時に冷蔵側電磁弁26aを常時開弁状態に維持しているが、冷蔵単独運転時に第1実施形態のように冷蔵側電磁弁26aを常時閉弁状態に維持してもよい。このようにすれば、冷蔵単独運転時に定圧膨張弁29を通過して減圧された低圧冷媒のみが冷蔵用蒸発器27に流入して、冷蔵庫内の冷却作用を発揮できる。   Further, in the second embodiment, the refrigeration side electromagnetic valve 26a is always kept open during the refrigeration single operation, but the refrigeration side electromagnetic valve 26a is always closed as in the first embodiment during the refrigeration single operation. May be maintained. In this way, only the low-pressure refrigerant reduced in pressure through the constant pressure expansion valve 29 during the refrigeration single operation flows into the refrigeration evaporator 27 and can exhibit the cooling action in the refrigerator.

(第3実施形態)
第1、第2実施形態では、定圧膨張弁29を冷蔵用蒸発器27の上流側において複合弁装置26と並列に設けているが、第3実施形態では、図6に示すように定圧膨張弁29を複合弁装置26と冷蔵用蒸発器27の直列通路に対して並列に設けている。
(Third embodiment)
In the first and second embodiments, the constant pressure expansion valve 29 is provided in parallel with the composite valve device 26 on the upstream side of the refrigeration evaporator 27. In the third embodiment, as shown in FIG. 29 is provided in parallel to the series passage of the composite valve device 26 and the refrigeration evaporator 27.

これによると、定圧膨張弁29は冷蔵用蒸発器27の減圧手段としての役割はなくなるが、冷蔵単独運転を設定する場合に、定圧膨張弁29の開弁によって圧縮機10の負圧運転を防止できる。従って、第3実施形態によっても第1、第2実施形態と同様の作用効果を発揮できる。   According to this, although the constant pressure expansion valve 29 does not serve as a pressure reducing means for the refrigeration evaporator 27, the negative pressure operation of the compressor 10 is prevented by opening the constant pressure expansion valve 29 when the refrigeration single operation is set. it can. Therefore, the third embodiment can also exhibit the same effects as the first and second embodiments.

なお、第3実施形態によると、冷蔵単独運転時に固定絞り26b、26cにより減圧された冷媒を冷蔵用蒸発器27に流入させる必要があるので、冷蔵単独運転時に冷蔵側電磁弁26aは常時開弁状態に維持する必要がある。   According to the third embodiment, since the refrigerant decompressed by the fixed throttles 26b and 26c needs to flow into the refrigeration evaporator 27 during the refrigeration single operation, the refrigeration side electromagnetic valve 26a is always opened during the refrigeration single operation. It is necessary to maintain the state.

(他の実施形態)
なお、本発明は上述の実施形態に限定されることなく、以下のごとく種々変形可能である。
(Other embodiments)
The present invention is not limited to the above-described embodiment, and can be variously modified as follows.

(1)上述の実施形態では、冷房用蒸発器として、前席側冷房用蒸発器20と後席側冷房用蒸発器24とを並列に設けるデュアルエアコンタイプの冷凍サイクル装置について説明したが、冷房用蒸発器を1個のみ設けるシングルエアコンタイプの冷凍サイクル装置においても本発明は同様に実施できる。   (1) In the above-described embodiment, the dual air-conditioner type refrigeration cycle apparatus in which the front seat side cooling evaporator 20 and the rear seat side cooling evaporator 24 are provided in parallel as the cooling evaporator has been described. The present invention can also be implemented in a single air-conditioner type refrigeration cycle apparatus in which only one evaporator is provided.

(2)上述の実施形態では、固定絞り26b、26cを電磁弁26aのハウジング内に一体化する例について説明したが、固定絞り26b、26cを電磁弁26aの外部に独立に形成してもよいことはもちろんである。   (2) In the above-described embodiment, the example in which the fixed throttles 26b and 26c are integrated in the housing of the electromagnetic valve 26a has been described. However, the fixed throttles 26b and 26c may be independently formed outside the electromagnetic valve 26a. Of course.

