JP2005270706A - Manufacturing method for equipment for biochemical use and equipment for biochemical use - Google Patents

Manufacturing method for equipment for biochemical use and equipment for biochemical use Download PDF

Info

Publication number
JP2005270706A
JP2005270706A JP2004084290A JP2004084290A JP2005270706A JP 2005270706 A JP2005270706 A JP 2005270706A JP 2004084290 A JP2004084290 A JP 2004084290A JP 2004084290 A JP2004084290 A JP 2004084290A JP 2005270706 A JP2005270706 A JP 2005270706A
Authority
JP
Japan
Prior art keywords
biochemical instrument
solution
film
biochemical
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004084290A
Other languages
Japanese (ja)
Inventor
Hayao Tanaka
速雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2004084290A priority Critical patent/JP2005270706A/en
Publication of JP2005270706A publication Critical patent/JP2005270706A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface reforming method by which adsorbing amount of an organism-originated material onto a surface of equipment for biochemical use is reduced and to provide the equipment for biochemical use manufactured by the method. <P>SOLUTION: A manufacturing method for the equipment for biochemical use comprises an immersing process of immersing the surface of the equipment for biochemical use in a solution dissolving a water-insoluble resin having a hydrophilic group and a hydrophobic group and a film-forming process of forming a film by removing the solution from the surface. In this manufacturing method for the equipment for biochemical use, the film after the film-forming process has 5 to 500nm thickness, centrifugal force is utilized in the film-forming process and further suction force is utilized in the film-forming process. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、生化学用器具の製造方法および生化学用器具に関する。   The present invention relates to a method for producing a biochemical instrument and a biochemical instrument.

プラスチックまたはガラス製品の表面は蛋白質等の生体由来物質が非特異的に吸着するという特性を有しているが、植物組織培養や動物細胞培養等の培養技術や免疫生化学的手法を駆使する生命科学分野の試験用器具および臨床検査における採血容器、検体保存容器、更に生体由来の試薬類を保存する容器にそれらの材料からなる成型品を使用した場合、非特異的な吸着が種々の問題を引き起こす。   The surface of plastic or glass products has the characteristic that non-specifically adsorbed biological substances such as proteins, but life that makes full use of culture techniques such as plant tissue culture and animal cell culture and immunobiochemical techniques Non-specific adsorption may cause various problems when molded products made of these materials are used in blood test containers for specimens used in scientific fields, specimen storage containers, and containers for storing biological reagents. cause.

例えば、生命化学分野の試験容器においては希釈又は保存工程で容器に吸着すると、濃度が変化してしまう為分析結果に大きな影響を与え、採血容器、検体保存容器においては
血液等の検体中のタンパク質が容器に吸着されると、タンパク質量の検査値が実際より低いか、あるいは全く検出されなく、診断を誤る可能性がある。
For example, in test vessels in the biochemical field, if the sample is adsorbed in the dilution or storage process, the concentration changes, which greatly affects the analysis results. In blood collection containers and sample storage containers, proteins in samples such as blood Is adsorbed in the container, the test value of the protein amount is lower than the actual value or not detected at all, and there is a possibility that the diagnosis is wrong.

このような課題を解決する手段として、一般的にはウシ血清アルブミンの様な吸着しやすい蛋白質や界面活性剤を共雑物質として添加する方法が取られている。   As a means for solving such a problem, generally, a method of adding a protein or a surfactant, such as bovine serum albumin, which is easily adsorbed as a contaminant.

しかし、それらの方法では吸着防止効果は殆ど得られないどころか、添加した物質自体が分析・評価結果に影響を与えてしまう可能性がある。
また、ポリスチレン製部材の表面をオゾンガスの流通により改質する方法が開示されている(例えば、特許文献1参照)。しかし、ポリスチレン表面に導入した極性基は気相との接触により経時的に樹脂層の内部に潜り込むことが知られており、処理の効果が経時的に低下してゆくという問題点を有していた。
However, in these methods, the effect of preventing adsorption is hardly obtained, and the added substance itself may affect the analysis / evaluation results.
Moreover, a method of modifying the surface of a polystyrene member by circulation of ozone gas is disclosed (for example, see Patent Document 1). However, it is known that polar groups introduced on the polystyrene surface will sink into the resin layer over time due to contact with the gas phase, and the treatment effect will decrease over time. It was.

容器表面にポリエチレンオキシド等の親水性材料をグラフトする事により、ハイドロゲル層を構築し生体由来物質の吸着を低減させる方法も知られているが、親水性材料をグラフトする方法においてはグラフト鎖長を均一に制御する事が難しく、更にグラフト鎖の導入密度を上げる事が困難である事から、改質のばらつきが大きく、充分な改質効果を得る事が難しいという問題点を有していた。
特開平10−101820号公報
It is also known to build a hydrogel layer by grafting a hydrophilic material such as polyethylene oxide on the surface of the container to reduce the adsorption of biological substances, but in the method of grafting a hydrophilic material, the graft chain length It is difficult to control the uniformity of the polymer, and further, it is difficult to increase the density of graft chain introduction. Therefore, there is a large variation in the modification, and it is difficult to obtain a sufficient modification effect. .
JP-A-10-101820

本発明の目的は、生化学用器具の表面に対する生体由来物質の吸着を低減させる表面の改質方法およびその方法によって製造された生化学用器具を提供することにある。   An object of the present invention is to provide a surface modification method for reducing adsorption of a biological substance to the surface of a biochemical instrument and a biochemical instrument manufactured by the method.

