JP2005296811A - Method for metal ion separation - Google Patents

Method for metal ion separation Download PDF

Info

Publication number
JP2005296811A
JP2005296811A JP2004116973A JP2004116973A JP2005296811A JP 2005296811 A JP2005296811 A JP 2005296811A JP 2004116973 A JP2004116973 A JP 2004116973A JP 2004116973 A JP2004116973 A JP 2004116973A JP 2005296811 A JP2005296811 A JP 2005296811A
Authority
JP
Japan
Prior art keywords
metal
metal ions
water
soil
extracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004116973A
Other languages
Japanese (ja)
Inventor
Hideyuki Itabashi
英之 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECO SOLUTION KK
Original Assignee
ECO SOLUTION KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECO SOLUTION KK filed Critical ECO SOLUTION KK
Priority to JP2004116973A priority Critical patent/JP2005296811A/en
Publication of JP2005296811A publication Critical patent/JP2005296811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Processing Of Solid Wastes (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method for metal ion separation, which makes use of the characteristics of a solvent extraction, and by which metal ions are securely extracted even under the condition that a hydroxide precipitation occurs, various metal ions are separated, and a heavy metal is collected not only from water but also from soil. <P>SOLUTION: An aqueous phase containing metal ions is mixed with a water-insoluble ketone solution in which dialkyl phosphoric acid is dissolved as an organic phase at a pH value at which metal hydroxide precipitation occurs in water, and the metal ions are extracted and separated into the organic phase. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この出願の発明は金属イオンの分離方法に関するものである。さらに詳しくは、この出願の発明は、産業上の重要資源であるとともに、環境への影響も大きい各種の重金属の回収、再利用をも可能とする、溶媒抽出、さらには共沈殿法による効率的な金属イオンの分離方法に関するものである。   The invention of this application relates to a method for separating metal ions. More specifically, the invention of this application is an important resource in the industry, and also enables recovery and reuse of various heavy metals that have a large impact on the environment, and is efficient by solvent extraction and further by a coprecipitation method. The present invention relates to a method for separating metal ions.

金属の分離回収法には、溶媒抽出法およびイオン交換樹脂などの吸着剤を利用する固相抽出法、そして共沈殿法が一般に知られている。これら方法のうち、固相抽出法(たとえば特許文献1を参照)は微量成分の分離・濃縮、そして連続的な抽出が可能である反面、大変にコストがかかり、樹脂の再生が必要であるという問題がある。このため、より簡便な手段として低コストで重金属等を分離する方法として溶媒抽出法(たとえば特許文献2を参照)や共沈法の採用が考慮される。しかしながら、溶媒抽出法の場合には、定量的な分離条件の設定が可能であるが、一般的に抽出化学種が限られるという問題があり、また共沈法の場合には濾過が困難であって、連続的に多量の対象物を扱うことが難しいという問題がある。   Generally known methods for separating and recovering metals include a solvent extraction method, a solid phase extraction method using an adsorbent such as an ion exchange resin, and a coprecipitation method. Among these methods, the solid-phase extraction method (see, for example, Patent Document 1) can separate / concentrate trace components and continuously extract them, but it is very expensive and requires regeneration of the resin. There's a problem. For this reason, the adoption of a solvent extraction method (see, for example, Patent Document 2) or a coprecipitation method is considered as a simpler means for separating heavy metals and the like at low cost. However, in the case of the solvent extraction method, quantitative separation conditions can be set. However, in general, there is a problem that the extraction chemical species is limited, and in the case of the coprecipitation method, filtration is difficult. Therefore, there is a problem that it is difficult to handle a large amount of objects continuously.

そして、溶媒抽出法の場合にも、通常、分離する金属イオンは溶液の状態にしておく必要があり、溶液のpHは金属イオンの水酸化物沈殿が生成しない領域に設定しておかなければならない。特に、金属イオンと弱酸との錯形成反応を利用する分離法の場合、高pH領域では金属イオンは水酸化物の沈殿を形成し弱酸と反応しにくくなるため、通常は水酸化物の沈殿が生成しない弱酸性領域で分離を行うのが普通である。しかしながら、この場合、弱酸の錯形成能力は酸性領域では小さいため、分離の効率は悪い。以上のように、従来の金属イオンの抽出分離法では、水酸化物沈殿の生成しない条件で分離を行う必要があり、そのため、分離効率が悪くなる問題があった。   Also in the case of the solvent extraction method, the metal ions to be separated usually need to be in a solution state, and the pH of the solution must be set in a region where no metal ion hydroxide precipitate is generated. . In particular, in the case of a separation method that uses a complex-forming reaction between a metal ion and a weak acid, the metal ion forms a hydroxide precipitate and hardly reacts with a weak acid in a high pH region. It is usual to perform the separation in a weakly acidic region that does not form. However, in this case, the ability of complexing weak acids is small in the acidic region, so the separation efficiency is poor. As described above, the conventional extraction and separation method for metal ions needs to perform the separation under conditions that do not generate hydroxide precipitates, and thus has a problem of poor separation efficiency.