(3)上述の実施形態では、冷房冷蔵同時運転時に図4(a)に示す冷房側電磁弁18、22の開弁時間t1、閉弁時間t2をタイマー機能によって所定時間に設定しているが、例えば、冷蔵庫内の温度を温度センサにより検出して、冷蔵庫内の温度が第1所定温度まで上昇すると、冷房側電磁弁18、22を閉弁し、そして、冷蔵用蒸発器27に冷媒が流れて冷蔵庫内の温度が第1所定温度より低い第2所定温度まで低下すると、冷房側電磁弁18、22を閉弁状態から開弁状態に復帰させるようにしてもよい。   (3) In the above-described embodiment, the valve opening time t1 and the valve closing time t2 of the cooling side electromagnetic valves 18 and 22 shown in FIG. 4A during the cooling and refrigeration simultaneous operation are set to predetermined times by the timer function. For example, when the temperature in the refrigerator is detected by the temperature sensor and the temperature in the refrigerator rises to the first predetermined temperature, the cooling-side electromagnetic valves 18 and 22 are closed, and the refrigerant is stored in the refrigeration evaporator 27. When the temperature in the refrigerator decreases to a second predetermined temperature lower than the first predetermined temperature, the cooling side electromagnetic valves 18 and 22 may be returned from the closed state to the open state.

つまり、タイマー機能ではなく、冷蔵庫内の冷却状態の変化に対応して冷房側電磁弁18、22の開弁、閉弁を交互に切り替えるようにしてもよい。   That is, instead of the timer function, the opening and closing of the cooling side electromagnetic valves 18 and 22 may be switched alternately in response to a change in the cooling state in the refrigerator.

同様に、冷蔵単独運転時における圧縮機10の間欠作動もタイマー機能でなく冷蔵庫内の冷却状態の変化に対応して設定してもよい。   Similarly, the intermittent operation of the compressor 10 during the refrigeration single operation may be set in response to a change in the cooling state in the refrigerator instead of the timer function.

(4)上述の実施形態では、冷房用減圧装置として温度作動式膨張弁19、23を用いているが、温度作動式式膨張弁19、23の代わりにキャピラリチューブやオリフィスといった固定絞りを用いてもよい。   (4) In the above-described embodiment, the temperature-actuated expansion valves 19 and 23 are used as the cooling decompression device. However, instead of the temperature-actuated expansion valves 19 and 23, a fixed throttle such as a capillary tube or an orifice is used. Also good.

(5)上述の実施形態では、下流側圧力が所定開弁圧以下に低下すると開弁する定圧膨張弁29を複合弁装置26と並列に設けているが、定圧膨張弁29の代わりに、例えば、下流側圧力を検出する圧力検出手段の検出信号に応じて開閉作動を行う電気制御弁を設け、この電気制御弁を下流側圧力が所定開弁圧以下に低下すると開弁するように構成してもよい。   (5) In the above-described embodiment, the constant pressure expansion valve 29 is provided in parallel with the composite valve device 26, which opens when the downstream side pressure falls below a predetermined valve opening pressure, but instead of the constant pressure expansion valve 29, for example, An electric control valve that opens and closes in response to a detection signal from the pressure detecting means for detecting the downstream pressure is provided, and the electric control valve is configured to open when the downstream pressure drops below a predetermined valve opening pressure. May be.

(6)上述の実施形態では、冷凍サイクルの圧縮機10の電磁クラッチ11への通電を断続して、圧縮機10の作動を断続制御することにより、圧縮機稼働率を制御して、圧縮機10の冷媒吐出能力を制御する方式について説明したが、圧縮機10として吐出容量を0%付近の最小容量から100%の最大容量まで連続的に制御できる可変容量型圧縮機や、電動モータにより駆動され回転数を連続的に制御可能な電動圧縮機を用いてもよいことはもちろんである。   (6) In the above-described embodiment, the compressor operating rate is controlled by intermittently controlling the operation of the compressor 10 by intermittently energizing the electromagnetic clutch 11 of the compressor 10 of the refrigeration cycle. Although the method for controlling the refrigerant discharge capacity of 10 has been described, the compressor 10 is driven by a variable capacity compressor capable of continuously controlling the discharge capacity from the minimum capacity near 0% to the maximum capacity of 100%, or by an electric motor. Of course, an electric compressor capable of continuously controlling the rotation speed may be used.

(7)上述の実施形態では、車両用の冷房冷蔵用冷凍サイクル装置について説明したが、車両以外の用途の冷房冷蔵用冷凍サイクル装置に対しても本発明は同様に適用できる。   (7) In the above-described embodiment, the vehicle refrigeration cycle apparatus for cooling and refrigeration has been described. However, the present invention can be similarly applied to a refrigeration cycle apparatus for cooling and refrigeration for uses other than vehicles.