このような目的は、下記(1)〜(11)に記載の本発明により達成される。   Such an object is achieved by the present invention described in the following (1) to (11).

(1)生化学用器具の表面を、親水性基と疎水性基を有する水不溶性の樹脂を溶解した溶液に浸漬させる浸漬工程と、前記溶液を前記表面から除去して皮膜を形成する皮膜形成工程とを有する生化学用器具の製造方法にあって、前記皮膜形成工程後の前記皮膜が、5〜500nmであることを特徴とする生化学用器具の製造方法。   (1) A dipping process in which the surface of a biochemical instrument is immersed in a solution in which a water-insoluble resin having a hydrophilic group and a hydrophobic group is dissolved, and a film is formed by removing the solution from the surface to form a film. A method for producing a biochemical instrument comprising: a biochemical instrument having a step, wherein the film after the film forming step is 5 to 500 nm.

(2)前記皮膜形成工程は、遠心力を利用するものである(1)に記載の生化学用器具の製造方法。   (2) The method for producing a biochemical instrument according to (1), wherein the film forming step uses centrifugal force.

(3)前記皮膜形成工程は、吸引力を利用するものである(1)に記載の生化学用器具の製造方法。   (3) The method for producing a biochemical instrument according to (1), wherein the film forming step uses suction force.

(4)前記浸漬工程は、溶液を生化学用器具の表面に浸漬させた状態で1〜720分放置するものである(1)ないし(3)のいずれかに記載の生化学用器具の製造方法。   (4) The manufacturing step of the biochemical instrument according to any one of (1) to (3), wherein the dipping step is left for 1 to 720 minutes with the solution immersed in the surface of the biochemical instrument. Method.

(5)前記皮膜形成工程は、溶液が流動性を有している状態で該表面を気体の流れに暴露する(1)ないし(4)のいずれかに記載の生化学用器具の製造方法。   (5) The said film formation process is a manufacturing method of the biochemical instrument in any one of (1) thru | or (4) which exposes this surface to a gas flow in the state in which a solution has fluidity | liquidity.

(6)前記水不溶性の樹脂は、水不溶性の2−メタクリロイルオキシエチルホスホリルコリン重合体または含む共重合体である(1)ないし(5)のいずれかに記載の生化学用器具の製造方法。   (6) The method for producing a biochemical instrument according to any one of (1) to (5), wherein the water-insoluble resin is a water-insoluble 2-methacryloyloxyethyl phosphorylcholine polymer or a copolymer containing the polymer.

(7)前記水不溶性の樹脂は、0.1〜2.0wt/vol%の濃度で溶解している溶液である(1)ないし(6)のいずれかに記載の生化学用器具の製造方法。   (7) The method for producing a biochemical instrument according to any one of (1) to (6), wherein the water-insoluble resin is a solution dissolved at a concentration of 0.1 to 2.0 wt / vol%. .

(8)前記溶液の溶媒は、アルコール系の溶媒である(1)ないし(7)のいずれかに記載の生化学用器具の製造方法。   (8) The method for producing a biochemical instrument according to any one of (1) to (7), wherein the solvent of the solution is an alcohol solvent.

(9)前記生化学用器具は、プラスチックから構成される(1)ないし(8)のいずれかに記載の生化学用器具の製造方法。   (9) The biochemical instrument according to any one of (1) to (8), wherein the biochemical instrument is made of plastic.

(10)前記生化学用器具は、ガラスから構成される(1)ないし(9)のいずれかに記載の生化学用器具の製造方法。   (10) The biochemical instrument according to any one of (1) to (9), wherein the biochemical instrument is made of glass.

(11)(1)ないし(10)のいずれかに記載の方法で製造された生化学用器具。   (11) A biochemical instrument manufactured by the method according to any one of (1) to (10).

本発明によれば生化学用器具の表面に対する生体由来物質の吸着量を低減できる表面改質法およびその方法を利用して製造した生化学器具を提供する事が出来る。   ADVANTAGE OF THE INVENTION According to this invention, the biochemical instrument manufactured using the surface modification method which can reduce the adsorption amount of the biological origin substance with respect to the surface of a biochemical instrument, and its method can be provided.

また、溶液の皮膜形成工程において遠心力または吸引力を利用する事で生体由来物質の吸着量を低減させる事が出来る。   In addition, the amount of adsorption of a biological substance can be reduced by using centrifugal force or suction force in the solution film formation step.

また、親水性基と疎水性基を有する水不溶性の樹脂を溶解した溶液の浸漬工程において1〜720分放置する事で生体由来物質の吸着量を更に低減させる事が出来る。   Moreover, the adsorption amount of a biological substance can be further reduced by leaving it for 1 to 720 minutes in the dipping step of a solution in which a water-insoluble resin having a hydrophilic group and a hydrophobic group is dissolved.

また、溶液を除去した後に生化学用器具の表面に形成された皮膜が流動性を有している状態で該表面を気体の流れに暴露する事で生体由来物質の吸着量を更に低減させる事が出来る。   In addition, the amount of adsorption of biological substances can be further reduced by exposing the surface to a gas flow while the film formed on the surface of the biochemical instrument has fluidity after removing the solution. I can do it.