このことから、溶媒抽出においては、水酸化物の沈殿が生成されるような条件であっても金属イオンを定量的に抽出することのできる方法の確立が望まれていた。   From this, in the solvent extraction, it has been desired to establish a method capable of quantitatively extracting metal ions even under conditions where a hydroxide precipitate is generated.

また、さらには、溶媒抽出法における抽出化学種の制約の問題を解消することも望まれていた。   Furthermore, it has also been desired to eliminate the problem of restriction of extraction chemical species in the solvent extraction method.

重金属等の分離にとっての大きな課題の一つとして、河川や湖沼、あるいは排水中からの分離回収とともに、土壌中からの簡便で効率的な回収のための手段の実現が望まれており、この観点からも溶媒抽出等による手法の更なる発展が求められていた。
特開2003−27262号公報 特開2001−293454公報
One of the major challenges for the separation of heavy metals, etc., is the separation and recovery from rivers, lakes, and wastewater, and the realization of simple and efficient means for recovery from soil. Therefore, further development of the technique by solvent extraction or the like has been demanded.
JP 2003-27262 A JP 2001-293454 A

そこで、この出願の発明は、以上の背景から、溶媒抽出法の特徴を生かしつつ、水酸化物の沈殿が生成されるような条件であっても金属イオンを確実に抽出することができ、また、多くの金属イオンの分離をも可能とし、しかも水中からだけではなく、土壌中からの重金属の回収を可能とすることのできる新しい金属イオンの分離方法を提供することを課題としている。   In view of the above, the invention of this application can extract metal ions reliably even under conditions where a precipitate of hydroxide is generated while taking advantage of the characteristics of the solvent extraction method. It is an object of the present invention to provide a new method for separating metal ions that enables separation of many metal ions and enables recovery of heavy metals not only from water but also from soil.

この出願は、上記の課題を解決するものとして以下の発明を提供する。
〔1〕金属イオン含有の水相に、水中では金属水酸化物沈殿が生成するpH値以上で、ジアルキルリン酸を溶解した非水溶性のケトンの溶液を有機相として混合し、金属イオンを有機相に抽出分離することを特徴とする金属イオンの分離方法。
〔2〕金属水酸化物沈殿を含有する水相に有機相を混合して抽出分離することを特徴とする上記の金属イオンの分離方法。
〔3〕金属イオン含有の水相に、水中で金属水酸化物の沈殿を生成するマトリックス金属のイオンの水溶液を添加し、金属イオンの少くとも一部をマトリックス金属の水酸化物沈殿に共沈により取込み、次いで有機相を混合して抽出分離することを特徴とする金属イオンの分離方法。
〔4〕金属含有の土壌に、水中で金属水酸化物の沈殿を生成するマトリックス金属のイオンの水溶液とジアルキルリン酸を溶解した非水溶性のケトンの溶液を加え、マトリックス金属の水酸化物沈殿が生成するpH値以上として土壌中の金属イオンを有機相に抽出分離することを特徴とする土壌中の金属の分離方法。
〔5〕金属イオンの還元剤を水溶液に含有させることを特徴とする上記いずれかの分離方法。
This application provides the following invention to solve the above-mentioned problems.
[1] A water-insoluble ketone solution in which dialkyl phosphoric acid is dissolved is mixed with an aqueous phase containing metal ions at a pH value or higher at which a metal hydroxide precipitate is generated in water, and the metal ions are organically mixed. A method for separating metal ions, characterized by extracting and separating into phases.
[2] The method for separating metal ions as described above, wherein an organic phase is mixed with an aqueous phase containing a metal hydroxide precipitate and extracted and separated.
[3] An aqueous solution of matrix metal ions that forms a metal hydroxide precipitate in water is added to the aqueous phase containing metal ions, and at least some of the metal ions are co-precipitated into the matrix metal hydroxide precipitate. A method for separating metal ions, wherein the organic phase is mixed and extracted and separated.
[4] To the metal-containing soil, an aqueous solution of a matrix metal ion that forms a metal hydroxide precipitate in water and a water-insoluble ketone solution in which dialkyl phosphoric acid is dissolved are added to the matrix metal hydroxide precipitate. A method for separating metal in soil, wherein the metal ion in soil is extracted and separated into an organic phase at a pH value higher than the pH value.
[5] The separation method according to any one of the above, wherein a reducing agent for metal ions is contained in the aqueous solution.

