JP2005279825A - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP2005279825A
JP2005279825A JP2004095525A JP2004095525A JP2005279825A JP 2005279825 A JP2005279825 A JP 2005279825A JP 2004095525 A JP2004095525 A JP 2004095525A JP 2004095525 A JP2004095525 A JP 2004095525A JP 2005279825 A JP2005279825 A JP 2005279825A
Authority
JP
Japan
Prior art keywords
layer
titanium
aluminum oxide
cutting
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004095525A
Other languages
Japanese (ja)
Other versions
JP4593952B2 (en
Inventor
Sakahito Tanibuchi
栄仁 谷渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004095525A priority Critical patent/JP4593952B2/en
Publication of JP2005279825A publication Critical patent/JP2005279825A/en
Application granted granted Critical
Publication of JP4593952B2 publication Critical patent/JP4593952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a long-life cutting tool, heightening the adhesiveness of a hard coating layer without the occurrence of separation of an aluminum oxide layer even under such a severe cutting condition that strong shock is applied to a cutting edge of a tool in intermittent cutting or the like, and having excellent defective resistance and wear resistance. <P>SOLUTION: In this surface coated cutting tool 1, the surface of a substrate 2 is coated with a carbonitride titanium layer 4 made of at least columnar particles, and the aluminum oxide layer 6 is coated as an upper layer thereof. When the section of the surface coated cutting tool 1 is observed with a scan type electronic microscope, spherical titanium compound particles 7 as a part of the carbonitride titanium layer 4 are buried in the vicinity of interface with the carbonitride titanium layer 4 in the aluminum oxide layer 6. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、硬質被覆層を表面に被着形成した表面被覆切削工具に関し、鋼の加工や、特に鋳鉄の断続切削等の大きな衝撃が切刃にかかるような切削に際しても、優れた耐剥離性および耐チッピング性を有する表面被覆切削工具に関する。   The present invention relates to a surface-coated cutting tool having a hard coating layer formed on the surface thereof, and has excellent peeling resistance even in cutting of steel, particularly in cutting that requires a large impact such as intermittent cutting of cast iron. And a surface-coated cutting tool having chipping resistance.

従来より、金属の切削加工に広く用いられている切削工具は、超硬合金やサーメット、セラミックス等の基体の表面に、炭化チタン(TiC)層、窒化チタン(TiN)層、炭窒化チタン(TiCN)層および酸化アルミニウム(Al)層等の硬質被覆層を複数層被着形成した表面被覆切削工具が多用されている。 Conventionally, cutting tools widely used for metal cutting are titanium carbide (TiC) layer, titanium nitride (TiN) layer, titanium carbonitride (TiCN) on the surface of a substrate such as cemented carbide, cermet, and ceramics. ) And a surface-coated cutting tool in which a plurality of hard coating layers such as an aluminum oxide (Al 2 O 3 ) layer are formed.

表面被覆切削工具においては、最近の切削加工の高能率化に従って金属の重断続切削等の大きな衝撃が切刃にかかるような過酷な切削条件で使われるようになっており、従来の工具では硬質被覆層が突発的に発生する大きな衝撃に耐えきれず、硬質被覆層が剥離にて基体が露出してしまい、これが引き金となって切刃にチッピングや異常摩耗が発生して工具寿命の長寿命化ができないという問題があった。   Surface-coated cutting tools are used in harsh cutting conditions where a large impact such as heavy interrupted cutting of metal is applied to the cutting edge in accordance with the recent improvement in cutting efficiency. The coating layer cannot withstand the large impacts that occur suddenly, and the hard coating layer peels off, exposing the substrate, which triggers chipping and abnormal wear on the cutting edge, resulting in a long tool life There was a problem that could not be converted.

そこで、特許文献1には、酸化アルミニウム層からなる酸化物層とその下層として存在する炭窒化チタン層との界面に、凹凸形状の炭化チタン層や炭酸化チタン層等からなる強化層を形成し、かつ前記酸化物層と前記強化層との界面を所定の凹凸状として接触面積を増すことにより、炭窒化チタン層と酸化アルミニウム層との密着性を高めて被覆層の耐剥離性が向上すると記載されている。
特開平11−229144号公報
Therefore, in Patent Document 1, a reinforced layer composed of an uneven titanium carbide layer, a titanium carbonate layer, or the like is formed at the interface between an oxide layer composed of an aluminum oxide layer and a titanium carbonitride layer existing as a lower layer. And, by increasing the contact area by making the interface between the oxide layer and the reinforcing layer a predetermined uneven shape, the adhesion between the titanium carbonitride layer and the aluminum oxide layer is improved and the peel resistance of the coating layer is improved. Has been described.
Japanese Patent Laid-Open No. 11-229144

しかしながら、上記特許文献1に記載された酸化物層と強化層との界面を凹凸状とした層構成によっても付着力向上には限界があり、重断続切削等の突発的に大きな衝撃がかかるような切削においては依然として酸化アルミニウム層の膜剥離等が発生し、工具寿命が短くなっていた。また、鋼等の切削においても更なる耐チッピング性および耐摩耗性の向上が求められていた。   However, there is a limit to the improvement in adhesion even by the layer structure in which the interface between the oxide layer and the reinforcing layer described in Patent Document 1 is uneven, and it seems that a sudden large impact such as heavy interrupted cutting is applied. In such cutting, the aluminum oxide layer still peeled off and the tool life was shortened. Further, even when cutting steel or the like, further improvement in chipping resistance and wear resistance has been demanded.

また、酸化物層と強化層との間を単純な凹凸形状としても、酸化物層と強化層との間を上下方向に引き剥がすような、すなわち両者間を璧開するような剥離が生じる場合、付着力が小さくなることで、膜剥離やチッピングの発生による異常摩耗が発生したり、摩耗が進行しやすい等の問題が発生して硬質被覆層全体の最適化がうまくいかず工具寿命には限界があった。   In addition, even if a simple uneven shape is formed between the oxide layer and the reinforcing layer, peeling may occur such that the oxide layer and the reinforcing layer are peeled apart in the vertical direction, that is, the two layers are fully opened. As the adhesive force becomes smaller, abnormal wear due to film peeling or chipping occurs, or problems such as easy wear progress occur, and the entire hard coating layer cannot be optimized and the tool life is reduced. There was a limit.

