JP2005283247A - センサ付き転がり軸受装置 - Google Patents

センサ付き転がり軸受装置 Download PDF

Info

Publication number
JP2005283247A
JP2005283247A JP2004095927A JP2004095927A JP2005283247A JP 2005283247 A JP2005283247 A JP 2005283247A JP 2004095927 A JP2004095927 A JP 2004095927A JP 2004095927 A JP2004095927 A JP 2004095927A JP 2005283247 A JP2005283247 A JP 2005283247A
Authority
JP
Japan
Prior art keywords
detection
bearing device
magnetic
excitation
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004095927A
Other languages
English (en)
Inventor
Kenji Sakamoto
賢志 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP2004095927A priority Critical patent/JP2005283247A/ja
Publication of JP2005283247A publication Critical patent/JP2005283247A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

【課題】 外乱ノイズの影響を受けることなく軸受回転時における転がり荷重等の所望の動作データを高精度に検知することができるコンパクトなセンサ付き転がり軸受装置を提供する。
【解決手段】 内輪6の肩部(被検出部)6bに所定方向に揃えられ、かつ転動体8の転がり荷重等に従って生じる歪みに応じて所定方向から変化する磁化容易軸Meを設ける。また、この肩部6bに対向配置されてその肩部6bを励磁する励磁面15b1を有する第1のヨーク部15bと、このヨーク部15bに巻回されるとともに、交流電源18bに接続された励磁用コイル16とを備えた励磁部と、上記肩部6bに対向配置される検出面15c1を有する第2のヨーク部15cと、このヨーク部15cに巻回されるとともに、電圧計18cに接続された検出用コイル17を具備し、肩部6bと励磁部とともに磁気回路Mを構成して当該磁気回路Mを流れる磁束を検出する検出部を設置する。
【選択図】 図2