上記のとおりのこの出願の第1および第2の発明によれば、従来のような分離効率が悪い酸性領域での抽出を行うことなしに、水酸化物の沈殿が生成する条件下であっても優れた分離効率で重金属イオン等の抽出分離が可能とされる。また、第3から第5の発明によれば、マトリックス金属を用いることによって他種金属イオンの共沈抽出が可能とされ、複数種の金属イオンであっても極めて効率的な分離が可能とされる。   According to the first and second inventions of this application as described above, under conditions where hydroxide precipitates are formed without performing extraction in an acidic region with poor separation efficiency as in the prior art. In addition, it is possible to extract and separate heavy metal ions and the like with excellent separation efficiency. Further, according to the third to fifth inventions, coprecipitation extraction of other types of metal ions is possible by using a matrix metal, and extremely efficient separation is possible even with a plurality of types of metal ions. The

土壌中に含有されている重金属等の抽出分離も可能とされる。   Extraction and separation of heavy metals contained in the soil is also possible.

以上のように、この出願の発明によって、重金属による環境汚染の解消と、これら金属の資源としての再利用への道が大きく前進することになる。   As described above, the invention of this application greatly advances the path to environmental pollution caused by heavy metals and the reuse of these metals as resources.

この出願の発明が抽出分離の対象とする金属イオンは、いわゆる重金属イオンとしてその回収除去が課題とされているものをはじめ、各種のものであってよい。これらの金属は水中においてイオンとして存在し得る形態であればよい。   The metal ions to be extracted and separated by the invention of this application may be various types, including those for which recovery and removal is a problem as so-called heavy metal ions. These metals may be in any form that can exist as ions in water.

抽出のための有機相におけるジアルキルリン酸としては、次式で表わされる各種のものであってよい。   The dialkyl phosphoric acid in the organic phase for extraction may be various types represented by the following formula.

(R1およびR2は、各々、同一または別異に、直鎖または分枝状鎖のアルキル基を示している。)
1およびR2のアルキル基としては、特に限定されることはないが、炭素数4以上、さらには6〜12の範囲のものが好適に考慮される。分枝状鎖であることも好適に考慮される。
(R 1 and R 2 are the same or different and each represents a linear or branched alkyl group.)
The alkyl group of R 1 and R 2, There is no particular limitation, 4 or more carbon atoms, more is in the range of 6 to 12 is preferably considered. A branched chain is also preferably considered.

そして、このようなジアルキルリン酸は、非水溶性のケトンに溶解されているものとする。この場合のケトンとしては、次式で表わされる各種のものであってよい。   And such a dialkyl phosphoric acid shall be melt | dissolved in the water-insoluble ketone. The ketone in this case may be various types represented by the following formula.

(R3およびR4は、各々、同一または別異に、直鎖状または分枝状鎖のアルキル基、もしくは相互に結合するアルキル鎖を示している。)
これらR3およびR4のアルキル基としては、炭素数1〜6程度のものが好適に考慮される。
(R 3 and R 4 are the same or different and each represents a linear or branched alkyl group or an alkyl chain bonded to each other.)
As these alkyl groups of R 3 and R 4 , those having about 1 to 6 carbon atoms are preferably considered.

そしてこの出願の発明においては、金属イオン含有の水相に上記のジアルキルリン酸を溶解したケトン溶液を有機相として混合するが、その際に、通常、水中においては金属イオンの水酸化物沈殿を生成してしまうpH値以上とする。このようなpH値の調整は、アルカリ水溶液の添加、さらには酸水溶液の添加によって適宜に行うことができる。   In the invention of this application, a ketone solution in which the above dialkyl phosphoric acid is dissolved is mixed as an organic phase in a metal ion-containing aqueous phase. At this time, normally, hydroxide precipitation of metal ions is performed in water. Above the pH value that would be generated. Such adjustment of the pH value can be appropriately performed by adding an aqueous alkali solution, and further by adding an aqueous acid solution.

また、このような条件下での金属イオンの有機相への抽出分離を特徴とするこの出願の発明では、抽出分離の対象とする金属イオンからの水酸化物の沈殿を水相に含有していてもよい。このことは、この出願の発明の大変に大きな特徴である。金属イオンの水酸化物沈殿そのものが有機相に抽出されるからである。このようなことは、これまでの溶媒抽出法によっては実現されなかったことである。   In the invention of this application, which is characterized by extraction and separation of metal ions into an organic phase under such conditions, the aqueous phase contains a precipitate of hydroxide from the metal ions to be extracted and separated. May be. This is a very important feature of the invention of this application. This is because the metal ion hydroxide precipitate itself is extracted into the organic phase. This is not realized by the conventional solvent extraction method.

そして、この出願の第3および第4の発明においては、全く新しい「共沈抽出法」と呼ぶことのできる方法を提案し、さらにこの方法の適用を土壌中の金属の抽出除去にまで拡大することを可能としている。   And in the 3rd and 4th invention of this application, the method which can be called a completely new "coprecipitation extraction method" is proposed, and also the application of this method is extended to the extraction removal of the metal in soil. Making it possible.

上記の共沈抽出法においては、他の金属種のイオンの抽出のためのマトリックス金属を用い、水中で金属水酸化物沈殿を生成するこのマトリックス金属の水酸化物との共沈として分離対象の金属を有機相へ抽出して分離する。この場合にも抽出条件は上記の第1および第2の発明と同様の有機相の使用と、pH条件の採用が重要となる。   In the coprecipitation extraction method described above, the matrix metal is used for extraction of ions of other metal species, and is separated as the coprecipitation with this matrix metal hydroxide that forms a metal hydroxide precipitate in water. The metal is extracted into the organic phase and separated. In this case as well, it is important to use the same organic phase as in the first and second inventions and to adopt pH conditions as extraction conditions.

そして上記の共沈抽出法では、マトリックス金属としては、水酸化物沈殿を生成しやすい各種の金属を用いることができる。取扱い、入手しやすさ、コスト等の観点からは、その好適な代表的なものとして鉄(III)を例示することができる。またその他としては、アルミニウム(III)、ランタン(III)、ガリウム(III)、インジウム(III)、ベリリウム(II)等が例示される。   And in said coprecipitation extraction method, the various metals which are easy to produce | generate hydroxide precipitation can be used as a matrix metal. From the viewpoint of handling, availability, cost and the like, iron (III) can be exemplified as a suitable representative one. Other examples include aluminum (III), lanthanum (III), gallium (III), indium (III), and beryllium (II).

また、マトリックス金属の水酸化物に共沈として取込まれる金属イオンは、水中においては陽イオンの形態にあることが好適である。たとえば六価クロム:Cr(VI)を分離対象とする場合、このものは水中においてCrO4 2-,あるいはCr27 2-の陰イオンの形態にあるため共沈によって取込むことは必ずしも容易ではない。このような場合には、水溶液に還元剤を存在させて三価クロムのように還元してやると共沈による分離が容易となる。そしてこの還元剤を存在させる場合には、マトリックス金属としてはその水酸化物沈殿が阻害されないものとすることが必要となる。 Moreover, it is preferable that the metal ion taken as a coprecipitation in the hydroxide of the matrix metal is in the form of a cation in water. For example, when hexavalent chromium: Cr (VI) is to be separated, it is in the form of CrO 4 2- or Cr 2 O 7 2- anion in water, so it is not always easy to incorporate it by coprecipitation. is not. In such a case, if a reducing agent is present in the aqueous solution and reduced like trivalent chromium, separation by coprecipitation becomes easy. When this reducing agent is present, it is necessary that the matrix metal does not inhibit the hydroxide precipitation.

そこで以下に実施例を示し、さらに詳しく説明する。もちろん以下の例によって発明が限定されることはない。   Therefore, an example will be shown below and will be described in more detail. Of course, the invention is not limited by the following examples.

<実施例1>
0.1Mの鉄を含む水溶液(20ml)にアルカリ(NaOH)を添加し、水酸化物の沈殿を形成させる(0.1M鉄(III) の抽出ではpHを2以上にすると沈殿する)。この溶液に1Mのリン酸ジ(2−エチルヘキシル)(D2EHPA)を含む4−メチル−2−ペンタノン(MIBK)溶液20mlを加えて激しく攪拌する。
<Example 1>
Alkali (NaOH) is added to an aqueous solution (20 ml) containing 0.1 M iron to form a hydroxide precipitate (in the extraction of 0.1 M iron (III), it precipitates at a pH of 2 or more). To this solution, 20 ml of 4-methyl-2-pentanone (MIBK) solution containing 1M di (2-ethylhexyl) phosphate (D2EHPA) is added and stirred vigorously.

上記の操作後、溶液を静置分相し、水相を分取する。この水相中の金属濃度(〔M〕w〕とする)を原子吸光光度計またはICP発光分光光度計により測定する。金属の分配比Dは抽出前の水相の金属濃度(〔M〕i)、および〔M〕wの値から以下の式を用いて計算される。   After the above operation, the solution is subjected to stationary phase separation to separate the aqueous phase. The metal concentration (referred to as [M] w) in this aqueous phase is measured with an atomic absorption photometer or an ICP emission spectrophotometer. The metal distribution ratio D is calculated using the following equation from the metal concentration ([M] i) of the aqueous phase before extraction and the value of [M] w.