従って、本発明は上記課題を解決するためになされたもので、その目的は、鋼の切削や、特に断続切削等の突発的に工具切刃に強い衝撃がかかるような過酷な切削条件においても、膜剥離が発生することなく、優れた耐剥離性および耐チッピング性を有するとともに、耐摩耗性にも優れる長寿命の切削工具を提供することにある。   Accordingly, the present invention has been made to solve the above-mentioned problems, and the object thereof is to be applied even under severe cutting conditions in which a strong impact is suddenly applied to the tool cutting edge, such as steel cutting, particularly intermittent cutting. Another object of the present invention is to provide a long-life cutting tool that has excellent peeling resistance and chipping resistance without causing film peeling, and also has excellent wear resistance.

本発明者は、上記課題に対して検討した結果、炭窒化チタンと酸化アルミニウムの界面において、前記酸化アルミニウム層の界面に球状のチタン化合物粒子が埋め込まれた構成とすることによって、前記特許文献1のように強化層と酸化アルミニウム層との間が単純な凹凸形状であるよりも、より強固なくさび効果を発揮させることができて炭窒化チタン層と上層の酸化アルミニウム層との付着力が向上し、断続切削時において例え突発的に大きな衝撃が硬質被覆層にかかったときであっても酸化アルミニウム層が剥離することなく、膜剥離やチッピングを防止できるため、突発欠損や異常摩耗を防ぐことができることを発明した。   As a result of studying the above problems, the inventor of the present invention has a configuration in which spherical titanium compound particles are embedded in the interface of the aluminum oxide layer at the interface between titanium carbonitride and aluminum oxide. In this way, the rust effect is stronger and the adhesion between the titanium carbonitride layer and the upper aluminum oxide layer is improved, rather than the simple uneven shape between the reinforcing layer and the aluminum oxide layer. However, even during sudden cutting, even when a sudden large impact is applied to the hard coating layer, the aluminum oxide layer can be prevented from peeling and chipping can be prevented, preventing sudden defects and abnormal wear. I invented that I can do.

すなわち、本発明の表面被覆切削工具は、基体の表面に少なくとも筋状結晶からなる炭窒化チタン層と、その上層として酸化アルミニウム層を被覆した表面被覆切削工具において、該表面被覆切削工具の断面を観察した際に前記酸化アルミニウム層中の前記炭窒化チタン層との界面に球状のチタン化合物粒子が埋め込まれていることを特徴とするものである。   That is, the surface-coated cutting tool of the present invention is a surface-coated cutting tool in which a surface of a substrate is coated with at least a titanium carbonitride layer composed of streak crystals and an aluminum oxide layer as an upper layer thereof. When observed, spherical titanium compound particles are embedded in the interface with the titanium carbonitride layer in the aluminum oxide layer.

また、前記チタン化合物粒子の平均粒径が、前記炭窒化チタン層の粒径の0.5〜3倍の範囲にあることが、前記酸化アルミニウム層と前記炭窒化チタン層との層間剥離を抑え、チッピングや異常摩耗を防ぐことができるため望ましい。   In addition, the average particle size of the titanium compound particles is in the range of 0.5 to 3 times the particle size of the titanium carbonitride layer to suppress delamination between the aluminum oxide layer and the titanium carbonitride layer. It is desirable because it can prevent chipping and abnormal wear.

さらに、前記酸化アルミニウム層の直下に粒状結晶をなしてチタンの炭化物、窒化物、炭窒化物、酸化物、炭酸化物、酸窒化物、炭酸窒化物の群から選ばれる1種からなるチタン化合物層が少なくとも1層存在することが、前記チタン化合物粒子の生成を促して前記炭窒化チタン層と前記酸化アルミニウム層との付着力を高め、チッピングや膜剥離による異常摩耗を防止することができる点で望ましい。   Further, a titanium compound layer made of titanium carbide, nitride, carbonitride, oxide, carbonate, oxynitride and carbonitride is formed in a granular crystal directly below the aluminum oxide layer. The presence of at least one layer promotes the generation of the titanium compound particles, increases the adhesion between the titanium carbonitride layer and the aluminum oxide layer, and prevents abnormal wear due to chipping or film peeling. desirable.

また、前記チタン化合物層の膜厚が0.01〜1μmの範囲にあることが、膜の強度の低下を抑え、かつ、前記炭窒化チタン層と前記酸化アルミニウム層との付着力を高めることができる点で望ましい。   Moreover, the film thickness of the titanium compound layer being in the range of 0.01 to 1 μm can suppress a decrease in the strength of the film and increase the adhesion between the titanium carbonitride layer and the aluminum oxide layer. This is desirable because it can be done.

本発明の表面被覆切削工具は、基体の表面に少なくとも筋状結晶からなる炭窒化チタン層と、その上層として酸化アルミニウム層を被覆した表面被覆切削工具において、該表面被覆切削工具の断面を観察した際に前記酸化アルミニウム層中の前記炭窒化チタン層との界面に球状のチタン化合物粒子が埋め込まれていることによって、炭窒化チタン層と上層の酸化アルミニウム層との間の付着力をより向上させることができる。   In the surface-coated cutting tool of the present invention, a cross-section of the surface-coated cutting tool was observed in a surface-coated cutting tool in which the surface of the substrate was coated with at least a titanium carbonitride layer composed of streak crystals and an aluminum oxide layer as an upper layer. When the spherical titanium compound particles are embedded in the interface between the aluminum oxide layer and the titanium carbonitride layer, the adhesion between the titanium carbonitride layer and the upper aluminum oxide layer is further improved. be able to.