Description

本発明は、センサが組込まれたセンサ付き転がり軸受装置に関する。
軸受を備えた転がり軸受装置には、その本来的な軸受機能に加えて、その軸受回転時でのトルク等の動作データを検知するためのセンサが組込まれたセンサ付き転がり軸受装置が提案されている(例えば、下記特許文献1参照。)。具体的にいえば、この従来の軸受装置は自動車用の軸受ハブユニットに適用されたものであり、軸方向周りの異なる位置で内輪と一体的に構成されたハブの取付フランジと制動用のロータとを互いに連結する複数の各スタッドに磁歪式の荷重センサを設けていた。そして、この従来装置では、これらの荷重センサの検出結果に基づいて、上記取付フランジとロータとの間で制動時に作用するトルクを検知するようになっていた。
特開2003−205833号公報(第6頁、第8〜11図)
ところで、上記のような従来軸受装置の各荷重センサは、スタッドの外周面に外嵌固定された円環状の永久磁石と、この永久磁石の外側に装着された非磁性材製の保持リング上に固着された複数の磁性金属片により構成されるとともに、永久磁石からの磁束によって励磁された励磁部と、この励磁部の外方に配置された検出コイルとを備えており、これらの構成部材は上記取付フランジ及びロータに跨るようにスタッドの外周側に配置されていた。そして、励磁部が取付フランジとロータとの僅かな回転速度差によって保持リングに生じた変形(歪み)に応じて歪んだときに、その励磁部の歪みに伴って当該励磁部の磁気特性(励磁部内の透磁率)が変化し、さらに検出コイルが前記透磁率の変化に応じて変動する、励磁部を通過した磁束密度を検出することにより上記トルクを検知していた。
ところが、上記のような励磁部の歪みは極微細なものであり、従ってその透磁率の変化及び検出コイルにて検出される上記磁束密度の変動も極微小なものであった。この結果、トルクを高精度に検知するためには、検出コイルを含む検出系を高感度なセンシング性能を有するよう構成することが要求された。しかるに、検出系はそのセンシング性能(感度)を向上させるにつれて、地磁気などの外乱ノイズの影響を受け易くなり、コイル検出値にバラツキを生じてトルクの検知精度が低下することがあった。
また、上記従来軸受装置では、周方向の異なる位置に設けられた複数の各スタッド、つまり軸受の軸方向周りの複数箇所に複数の荷重センサをそれぞれ設けていたので、センサの部品点数が多くそのコンパクト化を図るのが難しかった。
上記のような従来の問題点に鑑み、本発明は、外乱ノイズの影響を受けることなく軸受回転時における転がり荷重等の所望の動作データを高精度に検知することができるコンパクトなセンサ付き転がり軸受装置を提供することを目的とする。
本発明は、内輪及び外輪と、これらの内外輪間に周方向に沿って所定間隔で転動自在に設けられた複数の転動体とを備えた軸受を有する転がり軸受装置であって、
前記内外輪の一方の軌道輪側に設けられるとともに、歪みに応じて変化する磁化容易軸の磁化容易方向が所定方向に揃えられた被検出部と、前記被検出部に対向配置されてその被検出部を励磁する励磁面を備えた励磁部と、前記被検出部に対向配置される検出面を有し、かつ前記被検出部と前記励磁部とともに磁気回路を構成して当該磁気回路を流れる磁束を検出する検出部とを備えたことを特徴とするものである。
上記のように構成されたセンサ付き転がり軸受装置における被検出部では、歪みに応じて変化する磁化容易軸の磁化容易方向が所定方向に揃えられるとともに、当該被検出部は、励磁部の励磁面によって励磁されている。また、検出部には、被検出部に対向配置される検出面が設けられるとともに、当該検出部は、被検出部及び励磁部とともに磁気回路を構成して当該磁気回路を流れる磁束を検出する。これにより、上記磁化容易軸の磁化容易方向が転動体の転がり荷重や転がり軸受装置に外部から作用する外的荷重に応じて、所定方向から変化したときに、その磁化容易方向の方向変化に従って被検出部での磁気抵抗が変化し、ひいては上記磁気回路の磁気抵抗も変化する。この結果、検出面を通る磁束が変動し、検出部が、その変動する磁束を検出することで上記転がり荷重等の動作データを検知することができる。また、このように歪み変化に伴う磁化容易軸の方向変化に起因する材料の磁気抵抗変化、いわゆるビラリ効果を利用して上述の動作データを検知することができるので、上記従来例と異なり、検出部の感度を高める必要がない。
また、上記センサ付き転がり軸受装置において、前記検出部には、前記励磁面に対して前記周方向で互いに対称位置に配置されるように、当該周方向での前記励磁面との離間距離が同一距離に設定された第1及び第2の検出面が設けられることが好ましい。
この場合、上記第1及び第2の検出面を通る磁束の差分を求めることにより、周囲温度の影響などを相殺することができ、上記動作データの検知精度をさらに向上させることができる。
また、上記センサ付き転がり軸受装置において、前記励磁面と前記第1及び第2の各検出面との前記離間距離が、前記転動体での前記所定間隔の半分の距離に設定されてもよい。
この場合、軸受回転中において、上記第1及び第2の検出面を通る磁束の差分の変化量を最大限に大きくすることができ、外乱ノイズや周囲温度の変化の影響を受けることなく検出部を高感度にすることができる。
また、上記センサ付き転がり軸受装置において、基部と、この基部の中央部、右側端部、及び左側端部からそれぞれ分岐されるとともに、先端部に前記励磁面、前記第1の検出面、及び前記第2の検出面がそれぞれ形成された第1、第2、及び第3のヨーク部とを有する磁性部材を備え、
前記第1のヨーク部に、前記励磁部に含まれた励磁コイルを巻回するとともに、前記第2及び第3の各ヨーク部に、前記検出部に含まれた検出用コイルを巻回することが好ましい。
この場合、検出用コイルを検出器に接続し、かつ励磁コイルを電源に接続することにより、検出部と励磁部とを一体的にすることができ、センサ部品点数を削減することができるとともに、軸受装置への組付け作業を簡単化することができる。
また、上記センサ付き転がり軸受装置において、前記被検出部が、前記軌道輪の表面上に設けられた超磁歪部材により構成されてもよい。
この場合、内外輪と別個に構成された被検出部を用いているので、一方の軌道輪側に対し磁化容易軸の磁化容易方向を所定方向に揃える場合に比べて、当該被検出部を容易に設けることができる。
本発明によれば、被検出部でのビラリ効果を利用することにより、検出部の感度を高めることなく軸受回転時での転がり荷重等の動作データを検知することができるので、地磁気などの外乱ノイズの影響を排除しつつ、その動作データを高精度に検知することができる。また、内外輪の一方の軌道輪側に設けた被検出部とこれに対向配置された検出部とで動作データを検知することができるので、複数のセンサを用いた上記従来例に比べてセンサ部品点数を削減してそのコンパクト化を容易に行うことができる。
以下、本発明のセンサ付き転がり軸受装置の好ましい実施形態について、図面を参照しながら説明する。尚、以下の説明では、自動車等の車両用の軸受ハブユニットに適用した場合を例示して説明する。
