JP2005288215A - Cured membrane forming apparatus - Google Patents

Cured membrane forming apparatus Download PDF

Info

Publication number
JP2005288215A
JP2005288215A JP2004103040A JP2004103040A JP2005288215A JP 2005288215 A JP2005288215 A JP 2005288215A JP 2004103040 A JP2004103040 A JP 2004103040A JP 2004103040 A JP2004103040 A JP 2004103040A JP 2005288215 A JP2005288215 A JP 2005288215A
Authority
JP
Japan
Prior art keywords
coating
film
electric field
cured
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004103040A
Other languages
Japanese (ja)
Inventor
Isao Tabayashi
勲 田林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2004103040A priority Critical patent/JP2005288215A/en
Publication of JP2005288215A publication Critical patent/JP2005288215A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a forming apparatus of cured membrane having anisotropic characteristics of properties for light, heat and electricity; forming a cured membrane with the membrane only using the characteristics, or on a support body; applicable to a light diffusing film, a light diffusing membrane, light reflection preventive membrane, heat conductive membrane, heat conductive film, electric conductive membrane, electric conductive film, or polarizing elements; and superior in surface abrasion resistance and scratch resistance. <P>SOLUTION: This apparatus supplies coating liquid containing dispersed fine particles to a support body, and continuously forms coating membrane with the dispersed fine particles localized or oriented. The apparatus comprises a traveling means for continuously running the support body, a coating means for continuously coating the coating liquid on the support body, an electric field applying means applying the electric field in the membrane thickness direction of the coating membrane before curing, a curing means curing the coating membrane during applying the electric field or immediately after application. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は基体上に分散微粒子を含有する塗布液を塗布してなる塗膜中の分散微粒子が、膜厚方向に密度勾配を有するか、または配向している硬化膜を形成するための硬化膜形成装置に関する。   The present invention relates to a cured film for forming a cured film in which dispersed fine particles in a coating film obtained by applying a coating liquid containing dispersed fine particles on a substrate have a density gradient in the film thickness direction or are oriented. The present invention relates to a forming apparatus.

従来光、熱、電気等に対する物性の異方性を有する塗膜、フィルムとしては、光学結晶や通常の光学異方性フィルムのように、それ自身の結晶構造の方向性や、分子構造の光学的異方性に起因したものが多く、その種類や特性に限りがあった。このため特に可撓性に富んで大面積の加工、使用の可能な樹脂塗膜、樹脂フィルムの分野においては、上記異方性を有した材料に対して想定される利用分野が非常に多いにもかかわらず、適合した素材の提供が簡単ではなかった。さらにこれら樹脂塗膜、樹脂フィルムには共通した問題として、表面硬度が低く、耐久性、耐摩耗性が低いという実使用上の欠点があり、これら問題を同時に解決した材料の提供が求められていた。   Conventional coatings and films that have anisotropy of physical properties against light, heat, electricity, etc., as in optical crystals and ordinary optical anisotropic films, the direction of their own crystal structure and the optical properties of molecular structures Many were caused by mechanical anisotropy, and the types and characteristics were limited. For this reason, in particular, in the fields of flexible and large area processing, usable resin coatings and resin films, there are very many fields of application that are assumed for the materials having the above anisotropy. Nevertheless, it was not easy to provide suitable materials. Furthermore, these resin coating films and resin films have the common problem of low surface hardness, durability and low wear resistance, and there is a need to provide materials that solve these problems simultaneously. It was.

例えば、光拡散フィルム、シート等は、光源からの光を光量を落とすことなく表示面表面に導くことが必要で、拡散光が均一で、視野角依存性がなく、かつより高輝度な性能が求められている。
しかし、従来の光拡散フィルム、シートに使用されている不定形または球状の微粒子では、入射光が光拡散フィルム、シートの光拡散層を通過するにあたり、粒子に反射した光が広範な方向に反射し、それが繰り返される結果、再度入射光側に戻ってしまい、出射光側から射出されない散乱光成分の存在や拡散材による吸収等により、透過光強度が低下する問題を有していた。
また光反射フィルムとしては外光の写り込みを防ぐAG(アンチグレア)フィルムに無機粒子を入れたアクリル樹脂が用いられているが、光拡散フィルムの場合と同様で、再度入射光側に戻る光成分による反射光の影響が避けられなかった。
一方、熱伝導異方性を有する塗膜、フィルムは、コンピュータ等の性能向上に伴い、デバイスの放熱効果を高める必要があり、液晶ポリマーの配向による検討が行われている。しかしながら従来の方法では十分な放熱効果が得られなかった。
For example, light diffusing films, sheets, etc. need to guide the light from the light source to the display surface without reducing the amount of light, the diffused light is uniform, has no viewing angle dependency, and has a higher luminance performance. It has been demanded.
However, in the case of irregular or spherical fine particles used in conventional light diffusion films and sheets, when the incident light passes through the light diffusion layer of the light diffusion film or sheet, the light reflected by the particles is reflected in a wide range of directions. However, as a result of the repetition, the light returns to the incident light side again, and there is a problem that the transmitted light intensity decreases due to the presence of scattered light components not emitted from the emitted light side, absorption by the diffusing material, and the like.
The light reflecting film uses an acrylic resin with inorganic particles in an AG (anti-glare) film that prevents the reflection of external light, but the light component returns to the incident light side again in the same way as the light diffusing film. The effect of reflected light due to was inevitable.
On the other hand, coatings and films having thermal conductivity anisotropy are required to enhance the heat dissipation effect of the device as the performance of computers and the like is improved, and studies are being conducted based on the orientation of liquid crystal polymers. However, a sufficient heat dissipation effect cannot be obtained by the conventional method.

これらの諸問題を解決する手段として、塗膜中の微粒子の配向を行う試みが幾つか提案されている。例えば略回転楕円形状を有する拡散粒子が、略一軸方向に揃った状態で一定の屈折率差を有する透光性樹脂中に一定濃度含有されている拡散シート(特許文献1参照)では、樹脂シートを延伸することにより、該樹脂シートに含有された球状拡散粒子が伸び変形に追随してラグビーボール状の一軸回転楕円形状に変形され、この拡散粒子の長軸がシートに対し水平方向となる。このため、得られた拡散シートの異方拡散性は良好であるが、拡散粒子の長軸方向が拡散シートの膜厚方向に配向されているわけではないので、透過スクリーンとしてのゲイン低下を生じやすい。
また、光拡散剤を分散して含む透明樹脂体からなり、光拡散剤が平均粒子径50μm以下であり、かつアスペクト比5〜300であるシリカの板状粒子である光拡散シート(特許文献2参照)や入射光の散乱特性を特定した異方性拡散フィルム(特許文献3参照)において開示されているシート成型方法においても、いずれも成型時に光拡散剤の長軸方向がシート・フィルムの膜表面と水平方向に配向していて、特に成型過程にフィルムの延伸工程を含む場合には、一軸方向に均一に配向するため光拡散性が大きいものの膜厚方向の透過光量が低下する。
このように樹脂膜、樹脂フィルムに対し異方性を付与する試みが成されているがまだ充分な特性を得るには至っていない。
As means for solving these problems, several attempts have been made to orient the fine particles in the coating film. For example, in a diffusion sheet (see Patent Document 1) in which a diffusing particle having a substantially spheroidal shape is contained in a translucent resin having a constant refractive index difference in a state of being aligned in a substantially uniaxial direction, a resin sheet The spherical diffusion particles contained in the resin sheet are deformed into a rugby ball-like uniaxial rotating ellipse shape following the elongation deformation, and the long axis of the diffusion particles is in the horizontal direction with respect to the sheet. Therefore, the anisotropic diffusion property of the obtained diffusion sheet is good, but the major axis direction of the diffusion particles is not oriented in the film thickness direction of the diffusion sheet, resulting in a decrease in gain as a transmission screen. Cheap.
Further, a light diffusion sheet comprising a transparent resin body containing a light diffusing agent dispersed therein, the light diffusing agent being silica-like particles having an average particle diameter of 50 μm or less and an aspect ratio of 5 to 300 (Patent Document 2) And the sheet diffusion method disclosed in the anisotropic diffusion film (see Patent Document 3) that specifies the scattering characteristics of incident light, the long axis direction of the light diffusing agent is the film of the sheet film at the time of molding. When the film is oriented in the horizontal direction with the surface, and particularly includes a film stretching step in the molding process, the amount of transmitted light in the film thickness direction is reduced although the light diffusibility is large because the film is oriented uniformly in the uniaxial direction.
Thus, attempts have been made to impart anisotropy to resin films and resin films, but sufficient characteristics have not yet been obtained.

一方、樹脂膜や樹脂フィルムの機械強度向上は様々な産業分野で要求されており、一般的に表面が傷つきやすいポリマー表面の耐摩擦性・耐擦過性を向上させるために、硬度の高い保護フィルムのラミネート、化学的な処理方法としてのカップリング剤・多層重合・ハードコート剤塗装等が、また物理的な処理としてプラズマ処理・メカノケミカル処理等が知られている。
これらのうち硬度の高い保護フィルムのラミネートは基体との接着の問題や、反り、皺等様々な問題を有している。
また、シリコーン系、フッ素系、多官能アクリル系(ポリオールアクリレート、ポリエステルアクリレート、ウレタンアクリレート、エポキシアクリレート等)モノマー・オリゴマー・ポリマーなどの硬化液を塗布後、熱又は活性エネルギー線を用いて重合硬化し耐摩擦性・耐擦過性の向上を行う方法は有機材料としての耐久性の限界があった。
さらに耐久性を向上させる手段としてアルコキシシランを組み合わせた有機無機ハイブリッド膜を用いる方法は、コーティング膜全体を硬化したときの収縮による変形の問題が避けられなかった。
On the other hand, improvement in the mechanical strength of resin films and resin films is required in various industrial fields, and in order to improve the friction and scratch resistance of polymer surfaces that are generally easily damaged, the protective film has high hardness. Laminating, coupling agents as a chemical treatment method, multilayer polymerization, hard coating agent coating, and the like are known, and plasma treatment, mechanochemical treatment, and the like are known as physical treatments.
Among these, the laminate of the protective film having high hardness has various problems such as adhesion to the substrate, warpage, and wrinkles.
In addition, after applying a curing solution such as a silicone, fluorine, or polyfunctional acrylic (polyol acrylate, polyester acrylate, urethane acrylate, epoxy acrylate, etc.) monomer / oligomer / polymer, it is polymerized and cured using heat or active energy rays. The method of improving the friction resistance and scratch resistance has a limit of durability as an organic material.
Furthermore, the method of using an organic-inorganic hybrid film combined with alkoxysilane as a means for improving durability unavoidably suffers from deformation due to shrinkage when the entire coating film is cured.

