JP2005286008A - Electric double layer capacitor - Google Patents

Electric double layer capacitor Download PDF

Info

Publication number
JP2005286008A
JP2005286008A JP2004096173A JP2004096173A JP2005286008A JP 2005286008 A JP2005286008 A JP 2005286008A JP 2004096173 A JP2004096173 A JP 2004096173A JP 2004096173 A JP2004096173 A JP 2004096173A JP 2005286008 A JP2005286008 A JP 2005286008A
Authority
JP
Japan
Prior art keywords
double layer
electric double
layer capacitor
conductive
carbon nanotubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004096173A
Other languages
Japanese (ja)
Inventor
Koji Endo
浩二 遠藤
Koichi Nishimura
康一 西村
Itsusei Yamada
逸成 山田
Mamoru Kimoto
衛 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004096173A priority Critical patent/JP2005286008A/en
Publication of JP2005286008A publication Critical patent/JP2005286008A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To reduce an internal resistance and, further, permit to obtain an electric double layer capacitor with a high capacity, in the electric double layer capacitor employing carbon nanotubes for the material of electrode. <P>SOLUTION: The electric double layer capacitor is constituted of a pair of electrodes 1, 2 and electrolytic liquid housed in a capacitor can 10 constituted of a pair of conductive cans 11, 12. In the capacitor, a multitude of the brush type carbon nanotubes, arrayed and extended into a given direction, are formed directly on the opposing inner surfaces of the conductive cans 11, 12 as the electrodes 1, 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、一対の導電性缶体で構成されるキャパシタ缶の内部に一対の電極と電解液とが収容されてなる電気二重層キャパシタに係り、特に、上記の電極材料にカーボンナノチューブを用いた電気二重層キャパシタにおいて、その内部抵抗を低減させると共に、さらに高容量の電気二重層キャパシタが得られるようにした点に特徴を有するものである。   The present invention relates to an electric double layer capacitor in which a pair of electrodes and an electrolytic solution are accommodated in a capacitor can composed of a pair of conductive can bodies, and in particular, carbon nanotubes are used as the electrode material. The electric double layer capacitor is characterized in that the internal resistance is reduced and an electric double layer capacitor having a higher capacity can be obtained.

従来より、電気エネルギーを蓄積するデバイスとして、化学電池以外に、活性炭等の比表面積の大きな電極材料を用いた電極と、電解液とを使用し、上記の電極を対向するように設け、電解液によってヘルムホルツ層と呼ばれる誘電体層を形成するようにした電気二重層キャパシタが知られている。   Conventionally, as a device for accumulating electric energy, in addition to a chemical battery, an electrode using an electrode material having a large specific surface area such as activated carbon and an electrolytic solution are used, and the electrodes are provided so as to face each other. There is known an electric double layer capacitor in which a dielectric layer called a Helmholtz layer is formed.

ここで、この電気二重層キャパシタは、電解質イオンの移動によってのみ反応が生じるため、酸化還元反応を伴う化学電池に比べて、急速で充放電できるという利点がある。   Here, since this electric double layer capacitor reacts only by the movement of electrolyte ions, it has the advantage that it can be charged and discharged more rapidly than a chemical battery with an oxidation-reduction reaction.

そして、近年においては、このような電気二重層キャパシタが、携帯電話や家庭用電気製品のバックアップ用電源や補助電源として用いられるようになり、その高容量化が要望されている。   In recent years, such an electric double layer capacitor has come to be used as a backup power source or an auxiliary power source for cellular phones and household electric appliances, and there is a demand for higher capacity.

このため、近年においては、上記の電極材料に活性炭よりも比表面積が大きいカーボンナノチューブを用い、このカーボンナノチューブと結着剤とを用いてペレット状に成形した電極をキャパシタ缶の内部に収容させるようにした電気二重層キャパシタや、集電体となる基板の片面にブラシ状カーボンナノチューブを成長させた電極をキャパシタ缶の内部に収容させるようにした電気二重層キャパシタが提案されている(例えば、特許文献1及び特許文献2参照。)。   For this reason, in recent years, carbon nanotubes having a specific surface area larger than that of activated carbon are used as the electrode material, and an electrode formed into a pellet shape using the carbon nanotube and a binder is accommodated inside the capacitor can. An electric double layer capacitor, and an electric double layer capacitor in which an electrode having brush-like carbon nanotubes grown on one side of a substrate serving as a current collector is accommodated in a capacitor can have been proposed (for example, patents) Reference 1 and Patent Document 2).