その結果、特にねずみ鋳鉄(FC材)やダクタイル鋳鉄(FCD材)のような高硬度黒鉛粒子が分散した鋳鉄等の金属の重断続切削等のような工具切刃に強い衝撃がかかる過酷な切削条件や、連続切削条件、さらにはこれら断続切削と連続切削とを組み合わせた複合切削条件において、例え突発的に大きな衝撃が硬質被覆層にかかったときであっても球状の炭窒化チタンが酸化アルミニウムに埋め込まれているために、酸化アルミニウム膜が膜剥離させず、硬質被覆層全体のチッピングや剥離を防止できるとともに、硬質被覆層全体の耐摩耗性が維持され、優れた耐剥離性および耐チッピング性を有する切削工具が得られる。もちろん、鋼の切削においても従来工具に対して耐剥離性および耐チッピング性に優れた工具となる。   As a result, particularly severe cutting is applied to tool cutting edges such as heavy interrupted cutting of metal such as cast iron in which high-hardness graphite particles are dispersed, such as gray cast iron (FC material) and ductile cast iron (FCD material). Under certain conditions, continuous cutting conditions, and combined cutting conditions combining these intermittent cuttings and continuous cuttings, even when a sudden large impact is applied to the hard coating layer, the spherical titanium carbonitride is aluminum oxide. As a result, the aluminum oxide film does not peel off, preventing chipping and peeling of the entire hard coating layer, and maintaining the wear resistance of the entire hard coating layer, providing excellent peeling resistance and chipping resistance. A cutting tool having properties can be obtained. Of course, even in steel cutting, the tool is superior in peeling resistance and chipping resistance to conventional tools.

本発明の表面被覆切削工具の一例について、硬質被覆層を含む破断面の走査型電子顕微鏡(SEM)写真である図1を基に説明する。   An example of the surface-coated cutting tool of the present invention will be described based on FIG. 1 which is a scanning electron microscope (SEM) photograph of a fractured surface including a hard coating layer.

図1によれば、表面被覆切削工具(以下、単に工具と略す。)1は、基体2の表面に硬質被覆層3を化学蒸着法(CVD)にて被着形成したものである。   According to FIG. 1, a surface-coated cutting tool (hereinafter simply referred to as a tool) 1 is obtained by depositing a hard coating layer 3 on the surface of a substrate 2 by chemical vapor deposition (CVD).

なお、本発明によれば、基体2としては、炭化タングステン(WC)と、所望により周期律表第4a、5a、6a族金属の炭化物、窒化物、炭窒化物の群から選ばれる少なくとも1種からなる硬質相をコバルト(Co)および/またはニッケル(Ni)等の鉄属金属からなる結合相にて結合させた超硬合金や、Ti基サーメット、または窒化ケイ素、酸化アルミニウム、ダイヤモンド、立方晶窒化ホウ素等のセラミックスのいずれかからなることが望ましい。   In addition, according to this invention, as the base | substrate 2, at least 1 sort (s) chosen from the group of tungsten carbide (WC) and the carbide | carbonized_material, nitride, carbonitride of periodic table 4a, 5a, 6a metal as needed. A cemented carbide in which a hard phase made of iron is bonded with a binder phase made of an iron group metal such as cobalt (Co) and / or nickel (Ni), Ti-based cermet, silicon nitride, aluminum oxide, diamond, cubic crystal It is desirable to be made of any ceramic such as boron nitride.

本実施態様によれば、図1に示すように、硬質被覆層3として少なくとも柱状粒子をなす炭窒化チタン層4およびその上層として酸化アルミニウム層6を有している。なお、柱状炭窒化チタン粒子は例えば中温化学蒸着(MT−CVD)法にて成膜することにより作製できる。   According to this embodiment, as shown in FIG. 1, the hard coating layer 3 has at least a titanium carbonitride layer 4 forming columnar particles and an aluminum oxide layer 6 as an upper layer thereof. The columnar titanium carbonitride particles can be produced, for example, by forming a film by a medium temperature chemical vapor deposition (MT-CVD) method.

本発明によれば、図1のような工具1の断面の走査型電子顕微鏡(SEM)観察において、酸化アルミニウム層6中の炭窒化チタン層4との界面付近にチタン化合物粒子7が埋め込まれていることが大きな特徴である。   According to the present invention, titanium compound particles 7 are embedded in the vicinity of the interface with the titanium carbonitride layer 4 in the aluminum oxide layer 6 in the scanning electron microscope (SEM) observation of the cross section of the tool 1 as shown in FIG. It is a great feature.

上記構成によって、酸化アルミニウム層6と、炭窒化チタン層4を含む下層との接触面積が増えるとともに、酸化アルミニウム層6の中にチタン化合物粒子7が埋め込まれるような形になり、炭窒化チタン層4を含む下層とつながったチタン化合物粒子7がカギのような引っ掛けて止める役目をなすため、両者間を璧開するような剥離についてもより強固な密着力を発揮できる結果、断続切削時において例え突発的に大きな衝撃が硬質被覆層3にかかったときであっても酸化アルミニウム層6が剥離することなく、硬質被覆層3全体の膜剥離やチッピングを防止できるとともに、硬質被覆層3全体の耐摩耗性が向上する。   With the above configuration, the contact area between the aluminum oxide layer 6 and the lower layer including the titanium carbonitride layer 4 is increased, and the titanium compound particles 7 are embedded in the aluminum oxide layer 6. Since the titanium compound particles 7 connected to the lower layer containing 4 serve as a key and stop, it is possible to exert a stronger adhesive force even when peeling apart between the two, and as a result, for example during intermittent cutting Even when a sudden large impact is applied to the hard coating layer 3, the aluminum oxide layer 6 does not peel off, so that film peeling and chipping of the entire hard coating layer 3 can be prevented. Abrasion is improved.

すなわち、酸化アルミニウム層6と炭窒化チタン層4を含む下層との間が平滑もしくは単純な凹凸形状であって球状のチタン化合物粒子7が酸化アルミニウム層6中の炭窒化チタン層4側の界面付近に埋め込まれていない形態では、酸化アルミニウム層6の付着力が十分ではなくなり、断続切削時において突発的に大きな衝撃がかかると酸化アルミニウム層6が剥離してしまい、異常摩耗やチッピング等の工具損傷が発生してしまう。   That is, between the aluminum oxide layer 6 and the lower layer including the titanium carbonitride layer 4 is a smooth or simple uneven shape, and the spherical titanium compound particles 7 are in the vicinity of the interface on the titanium carbonitride layer 4 side in the aluminum oxide layer 6. In the form not embedded in the aluminum oxide layer 6, the adhesion force of the aluminum oxide layer 6 is not sufficient, and the aluminum oxide layer 6 is peeled off when suddenly a large impact is applied during intermittent cutting, and tool damage such as abnormal wear and chipping is caused. Will occur.