また、前記高分子に水不溶性の2−メタクリロイルオキシエチルホスホリルコリン重合体又はこれを含む共重合体を用いて、アルコール系の溶媒に0.1〜2.0wt/vol%の濃度で溶解した溶液を使用することで生体由来物質の吸着量を更に低減させる事が出来る。   In addition, a solution in which a water-insoluble 2-methacryloyloxyethyl phosphorylcholine polymer or a copolymer containing the polymer is dissolved in an alcohol-based solvent at a concentration of 0.1 to 2.0 wt / vol% is used. By using it, the adsorption amount of the biological substance can be further reduced.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

生化学用器具の表面を、親水性基と疎水性基を有する水不溶性の樹脂を溶解した溶液に浸漬させる浸漬工程と、前記溶液を前記表面から除去して皮膜を形成する皮膜形成工程とを有する生化学用器具の製造方法にあって、前記皮膜形成工程後の前記皮膜が、5〜500nmであることを特徴とする生化学用器具の製造方法。   A dipping process in which the surface of the biochemical instrument is immersed in a solution in which a water-insoluble resin having a hydrophilic group and a hydrophobic group is dissolved; and a film forming process in which the film is formed by removing the solution from the surface. In the manufacturing method of the biochemical instrument which has, The said film after the said film formation process is 5-500 nm, The manufacturing method of the biochemical instrument characterized by the above-mentioned.

前記親水性基と疎水性基を有する水不溶性の高分子としては、特に限定はされないが、ポリメタクリル酸、(メタ)メタクリル酸−アルキルメタクリレート共重合体、ポリヒドロキシアルキルメタクリレート(例えばポリヒドロキシエチルメタクリレート)、ヒドロキシアルキルメタクリレート−アルキルメタクリレート共重合体、ポリオキシアルキレン基含有メタクリレート重合体またはこれを含む共重合体、ビニルピロリドン、ビニルアルコールを含む共重合体、(2−メタクリロイルオキシエチルホスホリルコリン)重合体またはこれを含む共重合体などが挙げられ、2−メタクリロイルオキシエチルホスホリルコリン重合体またはこれを含む共重合体が最も好ましい。   The water-insoluble polymer having a hydrophilic group and a hydrophobic group is not particularly limited, but polymethacrylic acid, (meth) methacrylic acid-alkyl methacrylate copolymer, polyhydroxyalkyl methacrylate (for example, polyhydroxyethyl methacrylate). ), A hydroxyalkyl methacrylate-alkyl methacrylate copolymer, a polyoxyalkylene group-containing methacrylate polymer or a copolymer containing the same, a vinylpyrrolidone, a copolymer containing vinyl alcohol, a (2-methacryloyloxyethyl phosphorylcholine) polymer or Examples thereof include a copolymer containing this, and a 2-methacryloyloxyethyl phosphorylcholine polymer or a copolymer containing this is most preferable.

前記高分子を溶解した溶液の濃度は高すぎても、逆に低すぎても均一な表面が得られない為、溶解する高分子および溶媒の種類によって適宜選択することが好ましい。例えば、高分子に2−メタクリロイルオキシエチルホスホリルコリン−ブチルメタクリレート共重合体を選択し、溶媒にメタノールを使用する場合は0.1〜2.0wt/vol%の範囲が好ましく、0.3〜0.70wt/vol%の範囲が特に好ましい。
生化学用器具の表面を該溶液に浸漬させる場合、少なくとも改質を行なう部分が溶液に接触している状態であれば良く、方法としては生化学用器具を該溶液に浸してもよく、生化学用器具が容器形状であり、該容器の内側を改質する場合は該溶液を該容器に分注しても良い。
Even if the concentration of the solution in which the polymer is dissolved is too high or too low, a uniform surface cannot be obtained. For example, when 2-methacryloyloxyethyl phosphorylcholine-butylmethacrylate copolymer is selected as the polymer and methanol is used as the solvent, the range of 0.1 to 2.0 wt / vol% is preferable, and 0.3 to 0. A range of 70 wt / vol% is particularly preferred.
When the surface of a biochemical instrument is immersed in the solution, it suffices if at least the portion to be modified is in contact with the solution. As a method, the biochemical instrument may be immersed in the solution. When the chemical instrument has a container shape and the inside of the container is modified, the solution may be dispensed into the container.

浸漬させる時間は1〜720分が好ましく、特に10〜50分が好ましい。接触時間が前記下限値未満であると表面に均一な皮膜が形成されず、上限値を超えると生産効率の点で不利である。   The immersion time is preferably 1 to 720 minutes, and particularly preferably 10 to 50 minutes. If the contact time is less than the lower limit value, a uniform film is not formed on the surface, and if the contact time exceeds the upper limit value, it is disadvantageous in terms of production efficiency.

浸漬時間が皮膜の形成に与える影響の原因としては、表面の溶液中に存在する親水性基と疎水性基を有する高分子の疎水性基部分が生化学用器具の表面と相互作用を引き起こす為には前記範囲の接触時間が必要であると考察している。   The cause of the effect of soaking time on film formation is that the hydrophobic group part of the polymer having hydrophilic groups and hydrophobic groups present in the surface solution causes interaction with the surface of the biochemical instrument. Is considered to require a contact time in the above range.

溶液の皮膜形成工程において、遠心力または吸引力を利用する事が好ましく、それらを利用する事で皮膜の厚みがより薄く、均一になり高い生体由来物質低吸着効果が得られる。   In the film formation step of the solution, it is preferable to use centrifugal force or suction force. By using these, the thickness of the film becomes thinner and uniform, and a high effect of low adsorption of biological substances can be obtained.

遠心力を利用する方法としては、一例としてスピンコーター等の回転体に生化学用器具を取り付けて回転させる方法があり、吸引力を利用する方法としては、一例として吸引ポンプに接続したノズル等の器具を利用して吸引する方法がある。   As an example of a method of using centrifugal force, there is a method of rotating by attaching a biochemical instrument to a rotating body such as a spin coater, and as a method of using suction force, for example, a nozzle connected to a suction pump, etc. There is a method of suction using an instrument.