実施形態1
図1は本発明の一実施形態に係るセンサ付き転がり軸受装置の断面図であり、図2はその転がり軸受装置の要部を示す構造図である。図1において、右側は車両アウター側(車輪側)、左側は車両インナー側であり、本実施形態のセンサ付き転がり軸受装置1は、転がり軸受装置2と、センサ装置3とによって構成されている。この転がり軸受装置2は、複列アンギュラ玉軸受タイプのものであり、外輪4と、内軸(ハブ)5と、内輪6と、複数の玉からなる転動体7,8とを備えている。また、転がり軸受装置2には、転動体7,8をそれぞれ周方向に沿って所定間隔で保持する保持器9,10と、外輪4と内軸5との隙間に配置されたシール11と、内軸5に螺着されたナット12とが設けられている。
上記外輪4は、車体側に固定される固定輪であり、その内周側には、複列の軌道4a,4bが形成されている。一方、回転輪は、内軸5と内輪6とで構成されており、軌道4aに対向する内軸5の箇所には、軌道5aが形成されて、上記転動体7が軌道4aとの間で転動するようになっている。また、軌道4bに対向する内輪6の箇所には、軌道6aが形成されて、上記転動体8が軌道4bとの間で転動するようになっている。
また、内輪6の肩部6bには、上記センサ装置3が対向して配置されており、後に詳述するように、当該内輪肩部6bはセンサ装置3の被検出部として機能するようになっている。
また、上記内軸5は、車両アウター側にインロー部5b及び、車輪取付用のフランジ部5cを備えている。このフランジ部5cには車輪等を固定するための4本のボルト13が固定されている。また、内軸5の車両インナー側の端部には、ねじ部5dが形成されている。上記内輪6は、内軸5の左端近傍に形成された小径部5eの外周に嵌着され、ねじ部5dに螺着されるナット12を締め付けることにより、内軸5に固定されている。また、このナット12の車両インナー側には、外輪4の内周面に圧入されたカバー14が設けられている。このカバー14は、転がり軸受装置2の内外輪間の環状開口部を車両インナー側から密封するように取り付けられたものであり、当該環状開口部を車両アウター側から密封する上記シール11とともに、軸受内部への雨水や異物等の侵入を防いでいる。
図2(a)に示すように、上記センサ装置3には、外輪4の外周外方に配置された基部15aと、この基部15aの左右の各端部から分岐されて内輪6側に延ばされた第1及び第2のヨーク部15b,15cとを有する略コ字状に構成された軟磁性材製の磁性部材15が設けられている。この磁性部材15では、第1及び第2のヨーク部15b,15cの各先端部が被検出部としての上記内輪肩部6bに対向して配置されており、これらヨーク部15b,15cが外輪4に形成された取付孔4c,4dにそれぞれ挿通された状態で磁性部材15は当該外輪4側に固定されている。但し、外輪4と磁性部材15との間には、アルミなどの非磁性材料(図示せず)が介在されており、後述の磁気回路に含まれた磁性部材15が外輪4に直接接触するのを防いで当該磁気回路が変更されるのを防止するようになっている。
また、センサ装置3は、磁性部材15の第1及び第2のヨーク部15b,15cにそれぞれ巻回された励磁用コイル16及び検出用コイル17と、これらコイル16,17が接続されるとともに、軸受回転時での転がり荷重や回転数(回転速度)等の動作データを検出用コイル17の検出値を基に検知する制御装置18とを備えている。
詳細には、上記励磁用コイル16は、制御装置18側に設けられた交流電源18bに接続されており、上記肩部6bに対して所定の磁界を与えるようになっている。これにより、第1のヨーク部15bには上記コイル16を流れる交流電流に応じた磁束が発生して、当該ヨーク部15bの先端部で肩部6bの表面に対向配置された励磁面15b1が肩部6bを励磁する。
また、上記検出用コイル17には、制御装置18側に設けられた検出器としての電圧計18cが接続されている。また、この検出用コイル17は、肩部6bの表面に対向配置された検出面15c1を先端部に有する上記第2のヨーク部15c内を流れる磁束(磁束密度)の変化によって誘起された誘起電圧が電圧計18cにて検出されるようになっている。すなわち、励磁用コイル16から磁束を発生させると、第2のヨーク部15cに磁束が流れ込む。そして、検出用コイル17では、ヨーク部15c内を流れる磁束変化に応じた電圧が誘起され、その誘起電圧が電圧計18cにて検出される。
また、上記磁性部材15では、その励磁面15b1と検出面15c1との軸受周方向における中心間距離(離間距離)が転動体8の所定間隔、すなわちボールピッチの半分の距離と一致するように、第1及び第2のヨーク部15b,15cは構成されている。つまり、励磁面15b1と検出面15c1との軸受中心に対する中心角が、図に“θ”にて示す2個の転動体8間の中心角の1/2の角度となるように構成されており、同図に示すように、例えば転動体8の内輪軌道6a(図1)との接触点が、その転動体8の転がり動作によって励磁面15b1の中心点が対向する肩部6bの対向点と軸方向の一直線上に位置したとき、検出面15c1の中心点が対向する肩部6bの対向点の軸方向の一直線上には、隣接する2個の転動体8の軌道6aとの各接触点間の中間点が位置するようになっている。
以上のようにセンサ装置3では、磁性部材15の内部及び励磁面15b1と検出面15c1とがそれぞれ対向する肩部6bの内部間に、上記励磁部からの磁束が流れる磁気回路(磁気ループ)M(図に二点鎖線にて図示)が形成される。
また、センサ装置3では、磁性部材15の第1のヨーク部15bと、このヨーク部15bに設けられた励磁用コイル16と、このコイル16に接続された交流電源18bとにより、肩部(被検出部)6bに所定の(バイアス)磁界を与える励磁部が構成されている。また、この励磁部では、磁束密度の大きさや磁束変化速度が一定となる磁束を肩部6bに付与するようになっている。また、磁性部材15の第2のヨーク部15cと、このヨーク部15cに設けられた検出用コイル17と、このコイル17に接続された電圧計18cとにより、磁気回路Mを流れる磁束を検出する検出部が構成されている。
また、上記内輪6では、図2(b)の両矢印で示すように、磁化容易軸Meの磁化容易方向が所定方向として例えば当該内輪6の軸方向に揃えられている。但し、肩部(被検出部)6bが負の磁歪定数を持つ材料で構成されている場合には、磁化容易軸Meの磁化容易方向は内輪6の円周方向に揃えられる。この磁気異方性は、例えば内輪6の製作工程において、その内輪素材(例えば、軸受用鋼)を焼入れする際に当該軸受用鋼のキュリー点(720〜730℃)を越える温度から所定の磁界内で急冷することによって誘導的に当該内輪全体に付与されたものであり、内輪内部の磁区が同一方向(すなわち、軸方向)となるように磁化することで与えられている。