一方、高耐圧・高硬度が得られるシリコンまたはシリコン化合物薄膜を成膜する方法として、CVD法を用いた蒸着方法が広く用いられている。しかし、CVD法では成膜レートが大きいといわゆるフレークという膜の異常成長が生じたり、他の構造膜にダメージを与える等の問題が生じるため量産性に劣っていた。   On the other hand, a vapor deposition method using a CVD method is widely used as a method for forming a silicon or silicon compound thin film capable of obtaining a high breakdown voltage and high hardness. However, the CVD method is inferior in mass productivity because problems such as abnormal growth of a so-called flake film or damage to other structural films occur when the film forming rate is high.

上記のような耐久性、耐摩耗性の問題を解決する方法として、有機高分子成分と金属酸化物成分からなる複合体で、複合体の表面から深さ方向に、金属酸化成分の複合体中での含有率が連続的に変化する成分傾斜構造を有する、有機高分子と金属酸化物成分との成分傾斜複合体(特許文献4参照)が提案されている。また、金属アルコキシ基を有する有機重合体からゾル−ゲル法によって作製した湿潤ゲル又は溶剤に溶解する有機重合体と、金属酸化物、金属アルコキシド化合物又は金属アルコキシド化合物の部分的加水分解物及び重縮合物とを接触させ、相互にまたは一方から他方へ拡散させる工程を用いることによって、有機重合体成分および/または金属酸化物成分の濃度が連続的に変化した成分傾斜構造を有する有機−無機成分傾斜複合材料を製造する方法(特許文献5参照)が提案されている。
しかし、これらの公知文献で開示されている技術では無機成分の傾斜構造は取りうるものの、膜表面への無機成分の局在化が不十分で、特に膜の表面硬度をより高くするには限界があり、かつ処理時間が大幅に必要であった。
As a method for solving the problems of durability and wear resistance as described above, a composite composed of an organic polymer component and a metal oxide component is used in the composite of a metal oxide component in the depth direction from the surface of the composite. There has been proposed a component gradient composite of an organic polymer and a metal oxide component (see Patent Document 4), which has a component gradient structure in which the content ratio in the column changes continuously. In addition, an organic polymer dissolved in a wet gel or solvent prepared from an organic polymer having a metal alkoxy group by a sol-gel method, and a partial hydrolyzate and polycondensation of a metal oxide, a metal alkoxide compound, or a metal alkoxide compound An organic-inorganic component gradient having a component gradient structure in which the concentration of the organic polymer component and / or metal oxide component is continuously changed by using a process of bringing the product into contact with each other and diffusing each other or from one to the other. A method of manufacturing a composite material (see Patent Document 5) has been proposed.
However, although the techniques disclosed in these known documents can take the gradient structure of the inorganic component, the localization of the inorganic component on the film surface is insufficient, and in particular, there is a limit to increasing the surface hardness of the film. And processing time was significantly required.

このように樹脂膜、樹脂フィルム中の分散粒子を配向させ、光、電気、熱等に対する物理特性に異方性を持たせようとする試み、あるいは樹脂組成に傾斜を持たせて樹脂塗膜や樹脂フィルムの表面硬度を向上させようとする試みがなされてはいるが、これら試みはいずれも上述の実施用上の問題点を解決するには至っていない。
したがって上記特性を満たす硬化塗膜を容易に量産するための実用的な方法、装置が求められていた。
Thus, by orienting the dispersed particles in the resin film and the resin film, an attempt to give anisotropy to the physical properties against light, electricity, heat, etc. Although attempts have been made to improve the surface hardness of the resin film, none of these attempts has solved the above practical problems.
Therefore, there has been a demand for a practical method and apparatus for easily mass-producing a cured coating film that satisfies the above characteristics.

特開平2001−311807号公報Japanese Patent Laid-Open No. 2001-311807 特開平2002−258011号公報Japanese Patent Laid-Open No. 2002-258011 特開平2003−050306号公報Japanese Patent Laid-Open No. 2003-050306 特開2000−248065号公報Japanese Unexamined Patent Publication No. 2000-248065 特開2000−336281号公報JP 2000-336281 A

本発明の目的は、塗膜中に分散微粒子が傾斜分布または局在化するかあるいは配向した硬化塗膜を効率よく作製するための硬化塗膜形成装置を提供することである。また本発明の他の目的は、光、熱、電気等の物性に異方性を有する硬化膜、または塗膜表面の耐摩擦性・耐擦過性を有する硬化膜の安価な硬化膜形成装置を提供することである。また本発明の他の目的は、前記硬化塗膜を作製することにより例えば高輝度の拡散、戻り光の少ない光反射、優れた放熱効果、優れた電気伝導性を有する硬化塗膜、フィルム、シートの製造を可能にするための技術を提供することである。   An object of the present invention is to provide a cured coating film forming apparatus for efficiently producing a cured coating film in which dispersed fine particles are distributed or localized in the coating film or are oriented. Another object of the present invention is to provide an inexpensive cured film forming apparatus for a cured film having anisotropy in physical properties such as light, heat, electricity, etc., or a cured film having a friction resistance and a scratch resistance on the surface of the coating film. Is to provide. Another object of the present invention is to produce a cured coating film, a film, a sheet having, for example, high brightness diffusion, light reflection with little return light, excellent heat dissipation effect, and excellent electrical conductivity. It is to provide a technique for enabling the manufacture of

本発明は,基体上に分散微粒子を含有する塗布液を供給して塗膜を形成する塗布手段と、前記塗膜に電界を印加して前記塗膜中の前記分散微粒子を膜厚方向に移動または配向させるための電界印加手段と、電界印加中または印加直後に前記塗膜を硬化させる硬化手段とを有する硬化膜形成装置を提供するものである。   The present invention provides a coating means for supplying a coating liquid containing dispersed fine particles on a substrate to form a coating film, and an electric field is applied to the coating film to move the dispersed fine particles in the coating film in the film thickness direction. Alternatively, the present invention provides a cured film forming apparatus having an electric field applying means for aligning and a hardening means for hardening the coating film during or immediately after the electric field application.

本発明の硬化膜形成装置を用いることにより、塗膜中の分散微粒子が傾斜分布または局在化した硬化塗膜、あるいは該分散微粒子が配向した硬化塗膜を効率的に作製することが可能になる。
その結果、光散乱特性、熱導電性、電気導電性等、達成すべき物性を考慮して形状異方性を有する分散微粒子を選定し、該分散微粒子の長軸方向を塗膜の膜厚方向へ配向することによって、光拡散膜、光拡散フィルム・シートにおいては高輝度と光拡散を両立可能という利点を有し、光反射防止膜、光反射防止フィルム・シートにおいては優れた光反射防止効果という利点を有し、また熱導電成膜、熱伝導性フィルム・シート、電気導電成膜、電気伝導性フィルム・シートにおいてはそれぞれ膜厚方向に優れた熱伝導効果、電気伝導効果を有する硬化膜を効率的に作製することができる。
By using the cured film forming apparatus of the present invention, it is possible to efficiently produce a cured coating film in which dispersed fine particles in the coating film are distributed or localized, or a cured coating film in which the dispersed fine particles are oriented. Become.
As a result, dispersed fine particles having shape anisotropy are selected in consideration of physical properties to be achieved such as light scattering characteristics, thermal conductivity, and electrical conductivity, and the major axis direction of the dispersed fine particles is defined as the film thickness direction of the coating film. The light diffusion film and light diffusion film / sheet have the advantage of being able to achieve both high brightness and light diffusion, and the light reflection preventing film and light reflection film / sheet have an excellent anti-reflection effect. Heat conduction film formation, heat conductive film / sheet, electroconductive film formation, and electroconductive film / sheet have excellent heat conduction effect and electric conduction effect respectively in the film thickness direction Can be produced efficiently.

一方、塗膜内の分散微粒子が球形または不定形でアスペクト比が小さい場合は、該粒子の塗膜表面への移動のみが生じて該塗膜表面に局在化するため、表面硬度を高くすることができ、表面硬度が高く耐久性、耐摩耗性に優れた硬化塗膜を効率的に作製することができる。
さらに形状異方性を有する分散微粒子と球形または不定形の分散微粒子を同時に含有する塗膜に、電界または磁界を印加してこの配向状態を維持しつつ塗膜を硬化させれば、硬化塗膜中に形状異方性を有する分散粒子の配向と球状または不定形の分散粒子の局在化した硬化膜、フィルム、シートを形成することができ、光、熱、電気等の物性に対して異方性に加えて、表面硬度が高く、耐摩擦性・耐擦過性を有する耐久性に優れた硬化塗膜を効率良く作製することができる。
On the other hand, when the dispersed fine particles in the coating are spherical or indeterminate and the aspect ratio is small, only the particles move to the coating surface and are localized on the coating surface, so that the surface hardness is increased. In addition, it is possible to efficiently produce a cured coating film having high surface hardness and excellent durability and wear resistance.
Furthermore, a cured coating film can be obtained by applying an electric field or a magnetic field to a coating film simultaneously containing dispersed fine particles having shape anisotropy and spherical or irregular shaped dispersed fine particles while maintaining this orientation state. It is possible to form cured films, films, and sheets in which the orientation of dispersed particles having shape anisotropy and localized dispersed particles of spherical or irregular shape can be formed, and differ in physical properties such as light, heat, and electricity. In addition to the isotropic property, it is possible to efficiently produce a cured coating film having high surface hardness and excellent durability having friction resistance and scratch resistance.

2種類以上の分散微粒子、好ましくは形状異方性を有する分散微粒子と、球状または不定形粒子とを含む塗布液により形成された塗膜に電界を与えると、形状異方性を有する分散微粒子は誘電分極あるいは静電誘導により、例えば分散微粒子が全体として電気的に中性のときは、その一方に電荷が誘起され、該電荷の誘起された場所から位置的に最も遠い位置に反対極性の電荷が誘起される。反対符号を持つ電荷の反発力によりこれら電荷は形状異方性を有する分散粒子の両端に局在して形成されるが、電界によって分散粒子の長軸方向が電界方向と平行となるような回転力を受けるため、最終的には分散粒子の泳動現象も並行して生じるが、長軸方向を電界方向と平行にして配向することになる。 When an electric field is applied to a coating film formed of a coating liquid containing two or more kinds of dispersed fine particles, preferably dispersed fine particles having shape anisotropy, and spherical or irregular shaped particles, the dispersed fine particles having shape anisotropy are For example, when the dispersed fine particles are electrically neutral as a whole due to dielectric polarization or electrostatic induction, a charge is induced in one of them, and the charge of the opposite polarity is positioned farthest from the position where the charge is induced. Is induced. Due to the repulsive force of charges with opposite signs, these charges are localized and formed at both ends of the dispersed particles having shape anisotropy, but the electric field rotates so that the major axis direction of the dispersed particles is parallel to the electric field direction. Because of the force, the dispersed particles will eventually migrate in parallel, but the major axis direction is parallel to the electric field direction.