更に、溶液を除去した後に該表面に形成された皮膜が流動性を有している状態つまりは乾燥する前に表面を気体の流れに暴露させることで、より生体由来物質の吸着の少ない表面に改質される。
その際、気体の種類は空気やチッ素ガス等を用いる事が出来、気体が一定方向に流れていれば流速は特に限定するものでは無い。
Furthermore, after the solution is removed, the film formed on the surface has fluidity, that is, the surface is exposed to a gas flow before drying, so that the surface with less adsorption of biological substances can be obtained. Reformed.
In that case, air, nitrogen gas, etc. can be used for the kind of gas, and if the gas is flowing in the fixed direction, the flow velocity will not be specifically limited.

暴露する時間は、特に限定はされないが、5〜60秒が好ましく、10〜30秒が更に好ましい。暴露する時間が前記下限値未満であると暴露後に高分子溶液の層が流動してしまい充分な効果は得られない。また前記上限値を超えると生産効率の点で不利である。
一方、溶液を除去してから気体の流れに暴露するまでの時間については少なくとも高分子溶液の層が流動性を有していれば効果は得られるが、できるだけ短い方が好ましく、具体的には、遠心力または吸引力を利用して溶液を除去した後に引き続き遠心または吸引操作を継続する事で最も高い効果が得られる。
The exposure time is not particularly limited, but is preferably 5 to 60 seconds, and more preferably 10 to 30 seconds. When the exposure time is less than the lower limit, the layer of the polymer solution flows after the exposure, and a sufficient effect cannot be obtained. If the upper limit is exceeded, it is disadvantageous in terms of production efficiency.
On the other hand, with respect to the time from the removal of the solution to the exposure to the gas flow, an effect can be obtained if at least the layer of the polymer solution has fluidity. The highest effect can be obtained by continuing the centrifugation or the suction operation after removing the solution using the centrifugal force or the suction force.

生体由来物質の非特異的吸着の最も大きな原動力は疎水性相互作用である。本願特許によれば生化学用器具の表面に形成された親水性基と疎水性基を有する高分子の皮膜に生体由来物質を含む溶液が接触した際、その界面に存在する親水性基の作用により生体由来物質吸着の原動力である疎水性相互作用が妨げられ、生体由来物質の吸着が低減される。   The greatest driving force for non-specific adsorption of biological substances is hydrophobic interaction. According to the patent of the present application, when a solution containing a biological substance comes into contact with a polymer film having a hydrophilic group and a hydrophobic group formed on the surface of a biochemical instrument, the action of the hydrophilic group present on the interface. As a result, the hydrophobic interaction that is the driving force for the adsorption of the biological substance is prevented, and the adsorption of the biological substance is reduced.

しかし、親水性基と疎水性基を有する高分子層が厚すぎると自由水と一緒に生体由来物質が高分子層内部に残留してしまう為、有効な吸着低減効果は得られない。   However, if the polymer layer having a hydrophilic group and a hydrophobic group is too thick, a biological substance remains in the polymer layer together with free water, so that an effective adsorption reduction effect cannot be obtained.

即ち、理想的には生化学用器具の表面に親水性基の単分子層が密に構築されている状態が最も生体由来物質吸着低減効果に優れるという事が理論的に考察できる。   That is, ideally, it can be theoretically considered that a state in which a monolayer of hydrophilic groups is densely constructed on the surface of a biochemical instrument is most effective in reducing the adsorption of biological substances.

つまり、前記皮膜形成工程後の皮膜は5〜500nmの範囲で生体由来物質低吸着表面となり、好ましくは10〜200nmであり、10〜100nmの範囲が特に好ましい。   That is, the film after the film forming step has a low surface for adsorbing biological substances in the range of 5 to 500 nm, preferably 10 to 200 nm, and particularly preferably 10 to 100 nm.

皮膜が前記下限値以下では皮膜の親水性基の密度が疎になる可能性があり効果にばらつきが発生し、前記上限値以上では前述の理由により有効な吸着低減効果は得られない。   If the film is below the lower limit value, the density of hydrophilic groups in the film may be sparse, resulting in variations in the effect. If the film value is above the upper limit value, an effective adsorption reduction effect cannot be obtained for the reasons described above.

本願発明によれば、より理想的な状態に近い表面つまり、薄く均一な親水性基と疎水性基を有する高分子層が形成されるため、後に示す通り効果的な生体由来物質の低吸着表面になるものと考えられる。   According to the present invention, a surface close to an ideal state, that is, a polymer layer having a thin and uniform hydrophilic group and hydrophobic group is formed. It is thought to become.

また、親水性基が密に構築されるという点において分子量の大きなコリンンリン酸基を有する2−メタクリロイルオキシエチルホスホリルコリン重合体又はこれを含む共重合体が好ましいと考察している。   Further, it is considered that a 2-methacryloyloxyethyl phosphorylcholine polymer having a large molecular weight choline phosphate group or a copolymer containing the same is preferable in that the hydrophilic groups are densely constructed.

表面改質を行なう生化学用器具としては特に限定するものではないが、例えば生化学研究に使用されるピペット、ディスペンサーチップ等の液体操作用器具類および遠沈管、凍結保存チューブ、チューブ、マルチウェルプレート等の容器類において有効であり。これらの中でも、生体由来物質との接触時間が比較的長く、各種分析における試料調製に使用されるチューブとして用いられることが好ましい。これにより、分析結果の精度及び感度が向上する。   The biochemical instrument for surface modification is not particularly limited. For example, liquid manipulation instruments such as pipettes and dispenser tips used for biochemical research, centrifuge tubes, cryopreservation tubes, tubes, multiwells, etc. Effective for containers such as plates. Among these, it is preferable to use as a tube used for sample preparation in various analyzes because the contact time with a biological substance is relatively long. This improves the accuracy and sensitivity of the analysis result.

以下、本発明を実施例および比較例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。
(実施例1)
2−メタクリロイルオキシエチルホスホリルコリン(MPC)−ブチルメタクリレート(BMA)共重合体(日本油脂株式会社 Lipidure−CM5206 MPC/BMA=3/7)を0.5wt/vol%の濃度でエタノールに溶解。
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example and a comparative example, this invention is not limited to this.
(Example 1)
2-Methacryloyloxyethyl phosphorylcholine (MPC) -butyl methacrylate (BMA) copolymer (Nippon Yushi Co., Ltd. Lipidure-CM5206 MPC / BMA = 3/7) was dissolved in ethanol at a concentration of 0.5 wt / vol%.

ポリプロピレン製のマイクロチューブ(39mm×10mmφ容量約1.5mL)に前記溶液を1.5mL分注し、30分間室温で放置。   1.5 mL of the solution is dispensed into a polypropylene microtube (39 mm × 10 mmφ capacity of about 1.5 mL) and left at room temperature for 30 minutes.

吸引ポンプに液だめ用のトラップを接続したホースの先に、外径20mmφ、内径10mmφのステンレス製ノズルを装着した吸引器具を使用し、マイクロチューブに分注した溶液を吸引し、溶液を吸い終わった後も一定時間引き続き吸引を行った。   Using a suction device equipped with a stainless steel nozzle with an outer diameter of 20 mmφ and an inner diameter of 10 mmφ at the tip of a hose connected to a suction pump to the suction pump, suck the solution dispensed into the microtube and finish sucking the solution. After that, suction was continued for a certain time.

吸引ノズルと容器底面の距離は0.5mmで固定し、吸引開始−溶液除去−吸引終了までの時間は30秒とした。   The distance between the suction nozzle and the bottom of the container was fixed at 0.5 mm, and the time from suction start-solution removal-suction end was 30 seconds.

上記工程を経たマイクロチューブを、裏返しにした状態で室温一晩乾燥させ、実施例1とした。
(実施例2)
2−メタクリロイルオキシエチルホスホリルコリン(MPC)−ブチルメタクリレート(BMA)共重合体(日本油脂株式会社 Lipidure−CM5206 MPC/BMA=3/7)を0.5wt/vol%の濃度でエタノールに溶解。
The microtube which passed through the said process was dried overnight at room temperature in the state turned over, and was set as Example 1.
(Example 2)
2-Methacryloyloxyethyl phosphorylcholine (MPC) -butyl methacrylate (BMA) copolymer (Nippon Yushi Co., Ltd. Lipidure-CM5206 MPC / BMA = 3/7) was dissolved in ethanol at a concentration of 0.5 wt / vol%.

ポリプロピレン製のマイクロチューブ(39mm×10mmφ容量約1.5mL)に前記溶液を1.5mL分注し、放置せず即座に工程[3]に移行した。   1.5 mL of the above solution was dispensed into a polypropylene microtube (39 mm × 10 mmφ capacity: about 1.5 mL), and the process immediately proceeded to Step [3] without being allowed to stand.

吸引ポンプに液だめ用のトラップを接続したホースの先に、外径20mmφ、内径10mmφのステンレス製ノズルを装着した吸引器具を使用し、マイクロチューブに分注した溶液を吸引し、溶液を吸い終わった後も一定時間引き続き吸引を行った。   Using a suction device equipped with a stainless steel nozzle with an outer diameter of 20 mmφ and an inner diameter of 10 mmφ at the tip of a hose connected to a suction pump to the suction pump, suck the solution dispensed into the microtube and finish sucking the solution. After that, suction was continued for a certain time.

吸引ノズルと容器底面の距離は0.5mmで固定し、吸引開始−溶液除去−吸引終了までの時間は30秒とした。   The distance between the suction nozzle and the bottom of the container was fixed at 0.5 mm, and the time from suction start-solution removal-suction end was 30 seconds.

上記工程を経たマイクロチューブを、裏返しにした状態で室温一晩乾燥させ、実施例2とした。
(実施例3)
2−メタクリロイルオキシエチルホスホリルコリン(MPC)−ブチルメタクリレート(BMA)共重合体(日本油脂株式会社 Lipidure−CM5206 MPC/BMA=3/7)を0.05wt/vol%の濃度でエタノールに溶解。
The microtube which passed through the said process was dried at room temperature overnight in the state turned over, and was set as Example 2.
(Example 3)
2-Methacryloyloxyethyl phosphorylcholine (MPC) -butyl methacrylate (BMA) copolymer (Nippon Yushi Co., Ltd. Lipidure-CM5206 MPC / BMA = 3/7) was dissolved in ethanol at a concentration of 0.05 wt / vol%.

ポリプロピレン製のマイクロチューブ(39mm×10mmφ容量約1.5mL)に前記溶液を1.5mL分注し、30分間室温で放置。   1.5 mL of the solution is dispensed into a polypropylene microtube (39 mm × 10 mmφ capacity of about 1.5 mL) and left at room temperature for 30 minutes.

