JP4284201B2 - Surface covering member and cutting tool - Google Patents

Surface covering member and cutting tool Download PDF

Info

Publication number
JP4284201B2
JP4284201B2 JP2004022290A JP2004022290A JP4284201B2 JP 4284201 B2 JP4284201 B2 JP 4284201B2 JP 2004022290 A JP2004022290 A JP 2004022290A JP 2004022290 A JP2004022290 A JP 2004022290A JP 4284201 B2 JP4284201 B2 JP 4284201B2
Authority
JP
Japan
Prior art keywords
titanium carbonitride
layer
carbonitride layer
observed
hard coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004022290A
Other languages
Japanese (ja)
Other versions
JP2005212047A (en
Inventor
栄仁 谷渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004022290A priority Critical patent/JP4284201B2/en
Priority to DE102004007653A priority patent/DE102004007653A1/en
Priority to US10/780,527 priority patent/US7172807B2/en
Publication of JP2005212047A publication Critical patent/JP2005212047A/en
Application granted granted Critical
Publication of JP4284201B2 publication Critical patent/JP4284201B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

本発明は、優れた耐欠損性および耐摩耗性を有する硬質被覆層を表面に被着形成した表面被覆部材に関し、特に大きな衝撃が切刃にかかるような切削に際しても、優れた耐欠損性および切削特性を有する切削工具に関する。   The present invention relates to a surface-coated member having a hard coating layer having excellent fracture resistance and wear resistance formed on the surface thereof, and particularly has excellent fracture resistance and resistance even during cutting where a large impact is applied to the cutting edge. The present invention relates to a cutting tool having cutting characteristics.

従来より、金属の切削加工に広く用いられている切削工具は、超硬合金やサーメット、セラミックス等の基体の表面に、炭化チタン層、窒化チタン層、酸化アルミニウム層および炭窒化チタン層等の硬質被覆層を単層または複数層被着形成した表面被覆切削工具が多用されている。   Conventionally, cutting tools widely used for metal cutting are hard surfaces such as a titanium carbide layer, a titanium nitride layer, an aluminum oxide layer, and a titanium carbonitride layer on the surface of a substrate such as cemented carbide, cermet, or ceramic. A surface-coated cutting tool in which a single layer or multiple layers of a coating layer is formed is widely used.

一方、最近の切削加工の高能率化に従って金属の重断続切削等の大きな衝撃が切刃にかかるような切削が増えており、かかる過酷な切削条件においては従来の工具では硬質被覆層が大きな衝撃に耐えきれず、すくい面においてチッピングや硬質被覆層の剥離が発生しやすく、これが引き金となって切刃の欠損や異常摩耗の発生等の突発的な工具損傷により工具寿命の長寿命化ができないという問題があった。   On the other hand, with the recent increase in efficiency of cutting, there is an increasing number of cuttings where a large impact such as heavy interrupted cutting of metal is applied to the cutting edge. Under such severe cutting conditions, the hard coating layer has a large impact in conventional tools. It is difficult to withstand, and chipping and peeling of the hard coating layer are likely to occur on the rake face, which can trigger the tool life due to sudden tool damage such as cutting edge failure or abnormal wear. There was a problem.

そこで、上記硬質被覆層の特性改善のために、特許文献1には、縦長成長結晶(筋状組織)を有する炭窒化チタン層間を粒状の窒化チタン層で分割することにより、層間剥離を抑制して工具の耐欠損性を高めることができることが記載されている。   Therefore, in order to improve the characteristics of the hard coating layer, Patent Document 1 discloses that a titanium carbonitride layer having a vertically grown crystal (stripe structure) is divided into granular titanium nitride layers to suppress delamination. It is described that the fracture resistance of the tool can be improved.

また、特許文献2には、炭窒化チタン層とその表面に成膜した酸化アルミニウム層との界面に断面方向から見て針状粒子からなる中間層を存在させることにより、アンカー効果によって酸化アルミニウム層が剥離することを抑えて耐摩耗性の低下を防ぐことが記載されている。
特開平6−156842号公報 特開平9−174304号公報
Further, Patent Document 2 discloses that an aluminum oxide layer is formed by an anchor effect by causing an intermediate layer made of acicular particles to be present at the interface between the titanium carbonitride layer and the aluminum oxide layer formed on the surface thereof when viewed from the cross-sectional direction. It is described that it suppresses peeling and prevents a decrease in wear resistance.
JP-A-6-156842 JP 9-174304 A

しかしながら、上記特許文献1に記載された炭窒化チタン層の構成によっても、重断続切削等の突発的に大きな衝撃がかかるような切削等最近の過酷な切削条件においては依然として切刃のチッピングによる異常摩耗や突発欠損等が発生し工具寿命が短くなっていた。さらに、この硬質被覆層のチッピングや剥離を防止する目的で硬質被覆層の膜厚薄くすると早期に硬質被覆層が消滅して摩耗の進行が早くなり、やはり工具寿命の長寿命化ができなかった。さらに、鋼等の切削においても更なる耐欠損性および耐摩耗性の向上が求められていた。   However, even with the configuration of the titanium carbonitride layer described in Patent Document 1 described above, abnormalities due to chipping of the cutting edge still remain in recent severe cutting conditions such as cutting in which heavy impact is suddenly applied such as heavy interrupted cutting. The tool life was shortened due to wear and sudden breakage. Furthermore, if the thickness of the hard coating layer is reduced for the purpose of preventing chipping or peeling of the hard coating layer, the hard coating layer disappears at an early stage and the progress of wear is accelerated, and the tool life cannot be extended. . Furthermore, even when cutting steel or the like, further improvement in fracture resistance and wear resistance has been demanded.

また、炭窒化チタン層の結晶幅を単純に小さくしたり、大きくしたりしても、基体耐摩耗性または耐欠損性のいずれかが悪化して、突発欠損やチッピングの発生による異常摩耗が発生したり、摩耗が進行しやすい等の問題が発生して硬質被覆層全体の最適化がうまくいかず工具寿命には限界があった。   In addition, even if the crystal width of the titanium carbonitride layer is simply reduced or increased, either the substrate wear resistance or chipping resistance deteriorates, and abnormal wear due to sudden chipping or chipping occurs. Or the problem of easy progress of wear, the optimization of the entire hard coating layer was not successful, and the tool life was limited.

さらに、炭窒化チタン層と酸化アルミニウム層との間に、断面方向から見て針状をなす中間層を介在させる方法では、酸化アルミニウム層の剥離を防止できるものの、硬質被覆層の更なる耐欠損性の向上が必要であった。   Furthermore, the method of interposing a needle-like intermediate layer between the titanium carbonitride layer and the aluminum oxide layer can prevent the aluminum oxide layer from peeling off, but can further prevent the chipping of the hard coating layer. It was necessary to improve the performance.

従って、本発明は、上記課題を解決するためになされたもので、その目的は、硬度、靭性に優れて、特に鋼等の金属の切削、中でも鋳鉄の断続切削等の工具切刃に強い衝撃がかかるような過酷な切削条件においても、優れた耐欠損性および耐摩耗性を有する長寿命の表面被覆切削工具等の表面被覆部材を提供することにある。   Therefore, the present invention has been made to solve the above-mentioned problems, and its purpose is excellent in hardness and toughness, and in particular, a strong impact on a tool cutting edge such as cutting of metal such as steel, especially intermittent cutting of cast iron. It is an object of the present invention to provide a surface-coated member such as a long-life surface-coated cutting tool having excellent fracture resistance and wear resistance even under such severe cutting conditions.

本発明者は、上記課題に対し、基体表面に少なくとも炭窒化チタン層を設けた硬質被覆層を具備する表面被覆部材において、硬度および靭性をともに高める方法、特に切削工具の耐欠損性、耐チッピング性を高める方法について検討した。   In order to solve the above problems, the present inventor has proposed a method for increasing both hardness and toughness in a surface coating member comprising a hard coating layer provided with at least a titanium carbonitride layer on the surface of a substrate, particularly chipping resistance and chipping resistance of a cutting tool. We examined the method to improve the sex.

その結果、以下(a)〜(c)の優れた特徴を持つ表面被覆部材を作製できることを知見した。   As a result, it was found that a surface covering member having the following excellent features (a) to (c) can be produced.

(a)炭窒化チタン層の少なくとも一部を炭窒化チタン粒子が前記基体表面に対して垂直に伸びて断面方向から観察した場合に筋状組織を呈するとともに、前記炭窒化チタン層を表面方向から観察した場合にランダムな方向に伸びた針状組織を呈する微細炭窒化チタン層とすることにより、耐摩耗性を維持できるとともに耐欠損性を高めることができること、
(b)特に、ねずみ鋳鉄(FC材)やダクタイル鋳鉄(FCD材)のような高硬度黒鉛粒子が分散した鋳鉄等の金属の重断続切削等のような工具切刃に強い衝撃がかかる過酷な切削条件に用いられる切削工具等において、炭窒化チタン層の厚み方向に強い衝撃がかかるのを防止することができるとともに、例え炭窒化チタン層内に微細なクラックが発生した場合でも炭窒化チタン層の面内方向へのクラックの伝播を抑制することができること、
(c)その結果、炭窒化チタン層内にチッピングや層剥離が発生することなく、優れた耐摩耗性および耐欠損性を有する切削工具等の硬度、靭性に優れた表面被覆部材が得られること。
(A) When at least a part of the titanium carbonitride layer is observed from the cross-sectional direction with the titanium carbonitride particles extending perpendicularly to the surface of the substrate, the titanium carbonitride layer is formed from the surface direction. By making it a fine titanium carbonitride layer that exhibits a needle-like structure extending in a random direction when observed, it is possible to maintain wear resistance and improve fracture resistance,
(B) In particular, a severe impact is applied to a tool cutting edge such as heavy interrupted cutting of metal such as cast iron in which high-hardness graphite particles are dispersed, such as gray cast iron (FC material) and ductile cast iron (FCD material). In a cutting tool used for cutting conditions, it is possible to prevent a strong impact in the thickness direction of the titanium carbonitride layer, and even if a fine crack occurs in the titanium carbonitride layer, the titanium carbonitride layer The ability to suppress the propagation of cracks in the in-plane direction,
(C) As a result, a surface-coated member excellent in hardness and toughness such as a cutting tool having excellent wear resistance and fracture resistance can be obtained without causing chipping or delamination in the titanium carbonitride layer. .