なお、本発明によれば、チタン化合物粒子7の存在を確認するために工具1の断面を観察する際は工具1の破面または断面を鏡面加工したものを走査型電子顕微鏡(SEM)にて1000〜10000倍で観察するのがよい。また、鏡面加工したものを観察する際は二次電子像(BEI)で観察するとより明確にチタン化合物粒子が酸化アルミニウム層6中に埋め込まれている様子が観察できる。また、本発明においてチタン化合物粒子7が酸化アルミニウム層6中に埋め込まれている状態とは、酸化アルミニウム層6中にチタン化合物粒子7が点在するとともに酸化アルミニウム層6の下層との界面においてチタン化合物粒子7が縮径している状態を指し、特にチタン化合物粒子7が粒状、さらには略球状をなすことが望ましい。   In addition, according to this invention, when observing the cross section of the tool 1 in order to confirm presence of the titanium compound particle 7, what fractured | ruptured the tool 1 or mirror-processed the cross section with the scanning electron microscope (SEM). It is better to observe at 1000 to 10,000 times. Further, when observing the mirror-finished product, it can be observed more clearly that the titanium compound particles are embedded in the aluminum oxide layer 6 when observed with a secondary electron image (BEI). In the present invention, the state in which the titanium compound particles 7 are embedded in the aluminum oxide layer 6 means that the titanium compound particles 7 are interspersed in the aluminum oxide layer 6 and titanium is present at the interface with the lower layer of the aluminum oxide layer 6. It refers to a state in which the compound particles 7 are reduced in diameter, and in particular, it is desirable that the titanium compound particles 7 are in a granular form, and more preferably in a substantially spherical shape.

ここで、チタン化合物粒子7の平均粒径が前記炭窒化チタン層の平均結晶幅wの0.5〜3倍、特に1〜2倍の範囲であることが酸化アルミニウム層6の付着力を向上させ、膜剥離による異常摩耗やチッピングを防ぐことができるため望ましい。さらに、チタン化合物粒子7の存在比率は、酸化アルミニウム層6の下層との界面長さ5μmに対して3個以上、特に5個以上の割合で存在することが望ましい。   Here, the adhesion of the aluminum oxide layer 6 is improved when the average particle diameter of the titanium compound particles 7 is in the range of 0.5 to 3 times, particularly 1 to 2 times the average crystal width w of the titanium carbonitride layer. It is desirable that abnormal wear and chipping due to film peeling can be prevented. Further, the abundance ratio of the titanium compound particles 7 is desirably 3 or more, particularly 5 or more with respect to the interface length of 5 μm with the lower layer of the aluminum oxide layer 6.

また、酸化アルミニウム層6の直下にチタン化合物層8としてチタンの窒化物、炭化物、炭窒化物、酸化物、炭酸化物、窒酸化物、炭窒酸化物から選ばれる1種の単層、または2種以上からなる複層が粒状結晶をなして存在することが、上述した酸化アルミニウム層の界面に球状のチタン化合物が埋め込まれた組織を作製できて酸化アルミニウム層6の付着力を高め、チッピングや膜剥離による異常摩耗を防止することができる点で望ましい。チタン化合物層8の構成としては、特に、炭化チタン層と、炭窒化チタンおよび/または炭窒酸化チタン層との複層構造であることが、球状のチタン化合物粒子を容易に作製することができて、耐摩耗性、耐欠損性に優れた硬質被覆層3を形成するために望ましい。   Further, a single monolayer selected from titanium nitride, carbide, carbonitride, oxide, carbonate, nitride oxide, and carbonitride oxide as the titanium compound layer 8 immediately below the aluminum oxide layer 6 or 2 The presence of multiple layers of seeds or more in the form of granular crystals can produce a structure in which a spherical titanium compound is embedded in the interface of the above-described aluminum oxide layer, thereby increasing the adhesion of the aluminum oxide layer 6 and It is desirable in that abnormal wear due to film peeling can be prevented. As the structure of the titanium compound layer 8, it is possible to easily produce spherical titanium compound particles, in particular, to have a multilayer structure of a titanium carbide layer and a titanium carbonitride and / or a titanium carbonitride oxide layer. Therefore, it is desirable to form the hard coating layer 3 having excellent wear resistance and fracture resistance.

ここで、チタン化合物層8の膜厚が0.01〜1μm、特に0.01〜0.5μm、さらには0.01〜0.1μmの範囲であることが、硬質被覆層3の強度の低下を防ぎ、酸化アルミニウム層6の付着力を向上することができるため望ましい。   Here, the strength of the hard coating layer 3 is such that the thickness of the titanium compound layer 8 is in the range of 0.01 to 1 μm, particularly 0.01 to 0.5 μm, and more preferably 0.01 to 0.1 μm. Can be prevented and the adhesion of the aluminum oxide layer 6 can be improved.

また、炭窒化チタン層4と基体2の間に、付着力向上のおよび基体2成分の拡散による耐摩耗性の低下を防ぐため窒化チタン(TiN)層からなる最下層9を被覆することが望ましい。また、最下層9の層厚は0.1〜2μmの範囲であることが付着力の低下を防ぐ点で望ましい。   Further, it is desirable to coat the lowermost layer 9 made of a titanium nitride (TiN) layer between the titanium carbonitride layer 4 and the substrate 2 in order to improve adhesion and prevent a decrease in wear resistance due to diffusion of components of the substrate 2. . Moreover, it is desirable that the layer thickness of the lowermost layer 9 is in the range of 0.1 to 2 μm from the viewpoint of preventing a decrease in adhesive force.

また、硬質被覆層3の最表面層10として窒化チタン層を形成することによって、工具1が金色を呈するため、工具1を使用したときに変色して使用済みかどうかの判別がつきやすく、また、摩耗の進行を容易に確認できるため望ましい。   Further, by forming a titanium nitride layer as the outermost surface layer 10 of the hard coating layer 3, since the tool 1 exhibits a gold color, it is easy to determine whether it has been used by changing color when the tool 1 is used. It is desirable because the progress of wear can be easily confirmed.

(製造方法)
また、上述した表面被覆切削工具を製造するには、まず、上述した硬質合金を焼成によって形成しうる金属炭化物、窒化物、炭窒化物、酸化物等の無機物粉末に、金属粉末、カーボン粉末等を適宜添加、混合し、プレス成形、鋳込成形、押出成形、冷間静水圧プレス成形等の公知の成形方法によって所定の工具形状に成形した後、真空中または非酸化性雰囲気中にて焼成することによって上述した硬質合金からなる基体2を作製する。
(Production method)
In order to manufacture the above-mentioned surface-coated cutting tool, first, an inorganic powder such as a metal carbide, nitride, carbonitride, oxide, etc. that can form the above-mentioned hard alloy by firing, metal powder, carbon powder, etc. Are added and mixed as appropriate, and then molded into a predetermined tool shape by a known molding method such as press molding, cast molding, extrusion molding, or cold isostatic pressing, and then fired in a vacuum or non-oxidizing atmosphere. By doing so, the base body 2 made of the hard alloy described above is produced.

次に、上記基体2の表面を所望によって研磨加工した後、その表面に例えば化学気相蒸着(CVD)法によって硬質被覆層3を成膜する。炭窒化チタン層4を成膜する際の成膜条件は、例えば、反応ガス組成として、体積%で塩化チタン(TiCl)ガスを0.1〜10体積%、窒素(N)ガスを0〜60体積%、メタン(CH)ガスを0〜0.1体積%、アセトニトリル(CHCN)ガスを0.1〜3体積%、残りが水素(H)ガスからなる混合ガスを調整して反応チャンバ内に導入し、チャンバ内を800〜1100℃、5〜85kPaにて成膜する。 Next, after polishing the surface of the base 2 as desired, the hard coating layer 3 is formed on the surface by, for example, chemical vapor deposition (CVD). The film formation conditions for forming the titanium carbonitride layer 4 are, for example, 0.1% to 10% by volume of titanium chloride (TiCl 4 ) gas and 0% of nitrogen (N 2 ) gas as a reaction gas composition. -60% by volume, methane (CH 4 ) gas is 0 to 0.1% by volume, acetonitrile (CH 3 CN) gas is 0.1 to 3% by volume, and the balance is hydrogen (H 2 ) gas. Then, it is introduced into the reaction chamber, and a film is formed in the chamber at 800 to 1100 ° C. and 5 to 85 kPa.

本発明によれば、炭窒化チタン層4の上にチタン化合物層8として炭化チタン層をごくわずかの厚みで成膜し、その表面の酸化アルミニウム層6を成膜する際に、炉内温度を酸化アルミニウム層6の実際の成膜温度よりも15〜40℃高い温度に一旦1〜10分の時間だけ昇温させた後、実際の成膜温度に戻すことによって球状のチタン化合物粒子を安定して作製することができる。また、チタン化合物層8の成膜時における炉内圧力を50〜100kPaと高くすることでより安定して球状のチタン化合物粒子7を作製することができる。   According to the present invention, a titanium carbide layer is formed as a titanium compound layer 8 on the titanium carbonitride layer 4 with a very small thickness, and when the aluminum oxide layer 6 on the surface thereof is formed, the furnace temperature is set. The temperature of the aluminum oxide layer 6 is temporarily raised to a temperature 15 to 40 ° C. higher than the actual film formation temperature for 1 to 10 minutes, and then the spherical titanium compound particles are stabilized by returning to the actual film formation temperature. Can be produced. Moreover, the spherical titanium compound particle 7 can be more stably produced by increasing the pressure in the furnace at the time of film formation of the titanium compound layer 8 to 50 to 100 kPa.

ここで、チタン化合物層8として炭化チタン(TiC)を成膜するには、反応ガス組成としてTiClガスを0.1〜30体積%、CHガスを0.1〜20体積%、残りがHガスからなる混合ガスを順次調整して反応チャンバ内に導入し、チャンバ内を800〜1100℃として粒状のTiC膜を成膜する。また、チタン化合物層8として炭窒化チタン(TiCN)を成膜するには、反応ガス組成としてTiClガスを0.1〜10体積vol%、Nガスを0〜60体積%、CHガスを0.1〜10体積%、残りがHガスからなる混合ガスを順次調整して反応チャンバ内に導入し、チャンバ内を800〜1100℃として粒状のTiCN膜を成膜する。また、チタン化合物層8としてTiCN膜を成膜する際に、上記筋状TiCN膜の条件をチャンバ内圧力50〜100kPaとして成膜してもよい。 Here, in order to form titanium carbide (TiC) as the titanium compound layer 8, the reactive gas composition is 0.1 to 30% by volume of TiCl 4 gas, 0.1 to 20% by volume of CH 4 gas, and the rest A mixed gas composed of H 2 gas is sequentially adjusted and introduced into the reaction chamber, and the inside of the chamber is set to 800 to 1100 ° C. to form a granular TiC film. Further, in forming the titanium carbonitride (TiCN) as the titanium compound layer 8 is 0.1 to 10 vol vol% of TiCl 4 gas as a reaction gas composition, the N 2 gas 0-60 vol%, CH 4 gas A mixed gas consisting of 0.1 to 10% by volume and the remainder consisting of H 2 gas is sequentially adjusted and introduced into the reaction chamber, and a granular TiCN film is formed at 800 to 1100 ° C. in the chamber. Further, when the TiCN film is formed as the titanium compound layer 8, the streaked TiCN film may be formed under a chamber pressure of 50 to 100 kPa.

さらに、チタン化合物層8として炭窒酸化チタン(TiCNO)層を成膜するには、塩化チタン(TiCl)ガスを0.1〜3体積%、メタン(CH)ガスを0.1〜10体積%、二酸化炭素(CO)ガスを0.01〜5体積%、窒素(N)ガスを0〜60体積%、残りが水素(H)ガスからなる混合ガスを順次調整して反応チャンバ内に導入し、チャンバ内を800〜1100℃、5〜85kPaとすればよい。 Furthermore, in order to form a titanium carbonitride oxide (TiCNO) layer as the titanium compound layer 8, 0.1 to 3% by volume of titanium chloride (TiCl 4 ) gas and 0.1 to 10 of methane (CH 4 ) gas are used. The reaction is carried out by sequentially adjusting a mixed gas consisting of volume%, carbon dioxide (CO 2 ) gas of 0.01 to 5 volume%, nitrogen (N 2 ) gas of 0 to 60 volume%, and the remainder of hydrogen (H 2 ) gas. What is necessary is just to introduce | transduce in a chamber and to make the inside of a chamber into 800-1100 degreeC and 5-85 kPa.