しかし、カーボンナノチューブと結着剤とを用いてペレット状に成形した電極を用いた電気二重層キャパシタの場合、上記の結着剤によって電気二重層キャパシタ全体としての静電容量が低くなると共に、内部抵抗も高くなり、さらに高容量の電気二重層キャパシタを得ることが困難であった。   However, in the case of an electric double layer capacitor using an electrode formed into a pellet shape using carbon nanotubes and a binder, the capacitance of the electric double layer capacitor as a whole is lowered by the above binder, and the internal The resistance also increased, and it was difficult to obtain a high-capacity electric double layer capacitor.

また、集電体となる基板の片面にブラシ状カーボンナノチューブを成長させた電極をキャパシタ缶の内部に収容させるようにした電気二重層キャパシタにおいても、上記の基板により電気二重層キャパシタ全体としての静電容量が低くなると共に、この基板とキャパシタ缶との接触抵抗により内部抵抗が高くなり、さらに高容量の電気二重層キャパシタを得ることが困難であった。
特開2001−307951号公報 特開2003−234254号公報
In addition, in an electric double layer capacitor in which an electrode having brush-like carbon nanotubes grown on one side of a substrate serving as a current collector is accommodated in the inside of a capacitor can, the electrostatic double layer capacitor as a whole by the above substrate is used. While the electric capacity is reduced, the internal resistance is increased due to the contact resistance between the substrate and the capacitor can, and it is difficult to obtain a high-capacity electric double layer capacitor.
JP 2001-307951 A JP 2003-234254 A

この発明は、電極材料にカーボンナノチューブを用いた電気二重層キャパシタにおいて、その内部抵抗を低減させると共に、さらに高容量の電気二重層キャパシタが得られるようにすることを課題とするものである。   An object of the present invention is to reduce the internal resistance of an electric double layer capacitor using carbon nanotubes as an electrode material, and to obtain an electric double layer capacitor having a higher capacity.

この発明においては、上記のような課題を解決するため、一対の導電性缶体で構成されるキャパシタ缶の内部に一対の電極と電解液とが収容されてなる電気二重層キャパシタにおいて、上記の電極として、一定方向に伸びて多数配列されたブラシ状のカーボンナノチューブを上記の導電性缶体の対向する内面に直接形成するようにした。   In the present invention, in order to solve the above-described problems, in an electric double layer capacitor in which a pair of electrodes and an electrolytic solution are accommodated in a capacitor can composed of a pair of conductive can bodies, As the electrodes, brush-like carbon nanotubes extending in a certain direction and arranged in an array were directly formed on the opposing inner surfaces of the conductive can body.

ここで、この発明における電気二重層キャパシタにおいて、導電性缶体の内面に上記のようなブラシ状のカーボンナノチューブを直接形成する方法は特に限定されないが、例えば、熱CVD法によって形成することができる。   Here, in the electric double layer capacitor according to the present invention, the method of directly forming the brush-like carbon nanotube as described above on the inner surface of the conductive can body is not particularly limited, but it can be formed by, for example, a thermal CVD method. .

また、上記のように導電性缶体の内面に直接ブラシ状のカーボンナノチューブを形成するにあたり、ブラシ状のカーボンナノチューブが形成される面積を大きくして、形成されるブラシ状のカーボンナノチューブの密度を高めるように、上記の導電性缶体の内面の少なくとも一部に傾斜面を設けるようにし、好ましくは、ブラシ状のカーボンナノチューブが形成される導電性缶体の内面全体にジグザグ状になった傾斜面を設けるようにする。このようにすると、水平な面に対するカーボンナノチューブの数密度が1010本/cm2以上になるようにして、ブラシ状のカーボンナノチューブを形成することが容易に行える。 In addition, when forming brush-like carbon nanotubes directly on the inner surface of the conductive can body as described above, the area where the brush-like carbon nanotubes are formed is increased, and the density of the brush-like carbon nanotubes formed is increased. In order to increase, an inclined surface is provided on at least a part of the inner surface of the conductive can body, and preferably, the inclined surface is zigzag on the entire inner surface of the conductive can body on which brush-like carbon nanotubes are formed. Provide a surface. In this way, it is possible to easily form brush-like carbon nanotubes such that the number density of carbon nanotubes relative to a horizontal surface is 10 10 / cm 2 or more.