また、上記磁化容易軸Meは、ビラリ効果により、転がり軸受装置2に作用する荷重に従って生じる肩部6bの(内部)歪みに応じて磁化容易軸Meが傾くようになっている。具体的には、例えば図2(c)に示すように、検出面15c1と対向している箇所、すなわち転動体8が通過していない箇所と、励磁面15b1に対向している箇所、つまり転動体8が通過している箇所とでは、肩部6bの歪み量に差を生じている。この歪み量の差は、転がり軸受装置2に作用する荷重(転動体8の転がり荷重や当該装置2に外部から作用する車両のタイヤ接地荷重等の外的荷重を含む。)が大きくなる程、大きい値となる。一方、磁化容易軸Meの磁化容易方向は、上記軸方向に揃えられることにより、肩部6bが転がり軸受装置2にかかる荷重により生じる歪みの方向に対して鉛直方向に揃えられることから、ビラリ効果により、肩部6bの歪み量が大きい程、励磁による磁束は流れ易くなる。このように、磁化容易軸Meは、転動体8の軌道6a(図1)との接触点からの距離に応じてその方向(磁化容易方向)が変化するようになっており、この磁化容易軸Meの方向変化は、肩部6bの内部を通る磁束に対しては磁気抵抗の変化として作用する。これにより、内輪肩部6bでは、ビラリ効果によって磁性部材15に対向している当該肩部6bの内部、ひいては上記磁気回路Mでの磁束の流れ易さが、転動体8の転がり動作に応じて変化する。
上記制御装置18は、例えばセンサ付き転がり軸受装置1が組付けられた車両のECU(電子制御ユニット)であり、CPU等により構成された演算部18aを具備している。この演算部18aが、上記センサ装置3用のプログラムを実行することにより、上記交流電源18bは励磁用コイル16に交流電流を供給すると、これにより発生した磁束が磁気回路M内を流れる。そして、電圧計18cが、第2のヨーク部15cを通る磁束変化によって検出用コイル17に生じた誘起電圧を検出する。その後、演算部18aが、電圧計18cの検出値に基づき転動体8の転がり荷重を求めることができ、この求めた転がり荷重から転がり軸受装置2に作用する荷重を所定の演算にて算出し検知することができる。また、上記電圧計18cでの電圧波形は、正弦波的に変化することから、演算部18aが例えばそのピーク値の時間間隔を基に転動体8の公転速度、ひいては当該軸受装置2の回転数(回転速度)を演算によって検知することができる。さらに、演算部18aは、求めた荷重や回転速度などの転がり軸受装置2の動作データをブレーキシステムなどの車両の他のシステムに反映させて、これらの各システムを最適に動作可能になっている。
上記のように構成されたセンサ付き転がり軸受装置1の動作について、図3及び4を参照して具体的に説明する。尚、以下の説明では、センサ装置3が検出する上記磁化容易軸Me(図2)の方向変化とこれに伴う磁気回路Mでの磁束の変化について主に説明する。
図3(a)に示すように、内輪6が図の矢印R1方向へ回転すると、転動体8はその内輪軌道6a(図1)上を同図の矢印R2方向に公転(つれ回り)する。この図に示す状態では、肩部6bにおける磁気回路Mに含まれた部位と転動体8とが比較的離れていることから、肩部6bにおける磁気回路Mに含まれた部位の歪み量が比較的少ない。これにより、上記磁気回路Mに含まれる肩部6b内の磁化容易軸Meの方向変化が比較的少なく、当該磁気回路Mでの磁気抵抗も比較的大きい値となる。このため、磁気回路Mを流れる磁束が少なくなり、検出面15c1を通る磁束も比較的小さい値となる。この結果、図4に実線50にて示す電圧計18cでの検出値においても、同図の矢印Aで示す比較的小さい値となる。
その後、転動体8が、図3(a)に示した状態から図3(b)に示す状態にR2方向への公転動作に応じて移動すると、肩部6bにおける磁気回路Mに含まれた部位と転動体8とが最も接近した状態となり、肩部6bにおける磁気回路Mに含まれた部位の歪み量が比較的大きくなる。これにより、磁気回路Mに含まれる肩部6b内の磁化容易軸Meの方向変化が比較的多くなり、当該磁気回路Mでの磁気抵抗が比較的小さい値となる。このため、磁気回路Mを流れる磁束は同図(b)に白抜きの矢印にて示すように図3(a)に示した場合よりも多くなり、検出面15c1に流れ込む磁束も比較的大きい値となる。この結果、図4に矢印Bにて示すように、電圧計18cでの検出値も比較的大きい値となる。このように磁気回路Mでは、転動体8の転がり動作に応じて磁束が変化する。
また、上記矢印A及びBで示した電圧計18の検出値は、センサ付き転がり軸受装置1が組み込まれた車両が直進している場合での値であり、当該車両がカーブを走行する場合には、そのハンドル操作に応じた荷重が車両タイヤ側からハブユニットを介してセンサ付き転がり軸受装置1に上記外的荷重として作用する。このような外的荷重がかかると、電圧計18の検出値は、例えば図4にp、p間で示すピークtoピーク値のように、その外的荷重に応じて全体的に大きくなる。
また、図4において、実線50の周波数は、励磁用コイル16への印加交流電源の周波数と一致している。また、実線50(電圧計検出値)の包絡線(同図に点線にて図示)の周波数は、1個の転動体8の公転周波数と転動体数との乗算値に一致し、さらに上記点線の包絡線(同図に二点鎖線にて図示)は、センサ装置3が検出した荷重の変動周波数を示している。そして、二点鎖線にて示した包絡線の周波数は、点線にて示した包絡線のものより、一般的に小さいことから、周波数分析を行うことで荷重変動と、転がり軸受装置2の回転数変動とを区別して検出することができる。
以上のように構成された本実施形態のセンサ付き転がり軸受装置1では、センサ装置3が肩部6bにおける磁気回路Mに含まれた部位の磁化容易軸Meの方向変化に応じて変動する、磁気回路Mを流れる磁束の変動を検出することにより、制御装置18が軸受回転時での荷重等の動作データを検知している。つまり、肩部6bに所定方向に揃えられた磁化容易軸Meの磁化容易方向が肩部6bにおける磁気回路Mに含まれた部位のビラリ効果によって揃えられた方向から変化し、その方向変化に従って増減される磁気回路Mでの磁束に基づいて、制御装置18が上述の動作データを検知しているので、上記従来例と異なり、制御装置18を含んだ上記検出部の感度を高める必要がない。具体的には、上記従来例では、高精度に検知するためには、センサのセンシティブを高感度なものとする必要があり、地磁気などの外乱ノイズの影響で動作データの検知精度が低下することがあった。
これに対して、本実施形態では、磁化容易軸Meの方向変化に従って増減される磁束を検出する構成であるので、上記地磁気などの外乱ノイズの影響を防ぐために上記励磁部の磁束密度を例えば500ガウスと大きくすることができる。これにより、上記演算部18aにおいて、電圧計18cの検出値から外乱ノイズを分離する分離処理を不要とすることができ、動作データの検知処理を簡単化しつつ、当該動作データを高精度に検知することができる。
また、本実施形態では、内輪肩部6bに設けた被検出部とこれに対向配置されたセンサ装置3とで動作データを検知することができるので、複数のセンサを用いた上記従来例に比べてセンサ部品点数を削減してそのコンパクト化を容易に行うことができる。しかも、外乱ノイズに影響されることなく動作データを高精度に検知することができるので、軟磁性材からなるシールド部材でセンサ装置3及びその被検出部を磁気的にシールドする必要がないセンサ付きのインテリジェントな転がり軸受装置を容易に構成することができる。
