JP2005279917A - Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance - Google Patents

Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance Download PDF

Info

Publication number
JP2005279917A
JP2005279917A JP2004196598A JP2004196598A JP2005279917A JP 2005279917 A JP2005279917 A JP 2005279917A JP 2004196598 A JP2004196598 A JP 2004196598A JP 2004196598 A JP2004196598 A JP 2004196598A JP 2005279917 A JP2005279917 A JP 2005279917A
Authority
JP
Japan
Prior art keywords
layer
type
crystal structure
hard coating
inclination angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004196598A
Other languages
Japanese (ja)
Other versions
JP4530141B2 (en
Inventor
Makoto Nishida
西田  真
Tetsuhiko Honma
哲彦 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004196598A priority Critical patent/JP4530141B2/en
Publication of JP2005279917A publication Critical patent/JP2005279917A/en
Application granted granted Critical
Publication of JP4530141B2 publication Critical patent/JP4530141B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cermet-made cutting tool, the hard coating layer of which exhibits chipping resistance. <P>SOLUTION: In this surface coated cermet-made cutting tool, a hard coating layer composed of the following (a) and (b) is formed on the surface of a tool base formed of a WC-base cemented carbide alloy or a TiCN-base cermet. (a) A lower layer is a Ti-compound layer formed of one or two or more layers selected from a TiC layer, a TiN layer, a TiCN layer, a TiCO layer and a TiCNO layer which are all formed by chemical vapor deposition and (b) and (b) an upper layer is formed by performing heat treatment in the state where a ZrO<SB>2</SB>layer is formed by chemical vapor deposition on the surface of (Al, Zr)<SB>2</SB>O<SB>3</SB>layer having a κ-type or θ-type crystal structure in the chemical deposition formation state, the X value of which satisfies 0.003 to 0.5 at the atomic ratio by measurement using an electron beam micro-analyzer in the case where the layer is expressed by the composition formula (Al<SB>1-X</SB>Zr<SB>X</SB>)<SB>2</SB>O<SB>3</SB>, thereby transforming the crystal structure of the (Al<SB>1-X</SB>Zr<SB>X</SB>)<SB>2</SB>O<SB>3</SB>layer having the κ-type or θ-type crystal structure to the α type crystal structure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、特に鋼や鋳鉄などの高速断続切削時に切刃部にきわめて短いピッチで繰り返し付加される機械的熱的衝撃に対して硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。   This invention is made of a surface-coated cermet that exhibits excellent chipping resistance with a hard coating layer against mechanical thermal shock that is repeatedly applied to the cutting edge portion at a very short pitch, especially during high-speed intermittent cutting of steel and cast iron. The present invention relates to a cutting tool (hereinafter referred to as a coated cermet tool).

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層として、いずれも化学蒸着形成されたTiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層として、化学蒸着形成した状態でα型の結晶構造を有し、かつ1〜15μmの平均層厚を有する蒸着α型酸化アルミニウム(以下、Al23で示す)層、
以上(a)および(b)で構成された硬質被覆層を形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) As a lower layer, a Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer formed by chemical vapor deposition, Ti compound layer comprising one or more of a carbon oxide (hereinafter referred to as TiCO) layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer and having a total average layer thickness of 3 to 20 μm ,
(B) a vapor-deposited α-type aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer having an α-type crystal structure in the state of chemical vapor deposition and having an average layer thickness of 1 to 15 μm as an upper layer;
A coated cermet tool formed by forming a hard coating layer composed of (a) and (b) above is known, and this coated cermet tool is used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is also known that

また、一般に、上記の被覆サーメット工具の硬質被覆層を構成するTi化合物層やAl23層が粒状結晶組織を有し、さらに、前記Ti化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物、例えばCH3CNを含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
特開平6−31503号公報 特開平6−8010号公報
In general, the Ti compound layer or the Al 2 O 3 layer constituting the hard coating layer of the above-mentioned coated cermet tool has a granular crystal structure, and the TiCN layer constituting the Ti compound layer is further improved in the strength of the layer itself. For the purpose of improvement, it is formed by chemical vapor deposition in a medium temperature range of 700 to 950 ° C. using a mixed gas containing an organic carbonitride such as CH 3 CN as a reaction gas in a normal chemical vapor deposition apparatus. It is also known to have a vertically elongated crystal structure.
Japanese Unexamined Patent Publication No. 6-31503 Japanese Patent Laid-Open No. 6-8010

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化の傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを切削条件の最も厳しい高速断続切削、すなわち切刃部にきわめて短いピッチで繰り返し機械的熱的衝撃が付加される高速断続切削に用いた場合、硬質被覆層の下部層であるTi化合物層はすぐれた高温強度を有し、すぐれた耐衝撃性を示すものの、同上部層を構成する蒸着α型Al23層は、高温硬さおよび耐熱性にすぐれるものの、高温強度が低いために、機械的熱的衝撃にはチッピング(微小欠け)が発生し易くなり、この結果比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting work, and along with this, cutting work tends to be further accelerated. For coated cermet tools, there is no problem when this is used for continuous cutting and interrupted cutting under normal conditions such as steel and cast iron. When used for high-speed interrupted cutting in which mechanical thermal shock is repeatedly applied at a very short pitch, the Ti compound layer, which is the lower layer of the hard coating layer, has excellent high-temperature strength and excellent impact resistance. However, the deposited α-type Al 2 O 3 layer that constitutes the upper layer has excellent high-temperature hardness and heat resistance, but its high-temperature strength is low, so chipping (small chipping) occurs in mechanical thermal shock. Easy As a result, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記の被覆サーメット工具の硬質被覆層の上部層を構成するAl23層の耐チッピング性向上をはかるべく研究を行った結果、
(a)上記の通り、硬質被覆層としての蒸着α型Al23層は、高温硬さおよび耐熱性にすぐれるものの、高温強度が十分でなく、特に高速断続切削で満足な耐チッピング性を発揮することは困難であり、一方蒸着形成した状態でκ型またはθ型の結晶構造を有するAl23層は、前記蒸着α型Al23層に比して、相対的に高い高温強度を有し、すぐれた耐チッピング性を発揮するものの、高温硬さおよび耐熱性の点で劣り、摩耗の進行が速いこと。
Therefore, as a result of conducting research to improve the chipping resistance of the Al 2 O 3 layer constituting the upper layer of the hard coating layer of the above coated cermet tool from the above viewpoint,
(A) As described above, the vapor-deposited α-type Al 2 O 3 layer as a hard coating layer is excellent in high-temperature hardness and heat resistance, but does not have sufficient high-temperature strength and is particularly satisfactory in high-speed intermittent cutting. On the other hand, an Al 2 O 3 layer having a κ-type or θ-type crystal structure in a vapor-deposited state is relatively higher than the vapor-deposited α-type Al 2 O 3 layer. Although it has high temperature strength and excellent chipping resistance, it is inferior in terms of high temperature hardness and heat resistance, and wear progresses quickly.