そして、本発明によれば、引き続き、酸化アルミニウム層6を成膜する。酸化アルミニウム層6の成膜方法としては、塩化アルミニウム(AlCl)ガスを3〜20体積%、塩化水素(HCl)ガスを0.5〜3.5体積%、二酸化炭素(CO)ガスを0.01〜5.0体積%、硫化水素(HS)ガスを0〜0.01体積%、残りが水素(H)ガスからなる混合ガスを用い、900〜1100℃、5〜10kPaとすることが望ましい。 And according to this invention, the aluminum oxide layer 6 is formed into a film continuously. As a method of forming the aluminum oxide layer 6, 3 to 20% by volume of aluminum chloride (AlCl 3 ) gas, 0.5 to 3.5% by volume of hydrogen chloride (HCl) gas, and carbon dioxide (CO 2 ) gas are used. Using a mixed gas composed of 0.01 to 5.0% by volume, 0 to 0.01% by volume of hydrogen sulfide (H 2 S) gas, and the remainder consisting of hydrogen (H 2 ) gas, 900 to 1100 ° C. and 5 to 10 kPa Is desirable.

また、窒化チタン(TiN)層を成膜するには、反応ガス組成として塩化チタン(TiCl)ガスを0.1〜10体積%、窒素(N)ガスを0〜60体積%、残りが水素(H)ガスからなる混合ガスを順次調整して反応チャンバ内に導入し、チャンバ内を800〜1100℃、5〜85kPaとすればよい。 Further, in order to form a titanium nitride (TiN) layer, the reaction gas composition is 0.1 to 10% by volume of titanium chloride (TiCl 4 ) gas, 0 to 60% by volume of nitrogen (N 2 ) gas, and the rest A mixed gas composed of hydrogen (H 2 ) gas is sequentially adjusted and introduced into the reaction chamber, and the inside of the chamber may be set to 800 to 1100 ° C. and 5 to 85 kPa.

平均粒径1.5μmの炭化タングステン(WC)粉末に対して、平均粒径1.2μmの金属コバルト(Co)粉末を6質量%、平均粒径2.0μmの炭化チタン(TiC)粉末を0.5質量%、TaC粉末を5質量%の割合で添加、混合して、プレス成形により切削工具形状(CNMA120412)に成形した後、脱バインダ処理を施し、0.01Paの真空中、1500℃で1時間焼成して超硬合金を作製した。さらに、作製した超硬合金にブラシ加工にて刃先処理(ホーニングR)を施した。   6% by mass of metallic cobalt (Co) powder with an average particle size of 1.2 μm and 0% of titanium carbide (TiC) powder with an average particle size of 2.0 μm with respect to tungsten carbide (WC) powder with an average particle size of 1.5 μm. .5% by mass, TaC powder was added and mixed at a rate of 5% by mass, formed into a cutting tool shape (CNMA120204) by press molding, and then subjected to binder removal treatment at 1500 ° C. in a vacuum of 0.01 Pa. A cemented carbide was prepared by firing for 1 hour. Further, the prepared cemented carbide was subjected to blade edge processing (Honing R) by brushing.

そして、上記超硬合金に対して、CVD法により各種の硬質被覆層を表1に示す条件で表2に示す構成の多層膜からなる硬質被覆層を成膜した試料No.1〜6の表面被覆切削工具を作製した。なお、チタン化合物層成膜時後期5分間も表2中に記載した酸化アルミニウム(Al)層成膜初期の炉内温度(℃)にて成膜しており、また、同欄の括弧表記は通常の成膜温度に対する成膜初期温度の温度差を指す。さらに、Ti化合物粒子とは酸化アルミニウム層中に埋め込まれたチタン化合物粒子を意味する。

Figure 2005279825
And for the above cemented carbide, sample No. 1 was formed by forming a hard coating layer composed of a multilayer film having the structure shown in Table 2 under the conditions shown in Table 1 on the various hard coating layers by the CVD method. 1 to 6 surface-coated cutting tools were produced. In addition, the film was formed at the furnace temperature (° C.) at the initial stage of the aluminum oxide (Al 2 O 3 ) layer formation described in Table 2 for the last 5 minutes when forming the titanium compound layer. The parenthesized notation indicates the temperature difference between the initial film formation temperature and the normal film formation temperature. Further, the Ti compound particles mean titanium compound particles embedded in the aluminum oxide layer.
Figure 2005279825

得られた工具について、硬質被覆層の断面を含む任意破断面5ヵ所について走査型電子顕微鏡(SEM)写真(5000倍)を撮り、各写真において硬質被覆層の組織を観察した。このとき、炭窒化チタン層の総膜厚に対して基体側より総膜厚の1/2の高さ位置に図1に示すような線Aを引いて、それぞれの線分上を横切る粒界数を測定して、線分の長さをその粒界数で割ることで炭窒化チタン結晶の結晶幅に換算した値を算出し、写真5ヶ所についてそれぞれ算出した結晶幅の平均値を平均結晶幅wとして算出した。結果は表2に示した。   About the obtained tool, the scanning electron microscope (SEM) photograph (5000 times) was taken about five arbitrary fractured surfaces including the cross section of a hard coating layer, and the structure | tissue of the hard coating layer was observed in each photograph. At this time, a line A as shown in FIG. 1 is drawn at a position half the total film thickness from the substrate side with respect to the total film thickness of the titanium carbonitride layer, and the grain boundaries crossing the respective line segments. Measure the number, calculate the value converted to the crystal width of the titanium carbonitride crystal by dividing the length of the line segment by the number of grain boundaries, and calculate the average value of the calculated crystal width for each of the five photos Calculated as the width w. The results are shown in Table 2.