また、本実施形態では、上記励磁面15b1と検出面15c1との軸受周方向における中心間距離(離間距離)が転動体8の所定間隔の半分の距離に設定されているので、肩部6bにおける磁気回路Mに含まれた部位の歪み発生に寄与する転動体8が1個以下になる。これにより、肩部6bにおける磁気回路Mに含まれた部位のビラリ効果を効率よく検出できるため、上記電圧計18cにて検出される検出用コイル17での誘起電圧の変化を最大限に変化させることができ、上記検出部の感度を向上させることができる。
実施形態2
図5は別の実施形態に係る転がり軸受装置の要部を示す構造図である。図において、本実施形態と上記実施形態との主な相違点は、略コ字状の磁性部材に代えて、内輪肩部6bからの磁束が流れ込む二つの検出面を有する三つ又状の磁性部材を用いた点である。
図5(a)に示すように、本実施形態では、センサ装置3の磁性部材25は、基部25aと、この基部25aの中央部、右側端部、及び左側端部からそれぞれ分岐された第1、第2、及び第3のヨーク部25b,25c,及び25dを有する三つ又状に構成された磁性材料により構成されている。この磁性部材25は、外輪4に形成された3つの取付孔4c,4d,4eに第1〜第3のヨーク部25b〜25dがそれぞれ挿通された状態で、当該磁性部材25は外輪4に固定されている。但し、外輪4と磁性部材25との間には、アルミなどの非磁性材料(図示せず)が介在されており、磁気回路Mに含まれた磁性部材25が外輪4に直接接触するのを防いで当該磁気回路Mが変更されるのを防止するようになっている。
また、上記第1のヨーク部25bには、交流電源18bに接続された励磁用コイル16が巻回されており、当該ヨーク部25bの先端部には、励磁面25b1が形成されている。また、上記第2のヨーク部25cには、電圧計18cに接続された検出用コイル17aが巻回されており、当該ヨーク部25cの先端部には、第1の検出面25c1が形成されている。同様に、上記第3のヨーク部25dには、電圧計18dに接続された検出用コイル17bが巻回されており、当該ヨーク部25dの先端部には、第2の検出面25d1が形成されている。そして、この磁性部材25では、第1のヨーク部25bと、このヨーク部25bに設けられた励磁用コイル16と、このコイル16に接続された交流電源18bとにより、肩部6bに所定の(バイアス)磁界を与える励磁部が構成されている。また、磁性部材25では、第2のヨーク部25cと、このヨーク部25cに設けられた検出用コイル17aと、このコイル17aに接続された電圧計18cとにより、後述の第1の磁気回路M1を流れる磁束を検出する第1の検出部が構成され、また第3のヨーク部25dと、このヨーク部25dに設けられた検出用コイル17bと、このコイル17bに接続された電圧計18dとにより、後述の第2の磁気回路M2を流れる磁束を検出する第2の検出部が構成されている。
また、本実施形態のセンサ装置3では、上記第1及び第2のヨーク部25b,25cの内部、これらのヨーク部25b,25cとの間の基部25aの内部、及び励磁面25b1と第1の検出面25c1とがそれぞれ対向する肩部6bの内部間に、上記励磁部からの磁束が上記第1の検出部側に流れる第1の磁気回路M1が構成されている。また、第1及び第3のヨーク部25b,25dの内部、これらのヨーク部25b,25dとの間の基部25aの内部、及び励磁面25b1と第2の検出面25d1とがそれぞれ対向する肩部6bの内部間に、上記励磁部からの磁束が上記第2の検出部側に流れる第2の磁気回路M2が構成されている。
また、上記磁性部材25では、第1及び第2の検出面25c1,25d1が励磁面25b1に対して周方向で互いに対称位置に配置されるように、第1〜第3のヨーク部25b〜25dは構成されており、さらには上記周方向での励磁面25b1と第1及び第2の各検出面25c1,25d1との離間距離が同一距離、例えば転動体8での所定間隔の半分の距離に設定されている。これにより、上記第1及び第2の磁気回路M1,M2では、例えば図5(b)に示すように、転がり軸受装置2にかかる荷重により磁化容易軸Meの磁化容易方向が揃えられた方向から最大限に方向変化している肩部6bの表面に励磁面25b1が対向したときに、磁化容易軸Meに方向変化を生じていない肩部6bの表面に第1及び第2の各検出面25c1,25d1を対向させることができる。つまり、励磁面25b1の中心点が転動体8の内輪軌道6a(図1)との接触点と軸方向で一致したときに、検出面25c1,25d1の中心点を各々隣接する2個の転動体8の軌道6aとの各接触点間の中間点と軸方向で一致させることができる。
また、この図5(b)に示す場合では、上述の磁気回路M1,M2にそれぞれ含まれる肩部6bの内部での磁化容易軸Meの方向変化が互いに同じ状態になっており、励磁磁束密度が例えば500ガウスであるときに第1及び第2の磁気回路M1,M2での磁気抵抗が同一であることから、検出面25c1,25d1に流れ込む磁束及び電圧計18c,18dの検出値も同じ値(250ガウス)を示す。
また、この図5(c)に示す場合でも、磁気回路M1,M2での磁気抵抗が同一であることから、検出面25c1,25d1に流れ込む磁束及び電圧計18c,18dの検出値も同じ値を示す。
また、本実施形態では、制御装置18の演算部18aは、電圧計18c,18dの検出値の差分を求め、この求めた差分を基に転がり軸受装置2にかかる荷重等の動作データを検知するようになっている。
以上の構成により、本実施形態では、上記実施形態と同様に、ビラリ効果を利用した上記動作データの検知が可能となって第1及び第2の検出部の各感度を高めることなく動作データを検知することができ、上記実施形態と同様な効果を得ることができる。
具体的には、転動体8が図5(b)に示した状態からR2方向に公転して、図6(a)に示す状態に移動したときに、第1の磁気回路M1では、転がり軸受装置2にかかる荷重による磁化容易軸Meの方向変化が比較的小さく肩部6b(被検出部)での磁気抵抗がほとんど減らない。一方、第2の磁気回路M2では、転動体8の転がり荷重による磁化容易軸Meの方向変化が比較的多くなって肩部6bでの磁気抵抗が顕著に小さくなっており、その磁気回路M2には磁気回路M1よりも多くの磁束が流れ込む。この結果、検出用コイル17bに誘起される電圧も検出用コイル17aに誘起されるものより大きくなって、電圧計18cの検出値よりも大きい値の検出値が電圧計18dにて検出される。そして、演算部18aが、これらの検出値の差を算出して、この算出値を基に上述の動作データを所定演算により求めることができる。