前記基体は長尺状の基体であって、該長尺状基体を連続走行させるための走行手段を有していてもよい。長尺状基体を連続走行させながら該基体上に分散微粒子を含有する塗布液を塗布して塗膜を形成し、電界形成手段によって塗膜中の分散微粒子を膜厚方向に移動または配向させつつ、硬化手段によって該塗膜を硬化させることにより、塗膜中の分散微粒子が膜厚方向に分布量の勾配を有し、また形状異方性を有する分散微粒子が膜厚方向に配向した硬化塗膜を大量に効率的に作製することができる。
本発明において分散微粒子を含む塗布液を塗布する基体は、特に形態上、材質上の制約は無く、光拡散性や、光反射防止性、熱伝導性、電気伝導性など種々の機能の付与が必要とされるフィルムやシート等、薄膜状の基体の他に、光学素子、電子部品など製品そのものも基体として用いることができる。
The base body is a long base body, and may have a traveling means for continuously traveling the long base body. While a long substrate is continuously run, a coating liquid containing dispersed fine particles is applied onto the substrate to form a coating film, and the dispersed fine particles in the coating film are moved or oriented in the film thickness direction by an electric field forming means. Then, by curing the coating film by a curing means, the dispersed fine particles in the coating film have a gradient of distribution amount in the film thickness direction, and the dispersed fine particles having shape anisotropy are oriented in the film thickness direction. Membranes can be produced efficiently in large quantities.
In the present invention, the substrate to which the coating liquid containing dispersed fine particles is applied is not particularly limited in terms of form and material, and can be provided with various functions such as light diffusibility, light antireflection, thermal conductivity, and electrical conductivity. In addition to a thin film substrate such as a required film or sheet, products such as optical elements and electronic components can be used as the substrate.

本発明において使用する分散微粒子を含有する塗布液の塗布手段は、基体上に未乾燥塗膜を形成することができる塗布手段であれば特に制限無く、塗布液の特性、形成すべき塗膜の形状、上記種々の形態の基体等を考慮して最も適した塗布手段を使用することができる。例えば前記基体が長尺状の基体の場合には、基体に連続的に塗布し塗膜を形成するための塗布手段として、ダイコーター、リバースコーター、グラビアコーター、ロールコート、カーテンコート等、長尺状の基体の塗布に通常使用される塗布手段をいずれも用いることが出来る。また基体がディスク基板等の円板状である場合にはノズル滴下(インクジェットを含む)やスピンコータ、スクリーン印刷による塗膜形成をもちいることができる。さらに光学素子や電子部品が塗膜の基体である場合には、スプレー法や浸浸塗布を用いることができる。   The application means for the coating liquid containing dispersed fine particles used in the present invention is not particularly limited as long as it is an application means capable of forming an undried coating film on a substrate. The most suitable coating means can be used in consideration of the shape, the above-mentioned various forms of substrates, and the like. For example, when the substrate is a long substrate, as a coating means for continuously coating the substrate to form a coating film, a long coater such as a die coater, reverse coater, gravure coater, roll coat, curtain coat, etc. Any of the coating means usually used for coating the substrate in the form of a plate can be used. Further, when the substrate is in the shape of a disk such as a disk substrate, it is possible to use coating by nozzle dropping (including ink jet), spin coater, or screen printing. Further, when the optical element or the electronic component is a substrate of a coating film, a spray method or dip coating can be used.

本発明の硬化膜形成装置において、長尺状基体を連続的に走行させるための走行手段としては、ロール状の巻き回された基体を巻き出すための巻き出し装置、該基体を巻き取り用ロールに巻き取るための巻き取り装置を備えていることが好ましい。本発明の硬化膜形成装置における走行手段は塗布手段、電界印加手段、塗膜硬化手段の各手段の設置された領域を通って、前記基体を制御された速度と張力を保持しつつ走行させるための、各種ガイドロールと各種速度制御機構、張力制御機構を備えていることが好ましく、通常の長尺状基体への塗布装置における走行手段をそのまま用いることができる。
公知の塗布装置が利用可能であるが、これらに限られたものではない。
In the cured film forming apparatus of the present invention, as the running means for continuously running the long substrate, the unwinding device for unwinding the roll-shaped substrate, the roll for winding the substrate It is preferable that a winding device for winding is provided. The traveling means in the cured film forming apparatus of the present invention is for traveling the substrate while maintaining the controlled speed and tension through the areas where the coating means, the electric field applying means, and the coating film curing means are installed. It is preferable to include various guide rolls, various speed control mechanisms, and tension control mechanisms, and the traveling means in the coating device for a normal long substrate can be used as it is.
Although a well-known coating apparatus can be utilized, it is not restricted to these.

硬化前の前記塗膜の膜厚方向に電界を印加する電界印加手段は、基本的には未乾燥塗膜の膜厚方向に電界を印加できるように、基体ごと塗膜を2つの平行電極で挟み込む構成とすることができる。基体に厚みがあって電極間隔が開き強い電界をかけられないときは、基体上に予め導電性塗料や導電性シートに導電層を積層しておき、該導電層を一方の電極として用いて電極間隔を狭く設定することができる。 The electric field applying means for applying an electric field in the film thickness direction of the coating film before curing basically applies the coating film to the substrate with two parallel electrodes so that an electric field can be applied in the film thickness direction of the undried coating film. It can be set as the structure inserted | pinched. When the base is thick and the electrode spacing is wide and a strong electric field cannot be applied, a conductive layer is laminated on the base in advance on a conductive paint or conductive sheet, and the conductive layer is used as one of the electrodes. The interval can be set narrow.

基体が長尺状の基体のときは連続的に形成される塗膜を挟んで塗布ヘッドに近接した位置に平行電極を設置することにより、塗布液を塗布された基体が電極間を走行する間に電界を印加することができる。ただし走行している塗膜中の分散微粒子を短時間で移動、配向させるには、塗布液の塗布後にできるだけ早く、しかも電極間隔を狭めて強電界を効率的に印加しなくてはならない。そのための装置として具体的には下記に述べる装置があるが、これらに限られたものではない。 When the substrate is a long substrate, a parallel electrode is installed at a position close to the coating head across a continuously formed coating film, so that the substrate coated with the coating liquid travels between the electrodes. An electric field can be applied. However, in order to move and orient the dispersed fine particles in the traveling coating film in a short time, it is necessary to efficiently apply a strong electric field as soon as possible after applying the coating liquid and by narrowing the electrode interval. Specific devices for this purpose include the devices described below, but are not limited thereto.

(1)塗布面の上方に設置されたコロナ帯電電極またはイオンフロー電極3−1等の電荷供給手段によって供給された、帯電コロナまたは帯電イオンからなる静電荷の存在する表面を泳動電極(対向電極)として、該電荷による電界を泳動用の電界として用いる。
塗膜を形成した基体2の塗膜を挟んで反対側にバックロール6あるいはプレートからなる対向電極(泳動電極)を当てて、この静電荷の存在する表面を一方電極とし、基体ごと塗膜を挟み込んで電界をかけることにより塗膜中の分散粒子の配向または泳動を行う(図1参照)。
なお本方法は長尺状基体の連続塗布の場合に限らず、例えばディスク基板のスピンコート塗布(図2参照)や光学素子、電子部品へのスプレー塗布に際しても適用することができる。このような電界印可手段は、未乾燥塗膜の表面に接触せずに電界の印可ができ電極間隔が狭くとれるという利点がある。
(1) A surface on which an electrostatic charge made of charged corona or charged ions, which is supplied by a charge supplying means such as a corona charging electrode or ion flow electrode 3-1 installed above the coating surface, is a migration electrode (counter electrode) ), The electric field due to the electric charge is used as the electric field for electrophoresis.
A counter electrode (electrophoretic electrode) consisting of a back roll 6 or a plate is applied to the opposite side across the coating film of the substrate 2 on which the coating film is formed. The dispersed particles in the coating film are oriented or migrated by sandwiching and applying an electric field (see FIG. 1).
This method is not limited to the continuous application of a long substrate, but can be applied to, for example, spin coating application to a disk substrate (see FIG. 2) and spray application to optical elements and electronic components. Such an electric field applying means has an advantage that an electric field can be applied without contacting the surface of the undried coating film and the electrode interval can be reduced.

(2)塗工ヘッド3とバックアップロール6を電極として、その間に電界を形成する電界形成手段である。塗膜を形成した基体2の塗膜を挟んで反対側にバックロール6からなる対向電極(泳動電極)を設置し、該バックアップロールと泳動電極(対向電極)である塗工ヘッドで基体ごと塗膜を挟み込んで電界をかけ、泳動もしくは配向を行う。塗工ヘッドへの電極設置は、ヘッド内部の塗布液中分散粒子と電極が直接に接する場合には電極に分散粒子が析出し、ヘッドのスリット詰まりや異物発生の原因となりやすいことから、塗布液と電極が電気的に絶縁されることが好ましい(図3参照)。 (2) Electric field forming means for forming an electric field between the coating head 3 and the backup roll 6 as electrodes. A counter electrode (electrophoretic electrode) composed of a back roll 6 is placed on the opposite side of the base film 2 on which the coating film is formed, and the base is coated with the coating head which is the backup roll and the electrophoretic electrode (counter electrode). Electrophoresis or orientation is performed by applying an electric field with the film sandwiched therebetween. If the electrode in the coating head is in direct contact with the dispersed particles in the coating liquid inside the coating head, the dispersed particles will be deposited on the electrode, which can easily cause clogging of the head slits and foreign matter. And the electrodes are preferably electrically insulated (see FIG. 3).

(3)塗膜表面のスムーザー(ドクターブレード,ロール)3−5とバックアップロール6を電極として、その間に電界を形成する電界印加手段で、塗膜を形成した基体の塗膜を挟んで反対側にバックロール6からなる対向電極(泳動電極)を当てて、塗膜上に設置するスムーザー(ドクターブレード,ロール)3−5を泳動電極(対向電極)として塗膜を平坦にしながら電界をかける。スムーザーがロールである場合には塗工ロールを兼ねることが出来る。(図4参照) (3) Coating surface smoother (doctor blade, roll) 3-5 and backup roll 6 are used as electrodes, and an electric field applying means for forming an electric field therebetween, with the coating film on the substrate on which the coating film is formed being sandwiched on the opposite side A counter electrode (electrophoretic electrode) composed of a back roll 6 is applied to the surface, and a smoother (doctor blade, roll) 3-5 placed on the coating film is used as an electrophoretic electrode (counter electrode) to apply an electric field while flattening the coating film. When the smoother is a roll, it can also serve as a coating roll. (See Figure 4)

(4)前記基体の塗膜形成側の表面にITOや酸化スズ(アンチモンドープ)、金属蒸着膜その他の透明あるいは不透明導電層を有しており、該導電層と塗工ヘッドまたはスムーザーを電極として、その間に電界を形成する電界印加手段である。この時,該導電層が泳動(対向)電極として作用することからバックアップロールには電極としての機能は不要となる。 (4) It has ITO, tin oxide (antimony dope), metal vapor deposition film or other transparent or opaque conductive layer on the surface of the substrate on which the coating film is formed, and the conductive layer and coating head or smoother are used as electrodes. , An electric field applying means for forming an electric field therebetween. At this time, since the conductive layer acts as an electrophoretic (opposite) electrode, the backup roll need not function as an electrode.

電界印加中または電界印加直後に前記塗膜を硬化させる硬化手段としては、塗布液の組成に基づく硬化メカニズムに合わせた硬化手段を選定することができる。例えば塗膜形成性樹脂と溶剤を用いた塗布液の場合、溶剤の除去によって塗膜が乾燥硬化するため、オーブン、熱風送風機、赤外線ランプ、遠赤外線ランプ、ヒーター等種々の乾燥手段を硬化手段として用いることができる。一方塗布液が活性エネルギー線硬化性組成物である場合には、電子線やアルファ線のような粒子線、X線、紫外線、等の活性エネルギー線照射手段が硬化手段として用いられる。特に塗布液が紫外線硬化性組成物である場合には、紫外線照射手段としては、蛍光灯、低圧水銀灯、高圧水銀灯、ハロゲンランプ、メタルハライドランプ、キセノン(フラッシュ)ランプ等の紫外線照射装置が好ましい。 As a curing means for curing the coating film during application of an electric field or immediately after application of an electric field, a curing means suitable for the curing mechanism based on the composition of the coating solution can be selected. For example, in the case of a coating solution using a film-forming resin and a solvent, the coating film is dried and cured by removing the solvent. Therefore, various drying means such as an oven, a hot air blower, an infrared lamp, a far-infrared lamp, and a heater are used as the curing means. Can be used. On the other hand, when the coating liquid is an active energy ray-curable composition, active energy ray irradiation means such as particle beams such as electron beams and alpha rays, X-rays, ultraviolet rays, etc. are used as the curing means. In particular, when the coating solution is an ultraviolet curable composition, the ultraviolet irradiation means is preferably an ultraviolet irradiation apparatus such as a fluorescent lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, a halogen lamp, a metal halide lamp, or a xenon (flash) lamp.

電界中における形状異方性粒子の配向と、球状または不定形粒子の泳動において配向・泳動速度を速める場合には塗布液の粘度は低く、電気抵抗値は高いことが望ましいが、配向・泳動条件(電圧・時間)によって適宜材料の組合せを選択し最適物性とすればよい。一方分散微粒子の配向・泳動は電界をなくすと直ちにブラウン運動によって乱れ始める。このため特に硬化手段に活性エネルギー線を用いるときは、電極の少なくとも一方は、電界を印加しつつ活性エネルギー線を照射できるように活性エネルギー線透過性の材質で形成されていることが好ましい。 When increasing the orientation and migration speed in the orientation of shape anisotropic particles in an electric field and migration of spherical or amorphous particles, it is desirable that the viscosity of the coating solution is low and the electrical resistance value is high. A combination of materials may be selected as appropriate according to (voltage / time) to obtain optimum physical properties. On the other hand, the orientation and migration of the dispersed fine particles immediately start to be disturbed by Brownian motion when the electric field is lost. For this reason, particularly when active energy rays are used for the curing means, it is preferable that at least one of the electrodes is made of an active energy ray-permeable material so that the active energy rays can be irradiated while applying an electric field.

以下本発明の硬化膜形成装置の具体的実施態様について記載する。
図1は本発明の硬化膜形成装置の第1の態様を示すもので、電荷供給装置によって未乾燥塗膜上に電荷を供給し、該電荷の形成する電界によって塗膜中の分散微粒子を膜厚方向に移動または配向する硬化膜形成装置の概念図を示す。
図示されていない塗布手段によって塗膜1を形成された基体は、図示されていない走行手段によって矢印8方向に走行させられている。バックアップロール6と塗膜を形成された基体を挟んで反対側に、電界形成手段である電荷供給装置3−1と硬化手段4が配置されている。基体2の走行にともなって電荷供給手段3−1からは、正または負のイオンが供与され未完層塗膜1上に付着し、これを帯電させる。塗膜1中の分散微粒子はバックアップロールと前記電荷の形成する電界によって膜厚方向に配向または移動し、硬化手段1によって、分散微粒子の密度勾配、または局在化状態、あるいは配向状態を保持して硬化される。電荷供給手段によって供給される電荷の正負と、塗膜中の分散微粒子の表面電位との関係で分散微粒子の移動方向が決定される。電荷供給装置としてはコロナ帯電装置等を5〜50kv程度の電圧を印加して使用することができる。バックアップロール6に換えて基体と2と塗膜1との間に予め形成された導電層5を対向電極として用いることができる。このようにすると電極間隔がより狭められるので高い電界をかけやすくなる。バックアップロール兼対向電極6を用いる場合は必ずしも導電層5は必要ではない。導電層5を対向電極として用いる場合にはバックアップロール6は必ずしも電極を兼ねる必要はない。バックアップロール兼対向電極6はベルト等の平面基体兼対向電極であってもよい。コロナ帯電電極3−1に替えて図1に示していないロールコートのロールを泳動・配向電極としてもよい。
Hereinafter, specific embodiments of the cured film forming apparatus of the present invention will be described.
FIG. 1 shows a first embodiment of a cured film forming apparatus according to the present invention. Electric charges are supplied onto an undried coating film by a charge supply device, and dispersed fine particles in the coating film are formed into a film by an electric field formed by the charges. The conceptual diagram of the cured film formation apparatus which moves or orients in the thickness direction is shown.
The substrate on which the coating film 1 is formed by a coating means (not shown) is caused to travel in the direction of arrow 8 by a traveling means (not shown). On the opposite side across the backup roll 6 and the substrate on which the coating film is formed, a charge supply device 3-1 which is an electric field forming unit and a curing unit 4 are arranged. As the substrate 2 travels, positive or negative ions are donated from the charge supply means 3-1, and adhere to the incomplete layer coating 1, and are charged. The dispersed fine particles in the coating film 1 are oriented or moved in the film thickness direction by the backup roll and the electric field formed by the electric charge, and the curing means 1 maintains the density gradient, localized state, or oriented state of the dispersed fine particles. And cured. The moving direction of the dispersed fine particles is determined by the relationship between the positive / negative charge supplied by the charge supplying means and the surface potential of the dispersed fine particles in the coating film. As the charge supply device, a corona charging device or the like can be used by applying a voltage of about 5 to 50 kv. Instead of the backup roll 6, a conductive layer 5 formed in advance between the substrate 2 and the coating film 1 can be used as a counter electrode. This makes it easier to apply a high electric field because the electrode interval is further reduced. When the backup roll / counter electrode 6 is used, the conductive layer 5 is not necessarily required. When the conductive layer 5 is used as a counter electrode, the backup roll 6 does not necessarily have to serve as an electrode. The backup roll and counter electrode 6 may be a flat substrate and counter electrode such as a belt. Instead of the corona charging electrode 3-1, a roll of roll coat not shown in FIG. 1 may be used as the migration / alignment electrode.

図2、図3は本発明の硬化膜形成装置の第2の態様を示すもので、電荷供給装置によって未乾燥塗膜上に電荷を供給し、該電荷の形成する電界によって塗膜中の分散微粒子を膜厚方向に移動または配向する硬化膜形成装置の概念図を示す。
図2の塗布プロセスに示されている塗布液滴下装置3から塗布液を滴下し,回転式バックアッププレート6−1上の基体2を回転するスピンコート塗布手段によって塗膜1を形成された基体を得る。図3の泳動・配向・光硬化プロセスに示されているバックアッププレート兼対向電極6−1と塗膜を形成された基体を挟んで反対側に、基体に平行に移動可能な電界形成手段である電荷供給装置3−1と硬化手段4が配置されている。走行する電荷供給手段3−1からは、正または負のイオンが供与され未完層塗膜1上に付着し、これを帯電させる。塗膜1中の分散微粒子はバックプレートと前記電荷の形成する電界によって配向または移動し、硬化手段1によって、分散微粒子の密度勾配、または局在化状態、あるいは配向状態を保持して硬化される。電荷供給手段によって供給される電荷の正負と、塗膜中の分散微粒子の表面電位との関係で分散微粒子の移動方向が決定される。電荷供給装置としてはコロナ帯電装置等を5〜50kv程度の電圧を印加して使用することができる。バックアッププレート1に換えて基体と2と塗膜1との間に予め形成された導電層5を対向電極として用いることができる。このようにすると電極間隔がより狭められるので高い電界をかけやすくなる。バックアップロール兼対向電極6を用いる場合は必ずしも導電層5は必要ではない。導電層5を対向電極として用いる場合にはバックプレート6−1は必ずしも電極を兼ねる必要はない。コロナ帯電電極3−1及び/または紫外線照射装置4は固定で,コロナ帯電先に行いながら紫外線を全面照射してもよい。
2 and 3 show a second embodiment of the cured film forming apparatus according to the present invention, in which charges are supplied onto an undried coating film by a charge supply apparatus, and dispersion in the coating film is caused by the electric field formed by the charges. The conceptual diagram of the cured film formation apparatus which moves or orients microparticles | fine-particles to a film thickness direction is shown.
A substrate on which the coating film 1 is formed by spin coating application means for rotating the substrate 2 on the rotary backup plate 6-1 by dropping a coating solution from the coating droplet dropping device 3 shown in the coating process of FIG. obtain. This is an electric field forming means that can move in parallel to the substrate on the opposite side across the backup plate / counter electrode 6-1 and the substrate on which the coating film is formed as shown in the migration / orientation / photocuring process of FIG. The charge supply device 3-1 and the curing means 4 are arranged. From the traveling charge supply means 3-1, positive or negative ions are provided and deposited on the incomplete layer coating 1, and are charged. The dispersed fine particles in the coating film 1 are oriented or moved by the electric field formed by the back plate and the electric charge, and are cured by the curing means 1 while maintaining the density gradient, localized state, or oriented state of the dispersed fine particles. . The moving direction of the dispersed fine particles is determined by the relationship between the positive / negative charge supplied by the charge supplying means and the surface potential of the dispersed fine particles in the coating film. As the charge supply device, a corona charging device or the like can be used by applying a voltage of about 5 to 50 kv. Instead of the backup plate 1, a conductive layer 5 formed in advance between the substrate 2 and the coating film 1 can be used as a counter electrode. This makes it easier to apply a high electric field because the electrode interval is further reduced. When the backup roll / counter electrode 6 is used, the conductive layer 5 is not necessarily required. When the conductive layer 5 is used as a counter electrode, the back plate 6-1 does not necessarily have to serve as an electrode. The corona charging electrode 3-1 and / or the ultraviolet irradiation device 4 may be fixed, and the entire surface may be irradiated with ultraviolet rays while being applied to the corona charging destination.

図4は本発明の硬化膜形成装置の第2の態様を示す概念図である。図示されていない走行手段によって矢印8の方向に走行する基体2に対して、ダイコータのコーターヘッド3から塗布液が供給され連続的に基体2上に未乾燥塗膜1が形成される。コーターヘッドの一部に形成された配向電極3−4は対向電極であるバックアップロールと共に電界印加手段を形成しており、両電極間を走行する間に塗膜中の分散微粒子は膜厚方向に移動または配向され、その間を未乾燥塗膜を塗布された基体が走行し、その分散微粒子の密度勾配または局在化状態、あるいは配向状態が4の硬化手段によって固定され硬化塗膜が形成される。硬化手段4は塗布液が紫外線硬化性組成物のときは紫外線ランプを用いることができる。また塗布液が被膜形成性樹脂と溶剤を含有するときは硬化手段4としては赤外線ランプや熱風送風機をもちいることができる。バックアップロール6に換えて基体と2と塗膜1との間に予め形成された導電層5を対向電極として用いることができる。このようにすると電極間隔がより狭められるので高い電界をかけやすくなる。バックアップロール兼対向電極6を用いる場合は必ずしも導電層5は必要ではない。導電層5を対向電極として用いる場合にはバックアップロール6は必ずしも電極を兼ねる必要はない。   FIG. 4 is a conceptual diagram showing a second mode of the cured film forming apparatus of the present invention. The coating liquid is supplied from the coater head 3 of the die coater to the substrate 2 traveling in the direction of the arrow 8 by a traveling means (not shown), and the undried coating film 1 is continuously formed on the substrate 2. The alignment electrode 3-4 formed on a part of the coater head forms an electric field applying means together with a backup roll which is a counter electrode, and the dispersed fine particles in the coating film move in the film thickness direction while traveling between both electrodes. A substrate coated with an undried film travels between them, is moved or oriented, and the density gradient or localized state of the dispersed fine particles, or the orientation state is fixed by a curing means of 4 to form a cured coating film. . The curing means 4 can use an ultraviolet lamp when the coating solution is an ultraviolet curable composition. When the coating solution contains a film-forming resin and a solvent, the curing means 4 can be an infrared lamp or a hot air blower. Instead of the backup roll 6, a conductive layer 5 formed in advance between the substrate 2 and the coating film 1 can be used as a counter electrode. This makes it easier to apply a high electric field because the electrode interval is further reduced. When the backup roll / counter electrode 6 is used, the conductive layer 5 is not necessarily required. When the conductive layer 5 is used as a counter electrode, the backup roll 6 does not necessarily have to serve as an electrode.

図5は本発明の硬化膜形成装置の第3の態様を示す概念図である。基体2は図示さえていない走行手段によって矢印8方向へ走行され、マイクログラビア装置のグラビアロール10によって塗布液が基体2に塗布され、未乾燥塗膜1が形成される。マイクログラビアロールに近接してスムーザー3−5が設置され、塗膜表面の平滑化がなされるが、同時に、スムーザーの基体2を挟んで反対側のバックアップロール6とともに配向電極と対向電極が構成されており、電界印加手段となっている。スムーザー3−5とバックアップロール6の間を走行した基体上の塗膜は表面が平滑化されるとともに、塗膜中の分散微粒子が配向または移動してその分散微粒子の密度勾配または局在化状態、あるいは配向状態が4の硬化手段によって固定され硬化塗膜が形成される。バックアップロール6に換えて基体と2と塗膜1との間に予め形成された導電層5を対向電極として用いることができる。このようにすると電極間隔がより狭められるので高い電界をかけやすくなる。バックアップロール兼対向電極6を用いる場合は必ずしも導電層5は必要ではない。導電層5を対向電極として用いる場合にはバックアップロール6は必ずしも電極を兼ねる必要はない。   FIG. 5 is a conceptual diagram showing a third mode of the cured film forming apparatus of the present invention. The substrate 2 is moved in the direction of the arrow 8 by a traveling means (not shown), and the coating liquid is applied to the substrate 2 by the gravure roll 10 of the microgravure apparatus, whereby the undried coating film 1 is formed. A smoother 3-5 is installed close to the micro gravure roll to smooth the surface of the coating film. At the same time, an orientation electrode and a counter electrode are formed together with the backup roll 6 on the opposite side across the substrate 2 of the smoother. It is an electric field applying means. The surface of the coating film on the substrate that has run between the smoother 3-5 and the backup roll 6 is smoothed, and the dispersed fine particles in the coating film are oriented or moved, resulting in a density gradient or localized state of the dispersed fine particles. Alternatively, the cured film is formed by being fixed by a curing means having an orientation state of 4. Instead of the backup roll 6, a conductive layer 5 formed in advance between the substrate 2 and the coating film 1 can be used as a counter electrode. This makes it easier to apply a high electric field because the electrode interval is further reduced. When the backup roll / counter electrode 6 is used, the conductive layer 5 is not necessarily required. When the conductive layer 5 is used as a counter electrode, the backup roll 6 does not necessarily have to serve as an electrode.

本発明の硬化膜形成装置に用いる塗布液について以下に記載する。
塗布液に含有される分散微粒子のうち、形状異方性を有する粒子としては、電界の下で誘電分極を起こすという点で一般的に絶縁体は誘電体となりうるので絶縁性の形状異方性粒子であれば利用可能である。また、炭素繊維、針状アンチモンドープ酸化スズ(ATO)、ATOで被覆された酸化チタン、針状インジウム−スズ酸化物(ITO)のような導電性を有する形状異方性粒子も電界の下で静電誘導による電荷を安定して生じ得る場合には利用可能であって、特に熱伝導異方性や電気伝導異方性等の機能を付与するときには好適に用いられるがこれらに限定されるものではない。
It describes below about the coating liquid used for the cured film formation apparatus of this invention.
Among the dispersed fine particles contained in the coating solution, as the particles having shape anisotropy, the insulator can generally be a dielectric in terms of causing dielectric polarization under an electric field. Any particle can be used. In addition, shape anisotropic particles having conductivity such as carbon fiber, acicular antimony-doped tin oxide (ATO), titanium oxide coated with ATO, acicular indium-tin oxide (ITO) are also applied under an electric field. It can be used in the case where charges due to electrostatic induction can be generated stably, and is particularly suitable for imparting functions such as thermal conductivity anisotropy and electrical conductivity anisotropy, but is not limited to these is not.

前述の形状異方性粒子の長軸の平均長さは0.1μm〜500μm、光学的な目的では0.1μm〜10μmが好ましく、平均アスペクト比は2〜1000、特に5〜500が好ましいが、必ずしも限定されるものではない。また、微粒子の形状も特に限定されるものではない。また、塗膜の厚み以上の長さを有する形状異方性粒子にあっては塗布面と微粒子の長軸方向の角度に制限が生じるが、本発明において利用可能である。   The average length of the major axis of the aforementioned shape anisotropic particles is 0.1 μm to 500 μm, preferably 0.1 μm to 10 μm for optical purposes, and the average aspect ratio is preferably 2 to 1000, particularly preferably 5 to 500, It is not necessarily limited. Further, the shape of the fine particles is not particularly limited. Further, in the case of shape anisotropic particles having a length equal to or greater than the thickness of the coating film, there is a limitation on the angle between the coated surface and the long axis direction of the fine particles, but it can be used in the present invention.

誘電体である形状異方性粒子としては、例えば、ロッシェル塩、リン酸二水素カリウム、チタン酸バリウム・チタン酸カリウム・チタン酸ストロンチウム・チタン酸カルシウム等のチタン酸塩、ニオブ酸リチウム・ニオブ酸カリウム等のニオブ酸塩、硫酸グアニジンアルミニウム、SrBiTa・BiTi12・SrBiNb等のBi層状ペロブスカイト構造化合物、SrNaNb15等のタングステンブロンズ型化合物等の強誘電体、炭酸ストロンチウム、酸化チタン、酸化アルミニウム、マイカ等の無機の誘電体、アラミド繊維、全芳香族性ポリエステル繊維、ポリイミド繊維、ポリアミド繊維、ガラス繊維、シリカ繊維、アルミナ繊維、ジルコニア繊維等の無機あるいは有機繊維があり、特に上記の形状異方性を有する材料のうち想定される使用波長に対して透明なもの、または長軸長が想定される使用波長の1/2以下、使用波長に幅のあるものについては最短波長の1/2以下のものが光拡散や光反射防止の機能を付与するための分散微粒子として好適に用いられるが、これらに限定されるものではない。また、分散微粒子を光学材料に用いる場合の分散微粒子の屈折率は、透明性を確保するため、塗膜樹脂の屈折率との差が小さい事が望ましい。これら形状異方性を有する粒子の中から個々の用途に適した物性を与える粒子(用途が光拡散の場合は光拡散剤)を選んで使用することができる。 Examples of shape anisotropic particles that are dielectrics include Rochelle salt, potassium dihydrogen phosphate, titanates such as barium titanate, potassium titanate, strontium titanate, calcium titanate, lithium niobate, niobic acid Niobates such as potassium, guanidine aluminum sulfate, Bi layered perovskite structure compounds such as SrBi 2 Ta 2 O 9 .Bi 4 Ti 3 O 12 .SrBi 2 Nb 2 O 9 , tungsten bronze type such as Sr 2 NaNb 5 O 15 Ferroelectrics such as compounds, inorganic dielectrics such as strontium carbonate, titanium oxide, aluminum oxide, mica, aramid fibers, wholly aromatic polyester fibers, polyimide fibers, polyamide fibers, glass fibers, silica fibers, alumina fibers, zirconia There are inorganic or organic fibers such as fibers, Among the materials having the above shape anisotropy, those that are transparent with respect to the assumed use wavelength, or those that have a long axis length of 1/2 or less of the use wavelength and with a wide use wavelength are the shortest. Those having a wavelength of 1/2 or less are suitably used as dispersed fine particles for imparting functions of light diffusion and light reflection prevention, but are not limited thereto. Further, it is desirable that the refractive index of the dispersed fine particles when the dispersed fine particles are used for the optical material is small in difference from the refractive index of the coating film resin in order to ensure transparency. Among these particles having shape anisotropy, particles that give physical properties suitable for each application (a light diffusing agent when the application is light diffusion) can be selected and used.

分散微粒子を移動して、主に局在化効果を利用する場合は、球状または他の平均アスペクト比2未満の不定形の分散粒子を用いることができる。具体的には架橋樹脂粒子、金属、金属酸化物、金属塩等特に制限はないが、塗膜表面に局在化したときの表面硬度及び透明性を考慮すると、シリカ、アルミナ、セリア、ジルコニア、酸化チタン等の金属酸化物、炭酸カルシウム、炭酸マグネシウム等の金属炭酸塩、タルク、ケイ酸カルシウム、ガラス等のケイ酸塩、チタン酸カルシウム、チタン酸バリウム等の金属チタン酸塩が好ましい。   When moving the dispersed fine particles and mainly utilizing the localization effect, spherical or other irregular shaped particles having an average aspect ratio of less than 2 can be used. Specifically, there are no particular limitations on the cross-linked resin particles, metal, metal oxide, metal salt, etc., but considering the surface hardness and transparency when localized on the coating film surface, silica, alumina, ceria, zirconia, Metal oxides such as titanium oxide, metal carbonates such as calcium carbonate and magnesium carbonate, silicates such as talc, calcium silicate and glass, and metal titanates such as calcium titanate and barium titanate are preferred.

金属酸化物を分散させるには、一般的に知られている分散手法、即ち、金属酸化物の種類に応じて分散剤を選択して、他の塗布液組成と共に公知の分散機を用いて微分散を行えばよい。金属酸化物の分散以外に、アルコキシシランのような金属アルコキシドを他の塗布液組成中でゲル化し有機無機ハイブリッド粒子としてもよい。また、予め特許文献等に示された手段により、無機成分粒子の成分傾斜膜としておいても良い。   In order to disperse the metal oxide, a generally known dispersion method, that is, a dispersant is selected according to the type of the metal oxide, and a fine dispersion using a known disperser together with other coating liquid compositions. Distribution may be performed. In addition to the dispersion of the metal oxide, a metal alkoxide such as alkoxysilane may be gelled in another coating liquid composition to form organic-inorganic hybrid particles. In addition, a component gradient film of inorganic component particles may be provided by means previously disclosed in patent documents.

本発明で用いる塗布液の組成としては、塗膜形成性成分として分散微粒子の他に、塗膜形成性樹脂、またはモノマー、またはオリゴマーを含有することが好ましく、またそれらを溶解する溶剤を含有していてもよい。   The composition of the coating solution used in the present invention preferably contains a film-forming resin, a monomer, or an oligomer in addition to the dispersed fine particles as a film-forming component, and contains a solvent for dissolving them. It may be.

塗布液を基体に塗工し、粒子の配向・泳動後に硬化膜を形成する方法としては溶剤の蒸発でもよく、この場合は通常塗膜形成に用いられる種々の塗膜形成性樹脂と溶剤との組み合わせを用いることができる。あるいは熱溶融した樹脂の冷却による硬化をもちいることができる。あるいはまた塗膜形成性成分として金属アルコキシドを用いた塗布液において、加水分解によるゲル化を用いることもできる。   As a method of forming a cured film after applying the coating solution to the substrate and then aligning and migrating the particles, evaporation of the solvent may be used. In this case, various coating-forming resins and solvents usually used for coating film formation are used. Combinations can be used. Or hardening by cooling of the hot-melted resin can be used. Alternatively, in a coating solution using a metal alkoxide as a coating film forming component, gelation by hydrolysis can be used.

前記塗布液を塗布する基体が、プラスチック基板・フィルムのような溶剤や加熱等による影響を受けやすい場合には、該塗布液は活性エネルギー線硬化性組成物であることが好ましい。該塗布液が感応する活性エネルギー線を照射して硬化させることにより、例えば光学材料では光学特性に影響を及ぼすことなく瞬時に優れた硬化塗膜を得ることができる。
活性エネルギー線としては、電子線などの粒子線、X線や紫外線等の電磁波が利用可能であるが、紫外線が取扱・コスト等で好適である。この時は、該塗布液は紫外線硬化性組成物であれば良い。
In the case where the substrate to which the coating solution is applied is easily affected by a solvent such as a plastic substrate / film or heating, the coating solution is preferably an active energy ray-curable composition. By irradiating and curing the active energy ray to which the coating solution is sensitive, for example, in an optical material, an excellent cured coating film can be obtained instantaneously without affecting optical characteristics.
As the active energy rays, particle beams such as electron beams and electromagnetic waves such as X-rays and ultraviolet rays can be used, but ultraviolet rays are preferable in terms of handling and cost. At this time, the coating solution may be an ultraviolet curable composition.

紫外線硬化性組成物よりなる塗布液の紫外線硬化性を与える構成成分としては、目的に応じて、光ラジカル重合性成分や、光イオン重合性成分等を適宜選択して組み合わせて用いればよいが、一例として多官能アクリル系モノマー・オリゴマーがある。具体的には(メタ)アクリロイル基を有するオリゴマー、分子中に3個以上の(メタ)アクリロイル基を有する多官能モノマー、(メタ)アクリロイル基を有する1〜2官能モノマーである。
(メタ)アクリロイル基を有するオリゴマーの例としては、ポリエステル(メタ)アクリレート、ポリウレタン(メタ)アクリレート、エポキシ(メタ)アクリレートなどが挙げられる。
As a component for imparting ultraviolet curability of a coating solution made of an ultraviolet curable composition, depending on the purpose, a radical photopolymerizable component, a photoionic polymerizable component, etc. may be appropriately selected and used in combination. One example is a polyfunctional acrylic monomer / oligomer. Specifically, it is an oligomer having a (meth) acryloyl group, a polyfunctional monomer having three or more (meth) acryloyl groups in the molecule, and a 1-2 functional monomer having a (meth) acryloyl group.
Examples of the oligomer having a (meth) acryloyl group include polyester (meth) acrylate, polyurethane (meth) acrylate, and epoxy (meth) acrylate.

以上述べた、本発明の硬化膜形成装置を用いることにより耐摩擦性・耐擦過性に優れた高輝度の光拡散フィルムやシート、反射戻り光の少ない反射防止フィルムやシート、あるいは放熱フィルムやシート、電気伝導異方性フィルムやシートを作製することができる。 By using the cured film forming apparatus of the present invention described above, a high-brightness light diffusing film or sheet excellent in friction resistance and scratch resistance, an antireflection film or sheet with little reflected return light, or a heat dissipation film or sheet An electrically conductive anisotropic film or sheet can be produced.

本発明の硬化膜形成装置により光拡散シートを作製する場合には、形状異方性粒子の長軸方向を膜厚方向に配向させることにより行うことができる。光拡散層の入射側から入った光は、塗膜の膜厚方向に配向された光拡散剤によって透過側方向の成分を持つ方向に反射される。このため反射光は、不定形粒子や球状粒子が塗膜中に分散されている場合や、あるいは形状異方性粒子が分散されていても長軸方向が膜厚方向に配向されていない場合の反射光に比べて、入射側に戻ってくることが少なく極めて効率よく光拡散層の透過側に抜けることが可能になる。加えて球状または不定形粒子が表面に局在化した内部粒子層が形成されることにより、耐摩擦性・耐擦過性のみならず、光学的にも粒子配向層を抜けた光をさらに拡散する効果が増大する。   When producing a light-diffusion sheet with the cured film forming apparatus of this invention, it can carry out by orienting the major axis direction of a shape anisotropic particle to a film thickness direction. Light entering from the incident side of the light diffusion layer is reflected in a direction having a component in the transmission side direction by the light diffusing agent oriented in the film thickness direction of the coating film. For this reason, the reflected light is obtained when amorphous particles or spherical particles are dispersed in the coating film, or when the long axis direction is not oriented in the film thickness direction even if the shape anisotropic particles are dispersed. Compared to the reflected light, the light does not return to the incident side, and it is possible to escape to the transmission side of the light diffusion layer extremely efficiently. In addition, the formation of an internal particle layer in which spherical or amorphous particles are localized on the surface further diffuses light that has passed through the particle alignment layer optically as well as friction and scratch resistance. The effect is increased.

本発明の硬化膜形成装置により光反射防止フィルム・シートを作製する場合には、前述光拡散フィルムと同様、耐摩擦性・耐擦過性に優れ、かつ再度入射光側に戻る光成分による反射光が少なくなり、従来の無機粒子を入れたアクリル樹脂からなるAG(アンイグレア)フィルムと比較して大幅な反射防止効果が得られる。加えて球状または不定形粒子が表面に局在化した内部粒子層が形成されることにより、耐摩擦性・耐擦過性のみならず、内部粒子層の厚みを制御することによって光学的にも反射光の位相を制御して優れたAG特性を得ることが可能となる。   When producing a light reflection preventing film / sheet with the cured film forming apparatus of the present invention, the light reflected by the light component which is excellent in abrasion resistance and scratch resistance and returns to the incident light side again as in the case of the light diffusion film described above. As compared with an AG (Ani-Glare) film made of an acrylic resin containing inorganic particles, a significant antireflection effect can be obtained. In addition, by forming an internal particle layer with spherical or amorphous particles localized on the surface, not only abrasion resistance and scratch resistance, but also optical reflection by controlling the thickness of the internal particle layer It is possible to obtain excellent AG characteristics by controlling the phase of light.

本発明の硬化膜形成装置により放熱フィルム・シートを作製する場合には、形状異方性粒子の長軸方向を塗布面に対して膜厚方向に配向させることにより、熱の伝導方向が、フィルム、シート面に対し縦方向に、より効果的な熱伝導異方性を示し、不定形粒子や球状粒子あるいは形状異方性粒子の長軸方向が膜厚方向に配向されていない場合に比べて、極めて効率よく膜厚方向の熱の伝導が可能になる。加えて球状または不定形粒子が表面に局在化した内部粒子層が形成されることにより、耐摩擦性・耐擦過性のみならず、熱的にも粒子配向層を通った熱を表面で放散する効果が増大する。   When producing a heat-dissipating film or sheet with the cured film forming apparatus of the present invention, the direction of heat conduction is determined by orienting the major axis direction of the shape anisotropic particles in the film thickness direction with respect to the coating surface. , Showing more effective thermal conductivity anisotropy in the longitudinal direction with respect to the sheet surface, compared to the case where the long axis direction of the amorphous particles, spherical particles or shape anisotropic particles is not oriented in the film thickness direction It is possible to conduct heat in the film thickness direction very efficiently. In addition, the formation of an internal particle layer with spherical or amorphous particles localized on the surface dissipates not only the friction and scratch resistance, but also the heat through the particle orientation layer thermally. To increase the effect.

本発明の硬化膜形成装置により電気伝導性フィルム・シートを作製する場合には、導電性を有する形状異方性粒子の長軸方向を、塗布面に対して膜厚方向に配向させることにより、電気伝導方向が、フィルム・シート面に対し膜厚方向により効果的な電気伝導異方性を示し、不定形粒子や球状粒子あるいは形状異方性粒子の長軸方向が縦方向に配向されていない場合に比べて、極めて効率よく膜厚方向の電気の伝導が可能になる。加えて球状または不定形粒子が表面に局在化した内部粒子層が形成されることにより、耐摩擦性・耐擦過性が増大する。   When producing an electrically conductive film sheet by the cured film forming apparatus of the present invention, by orienting the major axis direction of the shape anisotropic particles having conductivity in the film thickness direction with respect to the coating surface, The electric conduction direction shows more effective electric conduction anisotropy in the film thickness direction with respect to the film / sheet surface, and the major axis direction of the amorphous particles, the spherical particles, or the shape anisotropic particles is not oriented in the vertical direction. Compared to the case, it is possible to conduct electricity in the film thickness direction very efficiently. In addition, the formation of an internal particle layer in which spherical or irregular particles are localized on the surface increases the friction resistance and scratch resistance.