ここで、上記のように導電性缶体の内面に傾斜面を設けるにあたっては、例えば、導電性缶体の内面に傾斜面を有する型を押し付けるようにしたり、導電性缶体の内面を、サンドブラスト処理やエッチング処理するなどの方法を用いることができる。   Here, when the inclined surface is provided on the inner surface of the conductive can body as described above, for example, a mold having the inclined surface is pressed against the inner surface of the conductive can body, or the inner surface of the conductive can body is sandblasted. A method such as processing or etching can be used.

また、上記の導電性缶体を構成する材料については特に限定されないが、耐食性に優れたステンレス製のものを用いることが好ましい。   Moreover, although it does not specifically limit about the material which comprises said electroconductive can body, It is preferable to use the thing made from stainless steel excellent in corrosion resistance.

この発明における電気二重層キャパシタにおいては、上記のように導電性缶体の対向する内面に、直接ブラシ状のカーボンナノチューブからなる電極を形成するようにしたため、カーボンナノチューブと結着剤とを用いてペレット状に成形した電極を用いる場合や、集電体となる基板の片面にブラシ状カーボンナノチューブを成長させた電極を用いる場合のように、結着剤や基板を必要としないため、重量当りの静電容量が向上すると共に、ブラシ状のカーボンナノチューブからなる電極が導電性缶体の内面に直接形成されるため、電極と導電性缶体との間の抵抗も少なくなって電気二重層キャパシタの内部抵抗も大きく低減され、高容量の電気二重層キャパシタが得られるようになる。   In the electric double layer capacitor according to the present invention, since the electrodes made of brush-like carbon nanotubes are directly formed on the opposing inner surfaces of the conductive can body as described above, the carbon nanotubes and the binder are used. Unlike the case of using an electrode formed in a pellet form or the case of using an electrode in which brush-like carbon nanotubes are grown on one side of a substrate to be a current collector, no binder or substrate is required. As the capacitance is improved and the electrode made of brush-like carbon nanotubes is directly formed on the inner surface of the conductive can body, the resistance between the electrode and the conductive can body is reduced, and the electric double layer capacitor The internal resistance is also greatly reduced, and a high-capacity electric double layer capacitor can be obtained.

また、上記のようにブラシ状のカーボンナノチューブを形成する導電性缶体の内面に傾斜面を設けると、ブラシ状のカーボンナノチューブが形成される面積が大きくなって、導電性缶体内におけるブラシ状のカーボンナノチューブの数密度が向上し、さらに高容量の電気二重層キャパシタが得られるようになる。   Further, if an inclined surface is provided on the inner surface of the conductive can body forming the brush-like carbon nanotubes as described above, the area where the brush-like carbon nanotubes are formed increases, and the brush-like carbon nanotubes in the conductive can body are formed. The number density of carbon nanotubes is improved, and an electric double layer capacitor having a higher capacity can be obtained.

以下、この発明に係る電気二重層キャパシタについて実施例を挙げて具体的に説明すると共に、この実施例における電気二重層キャパシタにおいては、その内部抵抗が低減されると共に、重量当りの静電容量も向上し、高容量の電気二重層キャパシタが得られることを、比較例を挙げて明らかにする。なお、この発明に係る電気二重層キャパシタは、下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において、適宜変更して実施することができるものである。   Hereinafter, the electric double layer capacitor according to the present invention will be specifically described with reference to examples, and in the electric double layer capacitor in this example, the internal resistance is reduced and the capacitance per weight is also reduced. It will be clarified by giving a comparative example that an electric double layer capacitor having a higher capacity can be obtained. The electric double layer capacitor according to the present invention is not limited to those shown in the following examples, and can be implemented with appropriate modifications within a range not changing the gist thereof.

(実施例1)
実施例1においては、図1に示すような扁平なコイン型になった電気二重層キャパシタを作製するようにした。
(Example 1)
In Example 1, an electric double layer capacitor having a flat coin shape as shown in FIG. 1 was produced.

ここで、この実施例1においては、キャパシタ缶10を構成する導電性缶体11,12として、厚みが300μmのステンレス製の缶体を用いるようにした。   Here, in Example 1, stainless steel cans having a thickness of 300 μm were used as the conductive cans 11 and 12 constituting the capacitor can 10.

そして、上記の各導電性缶体11,12の内面に直接ブラシ状のカーボンナノチューブからなる電極1,2を形成するにあたっては、上記の各導電性缶体11,12をアセトン中で超音波洗浄した後、これをフッ酸水溶液中に数分間浸漬し、その後、これを水洗して乾燥させた。   In forming the electrodes 1 and 2 made of brush-like carbon nanotubes directly on the inner surfaces of the conductive can bodies 11 and 12, the conductive can bodies 11 and 12 are ultrasonically cleaned in acetone. Then, it was immersed in a hydrofluoric acid aqueous solution for several minutes, and then washed with water and dried.

その後、各導電性缶体11,12の内側側面にカーボンナノチューブが形成されないように、各導電性缶体11,12の内側に略円筒形状のマスク用の治具(図示せず)をセットして、このマスク用の治具により各導電性缶体11,12の内側側面をマスクし、この状態で、各導電性缶体11,12をCVD装置内にセットした。   Thereafter, a substantially cylindrical mask jig (not shown) is set inside each conductive can body 11, 12 so that carbon nanotubes are not formed on the inner side surfaces of each conductive can body 11, 12. The inner side surfaces of the conductive can bodies 11 and 12 were masked with the mask jig, and the conductive can bodies 11 and 12 were set in the CVD apparatus in this state.

次いで、上記のCVD装置内を1×10-4Pa以下に減圧させた後、ヒータにより50℃/minで700℃まで加熱させ、水素プラズマにより上記の各導電性缶体11,12の内面を還元させた後、アセチレンガスとアンモニアガスとを1:5の流量比でCVD装置内に導入し、CVD装置内の圧力を大気圧付近まで上昇させ、この状態で30分間保持して、上記の各導電性缶体11,12の内側底面に直接、一定方向に伸びて多数配列されたブラシ状のカーボンナノチューブからなる電極1,2を形成した。 Next, after reducing the pressure in the CVD apparatus to 1 × 10 −4 Pa or less, the heater is heated to 700 ° C. at 50 ° C./min, and the inner surfaces of the conductive can bodies 11 and 12 are heated by hydrogen plasma. After the reduction, acetylene gas and ammonia gas are introduced into the CVD apparatus at a flow rate ratio of 1: 5, the pressure in the CVD apparatus is increased to near atmospheric pressure, and this state is maintained for 30 minutes. Electrodes 1 and 2 made of brush-like carbon nanotubes arranged in a large number extending in a certain direction directly on the inner bottom surfaces of the respective conductive can bodies 11 and 12 were formed.

その後、これを室温まで自然冷却させて、このように電極1,2が形成された各導電性缶体11,12をCVD装置内から取り出して、上記のマスク用の治具を取り外した後、各導電性缶体11,12を真空中において140℃で5時間乾燥させた。なお、上記のようにして形成したブラシ状のカーボンナノチューブの長さは約300μmで、その数密度は1×1010本/cm2になっていた。 Then, this was naturally cooled to room temperature, and after removing the conductive jigs 11 and 12 in which the electrodes 1 and 2 were thus formed from the CVD apparatus and removing the mask jig, Each of the conductive can bodies 11 and 12 was dried in a vacuum at 140 ° C. for 5 hours. The length of the brush-like carbon nanotubes formed as described above was about 300 μm, and the number density was 1 × 10 10 pieces / cm 2 .

また、電解液としては、非水系溶媒のプロピレンカーボネート中に溶質のテトラエチルアンモニウムテトラフルオロボレートを1mol/lの濃度になるように溶解させたものを用い、セパレータ3としては厚みが100μmのセルロース製のものを用いるようにした。   In addition, as the electrolytic solution, a solution obtained by dissolving solute tetraethylammonium tetrafluoroborate in a non-aqueous solvent propylene carbonate to a concentration of 1 mol / l is used, and the separator 3 is made of cellulose having a thickness of 100 μm. The thing was used.

そして、電気二重層キャパシタを作製するにあたっては、電極1,2が形成された各導電性缶体11,12内に上記の電解液を注入して、この電解液を各電極1,2に含浸させた後、図1に示すように、上記の一対の電極1,2の間に上記のセパレータ3を挟み込むと共に、一定方向に伸びて多数配列されたブラシ状のカーボンナノチューブの先端相互が対向するようにして、電極1,2が形成された一対の導電性缶体11,12を対向させ、この一対の導電性缶体11,12の周辺部にガスケット4を配した状態でかしめ、このガスケット4により導電性缶体11,12間を電気的に絶縁させると共に、この一対の導電性缶体11,12で構成されるキャパシタ缶10を密封させて、電気二重層キャパシタを作製した。   In manufacturing the electric double layer capacitor, the electrolyte solution is injected into the conductive cans 11 and 12 on which the electrodes 1 and 2 are formed, and the electrodes 1 and 2 are impregnated with the electrolyte solution. Then, as shown in FIG. 1, the separator 3 is sandwiched between the pair of electrodes 1 and 2, and the tips of brush-like carbon nanotubes arranged in a large number extending in a certain direction face each other. In this way, the pair of conductive can bodies 11 and 12 on which the electrodes 1 and 2 are formed are opposed to each other, and the gasket 4 is caulked in a state where the gasket 4 is arranged around the pair of the conductive can bodies 11 and 12. 4 electrically insulates between the conductive can bodies 11 and 12, and the capacitor can 10 constituted by the pair of conductive can bodies 11 and 12 is sealed to produce an electric double layer capacitor.

(実施例2)
実施例2においては、上記の実施例1において使用した一対の導電性缶体11,12において、電極1,2が形成される内面に型押し加工を行い、図2に示すように、ジグザク状で傾斜角θが30度、ピッチが100μmになった傾斜面11a,12aを形成した導電性缶体11,12を用いるようにし、それ以外は、上記の実施例1の場合と同様にして電気二重層キャパシタを作製した。
(Example 2)
In the second embodiment, the pair of conductive cans 11 and 12 used in the first embodiment is embossed on the inner surfaces on which the electrodes 1 and 2 are formed. As shown in FIG. The conductive can bodies 11 and 12 formed with the inclined surfaces 11a and 12a having the inclination angle θ of 30 degrees and the pitch of 100 μm are used, and the electrical operation is performed in the same manner as in the case of Example 1 except that. A double layer capacitor was fabricated.

なお、この実施例2の電気二重層キャパシタにおいては、各導電性缶体11,12の水平面に対するブラシ状のカーボンナノチューブの数密度が1.15×1010本/cm2になっていた。 In the electric double layer capacitor of Example 2, the number density of the brush-like carbon nanotubes with respect to the horizontal plane of the conductive can bodies 11 and 12 was 1.15 × 10 10 pieces / cm 2 .

(比較例1)
比較例1においては、電極1,2を作製するにあたり、市販の粉末状カーボンナノチューブ(Aldrich社製:57680−8 Multiwall Carbon Nanotube.純度95%,直径20〜50nm,長さ5〜20μm)を用い、この粉末状カーボンナノチューブ90重量部に、結着剤のポリテトラフルオロエチレン粉末を30重量部加えて混練し、これを300μmの厚みに加圧成形して電極1A,2Aを作製した。
(Comparative Example 1)
In Comparative Example 1, commercially available powdered carbon nanotubes (manufactured by Aldrich: 57680-8 Multiwall Carbon Nanotube. Purity 95%, diameter 20 to 50 nm, length 5 to 20 μm) were used in producing electrodes 1 and 2. Then, 30 parts by weight of a binder polytetrafluoroethylene powder was added to 90 parts by weight of the powdered carbon nanotubes and kneaded, and this was pressure-molded to a thickness of 300 μm to produce electrodes 1A and 2A.

そして、図3に示すように、このように作製した電極1A,2Aを導電性樹脂により各導電性缶体11,12の内面に貼り付け、それ以外は、上記の実施例1の場合と同様にして電気二重層キャパシタを作製した。   Then, as shown in FIG. 3, the electrodes 1A and 2A produced in this manner are attached to the inner surfaces of the respective conductive can bodies 11 and 12 with a conductive resin, and the other cases are the same as in the case of the above-described first embodiment. Thus, an electric double layer capacitor was produced.

(比較例2)
比較例2においては、厚さが50μmのステンレス製の基板1a,2aの上に、上記の実施例1の場合と同様にして、ブラシ状のカーボンナノチューブからなる電極1,2を形成した。なお、上記のようにして形成したブラシ状のカーボンナノチューブの長さは約300μmで、その数密度は1×1010本/cm2になっていた。
(Comparative Example 2)
In Comparative Example 2, electrodes 1 and 2 made of brush-like carbon nanotubes were formed on stainless steel substrates 1a and 2a having a thickness of 50 μm in the same manner as in Example 1 above. The length of the brush-like carbon nanotubes formed as described above was about 300 μm, and the number density was 1 × 10 10 pieces / cm 2 .

そして、図4に示すように、このようにブラシ状のカーボンナノチューブからなる電極1,2が形成された各基板1a,2aを導電性樹脂により各導電性缶体11,12の内面に貼り付け、それ以外は、上記の実施例1の場合と同様にして電気二重層キャパシタを作製した。なお、この比較例2の電気二重層キャパシタにおいては、上記の各基板1a,2aの厚さ分だけ電気二重層キャパシの厚みが増加した。   And as shown in FIG. 4, each board | substrate 1a, 2a in which the electrodes 1 and 2 which consist of brush-like carbon nanotubes in this way were formed is affixed on the inner surface of each electroconductive can body 11, 12 with electroconductive resin. Other than that, an electric double layer capacitor was fabricated in the same manner as in Example 1 above. In the electric double layer capacitor of Comparative Example 2, the thickness of the electric double layer capacity increased by the thickness of each of the substrates 1a and 2a.

そして、上記のようにして作製した実施例1,2及び比較例1,2の各電気二重層キャパシタを、室温雰囲気中において、150mA/gの一定電流で2.5Vまで充電させた後、150mA/gの一定電流で0Vまで放電させて、各電気二重層キャパシタにおける静電容量を求めると共に、各電気二重層キャパシタにおける重量当りの静電容量を算出し、上記の比較例2の電気二重層キャパシタにおける静電容量及び重量当りの静電容量を100とした指数で、各電気二重層キャパシタの静電容量及び重量当りの静電容量を算出し、その結果を下記の表1に示した。   The electric double layer capacitors of Examples 1 and 2 and Comparative Examples 1 and 2 manufactured as described above were charged to 2.5 V at a constant current of 150 mA / g in a room temperature atmosphere, and then 150 mA. The electric double layer capacitor is discharged to 0 V at a constant current of / g to obtain the capacitance of each electric double layer capacitor, and the capacitance per weight of each electric double layer capacitor is calculated. The capacitance of each electric double layer capacitor and the capacitance per weight were calculated using an index with the capacitance of the capacitor and the capacitance per weight as 100. The results are shown in Table 1 below.

また、上記の各電気二重層キャパシタについて、四端子法により測定周波数1kHzで、各電気二重層キャパシタにおける内部抵抗を測定し、上記の比較例2の電気二重層キャパシタにおける内部抵抗を100とした指数で、各電気二重層キャパシタの内部抵抗を算出し、その結果を下記の表1に示した。   Further, for each electric double layer capacitor described above, the internal resistance in each electric double layer capacitor was measured at a measurement frequency of 1 kHz by the four probe method, and the internal resistance in the electric double layer capacitor of Comparative Example 2 was taken as 100. The internal resistance of each electric double layer capacitor was calculated, and the result is shown in Table 1 below.

Figure 2005286008
Figure 2005286008

この結果、ブラシ状のカーボンナノチューブからなる電極1,2を各導電性缶体11,12の内面に直接形成した実施例1,2の電気二重層キャパシタは、粉末状カーボンナノチューブを結着剤と混練して成形した電極1A,2Aを用いた比較例1の電気二重層キャパシタに比べて、静電容量が大きく増加すると共に、内部抵抗が著しく低下していた。   As a result, the electric double layer capacitors of Examples 1 and 2 in which the electrodes 1 and 2 made of brush-like carbon nanotubes are directly formed on the inner surfaces of the respective conductive cans 11 and 12 have the powder carbon nanotubes as binders. Compared with the electric double layer capacitor of Comparative Example 1 using the electrodes 1A and 2A formed by kneading, the capacitance was greatly increased and the internal resistance was remarkably reduced.