吸引ポンプに液だめ用のトラップを接続したホースの先に、外径20mmφ、内径10mmφのステンレス製ノズルを装着した吸引器具を使用し、マイクロチューブに分注した溶液を吸引し、溶液を吸い終わった後も一定時間引き続き吸引を行った。   Using a suction device equipped with a stainless steel nozzle with an outer diameter of 20 mmφ and an inner diameter of 10 mmφ at the tip of a hose connected to a suction pump to the suction pump, suck the solution dispensed into the microtube and finish sucking the solution. After that, suction was continued for a certain time.

吸引ノズルと容器底面の距離は0.5mmで固定し、吸引開始−溶液除去−吸引終了までの時間は30秒とした。   The distance between the suction nozzle and the bottom of the container was fixed at 0.5 mm, and the time from suction start-solution removal-suction end was 30 seconds.

上記工程を経たマイクロチューブを、裏返しにした状態で室温一晩乾燥させ、実施例3とした。
(実施例4)
2−メタクリロイルオキシエチルホスホリルコリン(MPC)−ブチルメタクリレート(BMA)共重合体(日本油脂株式会社 Lipidure−CM5206 MPC/BMA=3/7)を0.5wt/vol%の濃度でエタノールに溶解。
The microtube which passed through the said process was dried at room temperature overnight in the state turned over, and was set as Example 3.
Example 4
2-Methacryloyloxyethyl phosphorylcholine (MPC) -butyl methacrylate (BMA) copolymer (Nippon Yushi Co., Ltd. Lipidure-CM5206 MPC / BMA = 3/7) was dissolved in ethanol at a concentration of 0.5 wt / vol%.

ポリプロピレン製のマイクロチューブ(39mm×10mmφ容量約1.5mL)に前記溶液を1.5mL分注し、30分間室温で放置。   1.5 mL of the solution is dispensed into a polypropylene microtube (39 mm × 10 mmφ capacity of about 1.5 mL) and left at room temperature for 30 minutes.

吸引ポンプに液だめ用のトラップを接続したホースの先に、外径20mmφ、内径10mmφのステンレス製ノズルを装着した吸引器具を使用し、マイクロチューブに分注した溶液を吸引し、溶液を吸い終わった後も一定時間引き続き吸引を行った。   Using a suction device equipped with a stainless steel nozzle with an outer diameter of 20 mmφ and an inner diameter of 10 mmφ at the tip of a hose connected to a suction pump to the suction pump, suck the solution dispensed into the microtube and finish sucking the solution. After that, suction was continued for a certain time.

吸引ノズルと容器底面の距離は0.5mmで固定し、吸引開始−溶液除去−吸引終了までの時間は3秒とした。   The distance between the suction nozzle and the bottom of the container was fixed at 0.5 mm, and the time from suction start-solution removal-suction end was 3 seconds.

上記工程を経たマイクロチューブを、裏返しにした状態で室温一晩乾燥させ、実施例4とした。
(比較例1)
2−メタクリロイルオキシエチルホスホリルコリン(MPC)−ブチルメタクリレート(BMA)共重合体(日本油脂株式会社 Lipidure−CM5206 MPC/BMA=3/7)を0.5wt/vol%の濃度でエタノールに溶解。
The microtube which passed through the said process was dried overnight at room temperature in the state turned over, and was set as Example 4.
(Comparative Example 1)
2-Methacryloyloxyethyl phosphorylcholine (MPC) -butyl methacrylate (BMA) copolymer (Nippon Yushi Co., Ltd. Lipidure-CM5206 MPC / BMA = 3/7) was dissolved in ethanol at a concentration of 0.5 wt / vol%.

ポリプロピレン製のマイクロチューブ(39mm×10mmφ容量約1.5mL)に前記溶液を1.5mL分注し、放置せず即座に容器を裏返して溶液をマイクロチューブ内から自然に除去し、その状態で室温一晩乾燥させ、比較例1とした。
(比較例2)
ポリプロピレン製のマイクロチューブ(39mm×10mmφ容量約1.5mL)を比較例2とした。
(皮膜の測定)
実施例1〜4及び比較例1〜2を液体窒素に浸漬して凍結させた状態で砕き、各切片の断面を電子顕微鏡下で観察し、皮膜の厚みを測定した。
Dispense 1.5 mL of the above solution into a polypropylene microtube (39 mm × 10 mmφ capacity of about 1.5 mL), and immediately turn the container over without leaving it, and remove the solution from the microtube naturally. It was dried overnight to make Comparative Example 1.
(Comparative Example 2)
A polypropylene microtube (39 mm × 10 mmφ capacity: about 1.5 mL) was used as Comparative Example 2.
(Measurement of film)
Examples 1 to 4 and Comparative Examples 1 and 2 were immersed in liquid nitrogen and crushed in a frozen state, the cross section of each section was observed under an electron microscope, and the thickness of the film was measured.

その結果を表1に示す。
(生体由来物質吸着性の比較)
ウシ血清アルブミン(23209 PIERCE社製)を0.5μg/mLに希釈した溶液を実施例1〜4及び比較例1〜2に1.0mLづつ分注し、37℃で1時間インキュベートした後0.05容量%tween20入りリン酸緩衝液pH7.4で3回洗浄した。次にブロッキングとして3.0重量%スキムミルク入りリン酸緩衝液pH7.4溶液を1.5mLづつ分注し、37℃で1時間インキュベートした後0.05容量%tween20入りリン酸緩衝液pH7.4で3回洗浄した。次にペルオキシターゼ標識坑ウシ血清アルブミン抗体(55285 CAPPEL社製)をリン酸緩衝液pH7.4で1.0μg/mLに希釈した溶液を各マイクロチューブに1.0mLづつ分注し室温で30分インキュベートした後0.05容量%tween20入りリン酸緩衝液pH7.4で3回洗浄し、ぺルオキシターゼ用発色キット(SUMILON ML−1120T 住友ベークライト社製)を使用して発色させた後プレートリーダーを使用して450/630nmの吸光度を測定した。
The results are shown in Table 1.
(Comparison of adsorption of biological substances)
A solution obtained by diluting bovine serum albumin (manufactured by 23209 PIERCE) to 0.5 μg / mL was dispensed in each of Examples 1 to 4 and Comparative Examples 1 and 2 in an amount of 1.0 mL, and incubated at 37 ° C. for 1 hour. It was washed 3 times with a phosphate buffer solution pH 7.4 containing 05% by volume tween20. Next, as a blocking, a phosphate buffer solution pH 7.4 containing 3.0% by weight skimmed milk was dispensed in 1.5 mL portions, incubated at 37 ° C. for 1 hour, and then phosphate buffer solution pH 7.4 containing 0.05% by volume tween20. And washed 3 times. Next, a solution obtained by diluting peroxidase-labeled anti-bovine serum albumin antibody (55285 CAPPEL) to 1.0 μg / mL with phosphate buffer pH 7.4 is dispensed in 1.0 mL each microtube and incubated at room temperature for 30 minutes. After washing with 0.05 volume% tween20-containing phosphate buffer pH 7.4, the plate was developed using a peroxidase color development kit (SUMILON ML-1120T manufactured by Sumitomo Bakelite Co., Ltd.), and then a plate reader was used. Then, the absorbance at 450/630 nm was measured.

別途作成した検量線から容器本体に残留したペルオキシターゼ標識坑ウシ血清アルブミン抗体=ウシ血清アルブミンの重量を求め、吸着率を算出した。
(ペルオキシターゼ標識アビジン吸着性)
ペルオキシターゼ標識アビジン(43−4423 ZYMED社製)を0.5μg/mLに希釈した溶液をそれぞれ実施例1〜4、及び比較例1〜2に1.0mLづつ分注し、室温で1時間静置した後、0.05%tween20入りリン酸緩衝液pH7.4で3回洗浄し、ぺルオキシターゼ用発色キット(SUMILON ML−1120T 住友ベークライト社製)を使用して発色させた後プレートリーダーを使用して450/630nmの吸光度を測定した。
The weight of peroxidase-labeled anti-bovine serum albumin antibody = bovine serum albumin remaining in the container body was determined from a separately prepared calibration curve, and the adsorption rate was calculated.
(Peroxidase-labeled avidin adsorptivity)
A solution obtained by diluting peroxidase-labeled avidin (43-4423, manufactured by ZYMED) to 0.5 μg / mL was dispensed in each of Examples 1 to 4 and Comparative Examples 1 and 2, and left at room temperature for 1 hour. After that, the plate was washed three times with 0.05% tween 20-containing phosphate buffer pH 7.4, and developed using a peroxidase coloring kit (SUMILON ML-1120T manufactured by Sumitomo Bakelite Co., Ltd.). Then, the absorbance at 450/630 nm was measured.

別途作成した検量線から容器本体に残留したペルオキシターゼ標識アビジンの重量を求め、吸着率を算出した。   The weight of peroxidase-labeled avidin remaining in the container body was determined from a separately prepared calibration curve, and the adsorption rate was calculated.

結果は表1に示す通りで、実施例1および実施例2で特に低い吸着率を示した。   The results are shown in Table 1, and Example 1 and Example 2 showed a particularly low adsorption rate.

Figure 2005270706
Figure 2005270706

本発明は生化学器具の表面に対する生体由来物質の吸着量を低減させる為の表面改質方法であり、特に生体由来物質の分析を行なう際のピペット、ディスペンサーチップ、保存容器、希釈容器、反応容器等のような生化学用器具類に適用した場合、試料の吸着による損失が無く、高精度かつ高感度な分析を行なう事が出来る。   The present invention is a surface modification method for reducing the amount of a biological material adsorbed on the surface of a biochemical instrument, and in particular, a pipette, a dispenser chip, a storage container, a dilution container, a reaction container when analyzing a biological material. When applied to biochemical instruments such as the above, there is no loss due to sample adsorption, and high-precision and high-sensitivity analysis can be performed.

Claims (11)