また、各写真において酸化アルミニウム層中に球状のチタン化合物粒子の存在しているかどうかを観察した。このとき、5000倍のSEM写真上にあるチタン化合物粒子の粒径を測定し、その平均値をチタン化合物粒子の平均粒径とした。結果は表2に示した。   Moreover, it was observed in each photograph whether spherical titanium compound particles were present in the aluminum oxide layer. At this time, the particle size of the titanium compound particles on the 5000 times SEM photograph was measured, and the average value thereof was defined as the average particle size of the titanium compound particles. The results are shown in Table 2.

さらに、硬質被覆層の付着力を、下記条件のスクラッチ試験によって測定した。結果は表2に示した。   Furthermore, the adhesive force of the hard coating layer was measured by a scratch test under the following conditions. The results are shown in Table 2.

装置:ナノテック社製CSEM−REVETEST
測定条件
テーブルスピード:0.17mm/sec
荷重スピード100N/min
圧子
円錐形ダイヤモンド圧子(東京ダイヤモンド工具製作所社製ダイヤモンド接触子:N2−1487)
曲率半径:0.2mm
稜線角度:120°

Figure 2005279825
Apparatus: CSEM-REVETEST manufactured by Nanotech
Measurement conditions Table speed: 0.17 mm / sec
Load speed 100N / min
Indenter Conical diamond indenter (Diamond contactor manufactured by Tokyo Diamond Tool Mfg. Co., Ltd .: N2-1487)
Curvature radius: 0.2mm
Ridge angle: 120 °
Figure 2005279825

そして、この切削工具を用いて下記の条件により、連続切削試験および断続切削試験を行い、耐摩耗性および耐欠損性を評価した。   Then, using this cutting tool, a continuous cutting test and an intermittent cutting test were performed under the following conditions to evaluate the wear resistance and fracture resistance.

(連続切削試験)
被削材 :ダクタイル鋳鉄スリーブ材(FCD700)
工具形状:CNMA120412
切削速度:250m/分
送り速度:0.4mm/rev
切り込み:2mm
切削時間:20分
その他 :水溶性切削液使用
評価項目:顕微鏡にて切刃を観察し、フランク摩耗量・先端摩耗量を測定
(断続試験)
被削材 :ダクタイル鋳鉄4本溝付スリーブ材(FCD700)
工具形状:CNMA120412
切削速度:200m/分
送り速度:0.3〜0.5mm/rev
切り込み:2mm
その他 :水溶性切削液使用
評価項目:欠損に至る衝撃回数
衝撃回数1000回時点で顕微鏡にて切刃の硬質被覆層の剥離状態を観察

Figure 2005279825
(Continuous cutting test)
Work Material: Ductile Cast Iron Sleeve Material (FCD700)
Tool shape: CNMA120204
Cutting speed: 250 m / min Feed speed: 0.4 mm / rev
Cutting depth: 2mm
Cutting time: 20 minutes Others: Use of water-soluble cutting fluid Evaluation item: Observe the cutting edge with a microscope and measure the amount of flank wear and tip wear (intermittent test)
Work material: Ductile cast iron 4-slot sleeve material (FCD700)
Tool shape: CNMA120204
Cutting speed: 200 m / min Feeding speed: 0.3 to 0.5 mm / rev
Cutting depth: 2mm
Other: Use of water-soluble cutting fluid Evaluation item: Number of impacts leading to breakage
Observe the peeling state of the hard coating layer of the cutting edge with a microscope at the point of impact 1000 times
Figure 2005279825

表1〜3より、酸化アルミニウム層中にチタン化合物粒子が存在していない試料No.5,6では、酸化アルミニウム層の付着力が弱く、耐摩耗試験では早期に酸化アルミニウム層の剥離が発生してしまい、摩耗の進行が早まり、耐摩耗性が低下してしまった。また、耐欠損性試験では早期に刃先のチッピングが発生し、そこを起点として欠損が生じてしまった。   From Tables 1-3, Sample No. in which no titanium compound particles are present in the aluminum oxide layer. In Nos. 5 and 6, the adhesive strength of the aluminum oxide layer was weak, and in the wear resistance test, the aluminum oxide layer was peeled off early, the progress of wear was accelerated, and the wear resistance was lowered. Further, chipping of the cutting edge occurred early in the chipping resistance test, and chipping occurred from that point.

これに対して、本発明に従い、酸化アルミニウム層中に球状のチタン化合物粒子を存在させた構成とした試料No.1〜4では、いずれも硬質被覆層の剥離が発生せず、連続切削においても断続切削においても長寿命であり、耐欠損性および耐チッピング性とも優れた切削性能を有するものであった。   On the other hand, in accordance with the present invention, Sample No. No. 1 was configured such that spherical titanium compound particles were present in the aluminum oxide layer. In Nos. 1 to 4, peeling of the hard coating layer did not occur, it had a long life both in continuous cutting and in intermittent cutting, and had excellent cutting performance in both chipping resistance and chipping resistance.

本発明の表面被覆切削工具の破断面における硬質被覆層領域についての走査型電子顕微鏡像である。It is a scanning electron microscope image about the hard coating layer area | region in the torn surface of the surface coating cutting tool of this invention.

符号の説明Explanation of symbols

1: 表面被覆切削工具
2: 基体
3: 硬質被覆層
4: 炭窒化チタン層
6: 酸化アルミニウム層
7: 球状のチタン化合物粒子
8: チタン化合物層
9: 最下層
10: 最表面層
w : 炭窒化チタン層の平均結晶幅
1: Surface coating cutting tool 2: Substrate 3: Hard coating layer 4: Titanium carbonitride layer 6: Aluminum oxide layer 7: Spherical titanium compound particles 8: Titanium compound layer 9: Bottom layer 10: Top surface layer w: Carbonitriding Average crystal width of the titanium layer

Claims (4)