また、ブラシ状のカーボンナノチューブからなる電極1,2を基板1a,2aの上に形成して導電性缶体11,12の内面に貼り付けた比較例2の電気二重層キャパシタと比較すると、基板1a,2aがないため、重量当りの静電容量が増加すると共に、内部抵抗が大きく低下していた。特に、電極1,2が形成される導電性缶体11,12の内面にジグザク状になった傾斜面11a,12aを形成した実施例2の電気二重層キャパシタにおいては、各導電性缶体11,12内に形成されるブラシ状のカーボンナノチューブの数が増加し、静電容量がさらに増加していた。   Further, when compared with the electric double layer capacitor of Comparative Example 2 in which the electrodes 1 and 2 made of brush-like carbon nanotubes are formed on the substrates 1a and 2a and attached to the inner surfaces of the conductive can bodies 11 and 12, Since 1a and 2a are not provided, the capacitance per weight increases and the internal resistance greatly decreases. In particular, in the electric double layer capacitor of Example 2 in which the zigzag inclined surfaces 11a and 12a are formed on the inner surfaces of the conductive can bodies 11 and 12 on which the electrodes 1 and 2 are formed, the respective conductive can bodies 11 , 12 has increased in number of brush-like carbon nanotubes, and the capacitance has further increased.

この発明の実施例1に係る電気二重層キャパシタの内部構造を示した概略断面図である。It is the schematic sectional drawing which showed the internal structure of the electric double layer capacitor which concerns on Example 1 of this invention. この発明の実施例2において、ジグザク状になった傾斜面が形成された導電性缶体の内面に直接ブラシ状のカーボンナノチューブを形成した状態を示した断面説明図である。In Example 2 of this invention, it is sectional explanatory drawing which showed the state in which the brush-like carbon nanotube was directly formed in the inner surface of the electroconductive can body in which the inclined surface used as the zigzag was formed. 比較例1に係る電気二重層キャパシタの内部構造を示した概略断面図である。5 is a schematic cross-sectional view showing an internal structure of an electric double layer capacitor according to Comparative Example 1. FIG. 比較例2に係る電気二重層キャパシタの内部構造を示した概略断面図である。5 is a schematic cross-sectional view showing an internal structure of an electric double layer capacitor according to Comparative Example 2. FIG.

符号の説明Explanation of symbols

1,2 電極
3 セパレータ
4 ガスケット
10 キャパシタ缶
11,12 缶体
11a,12a 傾斜面
1, 2 Electrode 3 Separator 4 Gasket 10 Capacitor can 11, 12 Can body 11a, 12a Inclined surface

Claims (3)

一対の導電性缶体で構成されるキャパシタ缶の内部に一対の電極と電解液とが収容されてなる電気二重層キャパシタにおいて、上記の電極は、一定方向に伸びて多数配列されたブラシ状のカーボンナノチューブが上記の導電性缶体の対向する内面に直接形成されてなることを特徴とする電気二重層キャパシタ。   In an electric double layer capacitor in which a pair of electrodes and an electrolytic solution are accommodated inside a capacitor can composed of a pair of conductive can bodies, the above-mentioned electrodes are brush-shaped and arranged in a number extending in a certain direction. An electric double layer capacitor comprising carbon nanotubes directly formed on opposing inner surfaces of the conductive can body. 請求項1に記載した電気二重層キャパシタにおいて、カーボンナノチューブが形成される上記の導電性缶体の内面の少なくとも一部に傾斜面が形成されていることを特徴とする電気二重層キャパシタ。   2. The electric double layer capacitor according to claim 1, wherein an inclined surface is formed on at least a part of the inner surface of the conductive can body on which the carbon nanotubes are formed. 請求項1又は2に記載した電気二重層キャパシタにおいて、カーボンナノチューブが形成される上記の導電性缶体の内面にジグザグ状になった傾斜面が形成されていることを特徴とする電気二重層キャパシタ。   3. The electric double layer capacitor according to claim 1, wherein an inclined surface in a zigzag shape is formed on the inner surface of the conductive can body on which the carbon nanotube is formed. .
JP2004096173A 2004-03-29 2004-03-29 Electric double layer capacitor Pending JP2005286008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004096173A JP2005286008A (en) 2004-03-29 2004-03-29 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004096173A JP2005286008A (en) 2004-03-29 2004-03-29 Electric double layer capacitor

Publications (1)

Publication Number Publication Date
JP2005286008A true JP2005286008A (en) 2005-10-13

Family

ID=35184074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004096173A Pending JP2005286008A (en) 2004-03-29 2004-03-29 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP2005286008A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266548A (en) * 2006-03-30 2007-10-11 Hitachi Zosen Corp Electric double layer capacitor using carbon nanotube
KR100836131B1 (en) 2006-10-19 2008-06-09 삼성전기주식회사 Nano-wire capacitor and manufacturing method thereof
EP2056312A1 (en) 2007-11-02 2009-05-06 Tsinghua University Electrochemical capacitor with carbon nanotubes
JP2010503214A (en) * 2006-09-01 2010-01-28 バッテル メモリアル インスティテュート Carbon nanotube nanocomposite, method for making carbon nanotube nanocomposite, and device comprising nanocomposite
US7813108B2 (en) 2007-11-02 2010-10-12 Tsinghua University Electrochemical capacitor with carbon nanotubes
US7826198B2 (en) 2007-12-29 2010-11-02 Tsinghua University Electrochemical capacitor with carbon nanotubes
US7826199B2 (en) 2007-11-02 2010-11-02 Tsinghua University Electrochemical capacitor with carbon nanotubes

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266548A (en) * 2006-03-30 2007-10-11 Hitachi Zosen Corp Electric double layer capacitor using carbon nanotube
JP2010503214A (en) * 2006-09-01 2010-01-28 バッテル メモリアル インスティテュート Carbon nanotube nanocomposite, method for making carbon nanotube nanocomposite, and device comprising nanocomposite
KR100836131B1 (en) 2006-10-19 2008-06-09 삼성전기주식회사 Nano-wire capacitor and manufacturing method thereof
EP2056312A1 (en) 2007-11-02 2009-05-06 Tsinghua University Electrochemical capacitor with carbon nanotubes
US7813108B2 (en) 2007-11-02 2010-10-12 Tsinghua University Electrochemical capacitor with carbon nanotubes
US7826199B2 (en) 2007-11-02 2010-11-02 Tsinghua University Electrochemical capacitor with carbon nanotubes
US7826198B2 (en) 2007-12-29 2010-11-02 Tsinghua University Electrochemical capacitor with carbon nanotubes

Similar Documents

Publication Publication Date Title
US8213157B2 (en) Single-wall carbon nanotube supercapacitor
Shang et al. Coaxial Ni x Co2 x (OH) 6 x/TiN nanotube arrays as supercapacitor electrodes
TWI686824B (en) Printed suprercapacitors based on graphene
Xing et al. Co 3 O 4 nanowire@ NiO nanosheet arrays for high performance asymmetric supercapacitors
Gu et al. Silicon carbide nanowires@ Ni (OH) 2 core–shell structures on carbon fabric for supercapacitor electrodes with excellent rate capability
Zeng et al. Supercapacitors based on high-quality graphene scrolls
US9997301B2 (en) Electrode, electric double-layer capacitor using the same, and manufacturing method of the electrode
KR20130130700A (en) Air electrode for lithium air battery and method of making the same
JP4054746B2 (en) Electric double layer capacitor, activated carbon for the electrode, and manufacturing method thereof
JP2007005718A (en) Electrochemical element
JP2014080685A (en) Conductive member, electrode, secondary battery, capacitor, and manufacturing method of conductive member and electrode
JP2014530502A (en) High voltage electrochemical double layer capacitor
KR101089860B1 (en) Super capacitor and method of fabricating the same
KR20130026791A (en) Current collector, method for preparing the same, and electrochemical capacitors comprising the same
CN103971940A (en) Flexible super capacitor and preparing method thereof
JP2016531068A (en) High voltage EDLC electrode containing CO2 activated coconut charcoal
JP2004047613A (en) Activated carbon and electrode for electric double-layer capacitor employing active carbon
JP2005286008A (en) Electric double layer capacitor
KR101057410B1 (en) Supercapacitor and manufacturing method thereof
KR20130047885A (en) Method for fabrication of charge storage in multi-walled carbon nanotube-niooh nano composites
CN108010734A (en) A kind of micro super capacitor production method based on graphene/carbon nano-tube aeroge
KR101561959B1 (en) All solid state flexible micro-supercapacitor with patterned graphene and fabrication method thereof
KR20130026789A (en) Current collector, method for preparing the same, and electrochemical capacitors comprising the same
CN112635201A (en) Flexible all-solid-state asymmetric supercapacitor electrode and preparation method thereof by dividing flexible all-solid-state asymmetric supercapacitor electrode into two parts
JP2005347517A (en) Method of manufacturing activated charcoal for electric double layer capacitor electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060418

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20081023

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090331