その後、転動体8が図5aに示した状態からさらにR2方向に公転して、図6(b)に示す状態に移動すると、第1の磁気回路M1では、転がり軸受装置2にかかる荷重による磁化容易軸Meの方向変化が増加して肩部6bでの磁気抵抗が小さくなる。一方、第2の磁気回路M2では、転がり軸受装置2にかかる荷重による磁化容易軸Meの方向変化が図6(a)に示す状態に比べて減少して肩部6bでの磁気抵抗が大きくなっている。この結果、磁気回路M1には磁気回路M2よりも多くの磁束が流れ込み、検出用コイル17aに誘起される電圧が検出用コイル17bに誘起されるものより大きくなり、電圧計18cの検出値は電圧計18dの検出値よりも大きい値となる。続いて、演算部18aは、これらの検出値の差を算出して、この算出値を基に上述の動作データを所定演算により求めることができる。
また、本実施形態では、演算部18aが電圧計18c,18dの検出値の差分を求めて動作データを検知しているので、内輪6が軸受動作に伴い遠心膨張したときや周囲温度の変化などによって励磁部や、第1及び第2の検出面と肩部6bの表面との各距離(ギャップ)が変化したときでも、そのギャップ変化に起因する磁束の大きさ変動などの影響を相殺することができる。従って、演算部18aが演算する動作データの検知精度をさらに向上させることができる。また、各検出部の温度補正も不要とすることができる。
尚、上記の説明では、複列アンギュラ玉軸受タイプの軸受を具備する車両用の軸受ハブユニットに適用した場合について説明したが、本発明は、内輪及び外輪とこれらの内外輪間に周方向に沿って所定間隔で転動自在に設けられた複数の転動体とを備えた軸受を有する転がり軸受装置に上記磁化容易軸での方向変化を検出することによって軸受回転時での所望の動作データを検知可能なセンサ装置を組付けたものであればよく、転動体の種類や設置数などの軸受形式やセンサ構成等は上記のものに何等限定されるものではなく、本発明は回転機器などの機械や装置等に組み込まれる軸受装置に適用することができる。
また、上記の説明では、内輪の肩部を被検出部とした場合について説明したが、本発明はこれに限定されるものではなく、例えば外輪の肩部の磁化容易軸の磁化容易方向を揃えて当該外輪の肩部を被検出部として構成してもよい。
また、上記の説明では、内輪全体に磁化容易軸の磁化容易方向を揃えた場合について説明したが、本発明はこれに限定されるものではなく、磁化容易方向を所定方向に揃えた磁化容易軸を有する超磁歪部材を内外輪のいずれかの軌道輪の表面上に溶射または接合などにより、例えば被検出部と同調するような歪みを発生するように設ける構成でもよい。この超磁歪部材には、アモルファス磁性合金(結晶磁気異方性を有するものを含む。(例えばCo;72.5重量%、Si;12.5重量%、B;15重量%))や超磁歪材(例えば、Tb−Dy−Fe系超磁歪材)がある。また、このような内外輪と別個に構成された被検出部を用いた場合、一方の軌道輪側に磁化容易軸の磁化容易方向を所定方向に揃える場合に比べて、当該被検出部を容易に設置できる点で好ましい。
また、上記の説明では、励磁面と検出面との離間距離または励磁面と第1及び第2の各検出面との離間距離を、転動体での所定間隔(ボールピッチ)の半分の距離に設定した場合について説明したが、本発明は磁化容易軸の方向変化に伴う検出部での検出磁束の変化を基に動作データを検知するものであればよく、これらの励磁面と検出面との離間距離は上記のボールピッチの半分の距離に限定されない。すなわち、励磁面から被検出部の内部を経て検出面に流れ込む磁束は、当該被検出部の内部での磁化容易軸の方向変化に応じた磁気抵抗の累積的な変化に従って増減されることから、ボールピッチに関わらず励磁面と検出面との離間距離を設定することができる。但し、励磁面と検出面との離間距離を上記のボールピッチの半分の距離に設定した場合の方が、電圧計(検出器)にて検出される検出用コイルでの誘起電圧の変化を最大限に変化させるできる点で好ましい。
また、上記の説明では、略コ字状または三つ又状に構成された磁性部材を用いて励磁部と検出部とを一体的に構成した場合について説明したが、本発明は、これらの励磁部と検出部とが磁気的に結合されて磁気回路を構成できるものであれば何等限定されない。具体的には、上記励磁用コイル及び検出用コイルがそれぞれ巻回された二本の軟磁性材製の棒状部材を用いて、励磁部及び検知部を別個に構成してもよい。但し、上記のように励磁部と検出部とを一体的に構成する軟磁性部材を使用する場合の方が、センサ部品点数を削減することができるとともに、転がり軸受装置へのセンサ装置の組付け作業を簡単化できる点で好ましい。また、磁気損失を少なくして効率よくセンシングすることができるセンサ装置を容易に構成できる点でも好ましい。
また、上記の説明では、励磁用コイルに交流電源を接続して交流磁界を被検出部に与える構成について説明したが、ホール素子などの入力磁束に応じた出力信号を出力する磁気センサを使用する場合には、上記交流電源による交流磁界に代えて、直流電源が接続された励磁用コイルから直流磁界を被検出部に与える構成でもよい。また、直流電源の代わりに永久磁石を用いることもできる。但し、このように永久磁石を用いて励磁部を構成する場合には、周囲温度の変化に伴う磁力変化が小さい、例えば希土類の磁石を使用することが好ましい。また、このような直流磁界を用いる構造は、上記実施形態2に示したように、励磁磁束が分割され、磁気回路M1に流れる磁束と磁気回路M2に流れる磁束との割合の変化によって動作データを検知する構造に限る。但し、この構造では、磁束との割合の変化を検出していることから、上記実施形態1と異なり、磁束密度の大きさや磁束の変化速度を一定にして励磁する必要はない。
本発明の一実施形態に係るセンサ付き転がり軸受装置の断面図である。 上記転がり軸受装置の要部を示す構造図であり、(a)は図1のIIa−IIa線一部切裁断面図であり、(b)は上記転がり軸受装置の内輪に揃えられた磁化容易軸を示す図であり、(c)は上記磁化容易軸の方向変化を示す図である。 (a)及び(b)は図2に示した転がり軸受装置の要部の動作を説明する動作説明図である。 図2に示した電圧計で検出される具体的な検出波形及び検出荷重を示す波形図である。 別の実施形態に係る転がり軸受装置の要部を示す構造図であり、(a)は図1のIIa−IIa線一部切裁断面図であり、(b)及び(c)はボール転動に伴う上記磁化容易軸の方向変化を示す図である。 (a)及び(b)は図5に示した転がり軸受装置の要部の動作を説明する動作説明図である。
符号の説明
1 センサ付き転がり軸受装置
2 転がり軸受装置
3 センサ装置
4 外輪
6 内輪
6b 肩部(被検出部)
8 転動体
15,25 磁性部材(励磁部及び検出部)
15b,25b 第1のヨーク部(励磁部)
15b1,25b1 励磁面
15c,25c 第2のヨーク部(検出部)
15c1,25c1 検出面,第1の検出面
25d 第3のヨーク部(検出部)
25d1 第2の検出面
16 励磁用コイル(励磁部)
17 検出用コイル(検出部)
18 制御装置(検出部)
18a 演算部(励磁部及び検出部)
18b 交流電源(励磁部)
18c,18d 電圧計(検出部)
M,M1,M2 磁気回路