基体の表面に少なくとも筋状結晶からなる炭窒化チタン層と、その上層として酸化アルミニウム層を被覆した表面被覆切削工具において、該表面被覆切削工具の断面を観察した際に前記酸化アルミニウム層中の前記炭窒化チタン層との界面にチタン化合物粒子が埋め込まれていることを特徴とする表面被覆切削工具。 In a surface-coated cutting tool in which a surface of a substrate is coated with a titanium carbonitride layer composed of at least streak crystals and an aluminum oxide layer as an upper layer thereof, the cross-section of the surface-coated cutting tool is observed when the cross section of the surface-coated cutting tool is observed. A surface-coated cutting tool, wherein titanium compound particles are embedded in an interface with a titanium carbonitride layer. 前記チタン化合物粒子の平均粒径が前記炭窒化チタン層中の炭窒化チタン粒子の平均粒子幅の0.5〜3倍の範囲にあることを特徴とする請求項1に記載の表面被覆切削工具。 2. The surface-coated cutting tool according to claim 1, wherein the average particle diameter of the titanium compound particles is in the range of 0.5 to 3 times the average particle width of the titanium carbonitride particles in the titanium carbonitride layer. . 前記酸化アルミニウム層の直下に粒状結晶をなしてチタンの炭化物、窒化物、炭窒化物、酸化物、炭酸化物、酸窒化物、炭酸窒化物の群から選ばれる1種からなるチタン化合物層が少なくとも1層存在することを特徴とする請求項1または2に記載の表面被覆切削工具。 At least a titanium compound layer made of titanium carbide, nitride, carbonitride, oxide, carbonate, oxynitride, and carbonitride selected from the group consisting of titanium carbide, granular crystals immediately below the aluminum oxide layer The surface-coated cutting tool according to claim 1, wherein there is one layer. 前記チタン化合物層の膜厚が0.01〜1μmの範囲にあることを特徴とする請求項3に記載の表面被覆切削工具。 The surface-coated cutting tool according to claim 3, wherein the titanium compound layer has a thickness in a range of 0.01 to 1 μm.
JP2004095525A 2004-03-29 2004-03-29 Surface coated cutting tool Expired - Fee Related JP4593952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004095525A JP4593952B2 (en) 2004-03-29 2004-03-29 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004095525A JP4593952B2 (en) 2004-03-29 2004-03-29 Surface coated cutting tool

Publications (2)

Publication Number Publication Date
JP2005279825A true JP2005279825A (en) 2005-10-13
JP4593952B2 JP4593952B2 (en) 2010-12-08

Family

ID=35178748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004095525A Expired - Fee Related JP4593952B2 (en) 2004-03-29 2004-03-29 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP4593952B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160160347A1 (en) * 2014-12-08 2016-06-09 Kennametal Inc. Nanocomposite refractory coatings and applications thereof
US20170096372A1 (en) * 2015-10-01 2017-04-06 Kennametal Inc. Hybrid nanocomposite coatings and applications thereof
JPWO2017090765A1 (en) * 2015-11-28 2018-09-06 京セラ株式会社 Cutting tools

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09235673A (en) * 1996-11-19 1997-09-09 Hitachi Tool Eng Ltd Production of coated cemented carbide tool
JP2000210801A (en) * 1998-07-29 2000-08-02 Toshiba Tungaloy Co Ltd Aluminum oxide coating tool member
JP2000218409A (en) * 1999-02-03 2000-08-08 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool having hard coated layer of good defect resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09235673A (en) * 1996-11-19 1997-09-09 Hitachi Tool Eng Ltd Production of coated cemented carbide tool
JP2000210801A (en) * 1998-07-29 2000-08-02 Toshiba Tungaloy Co Ltd Aluminum oxide coating tool member
JP2000218409A (en) * 1999-02-03 2000-08-08 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool having hard coated layer of good defect resistance

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160160347A1 (en) * 2014-12-08 2016-06-09 Kennametal Inc. Nanocomposite refractory coatings and applications thereof
CN105671519A (en) * 2014-12-08 2016-06-15 钴碳化钨硬质合金公司 Nanocomposite refractory coatings and applications thereof
US9650714B2 (en) * 2014-12-08 2017-05-16 Kennametal Inc. Nanocomposite refractory coatings and applications thereof
CN105671519B (en) * 2014-12-08 2019-07-16 钴碳化钨硬质合金公司 Nanocomposite refractory coating and its application
US20170096372A1 (en) * 2015-10-01 2017-04-06 Kennametal Inc. Hybrid nanocomposite coatings and applications thereof
CN106967960A (en) * 2015-10-01 2017-07-21 肯纳金属公司 Mix nano composite material coating and its application
US9890084B2 (en) * 2015-10-01 2018-02-13 Kennametal Inc. Hybrid nanocomposite coatings and applications thereof
CN106967960B (en) * 2015-10-01 2020-07-24 肯纳金属公司 Hybrid nanocomposite coatings and applications thereof
JPWO2017090765A1 (en) * 2015-11-28 2018-09-06 京セラ株式会社 Cutting tools

Also Published As

Publication number Publication date
JP4593952B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
JP4711714B2 (en) Surface coated cutting tool
JP4854359B2 (en) Surface coated cutting tool
US20100330360A1 (en) Surface-Coated Member and Cutting Tool
JP2013107200A (en) CUTTING TOOL INSERT COATED WITH TEXTURE-CURED α-ALUMINA
JP5841170B2 (en) Coated tool
JP7037581B2 (en) Covering tool and cutting tool with it
WO2005092608A1 (en) Surface coating member and cutting tool
JP4711691B2 (en) Surface covering member and cutting tool
JPWO2008026700A1 (en) Cutting tool, manufacturing method thereof and cutting method
JP2007229821A (en) Surface-coated cutting tool
JP2004216488A (en) Surface coated cutting tool
JP4593952B2 (en) Surface coated cutting tool
JP2006205300A (en) Surface-coated member and cutting tool
JP2004291162A (en) Surface coated cutting tool
JP4284201B2 (en) Surface covering member and cutting tool
JP4284144B2 (en) Surface coated cutting tool
JP4936742B2 (en) Surface coating tools and cutting tools
JP4713137B2 (en) Surface covering member and cutting tool
JP2005153098A (en) Surface coated cutting tool
JP4360618B2 (en) Surface coated cutting tool
JP4663248B2 (en) Surface coated cutting tool
JP2974285B2 (en) Manufacturing method of coated carbide tool
JP4593937B2 (en) Surface covering member and cutting tool
JP7037582B2 (en) Covering tool and cutting tool equipped with it
JP4936741B2 (en) Surface coating tools and cutting tools

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4593952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees