JP2005299266A - Measured value error correction method for track inspecting and measuring device - Google Patents

Measured value error correction method for track inspecting and measuring device Download PDF

Info

Publication number
JP2005299266A
JP2005299266A JP2004118707A JP2004118707A JP2005299266A JP 2005299266 A JP2005299266 A JP 2005299266A JP 2004118707 A JP2004118707 A JP 2004118707A JP 2004118707 A JP2004118707 A JP 2004118707A JP 2005299266 A JP2005299266 A JP 2005299266A
Authority
JP
Japan
Prior art keywords
track
measurement
measuring device
error
inspecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004118707A
Other languages
Japanese (ja)
Other versions
JP3800548B2 (en
Inventor
Yoshio Kaneko
淑夫 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneko Co Ltd
Original Assignee
Kaneko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneko Co Ltd filed Critical Kaneko Co Ltd
Priority to JP2004118707A priority Critical patent/JP3800548B2/en
Publication of JP2005299266A publication Critical patent/JP2005299266A/en
Application granted granted Critical
Publication of JP3800548B2 publication Critical patent/JP3800548B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Machines For Laying And Maintaining Railways (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measured value error correction method for a track inspecting and measuring device for correcting the error of a measured value under the influence of mechanical variation of the track inspecting and measuring device hardly causing correction errors by working errors including input errors and other operating errors because inspecting and measuring work itself is simple besides dispensing with manual inspection and measurement for the correction of inspection and measurement performed by the track inspecting and measuring device, which results in reducing time and labor for manual inspection and measurement, the number of tools to be carried into a track and influence caused by the difference between manual inspection and measurement errors and manual inspection and measurement accuracy to improve correction accuracy. <P>SOLUTION: In this measured value error correction method for the track inspecting and measuring device, the track inspecting and measuring device is installed in a normal state to a railway track to carry out traveling measurement of a fixed section, and the track inspecting and measuring device is installed in a laterally reversed state to carry out traveling measurement of the same fixed section. Both measured values are compared to correct the error of the measured values under the influence of mechanical variation of the track inspecting and measuring device. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、軌道検測装置の測定値誤差補正方法に関し、特に、鉄道軌道の軌道狂いを検測する軌道検測装置の測定値誤差を補正する軌道検測装置の測定値誤差補正方法に関する。   The present invention relates to a measurement value error correction method of a track inspection device, and more particularly to a measurement value error correction method of a track detection device that corrects a measurement value error of a track detection device that detects a track error of a railroad track.

鉄道列車が安全かつ乗心地の良い状態で運行されるには、軌道が充分な強度を有すると共に常に良好な状態に保守管理されている必要がある。ところが、軌道は、列車の通過する都度、繰返して荷重を受けて各部が変位、変形する結果、軌道狂いを生ずるに到る。この軌道狂いが大きくなると、列車の乗心地は悪くなる上に、この狂いが更に大きくなると列車の脱線事故を起こす恐れも生ずる。この様なことから、軌道狂いの状態はこれを常に的確に把握しておき、不良な箇所については機を失することなく、整備或は改良する必要がある。   In order for a railway train to operate in a safe and comfortable state, it is necessary that the track has sufficient strength and is always maintained and maintained in a good state. However, each time a train passes, the track is repeatedly subjected to a load, and each part is displaced and deformed, resulting in a track error. If this deviation becomes larger, the riding comfort of the train becomes worse, and if this deviation becomes even larger, there is a risk of causing a train derailment accident. For this reason, it is necessary to always accurately grasp the state of the orbit error, and to maintain or improve the defective portion without losing the machine.