D=(〔M〕i−〔M〕w)/(〔M〕w)
この鉄(III) の抽出では、水酸化物の沈殿はpH2以上で生成するが、pHの増加に伴ってlogDの値は増大し、pH3以上では、水相の鉄濃度は原子吸光光度計の検出限界以下となる。この場合の分配比は100万以上と推定される。
D = ([M] i- [M] w) / ([M] w)
In this extraction of iron (III), hydroxide precipitates are generated at pH 2 or higher, but the log D value increases with increasing pH, and at pH 3 or higher, the iron concentration in the aqueous phase is determined by an atomic absorption photometer. Below the detection limit. In this case, the distribution ratio is estimated to be 1 million or more.

同様にして、アルミニウム(III) 、ランタン(III) 、コバルト(II)、ベリリウム(II)についての抽出を行った。優れた抽出結果が同様にして確認された。   Similarly, extraction of aluminum (III), lanthanum (III), cobalt (II), and beryllium (II) was performed. Excellent extraction results were confirmed as well.

また、リン酸ジ(2−エチルヘキシル)に代えてリン酸ジ(ブチル)を用いて上記の鉄イオンの抽出を行った。   Further, the above iron ions were extracted using di (butyl) phosphate instead of di (2-ethylhexyl) phosphate.

同様にして優れた抽出結果が得られた。   Similarly, excellent extraction results were obtained.

さらに、抽出溶剤としてのMIBKに代えてジイソプロピルケトンを用いて上記の鉄イオンの抽出を行った。MIBKの場合に比べて効率は若干低かったが、鉄イオンの抽出が良好に行われた。
<実施例2>
図1に示した重金属除去のための共沈殿抽出フローシステムでポンプP1のSから1×10-4Mのこれらの金属および0.1Mの鉄を含む水溶液を、R1から1MのD2EHPA−MIBK溶液を送液した。次にこの流れの中にポンプP2のR2から1Mの水酸化ナトリウム溶液を送液し、抽出コイルECで抽出した。溶出液を静置分相後、水相中の金属濃度を原子吸光光度法により測定し、あわせてpHも測定した。
Further, the above iron ions were extracted using diisopropyl ketone instead of MIBK as the extraction solvent. Although the efficiency was slightly lower than in the case of MIBK, iron ions were extracted well.
<Example 2>
In the coprecipitation extraction flow system for heavy metal removal shown in FIG. 1, an aqueous solution containing 1 × 10 −4 M of these metals and 0.1 M of iron from S of pump P1 is used as an R2 to 1M D2EHPA-MIBK solution. Was fed. Next, a 1M sodium hydroxide solution was fed from the R2 of the pump P2 into this flow and extracted with the extraction coil EC. After the stationary eluate was phase-separated, the metal concentration in the aqueous phase was measured by atomic absorption spectrometry, and the pH was also measured.

図2には、銅および亜鉛の場合の抽出除去率に対するpHの影響を示した。pHの上昇に伴い鉄の水酸化物沈殿が生成し、重金属が沈殿に取り込まれ、除去率が増加していくことが確認された。またpH4付近になると、銅および亜鉛の除去率はほぼ100%となり、定量的な抽出が可能であった。   FIG. 2 shows the effect of pH on the extraction removal rate in the case of copper and zinc. It was confirmed that as the pH increased, iron hydroxide precipitates were generated, heavy metals were incorporated into the precipitates, and the removal rate increased. When the pH was around 4, the removal rate of copper and zinc was almost 100%, and quantitative extraction was possible.

図3は、カドミウムおよび鉛の場合について示したものである。カドミウム、鉛においても同様にpH4で定量的に除去できることがわかった。
<実施例3>
六価クロムについて実施例2と同様の抽出を行った。六価クロムの抽出除去率は約80%であった。そこで、より一層除去率を向上させるために、鉄溶液に代えて還元剤(1.0×10-2M塩酸ヒドロキシルアミン)とアルミニウム(III) の水溶液を用いた。
FIG. 3 shows the case of cadmium and lead. It was also found that cadmium and lead can be removed quantitatively at pH 4 as well.
<Example 3>
Hexavalent chromium was extracted in the same manner as in Example 2. The extraction removal rate of hexavalent chromium was about 80%. Therefore, in order to further improve the removal rate, an aqueous solution of a reducing agent (1.0 × 10 −2 M hydroxylamine hydrochloride) and aluminum (III) was used in place of the iron solution.

その結果、六価クロムは定量的に抽出分離された。このことは、六価クロムが三価クロムに還元されたことに起因していると考えられる。
<実施例4>
重金属で汚染された土壌試料を以下のように調製した。図4に示したように、採取した土壌を風乾した後、2mmの篩にかけ、篩を通過したもの2kgを用意し、これに、1×10-3Mのカドミウム、コバルト、銅、マンガン、ニッケル、鉛、亜鉛の7種類の金属を含む溶液10Lを加え24時間攪拌した。その後、この土壌をろ過し、風乾させ本実験の土壌試料とした。
As a result, hexavalent chromium was quantitatively extracted and separated. This is considered to be due to the reduction of hexavalent chromium to trivalent chromium.
<Example 4>
A soil sample contaminated with heavy metals was prepared as follows. As shown in FIG. 4, the collected soil was air-dried, passed through a 2 mm sieve, and 2 kg passed through the sieve, and 1 × 10 −3 M cadmium, cobalt, copper, manganese, nickel Then, 10 L of a solution containing 7 kinds of metals such as lead and zinc was added and stirred for 24 hours. Then, this soil was filtered and air-dried to obtain a soil sample for this experiment.

調製した土壌の重金属含有量を調べるため、この土壌試料6gに1M塩酸200mlを加え、2時間攪拌した後、孔径0.45μmのメンブランフィルターで濾過し、そのろ液の重金属濃度を原子吸光光度計で測定した。この操作は、環境省告示第19号にある重金属の土壌含有量測定法にのっとったものである。   In order to examine the heavy metal content of the prepared soil, 200 ml of 1M hydrochloric acid was added to 6 g of this soil sample, stirred for 2 hours, filtered through a membrane filter having a pore size of 0.45 μm, and the heavy metal concentration of the filtrate was measured by an atomic absorption photometer. Measured with This operation is in accordance with the heavy metal soil content measurement method described in Ministry of the Environment Notification No. 19.

表1には重金属含有量の分析結果を示した。数値は原子吸光光度計によって検出されたろ液中の金属濃度をもとに計算した、土壌試料1gあたりの重金属量を示している。土壌汚染対策法では、カドミウムと鉛の土壌含有量基準が設定されているが、試料土壌ではカドミウムは基準値の3倍量、鉛は基準値の6倍量が含まれている。   Table 1 shows the analysis results of the heavy metal content. The numerical value indicates the amount of heavy metal per 1 g of soil sample calculated based on the metal concentration in the filtrate detected by an atomic absorption photometer. In the Soil Contamination Countermeasures Law, cadmium and lead soil content standards are set, but sample soil contains cadmium three times the standard value and lead six times the standard value.

そこで、上記の土壌試料10gに0.1Mの鉄(III) 水溶液200mlと1MのD2EHPA−MIBK溶液を加えた。ここでは土壌の有機相への混入をさけるため、多孔性フィルターを有機相と水相の間に挿入した。次にマグネティックスターラーで攪拌後、このフィルターを下げた後、水酸化ナトリウム水溶液を加え沈殿を生成させ、これを有機相に抽出した。 Therefore, 200 ml of 0.1 M iron (III) aqueous solution and 1 M D2EHPA-MIBK solution were added to 10 g of the above soil sample. Here, a porous filter was inserted between the organic phase and the aqueous phase in order to avoid contamination in the organic phase of the soil. Next, after stirring with a magnetic stirrer, the filter was lowered, an aqueous sodium hydroxide solution was added to form a precipitate, and this was extracted into the organic phase.

土壌試料に残った重金属量を測定するため、土壌を取り出し、風乾した後、この6gに、1M塩酸200mlを加え2時間攪拌した。その後、0.45μmのメンブランフィルターで濾過し、ろ液中の金属濃度を原子吸光光度計で測定した。   In order to measure the amount of heavy metal remaining in the soil sample, the soil was taken out and air-dried, and then 200 ml of 1M hydrochloric acid was added to 6 g, and the mixture was stirred for 2 hours. Then, it filtered with the 0.45 micrometer membrane filter, and measured the metal concentration in a filtrate with the atomic absorption photometer.

表2には結果を示した。左より、土壌試料1g当りの重金属含有量、除去後の重金属含有量、これから計算される重金属の除去率を示している。このように、何れの重金属においても除去率は95%以上となり、土壌からの重金属の除去が行なえることが確認された。カドミウムと鉛においても、除去後の含有量は基準値以下となり、汚染土壌の浄化技術として十分活用可能である。
Table 2 shows the results. From the left, the heavy metal content per gram of soil sample, the heavy metal content after removal, and the heavy metal removal rate calculated from this are shown. Thus, the removal rate of any heavy metal was 95% or more, and it was confirmed that heavy metals can be removed from the soil. Also for cadmium and lead, the content after removal is below the standard value, which can be fully utilized as a purification technique for contaminated soil.