本発明の第1実施形態を示す冷凍サイクル図である。It is a refrigerating cycle figure showing a 1st embodiment of the present invention. 本発明の第1実施形態における電気制御部のブロック図である。It is a block diagram of the electric control part in 1st Embodiment of this invention. 本発明の第1実施形態における冷房冷蔵同時運転時の制御フローチャートである。It is a control flowchart at the time of the air_conditioning | cooling refrigeration simultaneous operation | movement in 1st Embodiment of this invention. 本発明の第1実施形態の作動説明図である。It is operation | movement explanatory drawing of 1st Embodiment of this invention. 本発明の第2実施形態による制御フローチャートである。It is a control flowchart by a 2nd embodiment of the present invention. 本発明の第3実施形態を示す冷凍サイクル図である。It is a refrigerating cycle figure showing a 3rd embodiment of the present invention.

符号の説明Explanation of symbols

10…圧縮機、15、17…冷房側冷媒通路、16…冷蔵側冷媒通路、
18、22、26a…電磁弁(電気制御弁)、
19、23…温度作動式膨張弁(冷房用減圧装置)、20、24…冷房用蒸発器、
26b、26c…固定絞り(冷蔵用減圧装置)、27…冷蔵用蒸発器、
29…定圧膨張弁(冷蔵用減圧装置)、31…高圧圧力センサ(高圧圧力検出手段)、
40…空調用制御装置(制御手段)。
DESCRIPTION OF SYMBOLS 10 ... Compressor, 15, 17 ... Cooling side refrigerant passage, 16 ... Refrigeration side refrigerant passage,
18, 22, 26a ... Solenoid valve (electric control valve),
19, 23 ... Temperature operated expansion valve (cooling decompression device), 20, 24 ... Cooling evaporator,
26b, 26c ... fixed throttle (refrigerator for refrigeration), 27 ... evaporator for refrigeration,
29 ... constant pressure expansion valve (refrigeration decompression device), 31 ... high pressure sensor (high pressure detector),
40 ... Air-conditioning control device (control means).

Claims (8)

冷房用蒸発器(20、24)と、
前記冷房用蒸発器(20、24)と並列に設けられた冷蔵用蒸発器(27)と、
前記冷房用蒸発器(20、24)および前記冷蔵用蒸発器(27)を通過した冷媒を吸入して圧縮する圧縮機(10)と、
前記冷房用蒸発器(20、24)の上流側に設けられ、前記冷房用蒸発器(20、24)への流入冷媒を減圧する冷房用減圧装置(19、23)と、
前記冷蔵用蒸発器(27)の上流側に設けられ、前記冷蔵用蒸発器(27)への流入冷媒を減圧する冷蔵用減圧装置(26b、26c、29)と、
前記冷房用蒸発器(20、24)側の冷媒流れを断続する冷房側電気制御弁(18、22)と、
サイクル高圧圧力を検出する高圧圧力検出手段(31)と、
前記高圧圧力検出手段(31)の検出信号が入力され、前記冷房側電気制御弁(18、22)の開閉を制御する制御手段(40)とを備え、
冷房冷蔵同時運転を設定するときに、前記サイクル高圧圧力が所定値(PHb)よりも低い場合は、前記制御手段(40)により前記冷房側電気制御弁(18、22)の開弁状態と閉弁状態とを交互に繰り返して、前記冷房用蒸発器(20、24)側に冷媒が流れる状態と前記冷蔵用蒸発器(27)側に冷媒が流れる状態とを交互に繰り返す間欠運転モードを実行し、
また、冷房冷蔵同時運転を設定するときに、サイクル高圧圧力が前記所定値(PHb)よりも高い場合は、前記制御手段(40)により前記冷房側電気制御弁(18、22)を開弁状態に維持して、前記冷房用蒸発器(20、24)側と前記冷蔵用蒸発器(27)側に冷媒が並列に流れる並列運転モードを実行することを特徴とする冷房冷蔵用冷凍サイクル装置。
Cooling evaporators (20, 24);
A refrigeration evaporator (27) provided in parallel with the cooling evaporator (20, 24);
A compressor (10) that sucks and compresses the refrigerant that has passed through the cooling evaporator (20, 24) and the refrigeration evaporator (27);
A cooling decompression device (19, 23) that is provided upstream of the cooling evaporator (20, 24) and decompresses refrigerant flowing into the cooling evaporator (20, 24);
A refrigeration decompression device (26b, 26c, 29) provided on the upstream side of the refrigeration evaporator (27) and decompressing refrigerant flowing into the refrigeration evaporator (27);
A cooling-side electric control valve (18, 22) for intermittently flowing the refrigerant flow on the cooling evaporator (20, 24) side;
High pressure detection means (31) for detecting cycle high pressure;
A control means (40) for receiving a detection signal of the high pressure detection means (31) and controlling opening and closing of the cooling side electric control valve (18, 22);
When setting the simultaneous cooling and refrigeration operation, if the cycle high pressure is lower than a predetermined value (PHb), the control means (40) causes the cooling electric control valves (18, 22) to be opened and closed. An intermittent operation mode is executed in which the valve state is alternately repeated to alternately repeat the state in which the refrigerant flows to the cooling evaporator (20, 24) side and the state in which the refrigerant flows to the refrigeration evaporator (27) side. And
Further, when setting the simultaneous cooling and refrigeration operation, if the cycle high pressure is higher than the predetermined value (PHb), the control means (40) opens the cooling side electric control valve (18, 22). The cooling operation refrigeration cycle apparatus is characterized by executing a parallel operation mode in which refrigerant flows in parallel to the cooling evaporator (20, 24) side and the refrigeration evaporator (27) side.
前記制御手段(40)は、サイクル高圧圧力がサイクル構成部品の保護のための上限値(PHa)まで上昇すると、前記圧縮機(10)の作動を停止するようになっており、
前記所定値(PHb)は、前記上限値(PHa)よりも所定量低い値であることを特徴とする請求項1に記載の冷房冷蔵用冷凍サイクル装置。
The control means (40) is adapted to stop the operation of the compressor (10) when the cycle high pressure rises to an upper limit value (PHa) for protection of cycle components,
The refrigeration cycle apparatus for cooling and refrigerating according to claim 1, wherein the predetermined value (PHb) is a value lower by a predetermined amount than the upper limit value (PHa).
前記冷蔵用減圧装置として、固定絞り(26b、26c)と、前記固定絞り(26b、26c)と並列に設けられ、前記冷蔵用蒸発器(27)の冷媒圧力が所定開弁圧まで低下すると開弁する圧力応動弁(29)とが設けられ、
更に、前記冷蔵用蒸発器(27)側の冷媒流れを断続する冷蔵側電気制御弁(26a)が前記固定絞り(26b、26c)と直列に設けられ、
前記並列運転モードでは前記冷蔵側電気制御弁(26a)を前記制御手段(40)により開弁状態に維持し、
前記間欠運転モードにおいて前記冷房側電気制御弁(18、22)が開弁するときは前記冷蔵側電気制御弁(26a)を前記制御手段(40)により閉弁状態にすることを特徴とする請求項1または2に記載の冷房冷蔵用冷凍サイクル装置。
The refrigeration decompression device is provided in parallel with the fixed throttle (26b, 26c) and the fixed throttle (26b, 26c), and opens when the refrigerant pressure in the refrigeration evaporator (27) decreases to a predetermined valve opening pressure. A pressure responsive valve (29) is provided,
Furthermore, a refrigeration side electric control valve (26a) for intermittently flowing the refrigerant flow on the refrigeration evaporator (27) side is provided in series with the fixed throttles (26b, 26c),
In the parallel operation mode, the refrigeration side electric control valve (26a) is kept open by the control means (40),
The refrigeration side electric control valve (26a) is closed by the control means (40) when the cooling side electric control valve (18, 22) is opened in the intermittent operation mode. Item 3. The refrigeration cycle apparatus for cooling and refrigerating according to item 1 or 2.