すなわち本発明の表面被覆部材は、基体の表面に、炭窒化チタン層を連続して2層設けてなり
前記炭窒化チタン層の下層に、炭窒化チタン粒子が前記基体表面に対して垂直に伸びて断面方向から観察した場合に筋状組織を呈するとともに、前記炭窒化チタン層を表面方向から観察した場合にランダムな方向に伸びた平均長軸長さが1μm以下で平均アスペクト比が5以上の炭窒化チタン粒子からなる針状組織を呈する微細炭窒化チタン層を膜厚t が1μm≦t ≦10μmで具備し、
前記微細炭窒化チタン層の上層に、該微細炭窒化チタン層よりも炭窒化チタン粒子の平均結晶幅が大きく前記微細炭窒化チタン層との界面が不連続な組織の上部炭窒化チタン層を、膜厚t が0.5μm≦t ≦5μmで、かつ、1<t /t ≦5の関係を満たす厚みで被着形成するとともに、
前記上部炭窒化チタン層の表面に酸化アルミニウム層を被着形成する
ことを特徴とするものである。
That surface-coated member of the present invention, the surface of the substrate, it is provided a titanium carbonitride layer in succession two layers,
In the lower layer of the titanium carbonitride layer, when the titanium carbonitride particles extend perpendicularly to the substrate surface and are observed from the cross-sectional direction, a streak structure is exhibited, and the titanium carbonitride layer is observed from the surface direction A fine titanium carbonitride layer having a needle-like structure composed of titanium carbonitride particles having an average major axis length of 1 μm or less and an average aspect ratio of 5 or more extending in a random direction has a film thickness t 1 of 1 μm ≦ t l ≦. 10 μm ,
On the fine titanium carbonitride layer, an upper titanium carbonitride layer having a structure in which the average crystal width of the titanium carbonitride particles is larger than that of the fine titanium carbonitride layer and the interface with the fine titanium carbonitride layer is discontinuous, The film thickness tu is 0.5 μm ≦ t u ≦ 5 μm, and is deposited with a thickness satisfying the relationship of 1 <t 1 / t u ≦ 5,
An aluminum oxide layer is deposited on the surface of the upper titanium carbonitride layer .

ここで、前記炭窒化チタン粒子の表面方向から観察した場合の平均アスペクト比が以上であること、前記炭窒化チタン粒子を表面方向から観察した際の前記炭窒化チタン粒子の平均長軸長さが1μm以下であることが、硬質被覆層中に発生したクラックを偏向させてクラックの進展を抑制する効果が高く、硬質被覆層の破壊靱性を向上させ、耐欠損性、耐チッピング性を向上することができるために重要であるHere, the average aspect ratio when observed from the surface direction of the titanium carbonitride particles is 5 or more, the average major axis length of the titanium carbonitride particles when the titanium carbonitride particles are observed from the surface direction Is 1 μm or less, it is highly effective in deflecting cracks generated in the hard coating layer and suppressing the progress of cracks, improving the fracture toughness of the hard coating layer, and improving the fracture resistance and chipping resistance. It is important to be able to.

また、前記微細炭窒化チタン層の表面に、該微細炭窒化チタン層よりも炭窒化チタン粒子の平均結晶幅が大きい上部炭窒化チタン層を被着形成するとともに、前記上部炭窒化チタン層の表面に酸化アルミニウム層を被着形成することが、前記酸化アルミニウム層と炭窒化チタン層との付着力、および基体と炭窒化チタン層との付着力をともに高めることができ、層剥離、チッピングを防ぐことができる点で重要であるFurther, an upper titanium carbonitride layer having an average crystal width of titanium carbonitride particles larger than that of the fine titanium carbonitride layer is deposited on the surface of the fine titanium carbonitride layer, and the surface of the upper titanium carbonitride layer The formation of an aluminum oxide layer on the surface can increase both the adhesion between the aluminum oxide layer and the titanium carbonitride layer and the adhesion between the substrate and the titanium carbonitride layer, thereby preventing delamination and chipping. It is important in that it can.

さらに、前記微細炭窒化チタン層の膜厚tが1μm≦t≦10μm、前記上部炭窒化チタン層の膜厚tが0.5μm≦t≦5μmで、かつ、1<t/t≦5の関係を満たすことが、部材の硬度、靭性を最適化できる点で重要であるFurther, the fine titanium carbonitride layer having a thickness t l is 1μm ≦ t l ≦ 10μm, a thickness t u is 0.5μm ≦ t u ≦ 5μm of the upper titanium carbonitride layer, and, 1 <t l / Satisfying the relationship of t u ≦ 5 is important in that the hardness and toughness of the member can be optimized.

さらには、前記表面被覆部材の表面に、硬質球を接触させた状態で該硬質球をころがしながら自転させるように前記表面被覆部材の前記硬質球接触部分を局所的に摩耗させて、中心に前記基体が露出するように前記硬質被覆層に球曲面の摩耗痕を形成させるカロテストを行い、前記摩耗痕を観察した際、該摩耗痕の中心に存在する露出した基体の外周位置に観察される炭窒化チタン層に、カロテスト前に前記硬質被覆層内に内在するクラックのクラック幅がゼロまたは小さい部組織と、該下部組織の外周位置に観察されて前記下部組織よりもカロテスト前に前記硬質被覆層内に内在するクラックのクラック幅が大きい上部組織とが存在することによって、上部組織にクラックが生成することにより炭窒化チタン層と上層の酸化アルミニウム層との間に発生する残留応力を開放して、断続切削時においてたとえ突発的に大きな衝撃が硬質被覆層にかかったときであっても新たに大きなクラックが発生して硬質被覆層がチッピングしたり欠損したりすることなく衝撃を吸収できるとともに、クラックの生成しにくい炭窒化チタン層の下部組織が存在することによって、上部組織にて生成したクラックの進展が阻害されるために炭窒化チタン層または硬質被覆層全体がチッピングや剥離することなく、結果的に硬質被覆層全体のチッピングや剥離を防止できるとともに、硬質被覆層全体の耐摩耗性が向上するため望ましい。 Furthermore, the hard sphere contact portion of the surface covering member is locally worn so that the hard sphere rotates while being in contact with the hard sphere on the surface of the surface covering member. When a calotest is performed to form a spherical curved wear mark on the hard coating layer so that the base is exposed, and the wear mark is observed, the carbon observed at the outer peripheral position of the exposed base at the center of the wear mark In the titanium nitride layer, the hard coating layer that is observed in the outer peripheral position of the lower structure and has a crack width of zero or smaller in the hard coating layer in the hard coating layer before the calotest and before the calotest than the lower structure by cracking width of cracks inherent with large upper tissue present within a titanium carbonitride layer and the upper layer of the aluminum oxide layer by cracks in the upper tissue to produce By opening the residual stress generated during, even sudden large impact new large cracks even when applied to the hard coating layer is generated by the hard coating layer chipping or defect during intermittent cutting The titanium carbonitride layer or hard layer can absorb the impact without causing cracks, and the presence of the substructure of the titanium carbonitride layer that is difficult to generate cracks inhibits the progress of cracks generated in the upper structure. As a result, the entire coating layer can be prevented from being chipped and peeled without chipping or peeling, and the wear resistance of the entire hard coating layer is improved.

本発明の表面被覆部材は、炭窒化チタン層を連続して2層設けてなり、前記炭窒化チタン層の下層に、炭窒化チタン粒子が前記基体表面に対して垂直に伸びて断面方向から観察した場合に筋状組織を呈するとともに、前記炭窒化チタン層を表面方向から観察した場合にランダムな方向に伸びた平均長軸長さが1μm以下で平均アスペクト比が5以上の炭窒化チタン粒子からなる針状組織を呈する微細炭窒化チタン層を膜厚t が1μm≦t ≦10μmで具備し、前記微細炭窒化チタン層の上層に、該微細炭窒化チタン層よりも炭窒化チタン粒子の平均結晶幅が大きく前記微細炭窒化チタン層との界面が不連続な組織の上部炭窒化チタン層を、膜厚t が0.5μm≦t ≦5μmで、かつ、1<t /t ≦5の関係を満たす厚みで被着形成することにより、高硬度で高い耐摩耗性を維持できるとともに高い靭性で耐欠損性を向上させることができる。 The surface covering member of the present invention comprises two continuous titanium carbonitride layers. Under the titanium carbonitride layer, titanium carbonitride particles extend perpendicularly to the substrate surface and are observed from the cross-sectional direction. When the titanium carbonitride layer is observed from the surface direction, it has an average major axis length of 1 μm or less and an average aspect ratio of 5 or more. And a fine titanium carbonitride layer having a film thickness t 1 of 1 μm ≦ t 1 ≦ 10 μm, and the fine titanium carbonitride layer is formed on the upper layer of the fine titanium carbonitride layer than the fine titanium carbonitride layer. An upper titanium carbonitride layer having a structure in which the average crystal width is large and the interface with the fine titanium carbonitride layer is discontinuous has a thickness t u of 0.5 μm ≦ t u ≦ 5 μm and 1 <t 1 / t be a thickness satisfying the relation u ≦ 5 By forming, it is possible to improve the fracture resistance at high toughness it is possible to maintain high wear resistance at high hardness.

特に、ねずみ鋳鉄(FC材)やダクタイル鋳鉄(FCD材)のような高硬度黒鉛粒子が分散した鋳鉄等の金属の重断続切削等のような工具切刃に強い衝撃がかかる過酷な切削条件に用いられる切削工具等において、炭窒化チタン層の厚み方向に強い衝撃がかかるのを防止することができるとともに、たとえ炭窒化チタン層内に微細なクラックが発生した場合でも炭窒化チタン層の面内方向へのクラックの伝播を抑制することができる結果、炭窒化チタン層内にチッピングや層剥離が発生することなく、優れた耐摩耗性および耐欠損性を有する切削工具等の表面被覆部材が得られる。 In particular, in severe cutting conditions in which a strong impact is applied to the tool cutting edge such as heavy interrupted cutting of metal such as cast iron in which high-hardness graphite particles are dispersed, such as gray cast iron (FC material) and ductile cast iron (FCD material). In the cutting tool used, it is possible to prevent a strong impact in the thickness direction of the titanium carbonitride layer, and even if a fine crack occurs in the titanium carbonitride layer, the in-plane of the titanium carbonitride layer As a result of suppressing the propagation of cracks in the direction, surface coating members such as cutting tools having excellent wear resistance and fracture resistance can be obtained without causing chipping or delamination in the titanium carbonitride layer. It is done.

本発明の表面被覆部材の好適例である表面被覆切削工具の一例について、硬質被覆層の破断面の走査型電子顕微鏡(SEM)写真である図1、および硬質被覆層中における炭窒化チタン層を特定厚み成膜した表面について表面から観察した走査型電子顕微鏡(SEM)写真である図2を基に説明する。   FIG. 1 is a scanning electron microscope (SEM) photograph of a fracture surface of a hard coating layer, and a titanium carbonitride layer in the hard coating layer, as an example of a surface coating cutting tool which is a preferred example of the surface coating member of the present invention. A description will be given based on FIG. 2 which is a scanning electron microscope (SEM) photograph of the surface having a specific thickness formed from the surface.

本発明における表面被覆切削工具(以下、単に工具と略す。)1は、炭化タングステン(WC)と、所望により周期律表第4a、5a、6a族金属の炭化物、窒化物、炭窒化物の群から選ばれる少なくとも1種からなる硬質相をコバルト(Co)および/またはニッケル(Ni)の鉄属金属から成る結合相にて結合させた超硬合金、炭化チタン(TiC)や炭窒化チタン(TiCN)を主体として周期律表第4a、5a、6a族金属の炭化物、窒化物、炭窒化物の群から選ばれる少なくとも1種からなる硬質相をコバルト(Co)および/またはニッケル(Ni)の鉄属金属からなる結合相にて結合させたサーメット、または、窒化珪素(Si)や酸化アルミニウム(Al)等を主体としたセラミック焼結体、立方晶窒化ホウ素(cBN)、ダイヤモンドを主体とした超硬質焼結体等の硬質材料、
または金属からなる基体2(図1では超硬合金)の表面に硬質被覆層3を被着形成したものである。
A surface-coated cutting tool (hereinafter simply referred to as a tool) 1 in the present invention includes tungsten carbide (WC) and, if desired, a group of carbides, nitrides, and carbonitrides of Group 4a, 5a, and 6a metals of the periodic table. Cemented carbide, titanium carbide (TiC) and titanium carbonitride (TiCN) in which a hard phase composed of at least one selected from the group consisting of cobalt (Co) and / or nickel (Ni) is bonded to the binder phase. ) As a main component, a hard phase composed of at least one selected from the group consisting of carbides, nitrides, and carbonitrides of Group 4a, 5a, and 6a metals of the periodic table is iron of cobalt (Co) and / or nickel (Ni). cermet was bound by binder phase consisting of genus metal or a silicon nitride (Si 3 N 4) and aluminum oxide (Al 2 O 3) ceramic sintered body consisting mainly of such, cubic nitride C containing (cBN), a hard material such as super hard sintered body mainly composed of diamond,
Alternatively, a hard coating layer 3 is deposited on the surface of a base 2 made of metal (a cemented carbide in FIG. 1).

本発明によれば、工具1に成膜される硬質被覆層3の構成として、基体2の表面に炭窒化チタン層4を連続して2層設けてなり、かつ、炭窒化チタン層4の下層に、炭窒化チタン粒子8が基体2表面に対して垂直に伸びて断面方向から観察した場合に筋状組織を呈するとともに、炭窒化チタン層4を表面方向から観察した場合にランダムな方向に伸びた平均長軸長さが1μm以下で平均アスペクト比が5以上の炭窒化チタン粒子からなる針状組織を呈する微細炭窒化チタン層4bを膜厚t が1μm≦t ≦10μmで具備し、微細炭窒化チタン層4bの上層に、微細炭窒化チタン層4bよりも炭窒化チタン粒子の平均結晶幅が大きく微細炭窒化チタン層4bとの界面が不連続な組織の上部炭窒化チタン層4aを、膜厚t が0.5μm≦t ≦5μmで、かつ、1<t /t ≦5の関係を満たす厚みで被着形成するとともに、上部炭窒化チタン層4aの表面に酸化アルミニウム層6を被着形成することを特徴とするものである。 According to the present invention, as a configuration of the hard coating layer 3 formed on the tool 1, two layers of the titanium carbonitride layer 4 are continuously provided on the surface of the base 2, and the lower layer of the titanium carbonitride layer 4 is provided. Further, when the titanium carbonitride particles 8 extend perpendicularly to the surface of the substrate 2 and are observed from the cross-sectional direction, they exhibit a streak structure, and when the titanium carbonitride layer 4 is observed from the surface direction, they extend in a random direction. And a fine titanium carbonitride layer 4b having a needle-like structure composed of titanium carbonitride particles having an average major axis length of 1 μm or less and an average aspect ratio of 5 or more, with a film thickness t 1 of 1 μm ≦ t l ≦ 10 μm , An upper titanium carbonitride layer 4a having an average crystal width of titanium carbonitride particles larger than that of the fine titanium carbonitride layer 4b and a structure in which the interface with the fine titanium carbonitride layer 4b is discontinuous is formed on the fine titanium carbonitride layer 4b. , Film thickness tu is 0.5 μm ≦ t It is characterized in that u ≦ 5 μm and a thickness satisfying the relationship of 1 <t 1 / t u ≦ 5, and an aluminum oxide layer 6 is deposited on the surface of the upper titanium carbonitride layer 4a. To do.

これによって、炭窒化チタン層4の厚み方向に強い衝撃がかかるのを防止することができるとともに、炭窒化チタン層4の面内方向へのクラックの伝播を抑制することができる結果、炭窒化チタン層4内にチッピングや層剥離が発生することなく、優れた耐摩耗性および耐欠損性を有する工具1が得られる。   As a result, it is possible to prevent a strong impact in the thickness direction of the titanium carbonitride layer 4 and to suppress the propagation of cracks in the in-plane direction of the titanium carbonitride layer 4. The tool 1 having excellent wear resistance and fracture resistance can be obtained without causing chipping or delamination in the layer 4.

すなわち、微細炭窒化チタン層4bを断面方向から観察したときの炭窒化チタン粒子8が筋状で、かつ表面方向から観察したときの炭窒化チタン粒子8が針状を呈しない組織の場合、炭窒化チタン層4中に大きな衝撃がかかった場合、微細炭窒化チタン層4bが衝撃を吸収する効果、および硬質被覆層3中に発生した微細なクラックの進展を十分に偏向、抑制する効果が発揮できなくなるため、切刃の欠損やチッピングが発生しやすくなり工具1の寿命が短くなってしまう。   That is, in the case where the titanium carbonitride particles 8 when the fine titanium carbonitride layer 4b is observed from the cross-sectional direction is a streak and the titanium carbonitride particles 8 when observed from the surface direction are not in the form of needles, When a large impact is applied to the titanium nitride layer 4, the effect of the fine titanium carbonitride layer 4 b absorbing the impact and the effect of sufficiently deflecting and suppressing the development of the fine cracks generated in the hard coating layer 3 are exhibited. Since it becomes impossible, chipping and chipping of the cutting edge are likely to occur, and the life of the tool 1 is shortened.

ここで、本発明によれば、炭窒化チタン層4bの炭窒化チタン粒子8が垂直に成長するとともに、炭窒化チタン粒子8を断面方向から観察した場合の平均アスペクト比が3以上、好ましくは5以上の筋状結晶であることが衝撃吸収力を高める点で望ましく、特に8以上、さらには10以上であることが炭窒化チタン層3自身の硬度を高めて耐摩耗性を向上できる点で望ましい。   Here, according to the present invention, the titanium carbonitride particles 8 of the titanium carbonitride layer 4b grow vertically, and the average aspect ratio when the titanium carbonitride particles 8 are observed from the cross-sectional direction is 3 or more, preferably 5 The above streaky crystals are desirable from the standpoint of increasing the impact absorbing power, and in particular, 8 or more, and even 10 or more are desirable from the viewpoint of increasing the hardness of the titanium carbonitride layer 3 itself and improving the wear resistance. .

また、本発明によれば、微細炭窒化チタン層4bを表面方向から観察した場合の炭窒化チタン粒子8の平均アスペクト比が5以上であることがクラックの偏向効果および進展防止効果を高める点で重要であるFurther, according to the present invention, the average aspect ratio of the titanium carbonitride particles 8 when the fine titanium carbonitride layer 4b is observed from the surface direction is 5 or more in that the crack deflection effect and the progress prevention effect are enhanced. Is important .

なお、断面方向および表面方向の観察を加味すると、微細炭窒化チタン層中の炭窒化チタン粒子8は板状結晶になっているものと推定される。また、粒子(上記炭窒化チタン粒子8)のアスペクト比は、各粒子について、粒子の長軸と直交する短軸の長さ/粒子の長軸の長さの比が最大値となる値を算定し、その平均値によって見積もることができる。また、硬質被覆層3の断面組織観察にて、粒状炭窒化チタン結晶が30面積%以下の割合で混合した混晶であってもよい。   In addition, when the observation in the cross-sectional direction and the surface direction is taken into consideration, it is presumed that the titanium carbonitride particles 8 in the fine titanium carbonitride layer are plate crystals. In addition, the aspect ratio of the particles (titanium carbonitride particles 8) is calculated for each particle so that the ratio of the length of the minor axis perpendicular to the major axis of the particle / the length of the major axis of the particle becomes the maximum value. The average value can be estimated. Moreover, in the cross-sectional structure | tissue observation of the hard coating layer 3, the mixed crystal which the granular titanium carbonitride crystal mixed in the ratio of 30 area% or less may be sufficient.

ここで、炭窒化チタン粒子4の表面方向における組織観察および平均アスペクト比を測定する際、最表面が微細炭窒化チタン層4bである場合にはその表面をSEMによって観察することができる。一方、微細炭窒化チタン層4bの表面に別の層が存在する場合には、透過型電子顕微鏡(TEM)を用いて、硬質被覆層3の所定位置のみが残存するように研磨加工した後、例えば5000〜200000倍の倍率によって上記加工部を観察する方法が有効である。この方法によって、例え硬質被覆層3として微細炭窒化チタン層4bの上面に他の硬質層が成膜された多層被覆層であっても確実に表面方向からの炭窒化チタン粒子8bの組織状態を確認できる。   Here, when the structure observation and the average aspect ratio in the surface direction of the titanium carbonitride particles 4 are measured, when the outermost surface is the fine titanium carbonitride layer 4b, the surface can be observed by SEM. On the other hand, when another layer is present on the surface of the fine titanium carbonitride layer 4b, using a transmission electron microscope (TEM), after polishing so that only a predetermined position of the hard coating layer 3 remains, For example, a method of observing the processed part at a magnification of 5000 to 200000 times is effective. By this method, even if the hard coating layer 3 is a multi-layer coating layer in which another hard layer is formed on the top surface of the fine titanium carbonitride layer 4b, the structure state of the titanium carbonitride particles 8b from the surface direction is surely ensured. I can confirm.

また、断面方向における組織観察および平均アスペクト比を測定する際には、基体2の表面に垂直な方向に工具1を破断または研削し、その破断面または研削面を走査型電子顕微鏡(SEM)にて例えば3000〜50000倍で観察することで測定することができる。   Further, when observing the structure in the cross-sectional direction and measuring the average aspect ratio, the tool 1 is broken or ground in a direction perpendicular to the surface of the substrate 2, and the broken cross-section or ground surface is applied to a scanning electron microscope (SEM). For example, it can measure by observing 3000 to 50000 times.

また、図2は微細炭窒化チタン層4bを成膜した状態での表面を観察したSEM写真であるが、微細炭窒化チタン層4bの炭窒化チタン粒子8bを表面方向から観察した際、図2(a)に示すように、炭窒化チタン粒子8bの平均長さを1μm以下とすることが、微細炭窒化チタン層4b中に発生したクラックの偏向効果が高く、硬質被覆層3の破壊靱性を向上させて耐欠損性、耐チッピング性を向上することができるとともに、基体2と炭窒化チタン層4との密着力を向上させて膜剥離による異常摩耗を防ぐことができるため望ましい。   2 is an SEM photograph observing the surface with the fine titanium carbonitride layer 4b formed. When the titanium carbonitride particles 8b of the fine titanium carbonitride layer 4b are observed from the surface direction, FIG. As shown in (a), when the average length of the titanium carbonitride particles 8b is 1 μm or less, the effect of deflecting cracks generated in the fine titanium carbonitride layer 4b is high, and the fracture toughness of the hard coating layer 3 is increased. It is desirable because it can improve the chipping resistance and chipping resistance, and can improve the adhesion between the substrate 2 and the titanium carbonitride layer 4 to prevent abnormal wear due to film peeling.

また、微細炭窒化チタン層4bの上面に、微細炭窒化チタン層4bよりも炭窒化チタン粒子の平均結晶幅が大きい上部炭窒化チタン層4aを被着形成するとともに、上部炭窒化チタン層4aの表面に酸化アルミニウム層6を被着形成することが、酸化アルミニウム層6と炭窒化チタン層4との付着力、および基体2と炭窒化チタン層4との付着力をともに高めることができ、酸化アルミニウム層6や炭窒化チタン層4等の硬質被覆層3の剥離、チッピングを防ぐことができる点で重要であるIn addition, an upper titanium carbonitride layer 4a having an average crystal width of titanium carbonitride particles larger than that of the fine titanium carbonitride layer 4b is formed on the upper surface of the fine titanium carbonitride layer 4b. Forming the aluminum oxide layer 6 on the surface can increase both the adhesion between the aluminum oxide layer 6 and the titanium carbonitride layer 4 and the adhesion between the substrate 2 and the titanium carbonitride layer 4. This is important in that peeling and chipping of the hard coating layer 3 such as the aluminum layer 6 and the titanium carbonitride layer 4 can be prevented.

具体的に、例えば、炭窒化チタン層4(上部炭窒化チタン層4a)の酸化アルミニウム層6との界面から基体2へ垂直に向かって0.5μmの位置(hおよび線A)における平均結晶幅wが、炭窒化チタン層4の基体2との界面から界面に垂直な方向に向かって1μmの位置(核生成によって結晶幅wが小さい領域を越えた高さhおよび線B))の位置における炭窒化チタン層4の平均結晶幅wよりも大きいことが望ましい。ここで、炭窒化チタン粒子4bの平均結晶幅wを0.1〜0.7μm、また、炭窒化チタン粒子4aの平均結晶幅wを0.5〜1.0μmとすることが、基体2および酸化アルミニウム層6との密着性を向上させて膜剥離による耐欠損性および耐摩耗性の劣化を防ぐとともに、硬質被覆層3自身の耐摩耗性を向上させる点で望ましい。 Specifically, for example, an average crystal at a position (h 1 and line A) of 0.5 μm from the interface between the titanium carbonitride layer 4 (upper titanium carbonitride layer 4a) and the aluminum oxide layer 6 toward the substrate 2 vertically. The width w u is a position of 1 μm from the interface with the substrate 2 of the titanium carbonitride layer 4 in the direction perpendicular to the interface (the height h 2 and the line B exceeding the region where the crystal width w is small by nucleation)) larger than the average crystal width w l titanium carbonitride layer 4 at the position it is desired. Here, 0.1 to 0.7 of the average crystal width w l of titanium carbonitride particles 4b, also the average crystal width w u titanium carbonitride particles 4a be 0.5 to 1.0 [mu] m, the substrate 2 and the aluminum oxide layer 6 are desirably improved in order to prevent deterioration of chipping resistance and wear resistance due to film peeling, and to improve the wear resistance of the hard coating layer 3 itself.

また、微細炭窒化チタン層4bの膜厚tが1μm≦t≦10μm、上部炭窒化チタン層4aの膜厚tが0.5μm≦t≦5μmで、かつ、1<t/t≦5の関係を満たすことが、基体2、炭窒化チタン層4および酸化アルミニウム層6間の密着性を高め、工具1の硬度、靭性を高めることができる点で重要である。さらに、炭窒化チタン層4を多層構造とした際の炭窒化チタン層4の総膜厚は8〜12μmであることが膜剥離を抑えて耐摩耗性を維持するという点で望ましい。 The thickness t l is 1μm ≦ t l ≦ 10μm fine titanium carbonitride layer 4b, a thickness t u is 0.5μm ≦ t u ≦ 5μm upper titanium carbonitride layer 4a, and, 1 <t l / Satisfying the relationship of t u ≦ 5 is important in that the adhesion between the substrate 2, the titanium carbonitride layer 4 and the aluminum oxide layer 6 can be improved and the hardness and toughness of the tool 1 can be improved. Furthermore, when the titanium carbonitride layer 4 has a multilayer structure, the total thickness of the titanium carbonitride layer 4 is preferably 8 to 12 μm from the viewpoint of suppressing film peeling and maintaining wear resistance.

また、酸化アルミニウム層6の膜厚は3〜8μmであることが耐摩耗性、特に鋳鉄に対する耐摩耗性および耐溶着性を維持しつつ、膜剥離を防止して耐欠損性を高めることができる点で望ましい。   Further, the film thickness of the aluminum oxide layer 6 is 3 to 8 μm, and while maintaining the wear resistance, in particular, the wear resistance and welding resistance to cast iron, it is possible to prevent film peeling and improve the fracture resistance. Desirable in terms.

ここで、上部炭窒化チタン層4aは、微細炭窒化チタン層4bの構成とは異なり、例えば、図2(b)に示すように、炭窒化チタン粒子8aの平均長さが1μm以上とすることが酸化アルミニウム層6との密着力を向上するために望ましい。この場合、炭窒化チタン粒子8aのアスペクト比は2以下であってもよいが、望ましくは2〜5である。 Here, the upper titanium carbonitride layer 4a is different from the structure of the fine titanium carbonitride layer 4b. For example, as shown in FIG. 2B, the average length of the titanium carbonitride particles 8a is 1 μm or more. Is desirable for improving the adhesion with the aluminum oxide layer 6. In this case, the aspect ratio of the titanium carbonitride particles 8a may be 2 or less, but is preferably 2 to 5.

さらに、酸化アルミニウム層6のスクラッチ試験における付着力が10〜50Nであることが、硬度、靭性をともに高めて、連続切削においては硬質被覆層3の剥離を抑制できて耐摩耗性が高く、かつ断続切削においては酸化アルミニウム層6が適度の剥離を生じさせて基体2までに至る硬質被覆層3の剥離を抑制させることができ、耐欠損性および耐チッピング性を高めることができるために望ましい。   Furthermore, the adhesive strength in the scratch test of the aluminum oxide layer 6 is 10 to 50 N, both hardness and toughness are enhanced, and in continuous cutting, the peeling of the hard coating layer 3 can be suppressed, and the wear resistance is high. In intermittent cutting, it is desirable because the aluminum oxide layer 6 can moderately peel off and suppress the peeling of the hard coating layer 3 reaching the base 2 and can improve the chipping resistance and chipping resistance.

また、表面被覆切削工具1の表面に、図3に示すように、硬質球13を接触させた状態で硬質球13をころがしながら自転させるように表面被覆切削工具1の硬質球13接触部分を局所的に摩耗させて、中心に基体2が露出するように硬質被覆層3に球曲面の摩耗痕14を形成させるカロテストを行い、図4に示すような摩耗痕14を観察した際、摩耗痕14の中心に存在する露出した基体2の外周位置に観察される炭窒化チタン層4でのカロテスト前に硬質被覆層3内に内在するクラックのクラック幅がゼロ、または小さい下部組織11と、下部組織11の外周位置に観察されて下部組織11よりもカロテスト前に硬質被覆層3内に内在するクラックのクラック幅が大きい上部組織12とが存在することが望ましい。なお、図4(b)は図4(a)の要部拡大写真である。 Further, as shown in FIG. 3, the surface of the surface-coated cutting tool 1 is locally contacted with the hard sphere 13 contacting portion of the surface-coated cutting tool 1 so that the hard sphere 13 is rotated while rolling. When the wear mark 14 as shown in FIG. 4 is observed by performing a calotest to form a spherical curved wear mark 14 on the hard coating layer 3 so that the base 2 is exposed at the center. A substructure 11 in which the crack width of the crack existing in the hard coating layer 3 is zero or small before the calotest on the titanium carbonitride layer 4 observed at the outer peripheral position of the exposed base 2 existing in the center of the substrate, and the substructure It is desirable that there is an upper structure 12 that is observed at the outer peripheral position of 11 and has a crack width larger than that of the lower structure 11 in the hard coating layer 3 before the calotest . FIG. 4B is an enlarged photograph of the main part of FIG.

上記構成によって、上部組織11にクラックが生成することにより炭窒化チタン層4と上層の酸化アルミニウム層6との間に発生する残留応力を開放して、断続切削時において例え突発的に大きな衝撃が硬質被覆層にかかったときであっても新たに大きなクラックが発生して硬質被覆層3がチッピングしたり欠損したりすることなく衝撃を吸収できるとともに、クラックの生成しにくい炭窒化チタン層4の下部組織が存在することによって、上部組織11にて生成したクラックの進展が阻害されるために炭窒化チタン層4または硬質被覆層3全体がチッピングや剥離することなく、結果的に硬質被覆層3全体のチッピングや剥離を防止できるとともに、硬質被覆層3全体の耐摩耗性が向上するため望ましい。   With the above-described configuration, the residual stress generated between the titanium carbonitride layer 4 and the upper aluminum oxide layer 6 is released by the generation of cracks in the upper structure 11, and suddenly large impacts occur during intermittent cutting. Even when it is applied to the hard coating layer, a new large crack is generated and the hard coating layer 3 can absorb the impact without chipping or chipping, and the titanium carbonitride layer 4 is less likely to generate a crack. The presence of the lower structure hinders the progress of cracks generated in the upper structure 11, so that the entire titanium carbonitride layer 4 or the hard coating layer 3 is not chipped or peeled, resulting in the hard coating layer 3. This is desirable because it prevents the entire chipping and peeling and improves the wear resistance of the entire hard coating layer 3.

ここで、露出した基体2の大きさが大きすぎたり、小さすぎたりすると、炭窒化チタン層4中のクラック5を正確に観察することができない場合があるため、摩耗痕14中に露出する基体2の直径が摩耗痕14全体の直径の0.1倍〜0.6倍になるようにカロテストの摩耗条件(時間、硬質球の種類、研磨剤等)を調節するのがよい。   Here, since the crack 5 in the titanium carbonitride layer 4 may not be observed accurately if the size of the exposed substrate 2 is too large or too small, the substrate that is exposed in the wear scar 14. It is preferable to adjust the wear conditions (time, type of hard sphere, abrasive, etc.) of the calo test so that the diameter of 2 is 0.1 to 0.6 times the diameter of the entire wear scar 14.

なお、本発明に使用される酸化アルミニウム層6としては、結晶構造がα型であることが望ましい。従来ではα型結晶構造をもつ酸化アルミニウムは優れた耐摩耗性を持つが、核生成を行う際の粒径が大きいため、炭窒化チタン層4との接触面積が小さくなり、付着力が弱くなってしまい、膜剥離を起こしやすいという問題があった。しかし、本発明の構成にすることで酸化アルミニウム層6と炭窒化チタン層4との接触面積を大きくすることができるため、酸化アルミニウム層6をα型結晶構造としても十分な付着力を得ることができる。よって、α型結晶構造の酸化アルミニウムの持つ、優れた耐摩耗性を酸化アルミニウム層6の付着力を低下させることなく得ることができるため、工具寿命のより長い工具1を得ることができる。   The aluminum oxide layer 6 used in the present invention preferably has an α-type crystal structure. Conventionally, aluminum oxide having an α-type crystal structure has excellent wear resistance. However, since the particle size at the time of nucleation is large, the contact area with the titanium carbonitride layer 4 is reduced and the adhesion is weakened. As a result, there is a problem that film peeling is likely to occur. However, since the contact area between the aluminum oxide layer 6 and the titanium carbonitride layer 4 can be increased by adopting the configuration of the present invention, sufficient adhesion can be obtained even if the aluminum oxide layer 6 has an α-type crystal structure. Can do. Therefore, the excellent wear resistance of the aluminum oxide having an α-type crystal structure can be obtained without reducing the adhesion of the aluminum oxide layer 6, so that the tool 1 having a longer tool life can be obtained.

なお、酸化アルミニウム層6をα型結晶構造とする場合には、炭窒化チタン層4と酸化アルミニウム層6との間に0.2μm以下の炭酸化チタン(TiCO)層、酸窒化チタン(TiNO)層または炭窒酸化チタン(TiCNO)層のいずれかの中間層7を介装することが安定してα型結晶構造を成長させることができる点で望ましい。   When the aluminum oxide layer 6 has an α-type crystal structure, a titanium carbonate (TiCO) layer or titanium oxynitride (TiNO) of 0.2 μm or less is provided between the titanium carbonitride layer 4 and the aluminum oxide layer 6. It is desirable that an intermediate layer 7 of either a layer or a titanium carbonitride oxide (TiCNO) layer is interposed in that an α-type crystal structure can be stably grown.

また、硬質被覆層3の表層19として窒化チタン(TiN)を形成することによって、工具1が金色を呈するため、工具1を使用したときに変色して使用済みかどうかの判別がつきやすく、また、摩耗の進行を容易に確認できるため望ましい。   In addition, by forming titanium nitride (TiN) as the surface layer 19 of the hard coating layer 3, the tool 1 exhibits a gold color, so that it is easy to determine whether the tool 1 has been discolored and used. It is desirable because the progress of wear can be easily confirmed.

なお、上記説明においては本発明の表面被覆部材を切削工具に応用した例について説明したが、本発明はこれに限定されるものではなく、例えば、掘削工具、金型や摺動部材等の耐摩材等の耐摩耗性および耐欠損性が要求される構造材に好適に利用可能である。   In the above description, the example in which the surface covering member of the present invention is applied to a cutting tool has been described. However, the present invention is not limited to this example. For example, the wear resistance of an excavation tool, a mold, a sliding member, etc. It can be suitably used for structural materials that require wear resistance and fracture resistance such as materials.

(製造方法)
また、上述した表面被覆切削工具を製造するには、まず、上述した硬質合金を焼成によって形成しうる金属炭化物、窒化物、炭窒化物、酸化物等の無機物粉末に、金属粉末、カーボン粉末等を適宜添加、混合し、プレス成形、鋳込成形、押出成形、冷間静水圧プレス成形等の公知の成形方法によって所定の工具形状に成形した後、真空中または非酸化性雰囲気中にて焼成することによって上述した硬質合金からなる基体2を作製する。
(Production method)
In order to manufacture the above-mentioned surface-coated cutting tool, first, an inorganic powder such as a metal carbide, nitride, carbonitride, oxide, etc. that can form the above-mentioned hard alloy by firing, metal powder, carbon powder, etc. Are added and mixed as appropriate, and then molded into a predetermined tool shape by a known molding method such as press molding, cast molding, extrusion molding, or cold isostatic pressing, and then fired in a vacuum or non-oxidizing atmosphere. By doing so, the base body 2 made of the hard alloy described above is produced.

次に、上記基体2の表面を所望によって研磨加工した後、その表面に例えば化学気相蒸着(CVD)法によって硬質被覆層3を成膜する。筋状炭窒化チタン層4の成膜条件は、例えば、反応ガス組成として、体積%で塩化チタン(TiCl)ガスを0.1〜10体積%、窒素(N)ガスを0〜60体積%、メタン(CH)ガスを0〜0.1体積%、アセトニトリル(CHCN)ガスを0.1〜0.4体積%、残りが水素(H)ガスからなる混合ガスを調整して反応チャンバ内に導入し、成膜温度を780〜840℃、5〜85kPaにて成膜する。 Next, after polishing the surface of the base 2 as desired, the hard coating layer 3 is formed on the surface by, for example, chemical vapor deposition (CVD). The film formation conditions of the streaky titanium carbonitride layer 4 are, for example, 0.1% to 10% by volume of titanium chloride (TiCl 4 ) gas and 0% to 60% of nitrogen (N 2 ) gas as a reaction gas composition. %, Methane (CH 4 ) gas is 0 to 0.1% by volume, acetonitrile (CH 3 CN) gas is 0.1 to 0.4% by volume, and the balance is hydrogen (H 2 ) gas. Then, it is introduced into the reaction chamber, and a film is formed at a film formation temperature of 780 to 840 ° C. and 5 to 85 kPa.

ここで、上記成膜条件のうち、反応ガス中のアセトニトリルガスの割合が0.1体積%より少ないと微細炭窒化チタン層4b中の炭窒化チタン粒子8bの組織を上述した範囲に成長させることができない。逆に反応ガス中のアセトニトリルガスの混合割合が0.4体積%を超える場合にも炭窒化チタン粒子8の結晶成長が速くなる傾向となり、やはり炭窒化チタン粒子8bの組織を制御できない。   Here, when the ratio of acetonitrile gas in the reaction gas is less than 0.1% by volume among the film forming conditions, the structure of the titanium carbonitride particles 8b in the fine titanium carbonitride layer 4b is grown in the above-described range. I can't. Conversely, when the mixing ratio of the acetonitrile gas in the reaction gas exceeds 0.4% by volume, the crystal growth of the titanium carbonitride particles 8 tends to be fast, and the structure of the titanium carbonitride particles 8b cannot be controlled.

また、上記成膜温度についても、780℃より低いか、または840℃を超えると、断面観察において筋状をなし、かつ表面観察において針状をなす炭窒化チタン粒子からなる微細炭窒化チタン層を形成することができない。   In addition, when the film forming temperature is lower than 780 ° C. or exceeds 840 ° C., a fine titanium carbonitride layer composed of titanium carbonitride particles forming streaks in cross-sectional observation and needle-like in surface observation is formed. Cannot be formed.

なお、本実施形態では、炭窒化チタン層の成膜前期(微細炭窒化チタン層4bの成膜)に使用する反応ガス中のCHCNの割合よりも炭窒化チタン層の成膜後期(上部炭窒化チタン層4aの成膜)に使用する反応ガス中のアセトニトリル(CHCN)ガスの混合割合を増やすことによって、微細炭窒化チタン層4bよりも上部炭窒化チタン層4aの炭窒化チタン粒子の粒径を大きくする。 In the present embodiment, the later stage of film formation of the titanium carbonitride layer (upper part) than the proportion of CH 3 CN in the reaction gas used in the first stage of film formation of the titanium carbonitride layer (film formation of the fine titanium carbonitride layer 4b). Titanium carbonitride particles in the upper titanium carbonitride layer 4a rather than the fine titanium carbonitride layer 4b by increasing the mixing ratio of acetonitrile (CH 3 CN) gas in the reaction gas used for the formation of the titanium carbonitride layer 4a) Increase the particle size.

具体的には、炭窒化チタン層の成膜前期に使用するアセトニトリルガスの導入割合に対して炭窒化チタン層の成膜後期時に導入するアセトニトリルガスの割合を1.5倍以上とすることにより制御可能である。   Specifically, it is controlled by setting the ratio of acetonitrile gas introduced at the latter stage of the formation of the titanium carbonitride layer to 1.5 times or more with respect to the introduction ratio of acetonitrile gas used at the first stage of the formation of the titanium carbonitride layer. Is possible.

なお、上部炭窒化チタン層を成膜する際は、反応ガス中のアセトニトリルガス導入量や、成膜温度を調整することによって、炭窒化チタン結晶の平均結晶幅を所定の構成に制御することが可能である。   When forming the upper titanium carbonitride layer, it is possible to control the average crystal width of the titanium carbonitride crystal to a predetermined configuration by adjusting the amount of acetonitrile gas introduced into the reaction gas and the film formation temperature. Is possible.

そして、本実施形態によれば、引き続き、酸化アルミニウム層6を成膜する。酸化アルミニウム層6の成膜方法としては、塩化アルミニウム(AlCl)ガスを3〜20体積%、塩化水素(HCl)ガスを0.5〜3.5体積%、二酸化炭素(CO)ガスを0.01〜5.0体積%、硫化水素(HS)ガスを0〜0.01体積%、残りが水素(H)ガスからなる混合ガスを用い、900〜1100℃、5〜10kPaとすることが望ましい。 And according to this embodiment, the aluminum oxide layer 6 is formed into a film continuously. As a method of forming the aluminum oxide layer 6, 3 to 20% by volume of aluminum chloride (AlCl 3 ) gas, 0.5 to 3.5% by volume of hydrogen chloride (HCl) gas, and carbon dioxide (CO 2 ) gas are used. Using a mixed gas composed of 0.01 to 5.0% by volume, 0 to 0.01% by volume of hydrogen sulfide (H 2 S) gas, and the remainder consisting of hydrogen (H 2 ) gas, 900 to 1100 ° C. and 5 to 10 kPa Is desirable.

また、窒化チタン(TiN)層を成膜するには、反応ガス組成として塩化チタン(TiCl)ガスを0.1〜10体積%、窒素(N)ガスを0〜60体積%、残りが水素(H)ガスからなる混合ガスを順次調整して反応チャンバ内に導入し、チャンバ内を800〜1100℃、5〜85kPaとすればよい。 Further, in order to form a titanium nitride (TiN) layer, the reaction gas composition is 0.1 to 10% by volume of titanium chloride (TiCl 4 ) gas, 0 to 60% by volume of nitrogen (N 2 ) gas, and the rest A mixed gas composed of hydrogen (H 2 ) gas is sequentially adjusted and introduced into the reaction chamber, and the inside of the chamber may be set to 800 to 1100 ° C. and 5 to 85 kPa.

さらに、炭酸窒化チタン(TiCNO層を成膜するには、塩化チタン(TiCl)ガスを0.1〜3体積%、メタン(CH)ガスを0.1〜10体積%、二酸化炭素(CO)ガスを0.01〜5体積%、窒素(N)ガスを0〜60体積%、残りが水素(H)ガスからなる混合ガスを順次調整して反応チャンバ内に導入し、チャンバ内を800〜1100℃、5〜85kPaとすればよい。 Further, titanium carbonitride (for forming a TiCNO layer, titanium chloride (TiCl 4 ) gas is 0.1 to 3% by volume, methane (CH 4 ) gas is 0.1 to 10% by volume, carbon dioxide (CO 2 ) A mixed gas composed of 0.01 to 5% by volume of gas, 0 to 60% by volume of nitrogen (N 2 ) gas, and the remaining hydrogen (H 2 ) gas is sequentially adjusted and introduced into the reaction chamber, The inside may be 800 to 1100 ° C. and 5 to 85 kPa.

このとき、上述した方法に加えて、上記化学蒸着法にて硬質被覆層を成膜した後700℃までのチャンバの冷却速度を12〜30℃/分に制御することによって、炭窒化チタン層の組織を、上記カロテストにて所定のクラックが観察される組織に制御することができる。   At this time, in addition to the above-described method, after the hard coating layer is formed by the chemical vapor deposition method, the cooling rate of the chamber up to 700 ° C. is controlled to 12 to 30 ° C./min. A structure | tissue can be controlled to the structure | tissue by which a predetermined crack is observed by the said Calotest.

なお、本発明は上記実施態様に限定されるものではなく、例えば、上記説明においては成膜方法として化学蒸着(CVD)法を用いた場合について説明したが、硬質被覆層の一部または全部を物理蒸着(PVD)法によって形成したものであってもよい。   The present invention is not limited to the above embodiment. For example, in the above description, the case where the chemical vapor deposition (CVD) method is used as the film forming method has been described. It may be formed by a physical vapor deposition (PVD) method.

平均粒径1.5μmの炭化タングステン(WC)粉末に対して、平均粒径1.2μmの金属コバルト(Co)粉末を6質量%、平均粒径2.0μmの炭化チタン(TiC)粉末を0.5質量%、TaC粉末を5質量%の割合で添加、混合して、プレス成形により切削工具形状(CNMA120412)に成形した後、脱バインダ処理を施し、0.01Paの真空中、1500℃で1時間焼成して超硬合金を作製した。さらに、作製した超硬合金にブラシ加工にて刃先処理(ホーニングR)を施した。   6% by mass of metallic cobalt (Co) powder with an average particle size of 1.2 μm and 0% of titanium carbide (TiC) powder with an average particle size of 2.0 μm with respect to tungsten carbide (WC) powder with an average particle size of 1.5 μm. .5% by mass, TaC powder was added and mixed at a rate of 5% by mass, formed into a cutting tool shape (CNMA120204) by press molding, and then subjected to binder removal treatment at 1500 ° C. in a vacuum of 0.01 Pa. A cemented carbide was prepared by firing for 1 hour. Further, the prepared cemented carbide was subjected to blade edge processing (Honing R) by brushing.

そして、上記超硬合金に対して、CVD法により各種の硬質被覆層を表1に示す条件で表2に示す構成の多層膜からなる硬質被覆層を成膜した試料No.1〜6の表面被覆切削工具を作製した。
And for the above cemented carbide, sample No. 1 was formed by forming a hard coating layer composed of a multilayer film having the structure shown in Table 2 under the conditions shown in Table 1 on the various hard coating layers by the CVD method. 1 to 6 surface-coated cutting tools were produced.

得られた工具について、透過型電子顕微鏡(TEM)を用いて表2に記載する硬質被覆層が観察できるように研磨加工して各層の表面方向からみた組織状態を観察し、炭窒化チタン粒子の表面方向における組織を特定するとともに平均アスペクト比を測定した。さらに、硬質被覆層の断面を含む任意破断面5ヵ所について走査型電子顕微鏡(SEM)写真を撮り、各写真おいて炭窒化チタン粒子の組織状態を観察し、断面方向における平均アスペクト比、および炭窒化チタン粒子の平均結晶幅wを測定した。このとき、炭窒化チタン層を多層構造とした試料については、下部層については、総膜厚に対して基体側から1μmの高さ位置、上部層については、表面側から0.5μmの高さ位置にそれぞれ図2に示すような線Aおよび線Bを引いて、それぞれの線分上を横切る粒界数を測定して炭窒化チタン粒子の結晶幅に換算した値を算出し、写真5ヶ所についてそれぞれ算出した結晶幅の平均値を平均結晶幅として算出した。   About the obtained tool, it grind | polished so that the hard coating layer described in Table 2 could be observed using a transmission electron microscope (TEM), the structure state seen from the surface direction of each layer was observed, The texture in the surface direction was specified and the average aspect ratio was measured. Furthermore, a scanning electron microscope (SEM) photograph was taken at five arbitrary fractured surfaces including the cross section of the hard coating layer, and the structural state of the titanium carbonitride particles was observed in each photograph, the average aspect ratio in the cross-sectional direction, and the carbon The average crystal width w of the titanium nitride particles was measured. At this time, for the sample having a titanium carbonitride layer having a multilayer structure, the lower layer has a height of 1 μm from the substrate side with respect to the total film thickness, and the upper layer has a height of 0.5 μm from the surface side. Two lines A and B as shown in FIG. 2 are drawn at the respective positions, the number of grain boundaries crossing each line segment is measured, and the value converted into the crystal width of the titanium carbonitride particles is calculated. The average value of the crystal widths calculated for each was calculated as the average crystal width.

また、上記表面被覆切削工具の硬質被覆層のクラック状態を、下記条件で行ったカロテスト試験によって生じた摩耗痕を金属顕微鏡またはSEMにて観察し、カロテスト摩耗痕で観察される炭窒化チタン層の下部組織と上部組織におけるクラックの幅b、bをそれぞれ測定した。結果は表2に示した。 In addition, the crack state of the hard coating layer of the surface-coated cutting tool was observed with a metal microscope or SEM for the wear scar generated by the calotest test performed under the following conditions, and the titanium carbonitride layer observed with the calotest wear scar was observed. The widths b L and b U of the cracks in the lower structure and the upper structure were measured, respectively. The results are shown in Table 2.

装置:ナノテック社製CSEM−CALOTEST
鋼球:直径30mm球形鋼玉
ダイヤモンドペースト:1/4MICRON
摩耗痕中に露出する基体の直径が摩耗痕全体の直径に対して0.1〜0.6倍、(今回の測定では0.3〜0.7mm)となるように摩耗させた状態でクラックを観察した。なお、前記クラックの幅については、摩耗痕の炭窒化チタン層領域の基体(内)側から1/5長さの位置に存在するクラック幅の平均値=b、摩耗痕7の炭窒化チタン層領域の酸化アルミニウム層(外)側から1/5長さの位置に存在するクラック幅の平均値=bとして算出した。結果は表2に示した。
Equipment: CSEM-CALOTEST manufactured by Nanotech
Steel ball: 30 mm diameter spherical steel ball diamond paste: 1/4 MICRON
Cracks in a worn state so that the diameter of the substrate exposed in the wear scar is 0.1 to 0.6 times the diameter of the entire wear scar (0.3 to 0.7 mm in this measurement) Was observed. Incidentally, the width of the cracks, the average value = b L, titanium carbonitride of wear scar 7 crack width at the position of 1/5 length from the substrate (in) side of the titanium carbonitride layer region of the wear track aluminum oxide layer of the layer region was calculated as the average value = b U crack width at the position of the (outer) side 1/5 length. The results are shown in Table 2.

そして、この切削工具を用いて下記の条件により、断続切削試験を行い、耐欠損性、耐チッピング性を評価した。   And the intermittent cutting test was done on condition of the following using this cutting tool, and fracture resistance and chipping resistance were evaluated.

(切削条件)
被削材 :ダクタイル鋳鉄4本溝付スリーブ材(FCD700)
工具形状:CNMA120412
切削速度:200m/分
送り速度:0.3〜0.5mm/rev
切り込み:2mm
その他 :水溶性切削液使用
評価項目:欠損に至る衝撃回数
衝撃回数1000回時点で顕微鏡にて切刃の硬質被覆層の剥離状態を観察
(Cutting conditions)
Work material: Ductile cast iron 4-slot sleeve material (FCD700)
Tool shape: CNMA120204
Cutting speed: 200 m / min Feeding speed: 0.3 to 0.5 mm / rev
Cutting depth: 2mm
Other: Use of water-soluble cutting fluid Evaluation item: Number of impacts leading to breakage
Observe the peeling state of the hard coating layer of the cutting edge with a microscope at the point of impact 1000 times

表1〜3より、混合ガス中のCHCNの割合を0.4体積%以上とし、炭窒化チタン粒子の表面から観察した際に針状組織でなく等方状組織であった試料No.5,6では、硬質被覆層の強度が足りず、切刃部の硬質被覆層に切削初期からチッピングが発生し、また、このチッピングが要因となって早期に欠損した。 From Tables 1-3, the ratio of CH 3 CN in the mixed gas was set to 0.4% by volume or more, and when the sample was observed from the surface of the titanium carbonitride particles, the sample No. In Nos. 5 and 6, the strength of the hard coating layer was insufficient, and chipping occurred in the hard coating layer of the cutting edge portion from the beginning of cutting, and the chipping occurred early due to this chipping.

これに対して、本発明に従い、炭窒化チタン粒子の表面側から観察した際に針状、断面側から観察した際に筋状組織としたNo.1〜4では、いずれも硬質被覆層の剥離が発生せず、連続切削においても断続切削においても長寿命であり、耐欠損性および耐チッピング性とも優れた切削性能を有するものであった。   On the other hand, according to the present invention, No. 1 was obtained as a needle-like structure when observed from the surface side of the titanium carbonitride particles and a streak structure when observed from the cross-sectional side. In Nos. 1 to 4, peeling of the hard coating layer did not occur, it had a long life both in continuous cutting and in intermittent cutting, and had excellent cutting performance in both chipping resistance and chipping resistance.

本発明の表面被覆部材の一例である表面被覆切削工具の破断面の一例についての走査型電子顕微鏡写真である。It is a scanning electron micrograph about an example of the torn surface of the surface coating cutting tool which is an example of the surface coating member of this invention. (a)本発明の表面被覆部材の微細炭窒化チタン層に好適な組織を表面から観察した際の走査型電子顕微鏡写真である。(A) It is a scanning electron micrograph at the time of observing the structure | tissue suitable for the fine titanium carbonitride layer of the surface coating member of this invention from the surface.

(b)本発明の他の表面被覆部材の炭窒化チタン層(上部炭窒化チタン層として好適な組織)を表面から観察した際の走査型電子顕微鏡写真である。
本発明の表面被覆部材の評価方法の1つであるカロテスト試験方法を説明するための模式図である。 本発明の表面被覆部材の一例である表面被覆切削工具について、カロテスト摩耗痕の一例を示す金属顕微鏡像であり、(a)カロテスト摩耗痕全体、(b)要部拡大写真である。
(B) It is a scanning electron micrograph at the time of observing the titanium carbonitride layer (structure suitable as an upper titanium carbonitride layer) of the other surface coating member of this invention from the surface.
It is a schematic diagram for demonstrating the Calotest test method which is one of the evaluation methods of the surface covering member of this invention. It is a metal-microscope image which shows an example of a Calotest wear scar about the surface coating cutting tool which is an example of the surface coating member of this invention, (a) The whole Calotest wear scar, (b) It is a principal part enlarged photograph.

符号の説明Explanation of symbols

1: 表面被覆切削工具(工具)
2: 基体
3: 硬質被覆層
4: 炭窒化チタン層
4a 上部炭窒化チタン層
4b 微細炭窒化チタン層
6: 酸化アルミニウム層
7: 中間層
8: 炭窒化チタン粒子
8a:上部炭窒化チタン層中の炭窒化チタン粒子
8b:微細炭窒化チタン層中の炭窒化チタン粒子
11: 炭窒化チタン層中の下部組織
12: 炭窒化チタン層中の上部組織
13: 硬質球
14: カロテストの摩耗痕
19: 表面層(TiN層)
A: 酸化アルミニウム層と筋状炭窒化チタン層との界面より基体に向かって0.5μmの位置を示す線
B: 基体と筋状炭窒化チタン層との界面より酸化アルミニウム層に向かって1μmの位置を示す線
: 上部炭窒化チタン層の平均結晶幅
: 微細炭窒化チタン層の平均結晶幅
: 上部炭窒化チタン層の平均結晶幅を測定する高さ位置
: 微細炭窒化チタン層の平均結晶幅を測定する高さ位置
: 上部炭窒化チタン層の膜厚
: 微細炭窒化チタン層の膜厚
: カロテスト摩耗痕における炭窒化チタン層の上部組織のクラック幅
: カロテスト摩耗痕における炭窒化チタン層の下部組織のクラック幅
: カロテスト摩耗痕における炭窒化チタン層の上部組織の径方向長さ
: カロテスト摩耗痕における炭窒化チタン層の下部組織の径方向長さ
1: Surface coated cutting tool (tool)
2: Substrate 3: Hard coating layer 4: Titanium carbonitride layer 4a Upper titanium carbonitride layer 4b Fine titanium carbonitride layer 6: Aluminum oxide layer 7: Intermediate layer 8: Titanium carbonitride particles 8a: In the upper titanium carbonitride layer Titanium carbonitride particles 8b: Titanium carbonitride particles in a fine titanium carbonitride layer 11: Lower structure in the titanium carbonitride layer 12: Upper structure in the titanium carbonitride layer 13: Hard sphere 14: Carotest wear scar 19: Surface Layer (TiN layer)
A: Line B showing a position of 0.5 μm from the interface between the aluminum oxide layer and the streaked titanium carbonitride layer toward the substrate B: 1 μm from the interface between the substrate and the streaked titanium carbonitride layer toward the aluminum oxide layer line indicates the position w u: mean crystal width of the upper titanium carbonitride layer w l: mean crystal width h 1 of the fine titanium carbonitride layer: average height measuring crystal width position of the upper titanium carbonitride layer h 2: fine Height position at which the average crystal width of the titanium carbonitride layer is measured t u : Film thickness of the upper titanium carbonitride layer t l : Film thickness of the fine titanium carbonitride layer b U : Superstructure of the titanium carbonitride layer in the Calotest wear scar crack width b L: crack width of infrastructure Karotesuto titanium carbonitride layer in wear scar L U: radial direction of the upper tissue titanium carbonitride layer in Karotesuto wear scar length L L: put the Karotesuto wear scar Radial length of the infrastructure of the titanium carbonitride layer

Claims (4)

基体の表面に、炭窒化チタン層を連続して2層設けてなり
前記炭窒化チタン層の下層に、炭窒化チタン粒子が前記基体表面に対して垂直に伸びて断面方向から観察した場合に筋状組織を呈するとともに、前記炭窒化チタン層を表面方向から観察した場合にランダムな方向に伸びた平均長軸長さが1μm以下で平均アスペクト比が5以上の炭窒化チタン粒子からなる針状組織を呈する微細炭窒化チタン層を膜厚t が1μm≦t ≦10μmで具備し、
前記微細炭窒化チタン層の上層に、該微細炭窒化チタン層よりも炭窒化チタン粒子の平均結晶幅が大きく前記微細炭窒化チタン層との界面が不連続な組織の上部炭窒化チタン層を、膜厚t が0.5μm≦t ≦5μmで、かつ、1<t /t ≦5の関係を満たす厚みで被着形成するとともに、
前記上部炭窒化チタン層の表面に酸化アルミニウム層を被着形成する
ことを特徴とする表面被覆部材。
Two titanium carbonitride layers are continuously provided on the surface of the substrate,
In the lower layer of the titanium carbonitride layer, when the titanium carbonitride particles extend perpendicularly to the substrate surface and are observed from the cross-sectional direction, a streak structure is exhibited, and the titanium carbonitride layer is observed from the surface direction A fine titanium carbonitride layer having a needle-like structure composed of titanium carbonitride particles having an average major axis length of 1 μm or less and an average aspect ratio of 5 or more extending in a random direction has a film thickness t 1 of 1 μm ≦ t l ≦. 10 μm ,
On the fine titanium carbonitride layer, an upper titanium carbonitride layer having a structure in which the average crystal width of the titanium carbonitride particles is larger than that of the fine titanium carbonitride layer and the interface with the fine titanium carbonitride layer is discontinuous, The film thickness tu is 0.5 μm ≦ t u ≦ 5 μm, and is deposited with a thickness satisfying the relationship of 1 <t 1 / t u ≦ 5,
A surface covering member , wherein an aluminum oxide layer is deposited on the surface of the upper titanium carbonitride layer .
前記表面被覆部材の表面に、硬質球を接触させた状態で該硬質球をころがしながら自転させるように前記表面被覆部材の前記硬質球接触部分を局所的に摩耗させて、中心に前記基体が露出するように前記硬質被覆層に球曲面の摩耗痕を形成させるカロテストを行い、前記摩耗痕を観察した際、該摩耗痕の中心に存在する露出した基体の外周位置に観察される炭窒化チタン層に、カロテスト前に前記硬質被覆層内に内在するクラックのクラック幅がゼロまたは小さい下部組織と、該下部組織の外周位置に観察されて前記下部組織よりもカロテスト前に前記硬質被覆層内に内在するクラックのクラック幅が大きい上部組織とが存在することを特徴とする請求項記載の表面被覆部材。 The hard sphere contact portion of the surface covering member is locally worn so that the hard sphere rotates while rolling with the hard sphere in contact with the surface of the surface covering member, and the base is exposed at the center. The titanium carbonitride layer is observed at the outer peripheral position of the exposed substrate existing in the center of the wear mark when a calotest is performed to form a spherical curved wear mark on the hard coating layer and the wear mark is observed. In addition, a substructure having a crack width of zero or smaller in the hard coating layer before the calotest and an outer peripheral position of the substructure, which is observed in the outer peripheral position of the substructure, are present in the hard coating layer before the calotest. surface-coated member according to claim 1, wherein the upper tissue crack crack width is large to exist. 前記研磨痕の観察において、前記炭窒化チタン層の上部組織の径方向長さLの前記炭窒化チタン層全体の径方向長さL(ただし、L=L+L、ここでLは前記下部組織の径方向長さ)に対する比(L/L)が0.05〜0.15の割合で観察されることを特徴とする請求項記載の表面被覆部材。 In the observation of the polishing marks, the radial length L of the entire titanium carbonitride layer having the radial length L U of the upper structure of the titanium carbonitride layer (where L = L U + L L , where L L is The surface covering member according to claim 2, wherein a ratio (L U / L) to a radial direction length of the lower tissue is observed at a ratio of 0.05 to 0.15. 請求項1乃至3のいずれか記載の表面被覆部材からなる切削工具。 A cutting tool comprising the surface covering member according to any one of claims 1 to 3 .
JP2004022290A 2003-02-17 2004-01-29 Surface covering member and cutting tool Expired - Fee Related JP4284201B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004022290A JP4284201B2 (en) 2004-01-29 2004-01-29 Surface covering member and cutting tool
DE102004007653A DE102004007653A1 (en) 2003-02-17 2004-02-17 Surface coated part
US10/780,527 US7172807B2 (en) 2003-02-17 2004-02-17 Surface-coated member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004022290A JP4284201B2 (en) 2004-01-29 2004-01-29 Surface covering member and cutting tool

Publications (2)

Publication Number Publication Date
JP2005212047A JP2005212047A (en) 2005-08-11
JP4284201B2 true JP4284201B2 (en) 2009-06-24

Family

ID=34905680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004022290A Expired - Fee Related JP4284201B2 (en) 2003-02-17 2004-01-29 Surface covering member and cutting tool

Country Status (1)

Country Link
JP (1) JP4284201B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5158560B2 (en) * 2006-12-14 2013-03-06 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting
JP5659475B2 (en) * 2009-09-15 2015-01-28 大日本印刷株式会社 Mold for antireflection film production
JP5397690B2 (en) * 2009-12-11 2014-01-22 三菱マテリアル株式会社 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5585929B2 (en) * 2010-01-27 2014-09-10 三菱マテリアル株式会社 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
CN103459070B (en) 2011-03-31 2016-01-20 日立工具股份有限公司 Hard coating film parts and manufacture method thereof, and the blade possessing it changes formula throw
KR101675649B1 (en) * 2014-12-24 2016-11-11 한국야금 주식회사 Cutting tool

Also Published As

Publication number Publication date
JP2005212047A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
JP4805819B2 (en) Surface covering member and cutting tool
JP4854359B2 (en) Surface coated cutting tool
KR100983551B1 (en) Surface coated cutting tool
JP4739235B2 (en) Surface coated cutting tool
JP4832108B2 (en) Surface coated cutting tool
US7172807B2 (en) Surface-coated member
JP4711691B2 (en) Surface covering member and cutting tool
WO2006070538A1 (en) Surface coating cutter
WO2007122859A1 (en) Cutting tool, method for producing same and cutting method
KR20110003278A (en) Coated cutting tool insert
JP2006281361A (en) Surface coated member and surface coated cutting tool
JP4284201B2 (en) Surface covering member and cutting tool
JP4142955B2 (en) Surface coated cutting tool
JP2006205300A (en) Surface-coated member and cutting tool
JP4713137B2 (en) Surface covering member and cutting tool
JP4936742B2 (en) Surface coating tools and cutting tools
JP4360618B2 (en) Surface coated cutting tool
JP2005153098A (en) Surface coated cutting tool
JP4593952B2 (en) Surface coated cutting tool
JP4284144B2 (en) Surface coated cutting tool
JP4593937B2 (en) Surface covering member and cutting tool
JP4663248B2 (en) Surface coated cutting tool
JP4936741B2 (en) Surface coating tools and cutting tools
JP2012096303A (en) Surface coated cutting tool with superior chipping resistance
JP2006123079A (en) Surface coated member and surface coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Ref document number: 4284201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees