JP2005279409A - Treatment method of organometallic compound-containing waste water - Google Patents

Treatment method of organometallic compound-containing waste water Download PDF

Info

Publication number
JP2005279409A
JP2005279409A JP2004095664A JP2004095664A JP2005279409A JP 2005279409 A JP2005279409 A JP 2005279409A JP 2004095664 A JP2004095664 A JP 2004095664A JP 2004095664 A JP2004095664 A JP 2004095664A JP 2005279409 A JP2005279409 A JP 2005279409A
Authority
JP
Japan
Prior art keywords
inorganic metal
compound
organometallic compound
treated
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004095664A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yoshizaki
耕大 吉崎
Masahiko Shioyama
昌彦 塩山
Yasushi Terao
康 寺尾
Kanji Tokushima
幹治 徳島
Keiichi Kusakabe
啓一 日下部
Takashi Nishishiro
孝志 西代
Takahiro Suzuki
隆弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2004095664A priority Critical patent/JP2005279409A/en
Publication of JP2005279409A publication Critical patent/JP2005279409A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment methods which can surely and efficiently remove organometallic compounds contained in waste water, and can reduce running costs. <P>SOLUTION: In an oxidation process, both ultraviolet irradiation and ozone supply are applied to waste water 2 to be treated in a reaction tank 4, thereby generating hydroxy radicals, which oxidatively degrade the organometallic compounds to transform them into inorganic metallic compounds. In an inorganic metal removal process, the inorganic metallic compounds are removed by an inorganic metal removal device 5 using activated alumina adsorption. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、産業廃水,下水,上水,埋立浸出水,地下水,河川水、池水、湖沼水、不法投棄現場の地下水や浸出水等の廃水に含まれる有機金属化合物を除去するための処理方法に関する。   The present invention relates to a treatment method for removing organometallic compounds contained in wastewater such as industrial wastewater, sewage, clean water, landfill leachate, groundwater, river water, pond water, lake water, groundwater and leachate at illegal dumping sites. About.

従来、有機金属化合物を含有する廃水の処理において、有機金属化合物を除去する方法の一つに活性炭吸着処理がある(例えば、特許文献1参照)。本引用特許文献1には、ガス中の有機金属化合物を活性炭で吸着除去する方法が示されており、水中の有機金属化合物も同様に、吸着除去できることが知られている。この活性炭吸着処理では、対象とする被吸着物質の分子量の大きさや極性ごとに、使用する活性炭の種類を変えることによって、最適な吸着除去を行っている。例えば、廃水中のCOD(化学的酸素要求量)の原因物質であるフミン酸やフルボ酸等を除去する場合は、石炭系の活性炭を使用しており、水道水のカビ臭の原因物質であるジオスミンや2−メチルイソボルネオール等を除去する場合は、ヤシ殻系の活性炭を使用するのが一般的である。   Conventionally, in the treatment of wastewater containing an organometallic compound, one method for removing the organometallic compound is an activated carbon adsorption treatment (see, for example, Patent Document 1). This cited Patent Document 1 shows a method of adsorbing and removing an organometallic compound in a gas with activated carbon, and it is known that an organometallic compound in water can be similarly adsorbed and removed. In this activated carbon adsorption treatment, optimum adsorption removal is performed by changing the type of activated carbon used for each molecular weight and polarity of the target substance to be adsorbed. For example, when removing humic acid, fulvic acid, etc., which are the causative substances of COD (chemical oxygen demand) in wastewater, coal-based activated carbon is used, which is a causative substance of tap water musty. When removing diosmine, 2-methylisoborneol, etc., it is common to use coconut shell activated carbon.

廃水に含有される有機金属化合物を除去する処理方法は、現在のところ上記のように活性炭を使用する以外ないが、例えば、ジフェニルアルシン酸といった有機ヒ素化合物を吸着除去する場合等では、共存するフミン酸等の影響によって、活性炭による吸着除去が不十分になることがあった。さらに、廃水を活性炭吸着処理した後の処理水の水質を保証する場合は、活性炭を頻繁に交換する必要があり、ランニングコストが高いといった問題があった。   The treatment method for removing the organometallic compound contained in the wastewater is currently only using activated carbon as described above. For example, in the case of adsorbing and removing an organic arsenic compound such as diphenylarsinic acid, coexisting humic acid is used. In some cases, adsorption removal by activated carbon may be insufficient. Furthermore, when guaranteeing the quality of the treated water after the activated carbon adsorption treatment of the waste water, there is a problem that the activated carbon needs to be frequently replaced and the running cost is high.

また、有機金属化合物が自然分解するなどして無機金属化合物になった場合、活性炭吸着処理では、無機金属化合物の除去はできないといった問題がある。実際、地下水汚染で問題となっている有機ヒ素化合物(ジフェニルアルシン酸等)の場合、ジフェニルアルシン酸の一部が自然分解して無機ヒ素化合物になっていることが確認されており、これら有機ヒ素化合物と無機ヒ素化合物とを共に含有する廃水を効率良く処理することは困難であった。
特開2001−286857
In addition, when the organometallic compound spontaneously decomposes to become an inorganic metal compound, there is a problem that the inorganic metal compound cannot be removed by the activated carbon adsorption treatment. In fact, in the case of organic arsenic compounds (diphenylarsinic acid, etc.) that are a problem in groundwater contamination, it has been confirmed that a part of diphenylarsinic acid is naturally decomposed into inorganic arsenic compounds. It has been difficult to efficiently treat wastewater containing both inorganic arsenic compounds.
JP 2001-286857 A

本発明は、廃水に含有される有機金属化合物を確実且つ効率良く除去することが可能であり、さらに、ランニングコストを下げることができる処理方法を提供することを目的とする。   An object of this invention is to provide the processing method which can remove the organometallic compound contained in wastewater reliably and efficiently, and can also reduce a running cost.

上記目的を達成するために、本第1発明は、有機金属化合物を含有する廃水から有機金属化合物を除去する処理方法であって、
酸化処理工程において、上記廃水に含まれる有機金属化合物を無機金属化合物に変換し、その後、無機金属除去工程において、上記廃水から無機金属化合物を除去するものである。
In order to achieve the above object, the first invention is a treatment method for removing an organometallic compound from wastewater containing an organometallic compound,
In the oxidation treatment step, the organometallic compound contained in the wastewater is converted into an inorganic metal compound, and then, in the inorganic metal removal step, the inorganic metal compound is removed from the wastewater.

これによると、廃水に含有される有機金属化合物を確実且つ効率良く除去することが可能であり、さらに、従来の高コストである活性炭を使用しないため、ランニングコストを下げることができる。また、有機金属化合物と無機金属化合物とを含む被処理水であっても、有機金属化合物と無機金属化合物との両方を除去することができる。   According to this, it is possible to remove the organometallic compound contained in the waste water reliably and efficiently, and furthermore, since the conventional high-cost activated carbon is not used, the running cost can be reduced. Moreover, even if it is the to-be-processed water containing an organometallic compound and an inorganic metal compound, both an organometallic compound and an inorganic metal compound can be removed.

また、本第2発明は、酸化処理工程において、紫外線の照射とオゾンによる酸化と液体状の酸化剤による酸化とフェントン反応による酸化とのいずれか単独又はいずれか複数を併用することにより、有機金属化合物を無機金属化合物に変換するものである。   Further, in the second invention, in the oxidation treatment step, any one or a combination of ultraviolet irradiation, oxidation by ozone, oxidation by a liquid oxidant, and oxidation by Fenton reaction is used in combination. A compound is converted into an inorganic metal compound.

これによると、紫外線の照射とオゾンによる酸化と液体状の酸化剤による酸化とフェントン反応による酸化とのいずれか複数を併用した場合、強酸化物質であるヒドロキシラジカルが発生するため、酸化分解反応の効率が向上して有機金属化合物から無機金属化合物への変換が促進される。尚、フェントン反応による酸化のみでも上記と同様にヒドロキシラジカルが発生するため、酸化分解反応の効率が向上する。   According to this, when any one of ultraviolet irradiation, oxidation by ozone, oxidation by liquid oxidant, and oxidation by Fenton reaction is used in combination, hydroxy radicals, which are strong oxidants, are generated. Efficiency improves and the conversion from an organometallic compound to an inorganic metal compound is promoted. In addition, since only the oxidation by the Fenton reaction generates hydroxy radicals as described above, the efficiency of the oxidative decomposition reaction is improved.

また、本第3発明は、液体状の酸化剤として、過酸化水素、次亜塩素酸塩、亜塩素酸塩、塩素酸塩、過硫酸塩、過炭酸塩、過マンガン酸塩のいずれかを用いるものである。   In addition, the third invention uses any one of hydrogen peroxide, hypochlorite, chlorite, chlorate, persulfate, percarbonate, and permanganate as a liquid oxidant. It is what is used.

本発明によると、廃水に含まれる有機金属化合物を確実且つ効率良く除去することが可能であり、さらに、高コストである活性炭を使用しないため、ランニングコストを下げることができる。   According to the present invention, it is possible to reliably and efficiently remove the organometallic compound contained in the wastewater, and furthermore, since the high-cost activated carbon is not used, the running cost can be reduced.

以下、本発明における第1の実施の形態を図1に基づいて説明する。
1は、被処理廃水2(産業廃水,下水,上水,埋立浸出水,地下水,河川水、池水、湖沼水、不法投棄現場の地下水や浸出水等)に含まれる有機金属化合物を除去する除去設備である。この除去設備1には、酸化処理工程を行う反応槽4と、無機金属除去工程を行う無機金属除去装置5と、処理水貯槽6とが配置されている。
Hereinafter, a first embodiment of the present invention will be described with reference to FIG.
1. Removal to remove organometallic compounds contained in treated wastewater 2 (industrial wastewater, sewage, clean water, landfill leachate, groundwater, river water, pond water, lake water, groundwater and leachate at illegal dumping sites, etc.) Equipment. The removal facility 1 includes a reaction tank 4 that performs an oxidation treatment process, an inorganic metal removal device 5 that performs an inorganic metal removal process, and a treated water storage tank 6.

上記反応槽4には、有機金属化合物を含む被処理廃水2を受け入れる受入流路8が接続されている。また、反応槽4には、この槽4内の被処理廃水2に紫外線を照射する紫外線照射装置9(ランプ等)が設けられている。また、反応槽4の底部から槽4内の被処理廃水2にオゾンを吹き込むオゾン供給装置10と、槽4内の被処理廃水2のpHを調整するためのpH調整剤を注入するpH調整装置18とが設けられている。   The reaction tank 4 is connected to a receiving flow path 8 for receiving the wastewater 2 to be treated containing an organometallic compound. Further, the reaction tank 4 is provided with an ultraviolet irradiation device 9 (lamp or the like) for irradiating the treated waste water 2 in the tank 4 with ultraviolet rays. Moreover, the ozone supply apparatus 10 which blows ozone in the to-be-processed waste water 2 in the tank 4 from the bottom part of the reaction tank 4, and the pH adjuster which inject | pours the pH adjuster for adjusting the pH of the to-be-processed waste water 2 in the tank 4 18 are provided.

上記無機金属除去装置5は、活性アルミナ吸着処理塔からなり、反応槽4の後段に配置され、流路11を介して反応槽4と接続されている。
上記処理水貯槽6は、無機金属除去装置5の後段に配置され、流路12を介して無機金属除去装置5と接続されている。処理水貯槽6には、処理水20を外部へ排出する排出流路13と、処理水20を上記槽6内から受入流路8へ返送する返送流路14とが接続されている。また、上記処理水貯槽6内の処理水20中に残留する有機金属化合物の濃度を測定する濃度測定手段15と、返送流路14を流れる処理水20の流量を調節する流量調節弁16とが設けられている。尚、上記濃度測定手段15としては、紫外線吸光度法、連続式TOC測定機等が用いられるが、これ以外のものでもよい。
The inorganic metal removing device 5 is composed of an activated alumina adsorption processing tower, is disposed in the rear stage of the reaction tank 4, and is connected to the reaction tank 4 through a flow path 11.
The treated water storage tank 6 is disposed in the subsequent stage of the inorganic metal removing device 5 and is connected to the inorganic metal removing device 5 through the flow path 12. Connected to the treated water storage tank 6 are a discharge flow path 13 for discharging the treated water 20 to the outside and a return flow path 14 for returning the treated water 20 from the tank 6 to the receiving flow path 8. Further, a concentration measuring means 15 for measuring the concentration of the organometallic compound remaining in the treated water 20 in the treated water storage tank 6 and a flow rate adjusting valve 16 for adjusting the flow rate of the treated water 20 flowing through the return flow path 14 are provided. Is provided. As the concentration measuring means 15, an ultraviolet absorbance method, a continuous TOC measuring machine or the like is used, but other means may be used.

以下、上記構成における作用を説明する。
有機金属化合物を含んだ被処理廃水2を受入流路8から反応槽4内に受け入れ、酸化処理工程において、紫外線照射装置9で反応槽4内の被処理廃水2に紫外線を照射すると共に、オゾン供給装置10で反応槽4内の被処理廃水2にオゾンを吹き込む。これにより、強酸化物質であるヒドロキシラジカルが発生し、有機金属化合物が酸化分解されて無機金属化合物に効率良く変換される。
Hereinafter, the operation of the above configuration will be described.
The treated waste water 2 containing the organometallic compound is received from the receiving flow path 8 into the reaction tank 4, and in the oxidation process, the treated waste water 2 in the reaction tank 4 is irradiated with ultraviolet rays by the ultraviolet irradiation device 9, and ozone Ozone is blown into the to-be-processed wastewater 2 in the reaction tank 4 with the supply apparatus 10. As a result, hydroxy radicals, which are strong oxidizing substances, are generated, and the organic metal compound is oxidatively decomposed and efficiently converted into an inorganic metal compound.

上記のように反応槽4内で酸化処理された被処理廃水2は、その後、反応槽4内から無機金属除去装置5へ供給され、無機金属除去工程において、被処理廃水2中の無機金属化合物が活性アルミナ吸着処理等により吸着され除去される。このように無機金属除去装置5で吸着処理された被処理廃水2は、処理水20として無機金属除去装置5から排出され、処理水貯槽6に貯留される。   The treated waste water 2 oxidized in the reaction tank 4 as described above is then supplied from the reaction tank 4 to the inorganic metal removing device 5 and the inorganic metal compound in the treated waste water 2 in the inorganic metal removing step. Is adsorbed and removed by activated alumina adsorption treatment or the like. Thus, the wastewater 2 to be treated that has been adsorbed by the inorganic metal removing device 5 is discharged from the inorganic metal removing device 5 as treated water 20 and stored in the treated water storage tank 6.

これにより、被処理廃水2に含まれる有機金属化合物を確実且つ効率良く除去することが可能であり、さらに、従来の高コストである活性炭を使用しないため、ランニングコストを下げることができる。また、有機金属化合物と無機金属化合物とを同時に含む被処理廃水2であっても、有機金属化合物と無機金属化合物との両方を除去することができる。   As a result, the organometallic compound contained in the wastewater 2 to be treated can be removed reliably and efficiently. Furthermore, since the conventional high-cost activated carbon is not used, the running cost can be reduced. Moreover, even if it is the to-be-processed waste water 2 containing an organometallic compound and an inorganic metal compound simultaneously, both an organometallic compound and an inorganic metal compound can be removed.

また、上記酸化処理工程において、pH調整装置18を用いてpH調整剤を注入し、反応槽4内の被処理廃水2のpHを最適な値に調整することによって、効果的にヒドロキシラジカルを発生させることができ、有機金属化合物から無機金属化合物への変換がより一層促進される。尚、この際、上記pHの最適な値は、4〜10であり、望ましくは6.5〜7.5の範囲内である。   Further, in the above oxidation treatment step, a hydroxyl adjusting agent 18 is used to inject a pH adjusting agent, and the pH of the wastewater 2 to be treated in the reaction tank 4 is adjusted to an optimal value, thereby effectively generating hydroxy radicals. The conversion from the organometallic compound to the inorganic metal compound is further promoted. In this case, the optimum value of the pH is 4 to 10, and preferably in the range of 6.5 to 7.5.

また、受入流路8から反応槽4に供給される被処理廃水2に含まれる有機金属化合物が数百〜数千ppmの高濃度であると、一過限の酸化処理のみでは、反応槽4内の被処理廃水2中の有機金属化合物を無機金属化合物に変換することが不十分になる場合があり、有機金属化合物が十分に除去されずに残留する可能性がある。この対策として、無機金属除去装置5の後段に処理水貯槽6を配置し、濃度測定手段15で処理水貯槽6内の処理水20中に残留する有機金属化合物の濃度を測定し、測定された濃度が規定値以上に上昇した場合、処理水貯槽6内の処理水20を返送流路14から受入流路8へ返送する。   Further, when the organometallic compound contained in the wastewater 2 to be treated supplied from the receiving flow path 8 to the reaction tank 4 has a high concentration of several hundred to several thousand ppm, the reaction tank 4 can be obtained only by a temporary oxidation treatment. In some cases, it becomes insufficient to convert the organometallic compound in the wastewater 2 to be treated into an inorganic metal compound, and the organometallic compound may remain without being sufficiently removed. As a countermeasure, the treated water storage tank 6 is arranged at the subsequent stage of the inorganic metal removing device 5, and the concentration of the organometallic compound remaining in the treated water 20 in the treated water storage tank 6 is measured by the concentration measuring means 15. When the concentration rises above the specified value, the treated water 20 in the treated water storage tank 6 is returned from the return channel 14 to the receiving channel 8.

これにより、再度、上記処理水20が反応槽4に供給され、酸化処理工程において、処理水20中に残留する有機金属化合物が無機金属化合物に変換され、その後、無機金属化合物が無機金属除去装置5で除去されるため、被処理廃水2に含まれる有機金属化合物が高濃度であっても、有機金属化合物をより一層確実に除去することが可能である。   Thereby, the said treated water 20 is again supplied to the reaction tank 4, and in the oxidation treatment step, the organometallic compound remaining in the treated water 20 is converted into an inorganic metal compound, and then the inorganic metal compound is converted into an inorganic metal removing device. Therefore, even if the organometallic compound contained in the wastewater 2 to be treated is at a high concentration, the organometallic compound can be more reliably removed.

尚、この際、処理水貯槽6から返送流路14を通って受入流路8へ返送される処理水20の流量は、濃度測定手段15で測定された有機金属化合物の濃度に応じて、流量調節弁16により、受入流路8から反応槽4へ受け入れられる被処理廃水2の流入量の約10倍以下の範囲内で調節される。また、処理水20中に残留する有機金属化合物の濃度が規定値よりも低下した場合、処理水20の受入流路8への返送を停止する。   At this time, the flow rate of the treated water 20 returned from the treated water storage tank 6 through the return flow channel 14 to the receiving flow channel 8 depends on the concentration of the organometallic compound measured by the concentration measuring means 15. The adjustment valve 16 adjusts the flow rate within a range of about 10 times or less the inflow amount of the wastewater 2 to be treated that is received from the receiving flow path 8 into the reaction tank 4. Moreover, when the density | concentration of the organometallic compound which remains in the treated water 20 falls below a regulation value, the return to the receiving flow path 8 of the treated water 20 is stopped.

また、例えば、地下水汚染で問題となっている有機ヒ素化合物(ジフェニルアルシン酸等)を有機金属化合物の一例とした場合、従来のような活性炭吸着処理では、フミン酸等の共存物質の影響によって、上記有機ヒ素化合物の除去が不十分となるが、これに対して、上記実施の形態では、酸化処理工程と無機金属除去工程とを行うことによって、有機ヒ素化合物が無機ヒ素化合物に変換されて確実に除去される。また、上記のように被処理廃水2が地下水の場合、有機ヒ素化合物と共に無機ヒ素化合物も同時に混在しているため、有機ヒ素化合物と無機ヒ素化合物との両方を一連の処理で除去することができる。   In addition, for example, when an organic arsenic compound (diphenylarsinic acid or the like) that is a problem in groundwater contamination is taken as an example of an organometallic compound, in the conventional activated carbon adsorption treatment, due to the influence of coexisting substances such as humic acid, In contrast, the removal of the organic arsenic compound is insufficient, but in the above embodiment, the organic arsenic compound is reliably converted into the inorganic arsenic compound by performing the oxidation treatment step and the inorganic metal removal step. Removed. In addition, when the wastewater 2 to be treated is groundwater as described above, both the organic arsenic compound and the inorganic arsenic compound can be removed by a series of treatments because the organic arsenic compound and the inorganic arsenic compound are simultaneously mixed. .

上記実施の形態では、有機および無機の金属化合物の一例として、ヒ素化合物を挙げたが、水銀化合物,鉛化合物,カドミウム化合物,セレン化合物等でもよい。
上記実施の形態では、無機金属除去装置5で活性アルミナ吸着処理を行って、無機金属化合物を除去しているが、キレート樹脂処理,イオン交換樹脂処理,凝集沈殿処理,凝集膜分離処理,共沈処理,ゼオライト処理等のいずれか単独又は上記各処理を2つ以上併用することによって、無機金属化合物を除去してもよい。例えばジフェニルアルシン酸を含有する被処理廃水2を処理する場合、酸化処理工程後、塩化第二鉄(FeCl)により凝集沈殿処理を行い、さらに、活性アルミナ吸着処理を行うことで、被処理廃水2中のヒ素を、確実且つ低コストで、0.01mg/l以下にすることが可能となる。
In the above embodiment, an arsenic compound is given as an example of an organic or inorganic metal compound, but a mercury compound, a lead compound, a cadmium compound, a selenium compound, or the like may be used.
In the above embodiment, the activated alumina adsorption treatment is performed by the inorganic metal removing device 5 to remove the inorganic metal compound, but the chelate resin treatment, the ion exchange resin treatment, the coagulation sedimentation treatment, the coagulation membrane separation treatment, the coprecipitation. The inorganic metal compound may be removed by any one of the treatment, the zeolite treatment, etc., or by using two or more of the above treatments in combination. For example, when treating the wastewater 2 to be treated containing diphenylarsinic acid, the wastewater 2 to be treated is subjected to a coagulation precipitation treatment with ferric chloride (FeCl 3 ) after the oxidation treatment step and further to an activated alumina adsorption treatment. The arsenic contained therein can be reduced to 0.01 mg / l or less reliably and at low cost.

上記第1の実施の形態では、酸化処理工程において、紫外線とオゾンとによってヒドロキシラジカルを発生させているが、第2の実施の形態として、図2に示すように、紫外線と過酸化水素(液体状の酸化剤の一例)とによってヒドロキシラジカルを発生させてもよい。この場合、オゾン供給装置10の代わりに、反応槽4内の被処理廃水2に過酸化水素を注入する過酸化水素供給装置25が設けられている。   In the first embodiment, in the oxidation process, hydroxy radicals are generated by ultraviolet rays and ozone. As a second embodiment, as shown in FIG. 2, ultraviolet rays and hydrogen peroxide (liquid Hydroxyl radicals may be generated according to an example of an oxidant in the form of a liquid. In this case, instead of the ozone supply device 10, a hydrogen peroxide supply device 25 that injects hydrogen peroxide into the wastewater 2 to be treated in the reaction tank 4 is provided.

また、第3の実施の形態として、図3に示すように、過酸化水素と塩化第一鉄(FeCl)とによってフェントン反応を引き起すことで、ヒドロキシラジカルを発生させてもよい。この場合、紫外線照射装置9を設けず、過酸化水素供給装置25と、反応槽4内の被処理廃水2に塩化第一鉄を注入する塩化第一鉄供給装置26とが設けられている。尚、反応槽4には、上記過酸化水素と塩化第一鉄とを十分に攪拌混合するための攪拌機27が設けられている。また、反応槽4と無機金属除去装置5との間に凝集沈殿槽28を設置し、反応槽4から排出される被処理廃水2を、凝集沈殿処理した後、無機金属除去装置5へ供給してもよい。これにより、被処理廃水2中のヒ素を大幅に除去することができる。尚、凝集沈殿槽28を設置しないものであってもよい。 As a third embodiment, as shown in FIG. 3, hydroxy radicals may be generated by causing a Fenton reaction with hydrogen peroxide and ferrous chloride (FeCl 2 ). In this case, the ultraviolet irradiation device 9 is not provided, but a hydrogen peroxide supply device 25 and a ferrous chloride supply device 26 for injecting ferrous chloride into the wastewater 2 to be treated in the reaction tank 4 are provided. The reaction tank 4 is provided with a stirrer 27 for sufficiently stirring and mixing the hydrogen peroxide and ferrous chloride. Further, a coagulation sedimentation tank 28 is installed between the reaction tank 4 and the inorganic metal removing device 5, and the wastewater 2 to be treated discharged from the reaction tank 4 is coagulated and precipitated, and then supplied to the inorganic metal removing device 5. May be. Thereby, the arsenic in the to-be-processed wastewater 2 can be removed significantly. In addition, you may not install the coagulation sedimentation tank 28. FIG.

さらに、第4の実施の形態として、図4に示すように、紫外線とオゾンと過酸化水素とによってヒドロキシラジカルを発生させてもよい。この場合、紫外線照射装置9とオゾン供給装置10と過酸化水素供給装置25とを設けている。   Furthermore, as a fourth embodiment, as shown in FIG. 4, hydroxy radicals may be generated by ultraviolet rays, ozone, and hydrogen peroxide. In this case, an ultraviolet irradiation device 9, an ozone supply device 10, and a hydrogen peroxide supply device 25 are provided.

上記第2および第4の実施の形態では、図2,図4に示すように、液体状の酸化剤の一例として過酸化水素を用いたが、次亜塩素酸塩、亜塩素酸塩、塩素酸塩、過硫酸塩、過炭酸塩、過マンガン酸塩のいずれかを用いてもよい。   In the second and fourth embodiments, as shown in FIGS. 2 and 4, hydrogen peroxide is used as an example of a liquid oxidant. However, hypochlorite, chlorite, chlorine Any of acid salts, persulfates, percarbonates, and permanganates may be used.

上記第1,第2,第4の実施の形態では、図1,図2,図4に示すように、酸化処理工程において、紫外線の照射とオゾンによる酸化と過酸化水素による酸化とのうち、いずれか複数を併用しているが、それぞれ単独で用いてもよい。また、第3の実施の形態では、図3に示すように、フェントン反応による酸化を単独で利用しているが、紫外線の照射とオゾンによる酸化と過酸化水素による酸化とのいずれかとフェントン反応とを併用してもよい。   In the first, second and fourth embodiments, as shown in FIG. 1, FIG. 2 and FIG. 4, in the oxidation treatment step, among ultraviolet irradiation, oxidation by ozone and oxidation by hydrogen peroxide, Any one of them is used in combination, but each may be used alone. Further, in the third embodiment, as shown in FIG. 3, the oxidation by the Fenton reaction is used alone, but either the ultraviolet irradiation, the oxidation by ozone or the oxidation by hydrogen peroxide, the Fenton reaction, May be used in combination.

上記各実施の形態では、pH調整装置18によりpH調整剤を反応槽4内に注入して、反応槽4内で被処理廃水2のpH調整を行っているが、反応槽4の前段にpH調整槽を別途配置し、このpH調整槽において被処理廃水2のpHを調整した後、pH調整槽内の被処理廃水2を反応槽4へ供給し、酸化処理工程を行ってもよい。   In each of the above embodiments, a pH adjuster 18 is injected into the reaction tank 4 by the pH adjuster 18 to adjust the pH of the wastewater 2 to be treated in the reaction tank 4. An adjustment tank may be separately provided, and after adjusting the pH of the wastewater 2 to be treated in this pH adjustment tank, the wastewater 2 to be treated in the pH adjustment tank may be supplied to the reaction tank 4 to perform the oxidation treatment step.

本発明の第1の実施の形態における有機金属化合物の除去設備の図である。It is a figure of the removal equipment of the organometallic compound in a 1st embodiment of the present invention. 本発明の第2の実施の形態における有機金属化合物の除去設備の図である。It is a figure of the removal facility of the organometallic compound in the 2nd Embodiment of this invention. 本発明の第3の実施の形態における有機金属化合物の除去設備の図である。It is a figure of the removal facility of the organometallic compound in the 3rd Embodiment of this invention. 本発明の第4の実施の形態における有機金属化合物の除去設備の図である。It is a figure of the removal equipment of the organometallic compound in the 4th Embodiment of this invention.

符号の説明Explanation of symbols

2 被処理廃水 2 Wastewater to be treated

Claims (3)

有機金属化合物を含有する廃水から有機金属化合物を除去する処理方法であって、
酸化処理工程において、上記廃水に含まれる有機金属化合物を無機金属化合物に変換し、その後、無機金属除去工程において、上記廃水から無機金属化合物を除去することを特徴とする有機金属化合物含有廃水の処理方法。
A treatment method for removing an organometallic compound from wastewater containing an organometallic compound,
In the oxidation treatment step, the organic metal compound contained in the waste water is converted into an inorganic metal compound, and then the inorganic metal compound is removed from the waste water in the inorganic metal removal step. Method.
酸化処理工程において、紫外線の照射とオゾンによる酸化と液体状の酸化剤による酸化とフェントン反応による酸化とのいずれか単独又はいずれか複数を併用することにより、有機金属化合物を無機金属化合物に変換することを特徴とする請求項1記載の有機金属化合物含有廃水の処理方法。 In the oxidation treatment step, an organic metal compound is converted into an inorganic metal compound by using one or more of ultraviolet irradiation, ozone oxidation, liquid oxidant oxidation, and Fenton reaction oxidation. The method for treating wastewater containing an organometallic compound according to claim 1. 液体状の酸化剤として、過酸化水素、次亜塩素酸塩、亜塩素酸塩、塩素酸塩、過硫酸塩、過炭酸塩、過マンガン酸塩のいずれかを用いることを特徴とする請求項2記載の有機金属化合物含有廃水の処理方法。 The liquid oxidant is any one of hydrogen peroxide, hypochlorite, chlorite, chlorate, persulfate, percarbonate, and permanganate. 2. A method for treating wastewater containing organometallic compounds according to 2.
JP2004095664A 2004-03-29 2004-03-29 Treatment method of organometallic compound-containing waste water Pending JP2005279409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004095664A JP2005279409A (en) 2004-03-29 2004-03-29 Treatment method of organometallic compound-containing waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004095664A JP2005279409A (en) 2004-03-29 2004-03-29 Treatment method of organometallic compound-containing waste water

Publications (1)

Publication Number Publication Date
JP2005279409A true JP2005279409A (en) 2005-10-13

Family

ID=35178367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004095664A Pending JP2005279409A (en) 2004-03-29 2004-03-29 Treatment method of organometallic compound-containing waste water

Country Status (1)

Country Link
JP (1) JP2005279409A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005334761A (en) * 2004-05-26 2005-12-08 Hitachi Zosen Corp Method for treating water containing organic arsenic compound
JP2006298884A (en) * 2005-04-25 2006-11-02 Osaka Organic Chem Ind Ltd Manufacturing method of tertiary alcohol
JP2007196176A (en) * 2006-01-30 2007-08-09 Kubota Corp Treatment method and arrangement of organic arsenic-containing waste water
WO2009066636A1 (en) * 2007-11-19 2009-05-28 Kurita Water Industries Ltd. Method and apparatus for treating organic-containing water
CN104529078A (en) * 2014-12-30 2015-04-22 浙江大学 Refuse landfill leachate treatment method
CN105502776A (en) * 2016-01-21 2016-04-20 中华人民共和国济南出入境检验检疫局 Method for removing antibiotics in water by using UV/H2O2 combination
WO2016076335A1 (en) * 2014-11-10 2016-05-19 株式会社エヴァテック研究所 Method and device for removing arsenic
US10919790B2 (en) 2013-06-28 2021-02-16 Mitsubishi Power Environmental Solutions, Ltd. Method for removing selenium and apparatus for removing selenium
CN113307350A (en) * 2021-04-21 2021-08-27 南昌航空大学 Advanced oxidation process for rapidly precipitating heavy metals and efficiently removing COD (chemical oxygen demand) in electroplating wastewater
WO2021230280A1 (en) * 2020-05-15 2021-11-18 株式会社トクヤマ Method for purifying organic compound and method for producing organic compound
CN114180701A (en) * 2021-11-12 2022-03-15 华中科技大学 Method for degrading organic arsenic pollution by ferrous iron activated carbamide peroxide
CN114751551A (en) * 2022-04-18 2022-07-15 福建省闽发铝业股份有限公司 Treatment method of nickel-containing wastewater in aluminum alloy profile production

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005334761A (en) * 2004-05-26 2005-12-08 Hitachi Zosen Corp Method for treating water containing organic arsenic compound
JP2006298884A (en) * 2005-04-25 2006-11-02 Osaka Organic Chem Ind Ltd Manufacturing method of tertiary alcohol
JP4648066B2 (en) * 2005-04-25 2011-03-09 大阪有機化学工業株式会社 Method for producing tertiary alcohol
JP2007196176A (en) * 2006-01-30 2007-08-09 Kubota Corp Treatment method and arrangement of organic arsenic-containing waste water
WO2009066636A1 (en) * 2007-11-19 2009-05-28 Kurita Water Industries Ltd. Method and apparatus for treating organic-containing water
US10919790B2 (en) 2013-06-28 2021-02-16 Mitsubishi Power Environmental Solutions, Ltd. Method for removing selenium and apparatus for removing selenium
WO2016076335A1 (en) * 2014-11-10 2016-05-19 株式会社エヴァテック研究所 Method and device for removing arsenic
CN104529078A (en) * 2014-12-30 2015-04-22 浙江大学 Refuse landfill leachate treatment method
CN105502776A (en) * 2016-01-21 2016-04-20 中华人民共和国济南出入境检验检疫局 Method for removing antibiotics in water by using UV/H2O2 combination
WO2021230280A1 (en) * 2020-05-15 2021-11-18 株式会社トクヤマ Method for purifying organic compound and method for producing organic compound
JP2022037023A (en) * 2020-05-15 2022-03-08 株式会社トクヤマ Method for reducing amount of organic lead compound
JP7043687B1 (en) * 2020-05-15 2022-03-29 株式会社トクヤマ Method for Purifying Organic Compounds and Method for Producing Organic Compounds
JP7052136B2 (en) 2020-05-15 2022-04-11 株式会社トクヤマ How to reduce the amount of organolead compounds
TWI785609B (en) * 2020-05-15 2022-12-01 日商德山股份有限公司 Method for refining organic compound and method for producing organic compound
CN113307350A (en) * 2021-04-21 2021-08-27 南昌航空大学 Advanced oxidation process for rapidly precipitating heavy metals and efficiently removing COD (chemical oxygen demand) in electroplating wastewater
CN113307350B (en) * 2021-04-21 2022-06-10 南昌航空大学 Advanced oxidation process for rapidly precipitating heavy metals and efficiently removing COD (chemical oxygen demand) in electroplating wastewater
CN114180701A (en) * 2021-11-12 2022-03-15 华中科技大学 Method for degrading organic arsenic pollution by ferrous iron activated carbamide peroxide
CN114751551A (en) * 2022-04-18 2022-07-15 福建省闽发铝业股份有限公司 Treatment method of nickel-containing wastewater in aluminum alloy profile production

Similar Documents

Publication Publication Date Title
Deng et al. Treatment of landfill leachate by the Fenton process
Huang et al. UV/chlorine oxidation of the phosphonate antiscalant 1-Hydroxyethane-1, 1-diphosphonic acid (HEDP) used for reverse osmosis processes: Organic phosphorus removal and scale inhibition properties changes
JP3440313B2 (en) Method and apparatus for treating contaminated water
JP2005279409A (en) Treatment method of organometallic compound-containing waste water
JP4673709B2 (en) Water treatment system
JP2825081B2 (en) Ultraviolet ray decomposition treatment method and apparatus for wastewater containing organic matter
JP2001205277A (en) Method and apparatus for removing hardly decomposable organic compound in water
JP2007196175A (en) Treatment method and arrangement of waste water
JP2007216225A (en) Coal gasification wastewater treatment method
JP2006341229A (en) Advanced treating method of cyanide compound-containing drain
JP2007083171A (en) Method and apparatus for treating water
JP5259311B2 (en) Water treatment method and water treatment system used therefor
JP4522302B2 (en) Detoxification method of organic arsenic
JP3766298B2 (en) Wastewater treatment method and apparatus
JP2000176468A (en) Sewage treatment and device therefor
JP3803590B2 (en) Hydrogen peroxide residual concentration controller
JP2003080274A (en) Treatment method and equipment for sewage
JP2008055366A (en) Wastewater treatment method
JP2652493B2 (en) COD removal method for leachate from landfill
JP2008194558A (en) Water treatment system and method
JP6725712B1 (en) Water treatment method
Aziz et al. Trend of municipal landfill leachate treatment via a combination of ozone with various physic-chemical techniques
JP2003062583A (en) Treating method for sewage containing decomposition resistant organic material and bromine, and equipment therefor
KR100663629B1 (en) Composite aop apparatus for continuous and batch purification
JP3859866B2 (en) Water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060927

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080627

A131 Notification of reasons for refusal

Effective date: 20090825

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100105

Free format text: JAPANESE INTERMEDIATE CODE: A02