生化学用器具の表面を、親水性基と疎水性基を有する水不溶性の樹脂を溶解した溶液に浸漬させる浸漬工程と、前記溶液を前記表面から除去して皮膜を形成する皮膜形成工程とを有する生化学用器具の製造方法にあって、前記皮膜形成工程後の前記皮膜が、5〜500nmであることを特徴とする生化学用器具の製造方法。   A dipping process in which the surface of the biochemical instrument is immersed in a solution in which a water-insoluble resin having a hydrophilic group and a hydrophobic group is dissolved; and a film forming process in which the film is formed by removing the solution from the surface. In the manufacturing method of the biochemical instrument which has, The said film after the said film formation process is 5-500 nm, The manufacturing method of the biochemical instrument characterized by the above-mentioned. 前記皮膜形成工程は、遠心力を利用するものである請求項1に記載の生化学用器具の製造方法。   The method for producing a biochemical instrument according to claim 1, wherein the film forming step uses centrifugal force. 前記皮膜形成工程は、吸引力を利用するものである請求項1に記載の生化学用器具の製造方法。   The method for producing a biochemical instrument according to claim 1, wherein the film forming step uses suction force. 前記浸漬工程は、溶液を生化学用器具の表面に浸漬させた状態で1〜720分放置するものである請求項1ないし3のいずれかに記載の生化学用器具の製造方法。   The method of manufacturing a biochemical instrument according to any one of claims 1 to 3, wherein the dipping step is to leave the solution immersed in the surface of the biochemical instrument for 1 to 720 minutes. 前記皮膜形成工程は、溶液が流動性を有している状態で該表面を気体の流れに暴露する請求項1ないし4のいずれかに記載の生化学用器具の製造方法。   The method for producing a biochemical instrument according to any one of claims 1 to 4, wherein in the film forming step, the surface is exposed to a gas flow in a state where the solution has fluidity. 前記水不溶性の樹脂は、水不溶性の2−メタクリロイルオキシエチルホスホリルコリン重合体または含む共重合体である請求項1ないし5のいずれかに記載の生化学用器具の製造方法。   6. The method for producing a biochemical instrument according to claim 1, wherein the water-insoluble resin is a water-insoluble 2-methacryloyloxyethyl phosphorylcholine polymer or a copolymer containing the water-insoluble resin. 前記水不溶性の樹脂は、0.1〜2.0wt/vol%の濃度で溶解している溶液である請求項1ないし6のいずれかに記載の生化学用器具の製造方法。   The method for producing a biochemical instrument according to any one of claims 1 to 6, wherein the water-insoluble resin is a solution dissolved at a concentration of 0.1 to 2.0 wt / vol%. 前記溶液の溶媒は、アルコール系の溶媒である請求項1ないし7のいずれかに記載の生化学用器具の製造方法。   The method for producing a biochemical instrument according to any one of claims 1 to 7, wherein the solvent of the solution is an alcohol solvent. 前記生化学用器具は、プラスチックから構成される請求項1ないし8のいずれかに記載の生化学用器具の製造方法。   The method for manufacturing a biochemical instrument according to any one of claims 1 to 8, wherein the biochemical instrument is made of plastic. 前記生化学用器具は、ガラスから構成される請求項1ないし9のいずれかに記載の生化学用器具の製造方法。   The biochemical instrument manufacturing method according to claim 1, wherein the biochemical instrument is made of glass. 請求項1ないし10のいずれかに記載の方法で製造された生化学用器具。   A biochemical instrument produced by the method according to claim 1.
JP2004084290A 2004-03-23 2004-03-23 Manufacturing method for equipment for biochemical use and equipment for biochemical use Pending JP2005270706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004084290A JP2005270706A (en) 2004-03-23 2004-03-23 Manufacturing method for equipment for biochemical use and equipment for biochemical use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004084290A JP2005270706A (en) 2004-03-23 2004-03-23 Manufacturing method for equipment for biochemical use and equipment for biochemical use

Publications (1)

Publication Number Publication Date
JP2005270706A true JP2005270706A (en) 2005-10-06

Family

ID=35170929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004084290A Pending JP2005270706A (en) 2004-03-23 2004-03-23 Manufacturing method for equipment for biochemical use and equipment for biochemical use

Country Status (1)

Country Link
JP (1) JP2005270706A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114196053A (en) * 2021-12-14 2022-03-18 赛宁(苏州)生物科技有限公司 Surface modification method of plastic centrifuge tube for extracting biological sample

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114196053A (en) * 2021-12-14 2022-03-18 赛宁(苏州)生物科技有限公司 Surface modification method of plastic centrifuge tube for extracting biological sample
CN114196053B (en) * 2021-12-14 2023-02-10 赛宁(苏州)生物科技有限公司 Surface modification method of plastic centrifuge tube for extracting biological sample

Similar Documents

Publication Publication Date Title
JP5620444B2 (en) Apparatus for rinsing a device for processing a sample in a droplet and method for rinsing the device
US20070207060A1 (en) Testing method of analytic chip of multiple reactors, the analytic chip, and the testing device
JPH063453U (en) Equipment for centrifugation
JP3472306B2 (en) Method and apparatus for treating a fluid
JPH01202661A (en) Flow intensifying dip stick
JP4337644B2 (en) Manufacturing method for biochemical instruments
JP2005270706A (en) Manufacturing method for equipment for biochemical use and equipment for biochemical use
JP3681983B2 (en) Immunoassay container
CN106153891A9 (en) Three dimensional biological marker detection device, preparation method and the method for detecting biomarker
CN101010334B (en) Fractionation apparatus
JPWO2016121102A1 (en) Device for manipulating magnetic particles and method for manipulating magnetic particles
JP4162969B2 (en) Dispensing tip
JP5137274B2 (en) Pipette tip
WO2017073533A1 (en) Cell-spreading method and cell-spreading kit for observing rare cells
JP6528378B2 (en) Cell expansion method and kit therefor
JP2005099040A (en) Vessel for immunoassay
JP6198070B2 (en) Manufacturing method of microchamber chip for cell deployment
JP3865614B2 (en) Microcircuit for protein analysis
JP6878726B2 (en) Sample pretreatment device and sample pretreatment method using the device
CN107407675B (en) Manufacture of biosensor cartridge
JP2008506959A (en) Multi-reactor / analysis chip test method, analysis chip and test apparatus
JP2006001995A (en) Equipment for biochemical use
CN221405708U (en) Kit, capture head and sample analyzer
JP2010202823A (en) Hydrophilic treatment method for biochemical instrument and biochemical instrument treated by the method
WO2024063121A1 (en) Method for forming microdroplets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090525

A131 Notification of reasons for refusal

Effective date: 20090602

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20091027

Free format text: JAPANESE INTERMEDIATE CODE: A02