軌道の変形の状態を表現する軌道狂いは、以下の如く種類分けして定義され、この定義に従って測定される。即ち、一般の鉄道軌道の場合、軌道狂いとしては通常次の5項目の軌道狂いが定義されており、測定間隔は5mを標準としている。
[1]通り狂い:レールの長さ方向の凹凸をいい、一般には長さ10mの糸をレール内側面に張り、その中央部におけるレールと糸との間の水平距離により表わし、基本寸法との間の差を通り狂い量としている。
[2]高低狂い レール頂面の長さ方向の凹凸をいい、長さ10mの糸をレール頂面に張りその中央部におけるレールと糸との間の垂直距離により表わし、基本寸法との間の差を高低狂い量としている。
The trajectory error that expresses the state of the trajectory deformation is defined by classifying as follows, and measured according to this definition. That is, in the case of a general railway track, the following five items of track error are normally defined as track error, and the standard measurement interval is 5 m.
[1] Traversal: Concavity and convexity in the length direction of the rail. Generally, a 10m-long yarn is stretched on the inner surface of the rail, and is represented by the horizontal distance between the rail and the yarn at the center. The difference between them is taken as a crazy amount.
[2] Unevenness of the rail The unevenness in the length direction of the rail top surface is expressed by the vertical distance between the rail and the yarn at the center of a 10m long yarn on the rail top surface. The difference is the amount of ups and downs.

[3]軌間狂い:軌間寸法の基本寸法との間の差をいい、基本寸法との間の差を軌間狂い量としている。
[4]水準狂い:軌間の基本寸法当たりの左右レールの高さの差をいい、基本寸法との間の差を水準狂い量としている。
[5]平面性狂い:軌道の平面に対する狂い量をいい、一定間隔下の2点の水準狂いの代数差により表わし、基本寸法との間の差を平面性狂い量としている。
以上の軌道狂いの測定の基本は、上述した通り、人手により糸をレール内側面に張り、その中央部におけるレールと糸との間の水平距離を測定することである。この他に、高速軌道検測車を用いる方法、可搬式軌道検測装置を用いる方法がある。高速軌道検測車は、主に長大な線路区間に使用されるが、小区間においては、人手によるか、或いは可搬式の軌道検測装置を利用している。
[3] Gauge deviation: The difference between the gauge dimensions and the basic dimension, and the difference between the basic dimensions is defined as the gauge deviation amount.
[4] Level deviation: Refers to the difference in height between the left and right rails per basic dimension between gauges, and the difference from the basic dimension is used as the level deviation amount.
[5] Flatness deviation: A deviation amount with respect to the plane of the orbit, which is expressed by an algebraic difference between two level deviations at a fixed interval, and a difference between the basic dimensions is a flatness deviation amount.
As described above, the basis of the above-described track misalignment is to manually stretch the yarn on the inner surface of the rail and measure the horizontal distance between the rail and the yarn at the center. In addition, there are a method using a high-speed track inspection vehicle and a method using a portable track inspection device. The high-speed track inspection car is mainly used for a long track section, but in a small section, a manual or portable track inspection device is used.

軌道検測装置による軌道狂いの測定原理を図2に示しておく。
従来の軌道検測装置の機械的誤差を補正する方法は、作業員による糸張りとゲージによる手検測を基準に補正を行っているため、手検測の精度が悪い場合には、その誤差がそのまま測定値に反映されてしまうという問題があった。また、手検測を行うには専用のゲージや糸張り器具、距離を測定する巻き尺等の多くの道具が必要であることから、鉄道軌道内にこの様な各種器具を持ち込まなければならず、それらを放置したままでいると、列車の運行に支障が生じたり、重大な事故につながる恐れがあるなど問題がある。そこで検測時には、なるべく持ち込む道具を減らすことが望まれている。更に検測作業は夜間にも行われるため、手検測による測定作業の精度が低下し、数値の入力ミスなど単純な作業ミスも発生し易い為、なるべく簡単な作業になることが望まれている。
FIG. 2 shows the principle of measuring the trajectory error by the trajectory inspection device.
The conventional method of correcting the mechanical error of the trajectory inspection device is based on manual inspection by the operator using thread tension and gauge. If the accuracy of the manual inspection is poor, the error is corrected. There is a problem that is reflected in the measured value as it is. In addition, since many tools such as a dedicated gauge, a string tension device, and a tape measure for measuring the distance are necessary to perform manual inspection, it is necessary to bring such various devices into the railway track. If they are left unattended, there are problems such as troubles in train operation and serious accidents. Therefore, at the time of inspection, it is desired to reduce the number of tools brought in as much as possible. Furthermore, since the inspection work is also performed at night, the accuracy of the measurement work by manual inspection is reduced, and simple operation mistakes such as numerical input errors are likely to occur, so it is desirable that the work be as simple as possible. Yes.

この様なことから、なるべく手検測を行わず、簡単に精度が良い結果が得られる検測方法の実現が要望されている。これらの内の可搬式の軌道検測装置は図3に示されるが如きものであり、人力により走行させて自動的に検測作業を行う(特許文献1 参照)。図3において、1は通りビーム、2は高低ビーム、3は高低センサ、4は距離検知センサ、5は分岐通過用補助ローラ、6はコネクタボックス、7はデータ収集装置受け台、8は水準センサ、9は通り・軌間センサ、10は装置本体組立金具、11は手押し棒、12は分岐通過装置固定用レバー、13は分岐通過装置を示す。   For this reason, there is a demand for the realization of a measurement method that can easily obtain accurate results without performing manual inspection as much as possible. Among these, the portable orbit inspection device is as shown in FIG. 3, and automatically performs the inspection work by running by human power (see Patent Document 1). In FIG. 3, 1 is a pass beam, 2 is a high / low beam, 3 is a height sensor, 4 is a distance detection sensor, 5 is an auxiliary roller for branch passage, 6 is a connector box, 7 is a data collection device cradle, and 8 is a level sensor. , 9 is a path / railway sensor, 10 is an apparatus body assembly bracket, 11 is a hand bar, 12 is a branch passage device fixing lever, and 13 is a branch passage device.

この軌道検測装置は、その各測定部により、図2に示される通りに軌道狂いを測定する。軌道検測装置は、長時間使用していると、走行車輪および測定接触部品の摩耗および、運搬、分解、組み立てその他の取り扱いの繰り返し中に生ずる変形の影響により、機械的な測定誤差を発生するに到る。従来、この測定誤差を取り除くには、検測作業前に手検測により軌道狂いを測定し、この値を軌道検測装置に内蔵するコンピュータに入力し、軌道検測装置による検測値と手検測による測定値の間の差を比較し、この差分を測定誤差として補正を行っている。特に、軌道検測装置が測定する軌道狂いの内の通りおよび水準測定値は、先の機械的変化による影響を受けやすいので、日々の検測作業に先だって手検測値との間の比較による補正作業を必要とする。
実公平7−50650号 公報
In this trajectory inspection device, each measuring unit measures trajectory error as shown in FIG. When used for a long time, the track inspection device generates mechanical measurement errors due to wear of traveling wheels and measurement contact parts and deformation caused by repeated transportation, disassembly, assembly and other handling. To. Conventionally, in order to remove this measurement error, orbital error is measured by manual inspection before the inspection work, and this value is input to the computer built in the orbital inspection device, and the inspection value and The difference between the measured values by inspection is compared, and this difference is corrected as a measurement error. In particular, the trajectory deviations and level measurement values measured by the trajectory inspection and measurement device are easily affected by the previous mechanical changes, so comparison with manual inspection values prior to daily inspection work. Requires correction work.
No. 7-50650

ここで軌道検測装置が機械的誤差を持っていた場合の測定値に与える影響について説明する。
軌道検測装置は、通り狂いについては、検測装置の左右一方(測定側)で測定を行い、その反対側のレールの通りについては、軌間測定値を用いて計算によって算出する仕組みになっている。また、通り測定値の符号は、軌間外方に狂っている場合を+、軌間内方に狂っている場合を−で表わす。つまり、軌間の変化がない区間の場合、左右のレールの通り測定値は、符号が両者逆の同値となる。
Here, the influence on the measurement value when the trajectory inspection device has a mechanical error will be described.
The trajectory inspection device has a mechanism for measuring the deviation on the left and right sides (measurement side) of the inspection device and for the opposite side of the rail by calculation using the measured distance between the rails. Yes. In addition, the sign of the measured value is represented by + when the position is out of the gauge, and by-when the position is out of the gauge. That is, in the section where there is no change between the gauges, the measured values as the left and right rails have the same value with opposite signs.

図4を参照して通り狂い測定を説明するに、軌道検測装置が、例えば、通りが10mmでかつ軌間に変化のない区間を左レール側を基準(測定側)に測定を行うものとする。この時、軌道検測装置が機械的に1mmの誤差を持ち、左レール側で+1mm、右レール側で−1mmの測定誤差を生じているとするならば、測定値は左レール側で+11mm、右レール側で−11mmとなる。
一方、同じ軌道検測装置を今度は左右反転して右レール側を基準(測定側)とし、同一区間を測定したとする。この時、反転したことにより機械的な誤差の方向が測定するレールに対して前とは逆になり、測定誤差は左レール側で−1mm、右レール側で+1mmとなる。従って、反転して同一区間を測定した場合、測定値は左レール側が+9mm、右レール側が−9mmとなる。この様に、機械的な誤差は1mmであるにも関わらず、軌道検測装置の向きが左右向きにより、同一区間で2mmの誤差が生じることになる。
To explain the passing measurement with reference to FIG. 4, it is assumed that the trajectory inspection device measures, for example, a section where the street is 10 mm and does not change between the rails, with the left rail side as a reference (measurement side). . At this time, if the trajectory inspection device has an error of 1 mm mechanically and produces a measurement error of +1 mm on the left rail side and -1 mm on the right rail side, the measured value is +11 mm on the left rail side, It is -11 mm on the right rail side.
On the other hand, it is assumed that the same track inspection device is reversed left and right, and the same section is measured with the right rail side as a reference (measurement side). At this time, the direction of the mechanical error is reversed with respect to the rail to be measured due to the inversion, and the measurement error is −1 mm on the left rail side and +1 mm on the right rail side. Therefore, when the same section is measured by inverting, the measured value is +9 mm on the left rail side and −9 mm on the right rail side. As described above, although the mechanical error is 1 mm, an error of 2 mm occurs in the same section due to the left-right orientation of the trajectory inspection device.

また、水準狂いについても、同様に、誤差値の方向が測定値に影響を与える。図5を参照して水準狂い測定を説明するに、例えば、軌道検測装置が、左レール基準で水準が10mmの地点を測定したとする。この時、軌道検測装置が機械的に+1mmの測定誤差を持っている場合、測定値は+11mmとなる。一方、同じ軌道検測装置を左右反転し、同一地点を測定したとする。この時、反転したことにより機械的な誤差の方向が基準レールに対して前とは逆になり、測定誤差は−1mmとなる。従って、反転して同一地点を測定した場合、左レール基準で測定値は+9mmとなる。この様に、機械的な誤差は1mmであるにも関わらず、軌道検測装置の左右向きにより、同一地点で2mmの誤差が生じることになる。   Similarly, regarding the level deviation, the direction of the error value affects the measured value. Referring to FIG. 5, the level deviation measurement will be described. For example, it is assumed that the trajectory inspection device measures a point where the level is 10 mm with reference to the left rail. At this time, if the trajectory inspection device mechanically has a measurement error of +1 mm, the measured value is +11 mm. On the other hand, it is assumed that the same orbit inspection device is reversed left and right and the same point is measured. At this time, the direction of the mechanical error is reversed with respect to the reference rail due to the inversion, and the measurement error is −1 mm. Therefore, when the same point is measured by reversing, the measured value is +9 mm based on the left rail. Thus, although the mechanical error is 1 mm, an error of 2 mm occurs at the same point due to the left-right orientation of the trajectory inspection device.

なお、軌間狂い、高低狂いに関しては左右反転することによる誤差は発生しない。
以上の様な事情から、軌道検測装置の機械的な誤差を補正する作業を、より簡単にし、補正精度を更に向上させる方法の実現が強く望まれている。
It should be noted that there is no error due to the left-right reversal for the gauge deviation and the height deviation.
In view of the above circumstances, it is strongly desired to realize a method for further simplifying the work of correcting the mechanical error of the trajectory inspection device and further improving the correction accuracy.

鉄道軌道に対して軌道検測装置を通常状態に設置して一定区間を走行測定すると共に、軌道検測装置を左右逆向き置き換えた状態に設置して同一の一定区間を走行測定し、両測定値を比較して軌道検測装置の機械的変化の影響による測定値の誤差を補正する軌道検測装置の測定値誤差補正方法を構成した。   The track inspection device is installed in the normal state for the railway track and travels in a certain section, and the track inspection device is installed in a state where the left and right are reversed and the same constant section is traveled and measured. The measurement value error correction method of the trajectory inspection device is configured to compare the values and correct the error of the measurement value due to the influence of the mechanical change of the trajectory inspection device.

この発明によれば、軌道検測装置による検測の補正のために手検測を必要としないので、手検測の手間が減り、線路内に持ち込む道具も減る。
その結果、従来問題となっていた手検測の誤り、手検測の精度の差による影響が減少して、補正の精度が向上する。
この発明の作業自体、単純であるので、入力ミスその他の操作ミスを含めて作業の間違いによる補正の誤りが起こりにくい。
According to the present invention, since manual inspection is not required for correction of inspection by the trajectory inspection device, the labor of manual inspection is reduced and the tools brought into the track are also reduced.
As a result, the influence of the manual measurement error and the difference in accuracy of the manual measurement, which have been problems in the past, is reduced, and the correction accuracy is improved.
Since the work itself of the present invention is simple, correction errors due to work mistakes including input errors and other operation errors are unlikely to occur.

発明を実施するための最良の形態を説明する。
機械的な誤差が測定値に影響を与える問題に対して、特に誤差の影響の大きい通り及び水準に関して、通常の測定作業前に軌道検測装置を通常向きと逆向きで測定した2つの測定値を比較することにより誤差の補正を行う。
これは軌道狂いの内、通りおよび水準の測定値の補正プログラムを内蔵した軌道検測装置を、鉄道軌道に対して設置して一定区間を走行させた後、次に、軌道検測装置を左右反対として逆向きに設置、前回と同一区間を再び走行させることで、プログラムが誤差を読み取り、補正値を算出する方法による。測定値にこの補正値を加えることで軌道検測装置の機械的な誤差を補正した値を得ることができる。
The best mode for carrying out the invention will be described.
For the problem that mechanical error affects the measurement value, especially for the street and level where the error has a large effect, two measurement values measured by the orbital inspection device in the normal direction and the reverse direction before the normal measurement work The error is corrected by comparing.
This is because the track inspection device with a built-in correction program for street and level measurement values is installed on the railroad track after traveling on a certain section. On the contrary, it is installed in the opposite direction and reruns the same section as the previous time, so that the program reads the error and calculates the correction value. By adding this correction value to the measurement value, a value obtained by correcting the mechanical error of the trajectory inspection device can be obtained.

軌道検測装置の機械的な誤差を補正するために、先ず、検測前に通りと水準の誤差補正作業を行う。この補正作業事前チェックの手順を図1を参照して具体的に説明する。
(手順1)軌道検測装置の始点を決め、左右両方のレールに始点位置の印付けを行う。
(手順2)軌道検測装置を始点に合わせる。
(手順3)軌道検測装置をその操作パネルにより補正作業を行う状態に切り替え、軌道検測装置を10m走行する(チェック1)。
10m走行することによって、5m地点での10m弦の通り測定値が測定装置内蔵のコンピュータによって算出され、記憶される。更に、5m地点の水準測定値が記憶される。
In order to correct the mechanical error of the trajectory inspection device, first, a level error correction operation is performed before the inspection. The procedure of this correction work preliminary check will be specifically described with reference to FIG.
(Procedure 1) Determine the starting point of the trajectory inspection device and mark the starting point on both the left and right rails.
(Procedure 2) Set the trajectory inspection device to the starting point.
(Procedure 3) The trajectory inspection device is switched to a state in which correction work is performed using its operation panel, and the trajectory inspection device travels 10 m (Check 1).
By traveling 10 m, the measured value of the 10 m string at the 5 m point is calculated and stored by a computer with a built-in measuring device. Further, the level measurement value at the 5 m point is stored.

(手順4)そのまま始点に戻って、軌道検測装置を左右載せ替える(反転)。
(手順5)軌道検測装置を始点に合わせ、そこから10m走行する(チェック2)。
5m地点での10m弦の通り測定値と水準測定値が記憶される。手順3において記憶した通り測定値および水準測定値により、補正値を算出する。
(手順6)表示される補正値が異常ではないことを確認し、補正作業を終了する。
次に、通り測定値の補正計算方法を説明する。
補正作業によって得られた5m地点の10m弦の通り測定値(チェック1=a、チェック2=b)から以下の補正式により、補正値cを求める。
(Procedure 4) Return to the starting point as it is, and change the trajectory inspection device left and right (reverse).
(Procedure 5) Set the trajectory inspection device to the starting point and travel 10 m from there (Check 2).
The measurement value and the level measurement value are stored according to the 10 m string at the 5 m point. A correction value is calculated from the measured value and the level measured value as stored in the procedure 3.
(Procedure 6) After confirming that the displayed correction value is not abnormal, the correction operation is terminated.
Next, the measurement value correction calculation method will be described.
A correction value c is obtained from the measured values (check 1 = a, check 2 = b) at the 5 m point obtained by the correction work by the following correction formula.

c=(a+b)/2−a
補正作業後に測定作業を行う。測定作業により得られた通り測定値(通常測定値=A、反転測定値=B)に補正値cが加えられることにより、以下の補正がなされる。
通常の場合の測定値の補正: A’=A+c
左右反転した場合の測定値の補正:B’=B−c
以上の様に、軌道検測装置を通常向きで測定した値と反転して逆向きで測定した値の両値により補正を行うことで、軌道検測装置の機械的な誤差を補正することができる。
c = (a + b) / 2−a
Perform measurement after correction. As the correction value c is added to the measurement value (normal measurement value = A, inverted measurement value = B) as obtained by the measurement operation, the following correction is performed.
Correction of measured value in normal case: A ′ = A + c
Correction of measured value when left / right reversed: B ′ = B−c
As described above, it is possible to correct the mechanical error of the trajectory inspection device by correcting both the values measured by the trajectory inspection device in the normal direction and the values measured in the reverse direction. it can.

また、水準の場合も同様の式により補正する。ただし、軌道検測装置を左右反転すると水準測定値の正負が逆になるので、補正時に次式の様に反転した方の測定値の符号を変換する必要がある。
c=(a+b×(−1))/2−a
通常の場合の測定値の補正: A’=A+c
左右反転した場合の測定値の補正:B’=B×(−1)−c
Also, in the case of the level, correction is performed by the same formula. However, since the positive / negative level measurement value is reversed when the trajectory inspection device is reversed left and right, it is necessary to convert the sign of the reversed measurement value at the time of correction as in the following equation.
c = (a + b × (−1)) / 2−a
Correction of measured value in normal case: A ′ = A + c
Correction of measured value when left / right reversed: B ′ = B × (−1) −c

実施例を説明する図。The figure explaining an Example. 軌道検測装置による軌道狂いの測定原理を示す図。The figure which shows the measurement principle of a trajectory error by a trajectory inspection apparatus. 可搬式の軌道検測装置を示す図。The figure which shows a portable orbit inspection device. 通り狂い測定を説明する図。The figure explaining a runaway measurement. 水準狂い測定を説明する図。The figure explaining a standard deviation measurement.

符号の説明Explanation of symbols

1 通りビーム 2 高低ビーム
3 高低センサ 4 距離検知センサ
5 分岐通過用補助ローラ 6 コネクタボックス
7 データ収集装置受け台 8 水準センサ
9 通り・軌間センサ 10 装置本体組立金具
11 手押し棒 12 分岐通過装置固定用レバー
13 分岐通過装置
DESCRIPTION OF SYMBOLS 1 Street beam 2 Height beam 3 Height sensor 4 Distance detection sensor 5 Auxiliary roller for branch passage 6 Connector box 7 Data collection device cradle 8 Level sensor 9 Street / gauge sensor 10 Device body assembly bracket 11 Push bar 12 Branch passage device fixation Lever 13 Branch passage device

Claims (1)

鉄道軌道に対して軌道検測装置を通常状態に設置して一定区間を走行測定すると共に、軌道検測装置を左右逆向き置き換えた状態に設置して同一の一定区間を走行測定し、両測定値を比較して軌道検測装置の機械的変化の影響による測定値の誤差を補正することを特徴とする軌道検測装置の測定値誤差補正方法。   The track inspection device is installed in the normal state for the railway track and travels in a certain section, and the track inspection device is installed in a state where the left and right are reversed and the same constant section is traveled and measured. A method of correcting a measurement value error of a trajectory inspection device, comprising comparing values and correcting an error of a measurement value due to an influence of a mechanical change of the trajectory inspection device.
JP2004118707A 2004-04-14 2004-04-14 Measurement error correction method for orbit inspection equipment Expired - Lifetime JP3800548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004118707A JP3800548B2 (en) 2004-04-14 2004-04-14 Measurement error correction method for orbit inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004118707A JP3800548B2 (en) 2004-04-14 2004-04-14 Measurement error correction method for orbit inspection equipment

Publications (2)

Publication Number Publication Date
JP2005299266A true JP2005299266A (en) 2005-10-27
JP3800548B2 JP3800548B2 (en) 2006-07-26

Family

ID=35331151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004118707A Expired - Lifetime JP3800548B2 (en) 2004-04-14 2004-04-14 Measurement error correction method for orbit inspection equipment

Country Status (1)

Country Link
JP (1) JP3800548B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017101392A (en) * 2015-11-30 2017-06-08 東日本旅客鉄道株式会社 Rail cross-sectional shape measurement device
CN114212119A (en) * 2022-01-04 2022-03-22 北京铁科特种工程技术有限公司 Track detection improved operation method and system based on vertical offset method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017101392A (en) * 2015-11-30 2017-06-08 東日本旅客鉄道株式会社 Rail cross-sectional shape measurement device
CN114212119A (en) * 2022-01-04 2022-03-22 北京铁科特种工程技术有限公司 Track detection improved operation method and system based on vertical offset method

Also Published As

Publication number Publication date
JP3800548B2 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
JP6512588B2 (en) Track state measurement method and sales vehicle capable of track state measurement
KR101827485B1 (en) Trolly apparatus for measuring track irregularity having track guidance member of hydraulic type, and method for the same
US9707983B2 (en) Track status monitoring device
JP2016205058A (en) Track inspection method and device thereof
JP2015183428A (en) (laser type) mobile track three-point measuring device
JP3800548B2 (en) Measurement error correction method for orbit inspection equipment
CN103808297A (en) Body flatness measuring instrument of freight train
CN207208071U (en) A kind of rail traffic platform gauge detects dolly
JPH07208992A (en) Apparatus for measuring alignment and of track of railroad
JP2008139178A (en) Method of measuring railroad construction limit and its measuring device
CN208219317U (en) A kind of pocket hand-held railroad track detection trolley
JP2014034875A (en) Track measuring and analyzing apparatus with radio communication portable terminal
CN114407968B (en) Track irregularity detection device and method for straddle type monorail travel traffic system
CN105740571B (en) Error tracing correction method for train wheel set online monitoring system
JP3694507B2 (en) Orbital deviation measuring device
JP2009014632A (en) Measuring gauge and method for measuring distance between measure tracks and between point guards
JPH07208943A (en) System for computerizing track of railway rail and executing work therefor
CN108801111B (en) Coupler height prediction device for railway vehicle and application method
AU2010292720B2 (en) Movable measuring apparatus for external contour precision of vehicle body
JP2021131368A (en) Method for measuring contact position of railroad vehicle&#39;s wheel with rail, and railroad vehicle lateral pressure measurement method using the same
CN108086068B (en) Track geometric parameter single-chord measurement system and corresponding measurement method thereof
JPH0750650Y2 (en) Simple track inspection device
JP2015209037A (en) Wheel inner surface distance measurement track
CN201145538Y (en) Rule for measuring bottom face distance of two drawing strickle guide of adapter for railway carriage truck steering frame
JPH09311032A (en) Method for measuring disordered quantity in height of rail due to arc tread of wheel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060420

R150 Certificate of patent or registration of utility model

Ref document number: 3800548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term