冷房単独運転を設定するときは、前記制御手段(40)により前記冷房側電気制御弁(18、22)を開弁状態に維持するとともに、前記冷蔵側電気制御弁(26a)を閉弁状態に維持することを特徴とする請求項3に記載の冷房冷蔵用冷凍サイクル装置。 When setting the cooling only operation, the control means (40) maintains the cooling-side electric control valves (18, 22) in the open state and the refrigeration-side electric control valve (26a) in the closed state. The refrigeration cycle apparatus for cooling and refrigerating according to claim 3, wherein the refrigeration cycle apparatus is maintained. 冷蔵単独運転を設定するときは、前記制御手段(40)により前記冷房側電気制御弁(18、22)を閉弁状態に維持するとともに、前記圧縮機(10)を前記制御手段(40)により間欠的に作動させることを特徴とする請求項3または4に記載の冷房冷蔵用冷凍サイクル装置。 When setting the refrigeration single operation, the control means (40) maintains the cooling-side electric control valves (18, 22) in a closed state, and the compressor (10) is controlled by the control means (40). The refrigeration cycle apparatus for cooling and refrigerating according to claim 3 or 4, wherein the refrigeration cycle apparatus is operated intermittently. 冷房用蒸発器(20、24)と、
前記冷房用蒸発器(20、24)と並列に設けられた冷蔵用蒸発器(27)と、
前記冷房用蒸発器(20、24)および前記冷蔵用蒸発器(27)を通過した冷媒を吸入して圧縮する圧縮機(10)と、
前記冷房用蒸発器(20、24)の上流側に設けられ、前記冷房用蒸発器(20、24)への流入冷媒を減圧する冷房用減圧装置(19、23)と、
前記冷蔵用蒸発器(27)の上流側に設けられ、前記冷蔵用蒸発器(27)への流入冷媒を減圧する固定絞り(26b、26c)と、
前記冷房用蒸発器(20、24)側の冷媒通路(15、17)に設けられ、前記冷房用蒸発器(20、24)側の冷媒流れを断続する冷房側電気制御弁(18、22)と、
前記冷蔵用蒸発器(27)側の冷媒通路(16)に前記固定絞り(26b、26c)と直列に設けられ、前記冷蔵用蒸発器(27)側の冷媒流れを断続する冷蔵側電気制御弁(26a)と、
前記固定絞り(26b、26c)と並列に設けられ、前記冷蔵用蒸発器(27)の冷媒圧力が所定開弁圧まで低下すると開弁する圧力応動弁(29)と、
前記冷房側電気制御弁(18、22)および前記冷蔵側電気制御弁(26a)の開閉と、前記圧縮機(10)の作動を制御する制御手段(40)とを備え、
冷房冷蔵同時運転を設定するときは、前記制御手段(40)により前記圧縮機(10)を作動させるとともに、前記冷房側電気制御弁(18、22)および前記冷蔵側電気制御弁(26a)を両方とも開弁し、
冷蔵単独運転を設定するときは、前記制御手段(40)により前記冷房側電気制御弁(18、22)を閉弁状態に維持するとともに、前記圧縮機(10)を間欠的に作動させることを特徴とする冷房冷蔵用冷凍サイクル装置。
Cooling evaporators (20, 24);
A refrigeration evaporator (27) provided in parallel with the cooling evaporator (20, 24);
A compressor (10) that sucks and compresses the refrigerant that has passed through the cooling evaporator (20, 24) and the refrigeration evaporator (27);
A cooling decompression device (19, 23) that is provided upstream of the cooling evaporator (20, 24) and decompresses refrigerant flowing into the cooling evaporator (20, 24);
Fixed throttles (26b, 26c) that are provided upstream of the refrigeration evaporator (27) and depressurize the refrigerant flowing into the refrigeration evaporator (27);
Cooling side electric control valves (18, 22) provided in the refrigerant passages (15, 17) on the cooling evaporator (20, 24) side and intermittently flowing the refrigerant flow on the cooling evaporator (20, 24) side. When,
A refrigeration-side electric control valve provided in series with the fixed throttles (26b, 26c) in the refrigerant passage (16) on the refrigeration evaporator (27) side and intermittently flows the refrigerant flow on the refrigeration evaporator (27) side. (26a)
A pressure responsive valve (29) provided in parallel with the fixed throttles (26b, 26c), and opened when the refrigerant pressure of the refrigeration evaporator (27) decreases to a predetermined valve opening pressure;
Opening and closing of the cooling side electric control valve (18, 22) and the refrigeration side electric control valve (26a), and a control means (40) for controlling the operation of the compressor (10),
When setting the cooling and refrigeration simultaneous operation, the compressor (10) is operated by the control means (40), and the cooling side electric control valves (18, 22) and the refrigeration side electric control valve (26a) are turned on. Both open,
When setting the refrigeration single operation, the control means (40) maintains the cooling-side electric control valves (18, 22) in a closed state, and the compressor (10) is operated intermittently. A refrigeration cycle apparatus for air conditioning and refrigeration.
前記圧力応動弁(29)が前記固定絞り(26b、26c)、前記冷蔵側電気制御弁(26a)および前記冷蔵用蒸発器(27)からなる直列回路に並列接続されていることを特徴とする請求項6に記載の冷房冷蔵用冷凍サイクル装置。 The pressure responsive valve (29) is connected in parallel to a series circuit including the fixed throttle (26b, 26c), the refrigeration side electric control valve (26a), and the refrigeration evaporator (27). The refrigeration cycle apparatus for cooling and refrigerating according to claim 6. 前記冷房用蒸発器(20、24)は複数個並列に設けられ、この複数個の冷房用蒸発器(20、24)側の冷媒通路(15、17)にそれぞれ前記冷房側電気制御弁(18、22)が設けられていることを特徴とする請求項1ないし7のいずれか1つに記載の冷房冷蔵用冷凍サイクル装置。
A plurality of the cooling evaporators (20, 24) are provided in parallel, and the cooling side electric control valves (18) are respectively connected to the refrigerant passages (15, 17) on the cooling evaporators (20, 24) side. , 22) is provided. The refrigeration cycle apparatus for cooling and refrigerating according to any one of claims 1 to 7, wherein:
JP2004116820A 2004-04-12 2004-04-12 Refrigerating cycle device for cooling and refrigeration Pending JP2005300015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004116820A JP2005300015A (en) 2004-04-12 2004-04-12 Refrigerating cycle device for cooling and refrigeration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004116820A JP2005300015A (en) 2004-04-12 2004-04-12 Refrigerating cycle device for cooling and refrigeration