(b)上記の蒸着α型Al23層、並びに蒸着κ型またはθ型Al23層に、これらの結晶格子を損なうことのない割合でZrを含有させて、
組成式:(Al1−X Zr23
で現した場合、電子線マイクロアナライザー(EPMA)で測定して、X値が原子比で、0.003〜0.05を満足する組成のAl−Zr酸化物[以下、(Al,Zr)23で示す]層とすると、この結果の(Al,Zr)23層は、前記Al23層に比して高温強度の向上したものになるが、この高温強度の向上は前記蒸着κ型またはθ型(Al,Zr)23層の方が前記蒸着α型(Al,Zr)23層に比して一段と大きなものとなること。
(B) In the above-mentioned vapor-deposited α-type Al 2 O 3 layer, and vapor-deposited κ-type or θ-type Al 2 O 3 layer, Zr is contained in a proportion that does not damage these crystal lattices,
Composition formula: (Al 1-X Zr X ) 2 O 3,
The Al-Zr oxide [hereinafter referred to as (Al, Zr) 2] having a composition satisfying 0.003 to 0.05 in terms of the X value as measured by an electron beam microanalyzer (EPMA). When indicated by O 3] layer, as a result of the (Al, Zr) 2 O 3 layer, the Al 2 O becomes to those with improved high temperature strength as compared with the three layers, the improvement of the high temperature strength is the The vapor-deposited κ-type or θ-type (Al, Zr) 2 O 3 layer is larger than the vapor-deposited α-type (Al, Zr) 2 O 3 layer.

(c)工具基体の表面に、通常の化学蒸着装置で、下部層として、通常の条件で、上記Ti化合物層を形成した後、同じく通常の条件で、蒸着形成した状態でκ型またはθ型の結晶構造を有する(Al,Zr)23層を形成し、ついで、これに加熱処理、望ましくは圧力:7〜50kPaのAr雰囲気中、温度:1000〜1200℃に5〜80分保持の条件で加熱処理を施すと、前記Ti化合物層に結晶構造上変化は起らないが、前記κ型またはθ型の結晶構造を有する(Al,Zr)2 3 層はα型結晶構造の(Al,Zr)23層に変態し、この変態に際して、体積収縮による割れ(クラック)が発生し、この変態割れは変態後のα型(Al,Zr)23層に大きな割れとして存在し、切削加工時のチッピング発生の原因となること。 (C) After forming the Ti compound layer as a lower layer under normal conditions on the surface of the tool base with a normal chemical vapor deposition apparatus, the κ-type or θ-type is formed under the same conditions under vapor deposition. (Al, Zr) 2 O 3 layer having the following crystal structure is formed, followed by heat treatment, desirably pressure: 7-50 kPa in an Ar atmosphere, temperature: 1000-1200 ° C., maintained for 5-80 minutes When the heat treatment is performed under the conditions, the Ti compound layer does not change in crystal structure, but the (Al, Zr) 2 O 3 layer having the κ-type or θ-type crystal structure has an α-type crystal structure ( Al, Zr) 2 O 3 layer is transformed and cracks due to volume shrinkage occur during this transformation, and these transformation cracks exist as large cracks in the transformed α-type (Al, Zr) 2 O 3 layer And cause chipping during cutting.

(d)上記(c)のTi化合物層の表面に蒸着形成した状態でκ型またはθ型の結晶構造を有する(Al,Zr)23層に、上記条件での加熱処理を施さずに、引き続いて、同じく化学蒸着装置にて、
反応ガス組成:体積%で、ZrCl:1〜6%、CO:5〜15%、HCl:1〜8%、H:残り、
反応雰囲気温度:800〜1100℃、
反応雰囲気圧力:3〜15kPa、
の条件で処理して、前記κ型またはθ型(Al,Zr)23層の表面に、酸化ジルコニウム(以下、ZrOで示す)層を1.5〜5μmの平均層厚で形成し、この状態で、上記(b)の条件での加熱処理を施して、前記κ型またはθ型の結晶構造の(Al,Zr)23層をα型結晶構造の(Al,Zr)23層に変態させると、前記変態前の(Al,Zr)23層の表面に形成したZrO層が、前記(Al,Zr)23層のκ型またはθ型の結晶構造からα型結晶構造への変態による体積収縮に伴なって発生する割れの進展を著しく抑制すると共に、前記ZrO層の作用で、前記変態を(Al,Zr)23層の表面全面に亘って同時的に開始するように作用し、経時的に(Al,Zr)23層の表面部から内部に進行する変態形態をとるようになることから、変態時に発生する割れは、きわめて微細に、かつ層全体に亘って一様に分散分布した状態となるほか、変態後のα型(Al,Zr)23層における結晶配向も変態前の蒸着κ型またはθ型(Al,Zr)23層のもつ結晶配向と同等、あるいは結晶配向に変化があってもきわめて小さなものとなり、この結果形成された加熱変態α型(Al,Zr)23層は、α型結晶構造のもつすぐれた高温硬さと耐熱性と共に、加熱変態前のκ型またはθ型(Al,Zr)23層のもつ高温強度と同等のすぐれた高温強度を具備するようになり、したがって、硬質被覆層の上部層が前記加熱変態α型(Al,Zr)23層とZrO層、下部層が上記Ti化合物層で構成された被覆サーメット工具においては、特に激しい機械的熱的衝撃を伴なう高速断続切削加工でも前記加熱変態α型(Al,Zr)23層が、すぐれた高温硬さと耐熱性に加えて、すぐれた高温強度を具備することから、高い高温強度を有する前記Ti化合物層との共存と相俟って、硬質被覆層におけるチッピング発生が著しく抑制され、長期に亘ってすぐれた耐摩耗性を示すようになること。
(D) Without subjecting the (Al, Zr) 2 O 3 layer having the κ-type or θ-type crystal structure to the surface of the Ti compound layer of (c) above, heat treatment under the above conditions Then, in the same chemical vapor deposition equipment,
Reaction gas composition: by volume%, ZrCl 4: 1~6%, CO 2: 5~15%, HCl: 1~8%, H 2: remainder,
Reaction atmosphere temperature: 800-1100 ° C.
Reaction atmosphere pressure: 3 to 15 kPa,
Then, a zirconium oxide (hereinafter referred to as ZrO 2 ) layer having an average layer thickness of 1.5 to 5 μm is formed on the surface of the κ-type or θ-type (Al, Zr) 2 O 3 layer. in this state, subjected to heat treatment under the conditions of the above (b), the (Al, Zr) of the κ-type or θ-type crystal structure 2 O 3 layer of α-type crystal structure (Al, Zr) 2 When transformed into the O 3 layer, the ZrO 2 layer formed on the surface of the (Al, Zr) 2 O 3 layer before transformation is a κ-type or θ-type crystal structure of the (Al, Zr) 2 O 3 layer. In addition to remarkably suppressing the development of cracks that occur due to volume shrinkage due to transformation from α to α-type crystal structure, the transformation is applied to the entire surface of the (Al, Zr) 2 O 3 layer by the action of the ZrO 2 layer. over acts to initiate concurrently, over time (Al, Zr) transformation type traveling from the surface portion of the 2 O 3 layer on the inside From becoming to take, cracks generated during metamorphosis, very finely, and in addition to a state of being uniformly dispersed distributed throughout the layer, alpha type after transformation (Al, Zr) 2 O 3 layer The crystal orientation in the film is equivalent to the crystal orientation of the vapor-deposited κ-type or θ-type (Al, Zr) 2 O 3 layer before transformation, or very small even if there is a change in the crystal orientation. The α-type (Al, Zr) 2 O 3 layer has the high-temperature strength and heat resistance of the α-type crystal structure, as well as the high-temperature strength of the κ-type or θ-type (Al, Zr) 2 O 3 layer before heat transformation. Therefore, the upper layer of the hard coating layer is the heat transformed α-type (Al, Zr) 2 O 3 layer and the ZrO 2 layer, and the lower layer is the Ti compound layer. Especially in the case of constructed coated cermet tools The heat-transformed α-type (Al, Zr) 2 O 3 layer has excellent high-temperature strength in addition to excellent high-temperature hardness and heat resistance even in high-speed intermittent machining with mechanical thermal shock. Together with the coexistence with the Ti compound layer having high high-temperature strength, the occurrence of chipping in the hard coating layer is remarkably suppressed, and excellent wear resistance is exhibited over a long period of time.