本発明の硬化膜形成装置で製造される硬化膜中の形状異方性を有する分散微粒子は、その長軸が硬化膜の膜厚方向に配向しているが、該長軸方向は硬化膜表面に対して必ずしも垂直である必要はなく、形状異方性粒子の長軸方向が塗布時に比して、塗布面に対し僅かにでも立っていれば相応の効果が発揮される。特に形状異方性を有する分散微粒子は塗布液の塗布時に塗布方向に沿って塗布面と平行方向に配向することが多く、この状態から配向手段として加える電界の強度や印加時間に応じて膜厚方向に立ち上がる。このとき塗布面と分散微粒子の長軸方向の角度の平均値は30度以上が好ましく、より好ましくは45度以上である。   The dispersed fine particles having shape anisotropy in the cured film produced by the cured film forming apparatus of the present invention have their major axis oriented in the film thickness direction of the cured film, and the major axis direction is the surface of the cured film. However, it is not always necessary to be perpendicular to the shape, and if the long axis direction of the shape anisotropic particles stands slightly with respect to the coated surface as compared with the time of coating, a corresponding effect is exhibited. In particular, dispersed fine particles having shape anisotropy are often oriented in the direction parallel to the coating surface along the coating direction during coating of the coating liquid. Stand up in the direction. At this time, the average value of the angle in the major axis direction of the coated surface and the dispersed fine particles is preferably 30 degrees or more, more preferably 45 degrees or more.

本発明の硬化膜形成装置で製造される硬化膜は基体上に形成されて、該基体に各種物性を付与する機能性膜として、あるいは薄膜状基体と共に機能性硬化フィルム、機能性硬化シートとして用いられる他、基体を伴わずに硬化フィルム、硬化シートとして用いることもできる。このようなフィルム、シートは、例えば基体として可撓性フィルムを用い、該フィルム上にシリコーンやフッ素系樹脂を塗設したり、ポリテトラフルオロエチレンを蒸着したりして剥離層を形成したのち、その上に形状異方性を有する分散微粒子を配向させた硬化膜を形成し、該硬化膜を剥離するような機能を有する付加的な装置を組み合わせることも可能である。   The cured film produced by the cured film forming apparatus of the present invention is formed on a substrate and used as a functional film for imparting various physical properties to the substrate, or as a functional cured film or a functional cured sheet together with a thin film substrate. In addition, it can be used as a cured film or a cured sheet without a substrate. Such a film or sheet uses, for example, a flexible film as a base, and after applying a silicone or fluorine resin on the film or depositing polytetrafluoroethylene to form a release layer, It is also possible to combine an additional apparatus having a function of forming a cured film in which dispersed fine particles having shape anisotropy are oriented thereon and peeling the cured film.

以下に、実施例および比較例を挙げて、本発明の硬化膜形成装置をさらに具体的に説明するが、本発明はこれらの例に限定されるものではない。まず、表1に示す組成からなる無溶剤系紫外線硬化性組成物を作製した。表内の数字は全て質量部を表す。   Hereinafter, the cured film forming apparatus of the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. First, a solventless ultraviolet curable composition having the composition shown in Table 1 was prepared. All numbers in the table represent parts by mass.

Figure 2005288215
Figure 2005288215

M−315:トリス(アクリロイルオキシエチル)イソシアヌレート
TMP3A:トリメチロールプロパントリアクリレート
BP:ベンゾフェノン
DMAEA:N、N−ジメチルアミノエチルアクリルアミド
FZ−2188:日本ユニカー社製ポリエーテル変性シリコーンオイル
形状異方性粒子1:気相法炭素繊維(昭和電工製VGCF)繊維径150nm、アスペクト比100。
形状異方性粒子2:炭酸ガス化合法で得られた炭酸ストロンチウム結晶。粒径150nmアスペクト比3の微細形状のもの。
形状異方性粒子3:針状酸化スズ(アンチモンドープ)(石原テクノ製FS−10P)長径200〜2000nm、アスペクト比20〜30。
形状異方性粒子4:ITO針状微粒子(住友金属鉱山製SCP2)長径30〜40μmアスペクト比10。
疎水性シリカ:日本アエロジル社製アエロジルR972(メタクリルシラン処理シリカ)
M-315: tris (acryloyloxyethyl) isocyanurate TMP3A: trimethylolpropane triacrylate BP: benzophenone DMAEA: N, N-dimethylaminoethylacrylamide FZ-2188: polyether modified silicone oil shape anisotropic particle manufactured by Nippon Unicar Company 1: vapor grown carbon fiber (Showa Denko VGCF) fiber diameter 150 nm, aspect ratio 100.
Shape anisotropic particle 2: strontium carbonate crystal obtained by carbon dioxide compounding method. Fine shape with a particle size of 150 nm and an aspect ratio of 3.
Shape anisotropic particle 3: acicular tin oxide (antimony dope) (FS-10P manufactured by Ishihara Techno) major axis 200-2000 nm, aspect ratio 20-30.
Shape anisotropic particles 4: ITO needle-shaped fine particles (SCP2 manufactured by Sumitomo Metal Mining) Major axis: 30-40 μm Aspect ratio: 10.
Hydrophobic silica: Aerosil R972 (methacrylic silane-treated silica) manufactured by Nippon Aerosil Co., Ltd.

(実施例1)
図1に概略図を示した本発明の硬化膜の形成装置例を用いて表1の実施例1の塗料を基板上に膜厚が約10μmとなる様に塗工ロールで塗布し、移動式のコロナ放電装置に40KVの電圧を印可し塗布膜表面を正帯電させながら、コロナ放電装置の後ろに配置した紫外線硬化装置(入力電力120W/cm)にて0.75J/cm2となる様に照射時間を調節して照射を行い塗膜を硬化した。
(Example 1)
Using the example of the cured film forming apparatus of the present invention schematically shown in FIG. 1, the coating material of Example 1 in Table 1 is applied on a substrate with a coating roll so that the film thickness is about 10 μm, and is movable. While applying a voltage of 40 KV to the corona discharge device and positively charging the surface of the coating film, irradiation is performed so that the ultraviolet ray curing device (input power 120 W / cm) disposed behind the corona discharge device is 0.75 J / cm 2. The coating was cured by adjusting the time for irradiation.

(実施例2)
図2に概略図を示した本発明の硬化膜の形成装置例を用いて,表1の実施例2の塗料を基板上に滴下して,膜厚が約5μmとなる様にスピン塗布し、移動式のコロナ放電装置に40KVの電圧を印可し塗布膜表面を正帯電させながら、コロナ放電装置の後ろに配置した紫外線硬化装置(入力電力120W/cm)にて0.75J/cm2となる様に照射時間を調節して照射を行い塗膜を硬化した。
(Example 2)
Using the example of the cured film forming apparatus of the present invention schematically shown in FIG. 2, the paint of Example 2 in Table 1 is dropped on the substrate and spin-coated so that the film thickness becomes about 5 μm. A voltage of 40 KV is applied to the mobile corona discharge device to positively charge the surface of the coating film, and an ultraviolet curing device (input power 120 W / cm) placed behind the corona discharge device gives 0.75 J / cm 2. The film was cured by adjusting the irradiation time.

(実施例3)
図3に概略図を示した本発明の機能性硬化膜の製造方法例を用いて,表1の実施例3の塗料を基体フィルム上に膜厚が約10μmとなる様に塗布し、塗工ロールに1KVの正電圧を印可しながら、直後に設置した紫外線硬化装置(入力電力120W/cm)にて、0.75J/cm2となる様に基体フィルムの巻き取りピードを調節し、塗膜を硬化した。
(Example 3)
Using the example of the method for producing a functional cured film of the present invention schematically shown in FIG. 3, the coating material of Example 3 in Table 1 is applied on the base film so that the film thickness is about 10 μm. While applying a positive voltage of 1 KV to the roll, the winding speed of the base film was adjusted to 0.75 J / cm 2 with an ultraviolet curing device (input power 120 W / cm) installed immediately afterwards, Cured.

(実施例4)
図4に概略図を示した本発明の機能性硬化膜の製造方法例を用いて,表1の実施例4の塗料を基体フィルム上に膜厚が約100μmとなる様に塗布し、塗工ロールに1KVの正電圧を印可しながら、直後に設置した式紫外線硬化装置(入力電力120W/cm)にて、0.75J/cm2となる様に基体フィルムの巻き取りピードを調節し、塗膜を硬化した。
各実施例で作製した機能性硬化膜の特性を以下の評価方法にて測定した。
Example 4
Using the example of the method for producing a functional cured film of the present invention schematically shown in FIG. 4, the coating material of Example 4 in Table 1 is applied on the base film so that the film thickness is about 100 μm. While applying a positive voltage of 1 KV to the roll, the winding speed of the base film was adjusted to 0.75 J / cm 2 with a type ultraviolet curing device (input power 120 W / cm) installed immediately afterwards, and the coating film Cured.
The characteristics of the functional cured film produced in each example were measured by the following evaluation methods.

(塗膜の硬化性)
表面をメタノールで含浸したキムワイプで擦り、表面の白化の有無で、塗膜の硬化を確認した。表中、OKは、硬化膜表面が溶剤に侵されず、白化を生じない場合を表し、NGは、白化が見られた場合を表す。
(Curability of coating film)
The surface was rubbed with a Kim wipe impregnated with methanol, and the coating was confirmed to be hardened by the presence or absence of whitening of the surface. In the table, OK represents a case where the surface of the cured film was not affected by the solvent and did not cause whitening, and NG represents a case where whitening was observed.

(鉛筆硬度の評価)
上記と同様(但し、塗料Fの硬化条件は、1パス1.0J/cm2 )にして、透明ガラス基板上に硬化膜を調製し、JIS K−5400に従い、すり傷にて、膜硬度を評価した。
(Evaluation of pencil hardness)
Prepare the cured film on the transparent glass substrate in the same manner as above (however, the curing condition of the paint F is 1.0 J / cm2 for 1 pass), and evaluate the film hardness by scratch according to JIS K-5400. did.

(環状オレフィンフイルムへの接着性評価)
ジェイエスアール社製「アートン」フイルム(188μm厚み)上に紫外線硬化性組成物を塗布して硬化させ、硬化膜の接着性を評価した。接着性の評価は、JIS K−5400に従い、クロスカット−セロテープ(登録商標)剥離試験方法により行った。表中、OKは、硬化膜のフイルムからの剥離が見られなかった場合を表し、NGは剥離が見られた場合を表す。
(Evaluation of adhesion to cyclic olefin film)
The UV curable composition was applied on an “Arton” film (188 μm thick) manufactured by JSR Co., Ltd. and cured, and the adhesion of the cured film was evaluated. Evaluation of adhesiveness was performed by the crosscut-cello tape (registered trademark) peel test method in accordance with JIS K-5400. In the table, OK represents a case where peeling of the cured film from the film was not observed, and NG represents a case where peeling was observed.

(熱伝導率)
基板から硬化膜を剥がし、硬化膜を市販の熱伝導率測定計により測定した。
(Thermal conductivity)
The cured film was peeled off from the substrate, and the cured film was measured with a commercially available thermal conductivity meter.

(輝度)
基体側からバックライトを照射したときの目視による輝度の観察を行った。
(Luminance)
The brightness was visually observed when the backlight was irradiated from the substrate side.

(グレア)
硬化塗膜に対し,8度の角度に置いた蛍光灯の写り込みを目視で評価した。
(Glare)
The appearance of a fluorescent lamp placed at an angle of 8 degrees was visually evaluated on the cured coating film.

(電気伝導率)
基板から硬化膜を剥がし、機能性硬化膜を市販の体積抵抗率計により測定した。
以上の測定項目の測定結果を表2に示す。
(Electrical conductivity)
The cured film was peeled off from the substrate, and the functional cured film was measured with a commercially available volume resistivity meter.
Table 2 shows the measurement results of the above measurement items.

Figure 2005288215
Figure 2005288215

表2の結果から明らかなように、またこれら実施例1、実施例2においては、形状異方性を有する分散微粒子の硬化膜表面方向への、電気泳動による移動が発生しており、硬化膜表面の硬度が上昇している。
実施例1に示す硬化膜はそれぞれ対応する硬化膜に比べて熱伝導率と輝度が改良されている。実施例2の輝度は目視観察上明らかに高い輝度を示した。実施例3に示す機能性硬化膜はアンチグレア性は良好であった。実施例3,4に示す機能性硬化膜はそれぞれ低い電気抵抗を示している。
As is apparent from the results in Table 2, in Examples 1 and 2, the dispersed fine particles having shape anisotropy move toward the cured film surface by electrophoresis, and the cured film The surface hardness is increased.
The cured film shown in Example 1 has improved thermal conductivity and brightness as compared with the corresponding cured film. The brightness of Example 2 was clearly high by visual observation. The functional cured film shown in Example 3 had good antiglare properties. The functional cured films shown in Examples 3 and 4 each have a low electrical resistance.

本発明の硬化膜形成装置のロールコート後のコロナ帯電電極を用いた泳動・配向装置と紫外線照射装置構成を示した説明図である。It is explanatory drawing which showed the electrophoresis / orientation apparatus using the corona charging electrode after the roll coating of the cured film formation apparatus of this invention, and the ultraviolet irradiation apparatus structure. 本発明のスピン塗工における硬化膜形成装置の塗布装置の構成を示した説明図である。It is explanatory drawing which showed the structure of the coating device of the cured film formation apparatus in the spin coating of this invention. コロナ帯電電極を用いた泳動・配向装置と紫外線照射装置構成を示した説明図である。It is explanatory drawing which showed the electrophoresis and orientation apparatus using a corona charging electrode, and an ultraviolet irradiation device structure. 本発明の硬化膜形成装置のダイ塗工におけるスロットダイを泳動・配向電極(対向電極)として用いた泳動・配向装置と紫外線照射装置構成を示した説明図である。It is explanatory drawing which showed the structure of the electrophoresis / orientation apparatus and ultraviolet irradiation device which used the slot die in the die coating of the cured film forming apparatus of this invention as an electrophoresis / orientation electrode (counter electrode). 本発明の硬化膜形成装置のマイクログラビア塗工におけるスムーザー(ドクターブレード)3−5を泳動・配向電極(対向電極)として用いた泳動・配向装置と紫外線照射装置構成を示した説明図である。It is explanatory drawing which showed the electrophoresis / orientation apparatus and ultraviolet irradiation apparatus structure which used the smoother (doctor blade) 3-5 in the micro gravure coating of the cured film formation apparatus of this invention as an electrophoresis / orientation electrode (counter electrode).

符号の説明Explanation of symbols

1 ・・未硬化塗膜
2 ・・基体
3 ・・塗布液滴下装置
3−1・・コロナ帯電電極
3−2・・コロナ
3−3・・スロットダイ
3−4・・スロットダイ泳動・配向電極
3−5・・スムーザー(ドクターブレード)兼泳動・配向電極
4 ・・・紫外線照射装置
4−1・・紫外線
5 ・・・導電層
6 ・・・バックアップロール兼対向電極
6−1・・バックアッププレート兼対向電極
7 ・・・粒子の泳動・配向した硬化膜(硬化)
8 ・・・進行方向
9 ・・・液パン
10 ・・・マイクログラビア

1 .. Uncured coating film 2 .. Substrate 3 .. Coating droplet dropping device 3-1 .. Corona charging electrode 3-2 .. Corona 3-3 .. Slot die 3-4. 3-5 ··· Smoother (doctor blade) / electrophoresis / orientation electrode 4 ··· UV irradiation device 4 ··· UV · 5 ··· conductive layer 6 ··· Backup roll and counter electrode 6-1 ··· Backup plate And counter electrode 7 ・ ・ ・ Molecular migration and orientation of cured film (cured)
8 ... Traveling direction 9 ... Liquid pan 10 ... Micro gravure

Claims (7)

基体上に分散微粒子を含有する塗布液を供給して塗膜を形成する塗布手段と、前記塗膜に電界を印加して前記塗膜中の前記分散微粒子を膜厚方向に移動または配向させるための電界印加手段と、電界印加中または印加直後に前記塗膜を硬化させる硬化手段とを有することを特徴とする硬化膜形成装置。   A coating means for forming a coating film by supplying a coating solution containing dispersed fine particles onto a substrate, and an electric field applied to the coating film to move or orient the dispersed fine particles in the coating film in the film thickness direction. A cured film forming apparatus comprising: an electric field applying unit; and a curing unit configured to cure the coating film during or immediately after the application of the electric field. 前記基体は長尺状の基体であって、該長尺状基体を連続走行させるための走行手段を有する請求項1に記載の硬化膜形成装置。   The cured film forming apparatus according to claim 1, wherein the substrate is a long substrate, and has a traveling unit for continuously traveling the long substrate. 前記電界印加手段は塗膜表面に静電荷を供給し、該静電荷の形成する電界を用いるものである請求項1または2に記載の硬化膜形成装置。   The cured film forming apparatus according to claim 1 or 2, wherein the electric field applying means supplies an electrostatic charge to the surface of the coating film and uses an electric field formed by the electrostatic charge. 前記電界印加手段はバックアップロールと塗工ヘッドまたは塗工ロールとの間に電界を形成するものである請求項2に記載の硬化膜形成装置。   The cured film forming apparatus according to claim 2, wherein the electric field applying unit forms an electric field between a backup roll and a coating head or a coating roll. 前記電界印加手段は塗膜表面のスムーザーとバックアップロールとの間に電界を印加するものである請求項2に記載の硬化膜形成装置。   The cured film forming apparatus according to claim 2, wherein the electric field applying unit applies an electric field between a smoother on a coating film surface and a backup roll. 前記基体は塗膜形成側の表面に導電層を有しており、前記電界印加手段は該導電層と塗工ヘッドまたはスムーザーとの間に電界を形成するものである請求項2に記載の硬化膜形成装置。   The curing according to claim 2, wherein the substrate has a conductive layer on the surface on the coating film forming side, and the electric field applying means forms an electric field between the conductive layer and the coating head or smoother. Film forming device. 前記塗布液は活性エネルギー線硬化性組成物であって、前記硬化手段は活性エネルギー線照射装置である請求項1に記載の硬化膜形成装置。

The cured film forming apparatus according to claim 1, wherein the coating liquid is an active energy ray curable composition, and the curing unit is an active energy ray irradiation device.

JP2004103040A 2004-03-31 2004-03-31 Cured membrane forming apparatus Pending JP2005288215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004103040A JP2005288215A (en) 2004-03-31 2004-03-31 Cured membrane forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004103040A JP2005288215A (en) 2004-03-31 2004-03-31 Cured membrane forming apparatus

Publications (1)

Publication Number Publication Date
JP2005288215A true JP2005288215A (en) 2005-10-20

Family

ID=35321775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004103040A Pending JP2005288215A (en) 2004-03-31 2004-03-31 Cured membrane forming apparatus

Country Status (1)

Country Link
JP (1) JP2005288215A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220057A (en) * 2008-03-18 2009-10-01 Toppan Printing Co Ltd Method of manufacturing anti-glare laminated body
JP2016040754A (en) * 2014-08-12 2016-03-24 株式会社豊田自動織機 Coating device for active material slurry

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220057A (en) * 2008-03-18 2009-10-01 Toppan Printing Co Ltd Method of manufacturing anti-glare laminated body
JP2016040754A (en) * 2014-08-12 2016-03-24 株式会社豊田自動織機 Coating device for active material slurry

Similar Documents

Publication Publication Date Title
JP6040936B2 (en) Antireflection film manufacturing method, antireflection film, polarizing plate, and image display device
JP5026538B2 (en) Display device
US9756722B2 (en) Transparent electroconductive film
US6797210B2 (en) Functional film having functional layer and article provided with functional layer
JP5229108B2 (en) Transparent conductive laminated film, transparent conductive laminated sheet, and touch panel
WO2015115540A1 (en) Double-sided translucent conductive film, roll thereof, and touch panel
KR101555411B1 (en) Transparent conductive film and use thereof
JP6404372B2 (en) Wavelength conversion member, backlight unit, image display device, and method of manufacturing wavelength conversion member
JP2003045234A (en) Transparent conductive film
TWI653136B (en) Laminated polyester film and polarizing plate using the same
JP2006030983A (en) Antistatic laminated body and polarizing plate using the same
JP2008274266A (en) Composition, single layer, and member or layered product capable of exhibiting antistatic property (and hard coat nature)
JP2005248173A (en) Coating material, preparation of optical film, optical film, polarizing plate and image display device
JP2006206831A (en) Transparent conductive film and touch panel using the same
JP2005306992A (en) Functional cured film
JP2005292646A (en) Manufacturing method of antireflection film and antireflection film
WO2018117256A1 (en) Light control member, method for producing light control member, light control body and vehicle
JP2005288215A (en) Cured membrane forming apparatus
JP2005313027A (en) Conductive film and its manufacturing method, optical element and image display device
JP2005288214A (en) Method of producing hardened film
WO2021251498A1 (en) Light control sheet
KR101224621B1 (en) Method of producing hard coat and anti-reflection glaring film with conductive/magnetic particle
JP2011098445A (en) Optical laminate and method for manufacturing the same, and polarizing plate and display device using the same
KR20060116005A (en) Optical integrator
JP2004130736A (en) Method for manufacturing easily smoothed film, and plastic substrate for displaying using the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20050909

Free format text: JAPANESE INTERMEDIATE CODE: A7421