Publications (1)

Publication Number Publication Date
JP2005300015A true JP2005300015A (en) 2005-10-27

Family

ID=35331759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004116820A Pending JP2005300015A (en) 2004-04-12 2004-04-12 Refrigerating cycle device for cooling and refrigeration

Country Status (1)

Country Link
JP (1) JP2005300015A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007176302A (en) * 2005-12-27 2007-07-12 Calsonic Kansei Corp Air-conditioner for vehicle
WO2014017022A1 (en) * 2012-07-25 2014-01-30 トヨタ車体株式会社 Air-conditioning system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007176302A (en) * 2005-12-27 2007-07-12 Calsonic Kansei Corp Air-conditioner for vehicle
WO2014017022A1 (en) * 2012-07-25 2014-01-30 トヨタ車体株式会社 Air-conditioning system
JP2014024413A (en) * 2012-07-25 2014-02-06 Denso Corp Air conditioner

Similar Documents

Publication Publication Date Title
JP4600212B2 (en) Supercritical refrigeration cycle equipment
JP6332193B2 (en) Air conditioner for vehicles
JP5482728B2 (en) Refrigeration cycle equipment
JP3386014B2 (en) Refrigeration cycle device
JP2002200917A (en) Air conditioner for vehicle
JP2007240109A (en) Air conditioner
JP6191518B2 (en) Vapor compression refrigeration cycle equipment
JP5846094B2 (en) Refrigeration cycle equipment
EP3279588B1 (en) Control device and vehicle air conditioner
JP2003322420A (en) Air conditioner
JP6957951B2 (en) Air conditioning controller
JP5169736B2 (en) Air conditioner for vehicles
JP2008292112A (en) Suction pressure estimating device for compressor of refrigerating cycle device
JP4992622B2 (en) Refrigeration cycle equipment
JP2008261603A (en) Refrigerating cycle device and air conditioner for vehicle
JPH0914780A (en) Air conditioner
JP4661696B2 (en) Supercritical refrigeration cycle
JP3257109B2 (en) Vehicle refrigeration cycle control device
JP2017198375A (en) Refrigerant amount shortage detection device and refrigeration cycle device
JP2005300015A (en) Refrigerating cycle device for cooling and refrigeration
JP2006145170A (en) Refrigerating cycle
JP2009063230A (en) Refrigerating cycle device and air conditioning device for vehicle
JP6369237B2 (en) Air conditioner
JP2008164256A (en) Refrigerating cycle device
JP2006078036A (en) Refrigeration cycle device for cooling and cold storage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A131 Notification of reasons for refusal

Effective date: 20090630

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100119

Free format text: JAPANESE INTERMEDIATE CODE: A02