(e)上記の従来蒸着α型Al23層および上記(d)の加熱変態α型(Al,Zr)23層について、
電界放出型走査電子顕微鏡を用い、図1(a),(b)に概略説明図で示される通り、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来の蒸着α型Al23層は、図3に例示される通り、(0001)面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記加熱変態α型(Al,Zr)23層は、図2に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、このシャープな最高ピークは、ZrO層の平均層厚を変化させることによりグラフ横軸の傾斜角区分に現れる位置および高さが変わること。
(E) About the above-mentioned conventional vapor deposition α-type Al 2 O 3 layer and the above-mentioned heat-transformed α-type (Al, Zr) 2 O 3 layer of (d),
Using a field emission scanning electron microscope, as shown in the schematic explanatory diagrams in FIGS. 1A and 1B, an electron beam is individually applied to each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface. Irradiation is performed to measure the inclination angle formed by the normal line of the (0001) plane that is the crystal plane of the crystal grain with respect to the normal line of the surface-polished surface. When the measured inclination angle within the range is divided for each pitch of 0.25 degrees and the inclination angle number distribution graph is created by summing up the frequencies existing in each division, the conventional vapor deposition α-type Al 2 As illustrated in FIG. 3, the O 3 layer exhibits an unbiased inclination angle number distribution graph in the range of the measured inclination angle of the (0001) plane within the range of 0 to 45 degrees, whereas the heating transformation α-type (Al, Zr) 2 O 3 layer, as illustrated in FIG. 2, the specific position of the tilt angle segment Highest peak appeared as Sharp, the sharp highest peak changes that the position and height appear on the tilt angle sections of the graph the horizontal axis by changing the average layer thickness of the ZrO 2 layer.

(f)試験結果によれば、上記ZrO層を、上記の通り1.5〜5μmの平均層厚にすると、上記シャープな最高ピークが傾斜角区分の3〜16度の範囲内に現れると共に、前記3〜16度の範囲内に存在する度数の合計(この度数合計と前記最高ピークの高さは比例関係にある)が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すようになり、この結果の傾斜角度数分布グラフで3〜16度の範囲内の傾斜角度数の割合が45%以上を占め、かつ前記3〜16度の範囲内に傾斜角区分の最高ピークが現れる加熱変態α型(Al,Zr)23層を硬質被覆層の上部層として、下部層のTi化合物層と共存した状態で蒸着形成してなる被覆サーメット工具は、上記の従来被覆サーメット工具に比して、特に高速断続切削で切刃部にチッピングの発生なく、一段とすぐれた耐摩耗性を発揮するようになること。
以上(a)〜(f)に示される研究結果を得たのである。
(F) According to the test results, when the ZrO 2 layer has an average layer thickness of 1.5 to 5 μm as described above, the sharp maximum peak appears in the range of 3 to 16 degrees of the tilt angle section. The total of the frequencies existing in the range of 3 to 16 degrees (the total frequency and the height of the highest peak are in a proportional relationship) occupy a ratio of 45% or more of the entire frequencies in the inclination angle frequency distribution graph. An inclination angle number distribution graph is shown. In the resulting inclination angle number distribution graph, the ratio of the inclination angle number within the range of 3 to 16 degrees occupies 45% or more, and within the range of 3 to 16 degrees. The coated cermet tool formed by vapor deposition in the state of coexisting with the lower Ti compound layer, with the heat-transformed α-type (Al, Zr) 2 O 3 layer in which the highest peak of the tilt angle section appears as the upper layer of the hard coating layer, The above-mentioned conventional coated cermet tool Compared to, especially with high-speed intermittent cutting, there will be no chipping at the cutting edge, and it will exhibit even better wear resistance.
The research results shown in (a) to (f) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、
(a)下部層が、いずれも化学蒸着形成されたTiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、化学蒸着形成した状態でκ型またはθ型の結晶構造および1〜15μmの平均層厚を有し、かつ、
組成式:(Al1−X Zr23
で表わした場合、電子線マイクロアナライザー(EPMA)で測定して、X値が原子比で0.003〜0.05を満足する(Al,Zr)23層の表面に、ZrO層を1.5〜5μmの平均層厚で化学蒸着形成した状態で、加熱処理を施して、前記κ型またはθ型の結晶構造を有する(Al,Zr)23層の結晶構造をα型結晶構造に変態してなると共に、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、3〜16度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記3〜16度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示す加熱変態α型(Al,Zr)23層、
以上(a)および(b)で構成された硬質被覆層を形成してなる、硬質被覆層がすぐれた耐チッピング性を有する被覆サーメット工具に特徴を有するものである。
The present invention has been made based on the above research results, and on the surface of a tool base composed of a WC-based cemented carbide or TiCN-based cermet,
(A) The lower layer is composed of one or more of TiC layer, TiN layer, TiCN layer, TiCO layer, and TiCNO layer formed by chemical vapor deposition, and has a total average layer thickness of 3 to 20 μm. A Ti compound layer having
(B) the upper layer has a κ-type or θ-type crystal structure and an average layer thickness of 1 to 15 μm in the state of chemical vapor deposition; and
Composition formula: (Al 1-X Zr X ) 2 O 3,
The ZrO 2 layer is formed on the surface of the (Al, Zr) 2 O 3 layer, which is measured by an electron beam microanalyzer (EPMA) and the X value satisfies 0.003 to 0.05 in atomic ratio. In the state in which chemical vapor deposition is formed with an average layer thickness of 1.5 to 5 μm, heat treatment is performed to change the crystal structure of the (Al, Zr) 2 O 3 layer having the κ-type or θ-type crystal structure into an α-type crystal. As it transforms into a structure,
Using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polishing surface is irradiated with an electron beam, and the crystal grain is compared with the normal line of the surface polishing surface. The tilt angle formed by the normal line of the (0001) plane, which is the crystal plane, is measured, and among the measured tilt angles, the measured tilt angles within the range of 0 to 45 degrees are classified for each pitch of 0.25 degrees. In addition, in the inclination angle number distribution graph obtained by counting the frequencies existing in each section, the highest peak exists in the inclination angle section within the range of 3 to 16 degrees and also exists within the range of 3 to 16 degrees. A heating transformation α-type (Al, Zr) 2 O 3 layer showing an inclination angle distribution graph in which the total frequency to be obtained accounts for 45% or more of the entire frequency in the inclination angle distribution graph;
The present invention is characterized by a coated cermet tool having the chipping resistance with excellent hard coating layer formed by forming the hard coating layer constituted by (a) and (b) above.