実施例1における共沈殿抽出フローシステムを示した構成概要図である。1 is a schematic configuration diagram illustrating a coprecipitation extraction flow system in Example 1. FIG. 銅と亜鉛の場合の除去率とpHとの関係を例示した図である。It is the figure which illustrated the relationship between the removal rate in the case of copper and zinc, and pH. カドミウムと鉛の場合の除去率とpHとの関係を例示した図である。It is the figure which illustrated the relationship between the removal rate in the case of cadmium and lead, and pH. 実施例4における土壌試料の調整プロセスを例示した図である。It is the figure which illustrated the adjustment process of the soil sample in Example 4. FIG.

Claims (5)

金属イオン含有の水相に、水中では金属水酸化物沈殿が生成するpH値以上で、ジアルキルリン酸を溶解した非水溶性のケトンの溶液を有機相として混合し、金属イオンを有機相に抽出分離することを特徴とする金属イオンの分離方法。   A water-insoluble ketone solution in which dialkyl phosphoric acid is dissolved is mixed with an aqueous phase containing metal ions at a pH value higher than that at which metal hydroxide precipitates form in water, and the metal ions are extracted into the organic phase. A method for separating metal ions, comprising separating. 金属水酸化物沈殿を含有する水相に有機相を混合して抽出分離することを特徴とする請求項1の金属イオンの分離方法。   2. The method for separating metal ions according to claim 1, wherein the organic phase is mixed with the aqueous phase containing the metal hydroxide precipitate and extracted and separated. 金属イオン含有の水相に、水中で金属水酸化物の沈殿を生成するマトリックス金属のイオンの水溶液を添加し、金属イオンの少くとも一部をマトリックス金属の水酸化物沈殿に共沈により取込み、次いで有機相を混合して抽出分離することを特徴とする金属イオンの分離方法。   Add an aqueous solution of matrix metal ions that produce a metal hydroxide precipitate in water to the aqueous phase containing metal ions, and incorporate at least a portion of the metal ions into the matrix metal hydroxide precipitate by coprecipitation, Next, a method for separating metal ions, wherein the organic phase is mixed and extracted and separated. 金属含有の土壌に、水中で金属水酸化物の沈殿を生成するマトリックス金属のイオン水溶液とジアルキルリン酸を溶解した非水溶性のケトンの溶液を加え、マトリックス金属の水酸化物沈殿が生成するpH値以上として土壌中の金属のイオンを有機相に抽出分離することを特徴とする土壌中の金属の分離方法。   Add pH of matrix metal ionic solution that forms metal hydroxide precipitate in water and water-insoluble ketone solution in which dialkyl phosphate is dissolved in metal-containing soil to form matrix metal hydroxide precipitate. A method for separating metal in soil, wherein the metal ions in the soil are extracted and separated into an organic phase above the value. 還元剤を水溶液に含有させることを特徴とする請求項3または4の分離方法。   5. The separation method according to claim 3, wherein a reducing agent is contained in the aqueous solution.
JP2004116973A 2004-04-12 2004-04-12 Method for metal ion separation Pending JP2005296811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004116973A JP2005296811A (en) 2004-04-12 2004-04-12 Method for metal ion separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004116973A JP2005296811A (en) 2004-04-12 2004-04-12 Method for metal ion separation

Publications (1)

Publication Number Publication Date
JP2005296811A true JP2005296811A (en) 2005-10-27

Family

ID=35329005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004116973A Pending JP2005296811A (en) 2004-04-12 2004-04-12 Method for metal ion separation

Country Status (1)

Country Link
JP (1) JP2005296811A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021142147A1 (en) * 2020-01-09 2021-07-15 Lilac Solutions, Inc. Process for separating undesirable metals
US11253848B2 (en) 2017-08-02 2022-02-22 Lilac Solutions, Inc. Lithium extraction with porous ion exchange beads
US11339457B2 (en) 2020-01-09 2022-05-24 Lilac Solutions, Inc. Process for separating undesirable metals
US11358875B2 (en) 2020-06-09 2022-06-14 Lilac Solutions, Inc. Lithium extraction in the presence of scalants
US11377362B2 (en) 2020-11-20 2022-07-05 Lilac Solutions, Inc. Lithium production with volatile acid
US11806641B2 (en) 2016-11-14 2023-11-07 Lilac Solutions, Inc. Lithium extraction with coated ion exchange particles
US11865531B2 (en) 2018-02-28 2024-01-09 Lilac Solutions, Inc. Ion exchange reactor with particle traps for lithium extraction
US11986816B2 (en) 2021-04-23 2024-05-21 Lilac Solutions, Inc. Ion exchange devices for lithium extraction

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11806641B2 (en) 2016-11-14 2023-11-07 Lilac Solutions, Inc. Lithium extraction with coated ion exchange particles
US11253848B2 (en) 2017-08-02 2022-02-22 Lilac Solutions, Inc. Lithium extraction with porous ion exchange beads
US11794182B2 (en) 2017-08-02 2023-10-24 Lilac Solutions, Inc. Lithium extraction with porous ion exchange beads
US11865531B2 (en) 2018-02-28 2024-01-09 Lilac Solutions, Inc. Ion exchange reactor with particle traps for lithium extraction
US11975317B2 (en) 2018-02-28 2024-05-07 Lilac Solutions, Inc. Ion exchange reactor with particle traps for lithium extraction
WO2021142147A1 (en) * 2020-01-09 2021-07-15 Lilac Solutions, Inc. Process for separating undesirable metals
US11339457B2 (en) 2020-01-09 2022-05-24 Lilac Solutions, Inc. Process for separating undesirable metals
US11358875B2 (en) 2020-06-09 2022-06-14 Lilac Solutions, Inc. Lithium extraction in the presence of scalants
US11964876B2 (en) 2020-06-09 2024-04-23 Lilac Solutions, Inc. Lithium extraction in the presence of scalants
US11377362B2 (en) 2020-11-20 2022-07-05 Lilac Solutions, Inc. Lithium production with volatile acid
US11986816B2 (en) 2021-04-23 2024-05-21 Lilac Solutions, Inc. Ion exchange devices for lithium extraction

Similar Documents

Publication Publication Date Title
Kesieme et al. A review of acid recovery from acidic mining waste solutions using solvent extraction
CA3089549C (en) Solvent extraction method
US20220154308A1 (en) Method for manufacturing nickel and cobalt-containing solution from hydroxide containing nickel and cobalt
Fan et al. Influence of weak magnetic field and tartrate on the oxidation and sequestration of Sb (III) by zerovalent iron: Batch and semi-continuous flow study
CN1145976C (en) Process for decontaminating radioactive materials
JP5783536B2 (en) Boron recovery method
JP2005296811A (en) Method for metal ion separation
Kagaya et al. Rapid coprecipitation technique with hybrid hydroxide system using ytterbium (III), gallium (III), and magnesium (II) for simultaneous concentration of 13 elements in concentrated salt solution prior to their inductively coupled plasma atomic emission spectrometric determination
CN105152433A (en) Method for removing COD (chemical oxygen demand) from copper/molybdenum extraction raffinate mixed wastewater
CN108866337B (en) A method of processing metal sludge
JP2010196162A (en) Method for removing metal element from organic phase
JP2008168273A (en) Method for treating selenium-containing waste water
Sahin et al. Determination of trace metals in water samples by flame atomic absorption spectrometry after co-precipitation with In (OH)~ 3
CN103351070A (en) Method for treating glyphosate waste water
Asrafi et al. Solvent extraction of cadmium (ii) from sulfate medium by Bis (2-ethylhexyl) Phosphoric Acid in Toluene
Wei et al. Selective iron sorption for on-line reclaim of chromate electroplating solution at highly acidic condition
TW201436948A (en) Method for recycling scraped polishing powder
Shi et al. Separation and recovery of nickel and copper from multi-metal electroplating sludge by co-extracting and selective stripping
Kagaya et al. Rapid coprecipitation technique using yttrium hydroxide for the preconcentration and separation of trace elements in saline water prior to their ICP-AES determination
JP4117491B2 (en) Method for back-extracting trivalent and tetravalent actinide ions in a separation process solvent into a highly concentrated nitric acid solution with N, N, N &#39;, N&#39;-tetraethyldiglycolamide
Kul et al. Application of the Taguchi orthogonal array design to Cr (VI) solvent extraction
JP4699622B2 (en) Method for separating boron-containing solution from R (rare earth) -Fe-B magnet alloy sludge
Ren Recovery of rare earth elements (REEs) from coal mine drainage sludge leachate
JP4256674B2 (en) How to recover cerium
Suda et al. Methodological Drawbacks of the Extraction of Trace Metals from Fe and Mn Oxides in Soil Samples with Oxalic Acid–Ammonium Oxalate–Ascorbic Acid Solution