Claims (5)

  1. 内輪及び外輪と、これらの内外輪間に周方向に沿って所定間隔で転動自在に設けられた複数の転動体とを備えた軸受を有する転がり軸受装置であって、
    前記内外輪の一方の軌道輪側に設けられるとともに、歪みに応じて変化する磁化容易軸の磁化容易方向が所定方向に揃えられた被検出部と、
    前記被検出部に対向配置されてその被検出部を励磁する励磁面を備えた励磁部と、
    前記被検出部に対向配置される検出面を有し、かつ前記被検出部と前記励磁部とともに磁気回路を構成して当該磁気回路を流れる磁束を検出する検出部と
    を備えたことを特徴とするセンサ付き転がり軸受装置。
  2. 前記検出部には、前記励磁面に対して前記周方向で互いに対称位置に配置されるように、当該周方向での前記励磁面との離間距離が同一距離に設定された第1及び第2の検出面が設けられていることを特徴とする請求項1に記載のセンサ付き転がり軸受装置。
  3. 前記励磁面と前記第1及び第2の各検出面との前記離間距離が、前記転動体での前記所定間隔の半分の距離に設定されていることを特徴とする請求項2に記載のセンサ付き転がり軸受装置。
  4. 基部と、この基部の中央部、右側端部、及び左側端部からそれぞれ分岐されるとともに、先端部に前記励磁面、前記第1の検出面、及び前記第2の検出面がそれぞれ形成された第1、第2、及び第3のヨーク部とを有する磁性部材を備え、
    前記第1のヨーク部に、前記励磁部に含まれた励磁コイルを巻回するとともに、
    前記第2及び第3の各ヨーク部に、前記検出部に含まれた検出用コイルを巻回したことを特徴とする請求項2または3に記載のセンサ付き転がり軸受装置。
  5. 前記被検出部が、前記軌道輪の表面上に設けられた超磁歪部材により構成されていることを特徴とする請求項1〜4のいずれかに記載のセンサ付き転がり軸受装置。
JP2004095927A 2004-03-29 2004-03-29 センサ付き転がり軸受装置 Pending JP2005283247A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004095927A JP2005283247A (ja) 2004-03-29 2004-03-29 センサ付き転がり軸受装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004095927A JP2005283247A (ja) 2004-03-29 2004-03-29 センサ付き転がり軸受装置

Publications (1)

Publication Number Publication Date
JP2005283247A true JP2005283247A (ja) 2005-10-13

Family

ID=35181814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004095927A Pending JP2005283247A (ja) 2004-03-29 2004-03-29 センサ付き転がり軸受装置

Country Status (1)

Country Link
JP (1) JP2005283247A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005055995A1 (de) * 2005-11-24 2007-06-06 Ab Skf Lageranordnung und Verfahren zur Einstellung der Vorspannung in der Lageranordnung
US20160123839A1 (en) * 2014-10-29 2016-05-05 Rolls-Royce Plc Bearing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228413B2 (ja) * 1981-07-09 1987-06-19 Kosuke Harada
JPS6333634A (ja) * 1986-07-28 1988-02-13 Aisin Warner Ltd トルク検出装置
JPH01209773A (ja) * 1988-02-18 1989-08-23 Honda Motor Co Ltd トルクセンサーを一体に備えた回転軸
JP2001033322A (ja) * 1999-07-19 2001-02-09 Ntn Corp トルク検出機能付軸受
JP2004045370A (ja) * 2002-05-17 2004-02-12 Koyo Seiko Co Ltd センサ付き転がり軸受ユニットおよびセンサ付きハブユニット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228413B2 (ja) * 1981-07-09 1987-06-19 Kosuke Harada
JPS6333634A (ja) * 1986-07-28 1988-02-13 Aisin Warner Ltd トルク検出装置
JPH01209773A (ja) * 1988-02-18 1989-08-23 Honda Motor Co Ltd トルクセンサーを一体に備えた回転軸
JP2001033322A (ja) * 1999-07-19 2001-02-09 Ntn Corp トルク検出機能付軸受
JP2004045370A (ja) * 2002-05-17 2004-02-12 Koyo Seiko Co Ltd センサ付き転がり軸受ユニットおよびセンサ付きハブユニット

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005055995A1 (de) * 2005-11-24 2007-06-06 Ab Skf Lageranordnung und Verfahren zur Einstellung der Vorspannung in der Lageranordnung
DE102005055995B4 (de) * 2005-11-24 2008-08-28 Ab Skf Verfahren zur Einstellung der Vorspannung in einer Lageranordnung
US20160123839A1 (en) * 2014-10-29 2016-05-05 Rolls-Royce Plc Bearing apparatus
US9664593B2 (en) * 2014-10-29 2017-05-30 Rolls-Royce Plc Bearing apparatus

Similar Documents

Publication Publication Date Title
JP3952881B2 (ja) 荷重測定装置付車輪支持用転がり軸受ユニット
JP3189624B2 (ja) 回転速度検出装置付転がり軸受ユニット
JP2006266278A (ja) センサ付車輪用軸受
US20150123652A1 (en) Magnet Device and Position Sensing System
JPH08136558A (ja) 回転速度検出装置
JP4204294B2 (ja) 回転角検出装置
JP2006113017A (ja) エンコーダと、エンコーダ付転がり軸受ユニットと、荷重測定装置付転がり軸受ユニット
JP2005283247A (ja) センサ付き転がり軸受装置
JPH08178938A (ja) 回転速度検出装置付転がり軸受ユニット
JP4029777B2 (ja) センサ付き転がり軸受ユニット
JP2005321272A (ja) 磁歪式トルクセンサ
JP2018105757A (ja) 磁気エンコーダ装置
JP2008026009A (ja) 軸受回転状態計測方法
JP3988702B2 (ja) センサ付きハブユニット
JP4029785B2 (ja) センサ付き転がり軸受ユニット
JP2009229314A (ja) 回転角度検出装置
JP2006258801A (ja) 変位測定装置付転がり軸受ユニット及び荷重測定装置付転がり軸受ユニット
JP2006226477A (ja) センサ付き転がり軸受装置
JPH08136561A (ja) 回転速度検出装置付転がり軸受ユニット
JP2006098258A (ja) センサ装置およびセンサ付き転がり軸受ユニット
JP5458498B2 (ja) 転がり軸受ユニットの状態量測定装置
JP2003315092A (ja) 回転角センサとトルクセンサ
JP5045490B2 (ja) エンコーダの着磁方法及び着磁装置
JP2008064633A (ja) センサ付軸受装置
JP2007078073A (ja) 車輪用転がり軸受装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330