つぎに、この発明の被覆サーメット工具の硬質被覆層の構成層について、上記の通りに数値限定した理由を以下に説明する。
(a)Ti化合物層(下部層)の平均層厚
Ti化合物層は、自体が加熱変態α型(Al,Zr)23層に比して、相対的に高い高温強度を有し、これの存在によって硬質被覆層が一段と高い高温強度を具備するようになるほか、工具基体と上部層である加熱変態α型(Al,Zr)23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴なう高速断続切削で熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
Next, the reason why the constituent layers of the hard coating layer of the coated cermet tool of the present invention are numerically limited as described above will be described below.
(A) Average thickness of Ti compound layer (lower layer) The Ti compound layer itself has a relatively high high-temperature strength as compared with the heat-transformed α-type (Al, Zr) 2 O 3 layer. The hard coating layer has a much higher high-temperature strength due to the presence of the hard coating, and also firmly adheres to both the tool base and the heat-transformed α-type (Al, Zr) 2 O 3 layer, which is the upper layer. Although it has the effect of contributing to the adhesion of the coating layer to the tool substrate, if the total average layer thickness is less than 3 μm, the above-mentioned effect cannot be fully exerted, while if the total average layer thickness exceeds 20 μm. Particularly, high-speed intermittent cutting accompanied by high heat generation is likely to cause thermoplastic deformation, which causes uneven wear. Therefore, the total average layer thickness is determined to be 3 to 20 μm.

(b)蒸着κ型またはθ型(Al,Zr)23層(上部層)のZrの含有割合および平均層厚
蒸着κ型またはθ型(Al,Zr)23層は、上記の通り加熱変態後にすぐれた高温硬さと耐熱性、さらに測定傾斜角:3〜16度の範囲内に最高ピークが現れる傾斜角度数分布グラフを示し、すぐれた高温強度を具備する加熱変態α型(Al,Zr)23層となり、構成成分であるZrの作用による強度向上効果と相俟って、高速断続切削加工でもチッピングの発生なく、すぐれた耐摩耗性を発揮するようになるが、Zrの含有割合(X値)が、Alとの合量に占める割合で、原子比で(以下同じ)0.003未満では、十分な強度向上効果を発揮することができず、一方Zrの含有割合が同0.05を越えると、六方晶結晶格子に乱れが生じ、加熱処理でのκ型またはθ型結晶構造からα型結晶構造への変態を満足に行うことが困難になることから、Zrの含有割合(X値)を0.003〜0.05と定めた。
また、蒸着κ型またはθ型(Al,Zr)23の平均層厚が1μm未満では、硬質被覆層に十分な耐摩耗性を発揮せしめることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(B) Zr content and average layer thickness of vapor-deposited κ-type or θ-type (Al, Zr) 2 O 3 layer (upper layer) The vapor-deposited κ-type or θ-type (Al, Zr) 2 O 3 layer is Excellent high-temperature hardness and heat resistance after heating transformation, as well as measured inclination angle: Inclination angle number distribution graph in which the highest peak appears in the range of 3 to 16 degrees, heating transformation α type (Al , Zr) 2 O 3 layer, combined with the effect of improving the strength by the action of Zr as a constituent component, it exhibits excellent wear resistance without occurrence of chipping even in high-speed intermittent cutting. If the content ratio (X value) is less than 0.003 in atomic ratio (hereinafter the same) in the total amount with Al, sufficient strength improvement effect cannot be exhibited, while the content ratio of Zr When the value exceeds 0.05, disorder occurs in the hexagonal crystal lattice. Since it is difficult to satisfactorily transform the κ-type or θ-type crystal structure into the α-type crystal structure in the heat treatment, the Zr content ratio (X value) is set to 0.003 to 0.05. .
In addition, if the average layer thickness of the vapor-deposited κ type or θ type (Al, Zr) 2 O 3 is less than 1 μm, the hard coating layer cannot exhibit sufficient wear resistance, while the average layer thickness is 15 μm. If the thickness is too large, chipping is likely to occur. Therefore, the average layer thickness is set to 1 to 15 μm.

(c)ZrO層の平均層厚
ZrO層には、上記の通り蒸着κ型またはθ型(Al,Zr)23層の加熱変態α型(Al,Zr)23層への加熱変態に際して、体積収縮に伴なって発生する割れの進展を著しく抑制すると共に、前記変態を(Al,Zr)23層表面全面に亘って同時的に開始させ、経時的に(Al,Zr)23層の表面部から内部に進行する変態形態をとる作用があるので、加熱変態時に発生する割れが層全体に亘って微細化および均一化するようになり、さらに、前記ZrO層には、平均層厚を1.5〜5μmにすると、試験結果によれば、これに対応して、傾斜角度数分布グラフにおける3〜16度の傾斜角区分範囲内に測定傾斜角の最高ピークが現れ、かつ前記3〜16度の傾斜角区分内に存在する度数の合計割合が、傾斜角度数分布グラフにおける度数全体の45%以上となる傾斜角度数分布グラフを示す作用があり、したがって、前記平均層厚が1.5未満では、前記加熱変態α型(Al,Zr)23層の傾斜角度数分布グラフの3〜16度の範囲内に現れるピーク高さが不十分、すなわち、前記3〜16度の範囲内に存在する度数の合計割合が、傾斜角度数分布グラフにおける度数全体の45%未満となってしまい、この場合上記の通り、前記加熱変態α型(Al,Zr)23層に所望のすぐれた高温強度を確保することができず、この結果耐チッピング性に所望の向上効果が得られず、一方その平均層厚が5μmを越えると、最高ピークの現れる傾斜角区分が3〜16度の範囲から外れてしまい、この場合も前記加熱変態α型(Al,Zr)23層に所望のすぐれた高温強度を確保することができないことから、その平均層厚を1.5〜5μmと定めた。
The average layer thickness ZrO 2 layer of 2-layer (c) ZrO, as above deposition κ-type or θ-type (Al, Zr) 2 O 3 layer of heat transformation α-type (Al, Zr) to 2 O 3 layer During the heating transformation, the progress of cracks generated with volume shrinkage is remarkably suppressed, and the transformation is started simultaneously over the entire surface of the (Al, Zr) 2 O 3 layer. The Zr) 2 O 3 layer has an action of taking a transformation form that proceeds from the surface portion to the inside, so that cracks generated during the heat transformation become finer and uniform throughout the layer, and the ZrO 2 For the layer, when the average layer thickness is 1.5 to 5 μm, according to the test results, the maximum measured inclination angle is within the inclination angle range of 3 to 16 degrees in the inclination angle number distribution graph. The peak appears and the frequency that exists in the tilt angle section of 3-16 degrees This has the effect of showing an inclination angle number distribution graph in which the total ratio is 45% or more of the entire frequency in the inclination angle number distribution graph. Therefore, when the average layer thickness is less than 1.5, the heating transformation α type (Al, The peak height appearing in the range of 3 to 16 degrees in the tilt angle number distribution graph of the Zr) 2 O 3 layer is insufficient, that is, the total ratio of the frequencies existing in the range of 3 to 16 degrees is the tilt angle. It becomes less than 45% of the total frequency in the number distribution graph, in this case, as described above, it is not possible to ensure the desired excellent high temperature strength in the heating transformation α-type (Al, Zr) 2 O 3 layer, As a result, the desired improvement effect cannot be obtained in the chipping resistance. On the other hand, when the average layer thickness exceeds 5 μm, the inclination angle section where the highest peak appears is out of the range of 3 to 16 degrees. Transformation α type (Al, Zr ) Since the desired excellent high temperature strength could not be secured in the 2 O 3 layer, the average layer thickness was determined to be 1.5 to 5 μm.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて硬質被覆層の最表面層として蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as the outermost surface layer of the hard coating layer as necessary, but the average layer thickness in this case is It may be 0.1 to 1 μm, and if it is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient for an average layer thickness of up to 1 μm.

この発明被覆サーメット工具は、機械的熱的衝撃がきわめて高く、かつ高い発熱を伴なう鋼や鋳鉄などの高速断続切削でも、硬質被覆層の上部層を構成する加熱変態α型(Al,Zr)23層が、すぐれた高温硬さおよび耐熱性に加えて、すぐれた高温強度を具備し、すぐれた耐チッピング性を発揮することから、長期に亘ってすぐれた耐摩耗性を示すものである。 The coated cermet tool of the present invention has a heat transformation α type (Al, Zr) that constitutes the upper layer of the hard coating layer even in high-speed intermittent cutting of steel or cast iron with extremely high mechanical and thermal shock and high heat generation. ) 2 O 3 layer has excellent high-temperature hardness and heat resistance, excellent high-temperature strength, and excellent chipping resistance. It is.

つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。   Next, the coated cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By performing the processing, tool bases A to F made of a WC-base cemented carbide having a throwaway tip shape specified in ISO · CNMG120408 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having a standard / CNMG12041 chip shape were formed.

つぎに、これらの工具基体A〜Fおよび工具基体a〜fの表面に、通常の化学蒸着装置を用い、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、硬質被覆層の下部層としてTi化合物層を、表4に示される組み合わせで、かつ目標層厚で蒸着形成し、ついで同じく表3に示される条件にて、結晶構造がκ型またはθ型の(Al,Zr)23層を同じく表4に示される組み合わせで、かつ目標層厚で蒸着形成し、ついで前記κ型またはθ型の(Al,Zr)23層の表面に、ZrO層を同じく表3に示される条件で表4に示される組み合わせで、かつ目標層厚で蒸着形成した状態で、これに30kPaのAr雰囲気中、温度:1100℃に10〜60分の範囲内の所定の時間保持の条件で加熱処理を施して、前記κ型またはθ型の結晶構造の(Al,Zr)23層をα型結晶構造の(Al,Zr)23層に変態させて加熱変態α型(Al,Zr)23層としてなる上部層を形成することにより本発明被覆サーメット工具1〜13をそれぞれ製造した。 Next, an ordinary chemical vapor deposition apparatus is used on the surfaces of the tool bases A to F and the tool bases a to f, and Table 3 (l-TiCN in Table 3 is described in JP-A-6-8010). Ti compound as a lower layer of the hard coating layer under the conditions shown in (1) shows the conditions for forming a TiCN layer having a vertically grown crystal structure, and (2) shows conditions for forming a normal granular crystal structure. The layers are formed by vapor deposition in the combinations shown in Table 4 and with the target layer thickness, and under the same conditions shown in Table 3, a (Al, Zr) 2 O 3 layer having a crystal structure of κ type or θ type is formed. Similarly, the conditions shown in Table 3 are used for forming a vapor deposition with the target layer thickness in the combination shown in Table 4 and then forming the ZrO 2 layer on the surface of the κ-type or θ-type (Al, Zr) 2 O 3 layer. In the combination shown in Table 4 and with the target layer thickness, the evaporation type In this state, this was subjected to heat treatment in a 30 kPa Ar atmosphere at a temperature of 1100 ° C. for a predetermined time within a range of 10 to 60 minutes, and the crystal structure of the κ-type or θ-type ( The Al, Zr) 2 O 3 layer is transformed into an α-type crystal structure (Al, Zr) 2 O 3 layer to form a heat-transformed α-type (Al, Zr) 2 O 3 layer as an upper layer. Invention coated cermet tools 1-13 were produced, respectively.

また、比較の目的で、表5に示される通り、硬質被覆層の上部層として同じく表3に示される条件で、同じく表5に示される目標層厚の蒸着α型Al23層を形成し、かつ上記のZrO層の形成および上記条件での加熱処理を行わない以外は同一の条件で従来被覆サーメット工具1〜13をそれぞれ製造した。 For the purpose of comparison, as shown in Table 5, an evaporated α-type Al 2 O 3 layer having the target layer thickness shown in Table 5 is also formed as the upper layer of the hard coating layer under the same conditions as shown in Table 3. In addition, conventionally coated cermet tools 1 to 13 were produced under the same conditions except that the formation of the ZrO 2 layer and the heat treatment under the above conditions were not performed.

ついで、上記の本発明被覆サーメット工具と従来被覆サーメット工具の硬質被覆層を構成する加熱変態α型(Al,Zr)23層と蒸着α型Al23層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の加熱変態α型(Al,Zr)23層および蒸着α型Al23層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
Next, the field-emission scanning electron is used for the heat-transformed α-type (Al, Zr) 2 O 3 layer and the vapor-deposited α-type Al 2 O 3 layer constituting the hard coating layer of the above-described coated cermet tool of the present invention and the conventional coated cermet tool. A tilt angle number distribution graph was created using a microscope.
That is, the gradient angle distribution graph shows a field emission scanning electron microscope in a state where the surfaces of the heat-transformed α-type (Al, Zr) 2 O 3 layer and the deposited α-type Al 2 O 3 layer are polished surfaces. A crystal having a hexagonal crystal lattice existing in the measurement range of the surface polished surface with an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees and an irradiation current of 1 nA on the polished surface. Irradiate each grain, and use an electron backscatter diffraction imaging apparatus, and a region of 30 × 50 μm at a spacing of 0.1 μm / step is the crystal plane of the crystal grain with respect to the normal of the surface polished surface The inclination angle formed by the normal line of the (0001) plane is measured, and based on the measurement result, the measurement inclination angle within the range of 0 to 45 degrees is measured for each pitch of 0.25 degrees. To categorize and count the frequencies existing in each category Ri was created.

この結果得られた各種の加熱変態α型(Al,Zr)23層および蒸着α型Al23層の傾斜角度数分布グラフにおいて、(0001)面が最高ピークを示す傾斜角区分、並びに3〜16度の範囲内の傾斜角区分内に存在する傾斜角度数の傾斜角度数分布グラフ全体の傾斜角度数に占める割合をそれぞれ表4,5にそれぞれ示した。 In the inclination angle number distribution graphs of the various heat-transformed α-type (Al, Zr) 2 O 3 layers and vapor-deposited α-type Al 2 O 3 layers obtained as a result, the inclination angle segments in which the (0001) plane shows the highest peak, Tables 4 and 5 show the ratios of the tilt angle numbers existing in the tilt angle sections within the range of 3 to 16 degrees to the tilt angle number of the entire tilt angle distribution graph, respectively.

上記の各種の傾斜角度数分布グラフにおいて、表4,5にそれぞれ示される通り、本発明被覆サーメット工具の加熱変態α型(Al,Zr)23層は、いずれも(0001)面の測定傾斜角の分布が3〜16度の範囲内の傾斜角区分に最高ピークが現れ、かつ3〜16度の範囲内の傾斜角区分内に存在する傾斜角度数の割合が45%以上である傾斜角度数分布グラフを示すのに対して、従来被覆サーメット工具の蒸着α−Al23層は、いずれも(0001)面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在せず、3〜16度の範囲内の傾斜角区分内に存在する傾斜角度数の割合も25%以下である傾斜角度数分布グラフを示すものであった。
なお、図2は、本発明被覆サーメット工具7の加熱変態α型(Al,Zr)23層の傾斜角度数分布グラフ、図3は、従来被覆サーメット工具2の蒸着α型Al23層の傾斜角度数分布グラフをそれぞれ示すものである。
In the above-mentioned various inclination angle number distribution graphs, as shown in Tables 4 and 5, the heating transformation α-type (Al, Zr) 2 O 3 layer of the coated cermet tool of the present invention is all measured on the (0001) plane. An inclination in which the distribution of the inclination angle has the highest peak in the inclination angle section within the range of 3 to 16 degrees, and the ratio of the number of inclination angles existing in the inclination angle section within the range of 3 to 16 degrees is 45% or more. Whereas the angle distribution graph is shown, the vapor deposition α-Al 2 O 3 layers of the conventional coated cermet tools are all unbiased within the range of the measured inclination angle of the (0001) plane within the range of 0 to 45 degrees. The inclination angle number distribution graph in which the highest peak does not exist and the ratio of the inclination angle number existing in the inclination angle section within the range of 3 to 16 degrees is also 25% or less is shown.
2 is a graph showing the distribution of the number of inclination angles of the heat-transformed α-type (Al, Zr) 2 O 3 layer of the coated cermet tool 7 of the present invention, and FIG. 3 is the vapor-deposited α-type Al 2 O 3 of the conventional coated cermet tool 2. The graph of the distribution of the number of inclination angles of layers is shown.

また、この結果得られた本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)で測定(層の縦断面を観察)したところ、前者ではいずれも目標組成と実質的に同じ組成を有するTi化合物層と加熱変態α型(Al,Zr)23層、さらにZrO層からなることが確認された。一方後者でも、いずれも同じく目標組成と実質的に同じ組成を有するTi化合物と蒸着α型Al23層からなることが確認された。さらに、これらの被覆サーメット工具の硬質被覆層の構成層の厚さを走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 In addition, for the coated cermet tools 1 to 13 of the present invention and the conventional coated cermet tools 1 to 13 obtained as a result, the constituent layers of the hard coating layer were measured with an electron beam microanalyzer (EPMA) (observation of the longitudinal section of the layer) As a result, it was confirmed that the former consisted of a Ti compound layer having substantially the same composition as the target composition, a heat-transformed α-type (Al, Zr) 2 O 3 layer, and a ZrO 2 layer. On the other hand, it was confirmed that both of the latter consisted of a Ti compound having substantially the same composition as the target composition and a deposited α-type Al 2 O 3 layer. Furthermore, when the thicknesses of the constituent layers of the hard coating layer of these coated cermet tools were measured using a scanning electron microscope (same longitudinal section measurement), all of them had an average layer thickness substantially equal to the target layer thickness (5 The average value of point measurement) was shown.

つぎに、上記の各種の被覆サーメット工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13について、
被削材:JIS・S35Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:450m/min、
切り込み:1.5mm、
送り:0.3mm/rev、
切削時間:5分、
の条件(切削条件A)での炭素鋼の乾式高速断続切削試験(通常の切削速度は200m/min)、
被削材:JIS・SCr430の長さ方向等間隔4本縦溝入り丸棒、
切削速度:400m/min、
切り込み:1.5mm、
送り:0.3mm/rev、
切削時間:5分、
の条件(切削条件B)での合金鋼の乾式高速断続切削試験(通常の切削速度は200m/min)、
被削材:JIS・FC300の長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min、
切り込み:1.5mm、
送り:0.3mm/rev、
切削時間:5分、
の条件(切削条件C)での鋳鉄の乾式高速断続切削試験(通常の切削速度は250m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Next, in the state where each of the various coated cermet tools is screwed to the tip of the tool steel tool with a fixing jig, the present coated cermet tools 1 to 13 and the conventional coated cermet tools 1 to 13 are as follows.
Work material: JIS / S35C lengthwise equidistant four round grooved round bars,
Cutting speed: 450 m / min,
Incision: 1.5mm,
Feed: 0.3mm / rev,
Cutting time: 5 minutes
Dry high-speed intermittent cutting test of carbon steel under the conditions (cutting condition A) (normal cutting speed is 200 m / min),
Work material: JIS / SCr430 lengthwise equally spaced 4 rods with vertical grooves,
Cutting speed: 400 m / min,
Incision: 1.5mm,
Feed: 0.3mm / rev,
Cutting time: 5 minutes
Dry high-speed intermittent cutting test (normal cutting speed is 200 m / min) of alloy steel under the above conditions (cutting condition B),
Work material: JIS / FC300 lengthwise equidistant 4 bars with vertical grooves,
Cutting speed: 350 m / min,
Incision: 1.5mm,
Feed: 0.3mm / rev,
Cutting time: 5 minutes
The dry high speed intermittent cutting test (normal cutting speed is 250 m / min) of cast iron under the above conditions (cutting condition C) was performed, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 6.

Figure 2005279917
Figure 2005279917

Figure 2005279917
Figure 2005279917

Figure 2005279917
Figure 2005279917

Figure 2005279917
Figure 2005279917

Figure 2005279917
Figure 2005279917

Figure 2005279917
Figure 2005279917

表4〜6に示される結果から、本発明被覆サーメット工具1〜13は、いずれも硬質被覆層の上部層が、(0001)面の傾斜角が3〜16度の範囲内の傾斜角区分で最高ピークを示すと共に、前記3〜16度の傾斜角区分範囲内に存在する度数の合計割合が45%以上を占める傾斜角度数分布グラフを示す加熱変態α型(Al,Zr)23層で構成され、機械的熱的衝撃がきわめて高く、かつ高い発熱を伴なう鋼や鋳鉄の高速断続切削でも、硬質被覆層の上部層を構成する加熱変態α型(Al,Ti)23層が、すぐれた高温硬さおよび耐熱性に加えて、すぐれた耐チッピング性を発揮することから、切刃部のチッピング発生が著しく抑制され、すぐれた耐摩耗性を示すのに対して、硬質被覆層の上部層が、(0001)面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示す蒸着α型Al23層で構成された従来被覆サーメット工具1〜13においては、いずれも高速断続切削では前記蒸着α−Al23層が激しい機械的熱的衝撃に耐えられず、切刃部にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 4 to 6, in the coated cermet tools 1 to 13 of the present invention, the upper layer of the hard coating layer is an inclination angle section in the range where the inclination angle of the (0001) plane is 3 to 16 degrees. Heat transformation α-type (Al, Zr) 2 O 3 layer showing the highest peak and showing an inclination angle number distribution graph in which the total ratio of the frequencies existing in the inclination angle range of 3 to 16 degrees occupies 45% or more Heat transformation α-type (Al, Ti) 2 O 3 that constitutes the upper layer of the hard coating layer even in high-speed intermittent cutting of steel and cast iron with high mechanical thermal shock and high heat generation In addition to excellent high-temperature hardness and heat resistance, the layer exhibits excellent chipping resistance, so that chipping at the cutting edge is remarkably suppressed and excellent wear resistance is achieved. The upper layer of the coating layer is the measured tilt angle of the (0001) plane Distribution and unbiased manner within the 0-45 degrees, in the conventional coated cermet tools 1 to 13, which is constituted by an inclination angle frequency distribution deposited α-type the Al 2 O 3 layer showing a graph highest peak does not exist, either In high-speed intermittent cutting, it is clear that the vapor-deposited α-Al 2 O 3 layer cannot withstand severe mechanical and thermal shock, chipping occurs at the cutting edge, and the service life is reached in a relatively short time.

上述のように、この発明の被覆サーメット工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に機械的熱的衝撃がきわめて高く、かつ高い発熱を伴なう切削条件の最も厳しい高速断続切削でもすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cermet tool of the present invention has extremely high mechanical thermal shock and high heat generation as well as continuous cutting and interrupted cutting under normal conditions such as various steels and cast iron. Because it exhibits excellent chipping resistance even in high-speed intermittent cutting with the most severe cutting conditions, and exhibits excellent cutting performance over a long period of time, it is possible to improve the performance of the cutting equipment and save labor and energy in cutting. Furthermore, it can cope with cost reduction sufficiently satisfactorily.

硬質被覆層を構成する各種の加熱変態α型(Al,Zr)23層および蒸着α型Al23層における結晶粒の(0001)面の傾斜角の測定範囲を示す概略説明図である。It is a schematic explanatory drawing showing the measurement range of the inclination angle of the (0001) plane of crystal grains in various heat-transformed α-type (Al, Zr) 2 O 3 layers and vapor-deposited α-type Al 2 O 3 layers constituting the hard coating layer. is there. 本発明被覆サーメット工具7の硬質被覆層を構成する加熱変態α型(Al,Zr)23層の(0001)面の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the (0001) plane of the heat-transformed α-type (Al, Zr) 2 O 3 layer constituting the hard coating layer of the coated cermet tool 7 of the present invention. 従来被覆サーメット工具2の硬質被覆層を構成する蒸着α型Al23層の(0001)面の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the (0001) plane of the vapor-deposited α-type Al 2 O 3 layer constituting the hard coating layer of the conventional coated cermet tool 2.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、いずれも化学蒸着形成されたTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、化学蒸着形成した状態でκ型またはθ型の結晶構造および1〜15μmの平均層厚を有し、かつ、
組成式:(Al1−X Zr23
で表わした場合、電子線マイクロアナライザー(EPMA)で測定して、X値が原子比で0.003〜0.05を満足するAl―Zr酸化物層の表面に、酸化ジルコニウム層を1.5〜5μmの平均層厚で化学蒸着形成した状態で、加熱処理を施して、前記κ型またはθ型の結晶構造を有するAl―Zr酸化物層の結晶構造をα型結晶構造に変態してなると共に、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、3〜16度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記3〜16度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示す加熱変態α型Al―Zr酸化物層、
以上(a)および(b)で構成された硬質被覆層を形成してなる硬質被覆層がすぐれた耐チッピング性を有する表面被覆サーメット製切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) the lower layer is composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride oxide layer formed by chemical vapor deposition, And a Ti compound layer having a total average layer thickness of 3 to 20 μm,
(B) the upper layer has a κ-type or θ-type crystal structure and an average layer thickness of 1 to 15 μm in the state of chemical vapor deposition; and
Composition formula: (Al 1-X Zr X ) 2 O 3,
, The zirconium oxide layer is 1.5 on the surface of the Al—Zr oxide layer, which is measured by an electron beam microanalyzer (EPMA) and whose X value satisfies the atomic ratio of 0.003 to 0.05. In a state where chemical vapor deposition is formed with an average layer thickness of ˜5 μm, heat treatment is performed to transform the crystal structure of the Al—Zr oxide layer having the κ-type or θ-type crystal structure into an α-type crystal structure. With
Using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polishing surface is irradiated with an electron beam, and the crystal grain is compared with the normal line of the surface polishing surface. The tilt angle formed by the normal line of the (0001) plane, which is the crystal plane, is measured, and among the measured tilt angles, the measured tilt angles within the range of 0 to 45 degrees are classified for each pitch of 0.25 degrees. In addition, in the inclination angle number distribution graph obtained by counting the frequencies existing in each section, the highest peak exists in the inclination angle section within the range of 3 to 16 degrees and also exists within the range of 3 to 16 degrees. A heat-transformed α-type Al—Zr oxide layer showing an inclination angle distribution graph in which the total frequency to be occupied accounts for 45% or more of the entire frequency in the inclination angle distribution graph;
A surface-coated cermet cutting tool having excellent chipping resistance due to the hard coating layer formed by the hard coating layer constituted of (a) and (b) above.
JP2004196598A 2004-02-12 2004-07-02 Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer Expired - Fee Related JP4530141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004196598A JP4530141B2 (en) 2004-02-12 2004-07-02 Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004034444 2004-02-12
JP2004058680 2004-03-03
JP2004196598A JP4530141B2 (en) 2004-02-12 2004-07-02 Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer

Publications (2)

Publication Number Publication Date
JP2005279917A true JP2005279917A (en) 2005-10-13
JP4530141B2 JP4530141B2 (en) 2010-08-25

Family

ID=35178838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004196598A Expired - Fee Related JP4530141B2 (en) 2004-02-12 2004-07-02 Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer

Country Status (1)

Country Link
JP (1) JP4530141B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255253A (en) * 2008-04-18 2009-11-05 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool
JP2009285807A (en) * 2008-05-30 2009-12-10 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool
JP2010064150A (en) * 2008-09-08 2010-03-25 Mitsubishi Materials Corp Surface-coated cutting tool, with hard coating layer having excellent chipping resistance
JP2010064149A (en) * 2008-09-08 2010-03-25 Mitsubishi Materials Corp Surface-coated cutting tool, with hard coating layer having excellent chipping resistance
JP2010115738A (en) * 2008-11-12 2010-05-27 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188880A (en) * 1995-01-10 1996-07-23 Sumitomo Electric Ind Ltd Coated hard alloy and its production
JP2002361502A (en) * 2001-06-11 2002-12-18 Mitsubishi Materials Corp Surface covered cemented carbide made cutting tool excellent in surface lubricity against chip
JP2003071609A (en) * 2001-08-31 2003-03-12 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool exerting excellent heat-resisting plastic deformation in high- speed cutting
WO2004033751A1 (en) * 2002-10-07 2004-04-22 Kennametal Widia Gmbh & Co. Kg Composite material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188880A (en) * 1995-01-10 1996-07-23 Sumitomo Electric Ind Ltd Coated hard alloy and its production
JP2002361502A (en) * 2001-06-11 2002-12-18 Mitsubishi Materials Corp Surface covered cemented carbide made cutting tool excellent in surface lubricity against chip
JP2003071609A (en) * 2001-08-31 2003-03-12 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool exerting excellent heat-resisting plastic deformation in high- speed cutting
WO2004033751A1 (en) * 2002-10-07 2004-04-22 Kennametal Widia Gmbh & Co. Kg Composite material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255253A (en) * 2008-04-18 2009-11-05 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool
JP2009285807A (en) * 2008-05-30 2009-12-10 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool
JP2010064150A (en) * 2008-09-08 2010-03-25 Mitsubishi Materials Corp Surface-coated cutting tool, with hard coating layer having excellent chipping resistance
JP2010064149A (en) * 2008-09-08 2010-03-25 Mitsubishi Materials Corp Surface-coated cutting tool, with hard coating layer having excellent chipping resistance
JP2010115738A (en) * 2008-11-12 2010-05-27 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool

Also Published As

Publication number Publication date
JP4530141B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
JP4645983B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP2006289556A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP4512989B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP2006326730A (en) CUTTING TOOL OF SURFACE-COATED CERMET WITH THICK FILM alpha-TYPE ALUMINUM OXIDE LAYER ACHIEVING EXCELLENT CHIPPING RESISTANCE
JP4474643B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4569743B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4530141B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP2006289586A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting superior chipping resistance in high speed intermittent cutting work
JP2008080476A (en) Surface coated cutting tool with hard coated layer exerting excellent abrasion resistance in high speed cutting work
JP2006289546A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP2006000970A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent abrasion resistance in high-speed cutting
JP4591752B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP2005279915A (en) Surface-coated cermet cutting tool exhibiting superior chipping resistance in hard-coated layer
JP2005238437A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting superior abrasion resistance in high speed cutting
JP2005246596A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance
JP5187573B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4747386B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high speed cutting
JP4483467B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting
JP2005279914A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2005279909A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2006334757A (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting
JP4816904B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high speed cutting
JP4730703B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP2006043802A (en) Surface coated cermet cutting tool having hard coated layer exhibiting excellent wear resistance in high-speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees