JP2005270034A - 核酸の分離精製方法 - Google Patents

核酸の分離精製方法 Download PDF

Info

Publication number
JP2005270034A
JP2005270034A JP2004090391A JP2004090391A JP2005270034A JP 2005270034 A JP2005270034 A JP 2005270034A JP 2004090391 A JP2004090391 A JP 2004090391A JP 2004090391 A JP2004090391 A JP 2004090391A JP 2005270034 A JP2005270034 A JP 2005270034A
Authority
JP
Japan
Prior art keywords
nucleic acid
porous membrane
separating
solution
purifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004090391A
Other languages
English (en)
Inventor
Rie Hanto
里江 半戸
Yoshihiko Makino
快彦 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2004090391A priority Critical patent/JP2005270034A/ja
Publication of JP2005270034A publication Critical patent/JP2005270034A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

【課題】安定した量と純度の核酸を簡便かつ容易に回収することのできる核酸分離精製方法を提供する。
【解決手段】(1)核酸を含む試料溶液を、溶液が通過可能な核酸吸着性多孔膜に通過させて、核酸を吸着させる工程、(2)洗浄液を該核酸吸着性多孔膜に通過させて、核酸が吸着した状態で、該多孔膜を洗浄する工程、及び(3)回収液を該核酸吸着性多孔膜に通過させて、該多孔膜内から核酸を脱着させる工程を含む核酸の分離精製方法であって、該核酸吸着性多孔膜の赤外吸収スペクトル(IR)における3000〜3500cm-1ピークと900cm-1のピークの強度比が6以上であることを特徴とする核酸の分離精製方法。
【選択図】 なし

Description

本発明は、核酸を分離精製する方法に関する。より詳細には、本発明は、核酸を分離精製するために、検体から核酸を含む試料溶液を得る方法に関する。さらに好ましくは、得られた核酸を含む試料溶液を用いて、少なくとも二個の開口を有する容器内に核酸吸着性多孔膜を収容した核酸分離精製カートリッジ、更に必要に応じて圧力発生装置を用いて、核酸を含む試料から核酸を分離精製する方法に関する。
核酸は、様々な分野で種々の形態で使用されている。例えば、組換え核酸技術の領域においては、核酸をプローブ、ゲノム核酸、およびプラスミド核酸の形態で用いることが要求される。
診断分野においても、核酸は種々の形態で種々の目的に用いられている。例えば、核酸プローブは、ヒトの病原体の検出および診断に日常的に用いられている。同様に核酸は遺伝障害の検出に用いられている。核酸はまた食品汚染物質の検出にも用いられている。さらに、核酸は遺伝地図の作製からクローニングおよび組換え発現におよぶ種々の理由により、興味ある核酸の位置確認、同定および単離において日常的に用いられている。
多くの場合、核酸は極めて少量でしか入手できず、そして単離および精製操作が煩雑で時間を要する。このしばしば時間を消費する煩雑な操作は核酸の損失に結びつきやすい。血清、尿およびバクテリアのカルチャーから得られた試料から核酸を精製する場合には、コンタミネーションおよび疑陽性の結果が生じるという危険性も加わる。
広く知られた分離精製方法の一つに、核酸を二酸化珪素、シリカポリマー、珪酸マグネシウム等の固相に吸着させ、これに引き続いて洗浄、脱着等の操作を行い分離精製する方法がある(例えば、特許文献1)。この方法は、分離性能として優れているが、簡便性、迅速性、自動化適性において充分とはいえず、またこの方法に用いられる器具及び装置は自動化及び小型化に不向きであり、さらに器具及び装置、特に吸着媒体を同一性能で工業的に大量生産することが困難であり、かつ取扱いが不便で、種々の形状に加工しがたい等の問題点がある。
また、簡便かつ効率よく核酸を分離精製する方法の一つとして、固相に核酸を吸着させる溶液及び固相から核酸を脱着させる溶液をそれぞれ用いて、表面に水酸基を有する有機高分子から成る固相に核酸を吸着及び脱着させることによって、核酸を分離精製する方法が提案されている(例えば、特許文献2、特許文献3)。
その他に、従来から知られている核酸分離精製法としては、遠心法によるもの、磁気ビーズを用いるもの、多孔膜を用いるものなどがある。また、これらを利用した核酸分離精製装置が提案されている。例えば、多孔膜を用いた核酸分離性装置としては、多孔膜を収容した多孔膜をラックに多数セットし、これに核酸を含む試料溶液を分注し、上記ラックの底部の周囲をシール材を介してエアチャンバーで密閉して内部を減圧し、全多孔膜チューブを同時に排出側より吸引し試料液を通過させて核酸を多孔膜に吸着し、その後、洗浄液および回収液を分注して、再び減圧吸引して洗浄・脱着するようにした自動装置が提案されている(例えば、特許文献4参照)。
特公平7−51065号公報 特開2003−128691号公報 特開2004−49108号公報 特許第2832586号公報
しかしながら、従来の核酸分離方法では、収率や純度の点で未だ充分ではなく、更なる改良が求められる。特に、多孔膜を用いた核酸分離方法では、多孔膜の定義が曖昧であり、多孔膜の種類やロット間によって、回収した核酸の収量や純度が不安定である、という問題があった。
従って、本発明の目的は、安定した量と純度の核酸を簡便かつ容易に回収することのできる核酸分離精製方法を提供することである。
本発明者らは上記課題を解決するために鋭意検討した結果、核酸を多孔膜に吸着及び脱着させる過程を含む核酸の分離精製方法において、検体中の核酸を核酸吸着性の多孔膜におけるIRスペクトルの強度比を規定することによって、核酸を含む検体から純度の高い核酸を安定した量で分離することができることを見出した。即ち、本発明は下の構成よりなるものである。
1.(1)核酸を含む試料溶液を、溶液が通過可能な核酸吸着性多孔膜に通過させて、核酸を吸着させる工程、(2)洗浄液を該核酸吸着性多孔膜に通過させて、核酸が吸着した状態で、該多孔膜を洗浄する工程、及び(3)回収液を該核酸吸着性多孔膜に通過させて、該多孔膜内から核酸を脱着させる工程を含む核酸の分離精製方法であって、該核酸吸着性多孔膜の赤外吸収スペクトル(以下IR)における3000〜3500cm-1ピークと900cm-1のピークの強度比が6以上であることを特徴とする核酸の分離精製方法。
2.上記核酸吸着性多孔膜のIR測定における13000〜3500cm-1ピークと900cm-1のピークの強度比が8以上である上記第1項に記載の核酸の分離精製方法。
3.上記核酸吸着性多孔膜が、イオン結合が関与しない弱い相互作用で核酸が吸着する、有機高分子からなる多孔膜である、上記第1項又は第2項に記載の核酸の分離精製方法。
4.上記酸吸着性多孔膜が、水酸基を有する有機高分子からなる多孔膜である、上記第1項〜第3項の何れかに記載の核酸の分離精製方法。
5.上記核酸吸着性多孔膜が、アセチル価の異なるアセチルセルロースの混合物を鹸化処理した多孔膜である、上記第1項〜第4項の何れかに記載の核酸の分離精製方法。
6.上記核酸吸着性多孔膜が、表裏非対称性の多孔膜である、上記第1項〜第5項の何れかに記載の核酸の分離精製方法。
7.核酸を含む試料溶液が、細胞又はウイルスを含む検体を核酸可溶化試薬で処理して得られた溶液に水溶性有機溶媒を添加した溶液である、上記第1項〜第6項の何れかに記載の核酸の分離精製方法。
8.核酸可溶化試薬が、カオトロピック塩、界面活性剤、タンパク質分解酵素、消泡剤及び還元剤のうちの少なくとも1種を含む溶液である、上記第7項に記載の核酸の分離精製方法。
9.水溶性有機溶媒が、メタノール、エタノール、プロパノール及びその異性体、又はブタノール及びその異性体の何れかのアルコールである、上記第7項または第8項に記載の核酸の分離精製方法。
10.洗浄液が、メタノール、エタノール、プロパノール及びその異性体、ならびにブタノール及びその異性体から選択される少なくとも1種の溶媒を20〜100質量%含む溶液である、上記第1項〜第9項の何れかに記載の核酸の分離精製方法。
11.回収液が、塩濃度が0.5M以下の溶液である、上記第1項〜第10項の何れかに記載の核酸の分離精製方法。
12.少なくとも二個の開口を有する容器内に、溶液が通過可能な核酸吸着性多孔膜を収容した核酸分離精製カートリッジを用いて行う上記第1項〜第11項のいずれかに記載の核酸の分離精製方法。
13.核酸を含む試料溶液、洗浄液又は回収液の通過を圧力発生装置を用いて行う上記第12項に記載の核酸の分離精製方法。
14.上記第1項〜第13項のいずれかに記載の核酸の分離精製方法を行うための装置。
15.上記第1項〜第13項のいずれかに記載の核酸の分離精製方法を行うための試薬キット。
本発明に従い、IRの測定における3000〜3500cm-1ピークと900cm-1のピークの強度比が6以上の核酸吸着性多孔膜を用いて核酸の吸着及び脱着を行うことにより、高収率で、高純度の核酸を回収することができる。
本発明の核酸分離精製方法は、(1)核酸を含む試料溶液を核酸吸着性多孔膜に通過させて、該多孔膜内に核酸を吸着させる工程、(2)該核酸吸着性多孔膜を、核酸が吸着した状態で、洗浄する工程、及び(3)回収液を、該核酸吸着性多孔膜に通過させて、該多孔膜内から核酸を脱着させる工程を少なくとも含むものである。
好ましくは、上記(1)、(2)及び(3)の各工程において、核酸を含む試料溶液、洗浄液又は回収液を、加圧状態で核酸吸着性多孔膜に通過させるものであり、より好ましくは、上記(1)、(2)及び(3)の各工程において、少なくとも二個の開口を有する容器内に該核酸吸着性多孔膜を収容した核酸分離精製カートリッジの一の開口に、核酸を含む試料溶液、洗浄液又は回収液を注入し、カートリッジの上記一の開口に結合された圧力差発生装置を用いて、該注入した各液を通過させ、他の開口より排出させるものである。核酸を含む試料溶液、洗浄液又は回収液を上記多孔膜に通過させることにより、装置をコンパクトに自動化することができ、好ましい。ポンプの加圧は、好ましくは10〜300kPa、より好ましくは40〜200kPaの程度で行われる。
更に、好ましくは、以下の工程で核酸を分離精製することができる。すなわち、
(a)核酸を含む試料溶液を、少なくとも二個の開口を有する容器内に、溶液が内部を通過可能な、核酸吸着性多孔膜を収容した核酸分離精製カートリッジの一の開口に注入する工程、
(b)核酸分離精製カートリッジの上記一の開口に結合された圧力差発生装置を用いて、核酸分離精製カートリッジ内を加圧状態にし、注入した核酸を含む試料溶液を、核酸吸着性多孔膜を通過させ、核酸分離精製カートリッジの他の開口より排出することによって、核酸吸着性多孔膜内に核酸を吸着させる工程、
(c)核酸分離精製カートリッジの上記一の開口に洗浄液を注入する工程、
(d)核酸分離精製カートリッジの上記一の開口に結合された圧力差発生装置を用いて核酸分離精製カートリッジ内を加圧状態にし、注入した洗浄液を、核酸吸着性多孔膜を通過させ、他の開口より排出することによって、核酸吸着性多孔膜を、核酸が吸着した状態で、洗浄する工程、
(e)核酸分離精製カートリッジの上記一の開口に回収液を注入する工程、
(f)核酸分離精製カートリッジの上記一の開口に結合された圧力差発生装置を用いて核酸分離精製カートリッジ内を加圧状態にし、注入した回収液を、核酸吸着性多孔膜を通過させ、他の開口より排出することによって、核酸吸着性多孔膜内から核酸を脱着させ、核酸分離精製カートリッジ容器外に排出する工程
を挙げることができる。
上記の核酸分離精製の工程では、最初の核酸を含む試料液を注入から核酸分離精製カートリッジ外に核酸を得るまでの工程を20分以内、好適な状況では2分以内で終了することが可能である。
また、上記の核酸分精製の工程では、1kbpから200kbp、特に20kbpから140kbpと広範囲に及ぶ分子量の核酸を回収することができる。すなわち、従来行なわれているガラスフィルターを用いたスピンカラム法(キアゲン社)に比べて、長鎖の核酸を回収できる。
また、上記の核酸分精製の工程では、紫外可視分光光度計での測定値(260nm/280nm)が、DNAの場合は1.6〜2.0、RNAの場合は1.8〜2.2となる純度を持つ核酸を回収することができ、不純物混入量の少ない高純度の核酸を定常的に得ることができる。さらには、紫外可視分光光度計での測定値(260nm/280nm)がDNAの場合は1.8付近、RNAの場合は2.0付近となる純度を持つ核酸を回収することができる。
また、上記工程において、圧力差発生装置としては、注射器、ピペッタ、あるいはペリスタポンプのような加圧が可能なポンプ等、或いは、エバポレーター等の減圧可能なものが挙げられる。これらの内、手動操作には注射器が、自動操作にはポンプが適している。また、ピペッタは片手操作が容易にできるという利点を有する。好ましくは、圧力差発生装置は、核酸分離精製カートリッジの一の開口に着脱可能に結合されている。
また、上記工程において、上記核酸分離精製カートリッジの他の開口に結合された圧力差発生装置を用いて核酸分離精製カートリッジ内を減圧状態にしても好適に実施できる。その他の方法として、核酸分離精製カートリッジに遠心力を作用させることによっても好適に実施することができる。
本発明において使用できる検体は、核酸を含むものであれば特に制限はなく、例えば診断分野においては、検体として採取された全血、血漿、血清、尿、便、***、唾液等の体液、あるいは植物(又はその一部)、動物(またはその一部)、細菌、ウイルスなど、あるいはそれらの溶解物およびホモジネートなどの生物材料が対象となる。
これらの検体は通常、細胞膜および核膜等を溶解して核酸を可溶化する試薬を含む水溶液(核酸可溶化試薬)で処理する。これにより細胞膜および核膜が溶解されて、核酸が水溶液内に分散し、核酸を含む試料溶液を得る。
細胞膜および核膜を溶解して、核酸を可溶化するためには、例えば、対象となる試料が全血の場合、(A)赤血球の除去、(B)各種タンパク質の除去、及び(C)白血球の溶解及び核膜の溶解が必要となる。(A)赤血球の除去及び(B)各種タンパク質の除去は、膜への非特異吸着および多孔膜の目詰まりを防ぐために、(C)白血球の溶解及び核膜の溶解は、抽出の対象である核酸を可溶化させるためにそれぞれ行われる。本発明の方法では、通常、この工程により核酸を可溶化することが必要である。
核酸を含む検体は、単一の核酸を含む検体でもよいし、異なる複数種類の核酸を含む検体でもよい。回収する核酸の種類は、DNAやRNA等、特に制限されない。検体の数は一つでも複数(複数の容器を用いての複数の検体の並列処理)であってもよい。回収する核酸の長さも特に限定されず、例えば、数bp〜数Mbpの任意の長さの核酸を使用することができる。取扱い上の観点からは、回収する核酸の長さは一般的には、数bp〜数百kbp程度である。本発明の核酸分離精製方法は、従来の簡易的な核酸分離精製方法より比較的長い核酸を迅速に取り出すことができ、好ましくは50kbp以上、より好ましくは70kbp、更に好ましくは100kbp以上の核酸を回収することに用いることがでる。
以下に、細胞膜および核膜を溶解し、検体から核酸を含む試料溶液を得る工程について説明する。
(a)細胞又はウイルスを含む検体を容器に注入する工程、
(b)上記容器に、カオトロピック塩、界面活性剤および核酸安定化剤を含む前処理液を添加し、検体を混合する工程、
(c)上記で得られた混合液に水溶性有機溶媒を添加する工程
を含むことを特徴とする。
細胞膜を溶解して核酸を可溶化するには、核酸可溶化試薬を用いる。核酸可溶化試薬としては、カオトロピック塩、界面活性剤、蛋白分解酵素、消泡剤および/又は核酸安定化剤を含む溶液が挙げられる。
上記核酸可溶化試薬中のカオトロピック塩濃度は、0.5M以上であることが好ましく、より好ましくは0.5M〜4M、さらに好ましくは、1M〜3Mである。上記カオトロピック塩としては、塩酸グアニジンが好ましいが、他のカオトロピック塩(イソチオシアン酸グアニジン、チオシアン酸グアニジン)を使用することもできる。また、これらの塩は単独または複数組み合わせて用いてもよい。
上記核酸可溶化試薬中の界面活性剤は、例えば、ノニオン界面活性剤、カチオン界面活性剤、アニオン界面活性剤、両性界面活性剤である。
本発明においてはノニオン界面活性剤をこのましく用いることができる。ノニオン界面活性剤は、ポリオキシエチレンアルキルフェニルエーテル系界面活性剤、ポリオキシエチレンアルキルエーテル系界面活性剤、脂肪酸アルカノールアミドを用いることができるが、好ましくは、ポリオキシエチレンアルキルエーテル系界面活性剤を用いることができる、さらに好ましくは、ポリオキシエチレンアルキルエーテル系界面活性剤は、POEデシルエーテル、POEラウリルエーテル、POEトリデシルエーテル、POEアルキレンデシルエーテル、POEソルビタンモノラウレ−ト、POEソルビタンモノオレエ−ト、POEソルビタンモノステアレ−ト、テトラオレイン酸ポリオキシエチレンソルビット、POEアルキルアミン、POEアセチレングリコ−ルから選択されるポリオキシエチレンアルキルエーテル系界面活性剤である。
また、カチオン界面活性剤も好ましく用いることができる。さらに好ましくは、カチオン界面活性剤は、セチルトリメチルアンモニウムプロミド、ドデシルトリメチルアンモニウムクロリド、テトラデシルトリメチルアンモニウムクロリド、セチルピリジニウムクロリドから選択されるカチオン界面活性剤である。これらの界面活性剤は、単独または複数組み合わせて用いてもよい。これら界面活性剤の核酸可溶化試薬溶液における濃度は0.1〜20質量%であることが好ましい。
また、核酸可溶化試薬には、タンパク質分解酵素を含むことにより、核酸の回収量及び回収効率が向上し、必要な核酸を含む検体の微量化及び迅速化が可能となる。
タンパク質分解酵素は、セリンプロテアーゼ、システインプロテアーゼ、金属プロテアーゼなどから、少なくとも1つのタンパク質分解酵素を好ましく用いることができる。また、タンパク質分解酵素は、複数種以上のタンパク質分解酵素の混合物も好ましく用いることができる。
セリンプロテアーゼとしては、特に限定されず、例えばプロテアーゼKなどを好ましく用いることができる。システインプロテアーゼとしては、特に限定されず、例えばパパイン、カテプシン類などを好ましく用いることができる。金属プロテアーゼとしては、特に限定されず、例えばカルボキシペプチターゼ等を好ましく用いることができる。
タンパク質分解酵素は、添加時の反応系全容積1mlあたり好ましくは0.001IU〜10IU、より好ましくは0.01IU〜1IUの濃度で用いることができる。
また、タンパク質分解酵素は、核酸分解酵素を含まないタンパク質分解酵素を好ましく用いることができる。また、安定化剤を含んだタンパク質分解酵素を好ましく用いることができる。安定化剤としては、金属イオンを好ましく用いることができる。具体的には、マグネシウムイオンが好ましく、例えば塩化マグネシウムなどの形で添加することができる。タンパク質分解酵素の安定化剤を含ませることにより、核酸の回収に必要なタンパク質分解酵素の微量化が可能となり、核酸の回収に必要なコストを低減することができる。タンパク質分解酵素の安定化剤は、反応系全量に対して好ましくは1〜1000mM、より好ましくは10〜100mMの濃度で含有することが好ましい。
タンパク質分解酵素は、予めカオトロピック塩、界面活性剤等のその他の試薬とともに混合されて1つの試薬として核酸の回収に供されても良い。
また、タンパク質分解酵素は、カオトロピック塩、界面活性剤等のその他の試薬とは個別の2つ以上の試薬として供されても良い。後者の場合、タンパク質分解酵素を含む試薬を先に検体と混合した後に、カオトロピック塩、界面活性剤を含む試薬と混合される。また、カオトロピック塩、界面活性剤を含む試薬を先に混合した後に、タンパク分解酵素を混合してもよい。
また、タンパク質分解酵素を検体または、検体とカオトロピック塩、界面活性剤を含む試薬との混合液に、タンパク質分解酵素保存容器から直接目薬状に滴下させることもできる。この場合、操作を簡便にすることができる。
核酸可溶化試薬は、乾燥された状態で供給されることも好ましい。また、凍結乾燥のように乾燥された状態のタンパク質分解酵素を予め含む容器を用いることができる。上記の、乾燥された状態で供給される核酸可溶化試薬、および乾燥された状態のタンパク質分解酵素を予め含む容器の両方を用いて、核酸を含む試料溶液を得ることもできる。
上記の方法で核酸を含む試料溶液を得る場合、核酸可溶化試薬およびタンパク質分解酵素の保存安定性が良く、核酸収量を変えずに操作を簡便にすることができる。
核酸可溶化試薬には、核酸安定化剤を共存させておくのが、より好ましい。検体中には、核酸を分解するヌクレアーゼ等が含まれていることがあり、核酸をホモジナイズすると、このヌクレアーゼが核酸に作用し、収量が激減することがある。これを回避する為、核酸可溶化液に、安定化剤を共存させることができる。安定化剤とは、ヌクレアーゼの活性を不活性化させる作用を有し、この作用の為に、検体中の核酸を安定に存在させることを目的としている。これにより、核酸の回収量及び回収効率が向上し、検体の微量化及び迅速化が可能となる。
ヌクレアーゼの不活性化剤としては、一般的に還元剤を好ましく用いることができる。還元剤としては、水素、ヨウ化水素、硫化水素、水素化アルミニウムリチウム、水素化ホウ素ナトリウム等の水素化化合物、アルカリ金属、マグネシウム、カルシウム、アルミニウム、亜鉛等の電気的陽性の大きい金属、またはそれのアマルガム、アルデヒド類、糖類、ギ酸、シュウ酸などの有機酸化物、等が上げられるが、メルカプト化合物が好ましい。メルカプト化合物は、N-アセチルシステイン、メルカプトエタノールや、アルキルメルカプタン等が上げられるが、特に限定されない。メルカプト化合物は、前処理液として、0.1〜20%の重量濃度で、より好ましくは、0.5〜15%で、用いることができる。
上記核酸可溶化試薬には、消泡剤を含有させることも好ましい。上記消泡剤としては、シリコン系消泡剤とアルコール系消泡剤の2つの成分が好ましく挙げられ、また、アルコール系消泡剤としては、アセチレングリコール系界面活性剤が好ましい。
消泡剤の具体例としては、シリコン系消泡剤(例えば、シリコーンオイル、ジメチルポリシロキサン、シリコーンエマルジョン、変性ポリシロキサン、シリコーンコンパウンドなど)、アルコール系消泡剤(例えば、アセチレングリコール、ヘプタノール、エチルエキサノール、高級アルコール、ポリオキシアルキレングリコールなど)、エーテル系消泡剤(例えば、ヘプチルセロソルブ、ノニルセロソルブ−3−ヘプチルコルビトールなど)、油脂系消泡剤(例えば、動植物油など)、脂肪酸系消泡剤(例えば、ステアリン酸、オレイン酸、パルミチン酸など)、金属セッケン系消泡剤(例えば、ステアリン酸アルミ、ステアリン酸カルシウムなど)、脂肪酸エステル系消泡剤(例えば、天然ワックス、トリブチルホスフェートなど)、リン燐酸エステル系消泡剤(例えば、オクチルリン酸ナトリウムなど)、アミン系消泡剤(例えば、ジアミルアミンなど)、アミド系消泡剤(例えば、ステアリン酸アミドなど)、その他の消泡剤(例えば、硫酸第二鉄、ボーキサイトなど)などが挙げられる。特に好ましくは、消泡剤として、シリコン系消泡剤とアルコール系消泡剤の2つの成分を組み合わせて使用することができる。また、アルコール系消泡剤としては、アセチレングリコール系界面活性剤を使用することも好ましい。
また、上記の核酸可溶化試薬は水溶性有機溶媒を含んでいても良い。この水溶性有機溶媒は、核酸可溶化試薬に含まれる各種試薬の溶解性を上げることを目的としており、アセトン、クロロホルム、ジメチルホルムアミド等上げられるが、アルコールが好ましい。アルコールは、1級アルコール、2級アルコール、3級アルコールのいずれでも良い。アルコールがメチルアルコール、エチルアルコール、プロピルアルコール及びその異性体、ブチルアルコール及びその異性体をより好ましく用いることができる。これらの水溶性有機溶媒は、単独または複数組み合わせて用いてもよい。これら水溶性有機溶媒の核酸可溶化試薬における濃度は1〜20質量%であることが好ましい。
上記の核酸可溶化試薬溶液は、好ましくはpH5〜10、より好ましくはpH6〜9、さらに好ましくはpH7〜8のものが用いられる。
細胞膜・核膜を溶解し、核酸を可溶化して、検体から核酸を含む試料溶液を得る工程について説明する。細胞膜および核膜を溶解し、核酸を可溶化して、検体から核酸を含む試料溶液を得る工程において、検体をホモジナイズ処理することが好ましい。これにより、自動化処理適正が向上することができる。ホモジナイズ処理としては、例えば、超音波処理、鋭利な突起物の使用、高速攪拌処理、微細空隙から押し出す処理、ガラスビーズを用いる処理等で行うことができる。
ホモジナイズした検体と、カオトロピック塩、界面活性剤、消泡剤及び/又は核酸安定化剤を含む核酸可溶化試薬とを混合する方法は、特に限定されない。混合する際、攪拌装置により30から3000rpmで1秒から3分間混合することが好ましい。これにより、分離精製される核酸収量を増加させることができる。または、転倒混和を5から30回行うことで混合することも好ましい。また、ピペッティング操作を、10から50回行うことによっても混合することができる、この場合、簡便な操作で分離精製される核酸収量を増加させることができる。
細胞膜・核膜を溶解し、核酸を可溶化して、検体から核酸を含む試料溶液を得る工程において、次に、上記混合液に、水溶性有機溶媒を添加することが好ましい。混合液に添加する水溶性有機溶媒は、アルコールを好ましく用いることができる。アルコールは、1級アルコール、2級アルコール、3級アルコールのいずれでもよく、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール及びその異性体を好ましく用いることができる。これら水溶性有機溶媒の核酸を含む試料溶液における最終濃度は、5〜90質量%であることが好ましい。
また、得られた核酸を含む試料溶液は、表面張力は0.05J/m2以下であることが好ましく、粘度は、1〜10000mPaであることが好ましく、比重は、0.8〜1.2であることが好ましい。こうした物性の溶液にすることで、次の工程において、試料溶液を核酸吸着性多孔膜に接触後に、試料溶液を除去しやすくする。
以下に、本発明で用いる核酸吸着性多孔膜および吸着工程について説明する。
本発明の核酸吸着性多孔膜は、溶液が内部を通過可能なものである。ここで「溶液が内部を通過可能」とは、膜の一方の面が接する空間と膜の他方の面が接する空間の間に圧力差を生じさせた場合に、高圧の空間側から低圧の空間側へと、膜の内部を溶液が通過することが可能であることを意味する。または、膜に遠心力を掛けた場合に、遠心力の方向に、膜の内部を溶液が通過することが可能であることを意味する。
本発明の核酸吸着性多孔膜は、多孔膜の赤外吸収スペクトル(IR)における3000〜3500cm-1ピークと900cm-1のピークの強度比が6以上であることを大きな特徴とする。本発明者は種々検討の結果、核酸吸着性多孔膜に存在する官能基が、核酸の分離に大きな影響を与える重要な因子となることを見出し、それを定量的に規定する値として、赤外吸収スペクトル(IR)が極めて有効であることを見出した。すなわち、官能基の情報を容易に得ることができるIRのピーク強度比を多孔膜の指標として規定し、IRスペクトルにおける3000〜3500cm-1ピークと900cm-1のピークの強度比が6以上の多孔膜を使用することにより、核酸の分離精製性能が格段に向上することを見出したものである。このピーク強度比が8以上である多孔膜を用いることが、核酸の分離精製の性能上、より好ましい。
一般的に、測定対象物におけるOH基の伸縮運動により、3000〜3500cm-1付近にピークが現れ、エーテル結合由来によって900cm-1付近にピークが現れる。従って、この2種類のピーク強度比を6以上とするためには、多孔膜を構成する官能基のうち、親水基であるOH基が豊富に存在していることが好ましい。
具体的には、IRの上記スペクトル強度比を6以上、好ましくは8以上にするには、酸やアルカリによる加水分解を行い、多孔膜のOH基を増やす方法、グロー放電やオゾン処理などの特殊な装置を用いることにより、OH基を付加する方法などが挙げられる。
本発明におけるIRの測定方法は、膜を凍結乾燥後、粉砕し、KBrと混合して錠剤を作成し、この錠剤について透過IRを測定することにより行うことができる。
本発明の核酸吸着性多孔膜は、イオン結合が実質的に関与しない相互作用で核酸が吸着する多孔性膜であることが好ましい。これは、多孔膜側の使用条件で「イオン化」していないことを意味し、環境の極性を変化させることで、核酸と多孔性膜が引き合うようになると推定される。これにより、分離性能に優れ、しかも洗浄効率よく、核酸を単離精製することができる。より効率的に核酸と多孔膜の親和性を上げるためには、多孔膜が親水基を有していることが好ましく、本発明のピーク強度を上げることは、多孔膜の親水基を増やすことを意味している。親水基を多く有する多孔膜において、環境の極性を変化させることで、核酸と多孔性膜の親水基の引きあう力を調整できる。
親水基とは、水との相互作用を持つことができる有極性の基(原子団)を指し、核酸の吸着に関与する全ての基(原子団)が当てはまる。親水基としては、水との相互作用の強さが中程度のもの(化学大事典、共立出版株式会社発行、「親水基」の項の「あまり親水性の強くない基」参照)が良く、例えば、水酸基、カルボキシル基、シアノ基、オキシエチレン基などを挙げることができる。本発明のピーク強度を達成する上では、好ましくは水酸基である。
ここで、親水基を有する多孔膜とは、多孔膜を形成する材料自体が、親水性基を有する多孔膜、または多孔膜を形成する材料を処理またはコーティングすることによって親水基を導入した多孔膜を意味する。多孔膜を形成する材料は有機物、無機物のいずれでも良い。例えば、多孔膜を形成する材料自体が親水基を有する有機材料である多孔膜、親水基を持たない有機材料の多孔膜を処理して親水基を導入した多孔膜、親水基を持たない有機材料の多孔膜に対し親水基を有する材料でコーティングして親水基を導入した多孔膜、多孔膜を形成する材料自体が親水基を有する無機材料である多孔膜、親水基を持たない無機材料の多孔膜を処理して親水基を導入した多孔膜、親水基を持たない無機材料の多孔膜に対し親水基を有する材料でコーティングして親水基を導入した多孔膜などを、使用することができるが、加工の容易性から、多孔膜を形成する材料は有機高分子などの有機材料を用いることが好ましい。
親水基を有する材料の多孔膜としては、水酸基を有する有機材料の多孔膜を挙げることができる。水酸基を有する有機材料の多孔膜としては、ポリヒドロキシエチルアクリル酸、ポリヒドロキシエチルメタアクリル酸、ポリビニルアルコール、アセチルセルロース、アセチル価の異なるアセチルセルロースの混合物などで形成された多孔膜を挙げることができる。特に多糖構造を有する有機材料の多孔膜を好ましく使用することができる。
水酸基を有する有機材料の多孔膜として、好ましくは、アセチル価の異なるアセチルセルロースの混合物から成る有機高分子の多孔膜を使用することができる。アセチル価の異なるアセチルセルロースの混合物として、トリアセチルセルロースとジアセチルセルロースの混合物、トリアセチルセルロースとモノアセチルセルロースの混合物、トリアセチルセルロースとジアセチルセルロースとモノアセチルセルロースの混合物、ジアセチルセルロースとモノアセチルセルロースの混合物を好ましく使用する事ができる。特にトリアセチルセルロースとジアセチルセルロースの混合物を好ましく使用することができる。トリアセチルセルロースとジアセチルセルロースの混合比(質量比)は、99:1〜1:99である事が好ましく、90:10〜50:50である事がより好ましい。
更に好ましい水酸基を有する有機材料としては、特開2003−128691号公報に記載の、アセチルセルロースの表面鹸化物が挙げられる。アセチルセルロースの表面鹸化物とは、アセチル価の異なるアセチルセルロースの混合物を鹸化処理したものであり、トリアセチルセルロースとジアセチルセルロース混合物の鹸化物、トリアセチルセルロースとモノアセチルセルロース混合物の鹸化物、トリアセチルセルロースとジアセチルセルロースとモノアセチルセルロース混合物の鹸化物、ジアセチルセルロースとモノアセチルセルロース混合物の鹸化物も好ましく使用することができる。より好ましくは、トリアセチルセルロースとジアセチルセルロース混合物の鹸化物を使用することである。トリアセチルセルロースとジアセチルセルロース混合物の混合比(質量比)は、99:1〜1:99であることが好ましい。更に好ましくは、トリアセチルセルロースとジアセチルセルロース混合物の混合比は、90:10〜50:50であることである。この場合、鹸化処理の程度(鹸化率)で固相表面の水酸基の量(密度)をコントロールすることができる。核酸の分離効率をあげるためには、水酸基の量(密度)が多い方が好ましい。鹸化処理により得られる有機材料の鹸化率(表面鹸化率)が約5%以上100%以下であることが好ましく、10%以上100%以下であることが更に好ましい。また、水酸基を有する有機材料の表面積を大きくするために、アセチルセルロースの多孔膜を鹸化処理することが好ましい。多孔膜は、表裏対称性の多孔膜であってもよいが、裏非対称性の多孔膜を好ましく使用することができる。
ここで、鹸化処理とは、アセチルセルロースを鹸化処理液(例えば水酸化ナトリウム水溶液)に接触させることを言う。これにより、鹸化処理液に接触したアセチルセルロースの部分に、再生セルロースとなり水酸基が導入される。こうして作成された再生セルロースは、本来のセルロースとは、結晶状態等の点で異なっている。本発明において、核酸吸着性多孔膜として、再生セルロースの多孔膜を用いることが特に好ましい。
また、鹸化率を変えるには、水酸化ナトリウムの濃度を変えて鹸化処理を行えば良い。
親水基を持たない有機材料の多孔膜に親水基を導入する方法として、ポリマー鎖内または側鎖に親水基を有すグラフトポリマー鎖を多孔膜に結合することができる。
有機材料の多孔膜にグラフトポリマー鎖を結合する方法としては、多孔膜とグラフトポリマー鎖とを化学結合させる方法と、多孔膜を起点として重合可能な二重結合を有する化合物を重合させグラフトポリマー鎖とする2つの方法がある。
まず、多孔膜とグラフトポリマー鎖とを化学結合させる方法においては、ポリマーの末端または側鎖に多孔膜と反応する官能基を有するポリマーを使用し、この官能基と、多孔膜の官能基とを化学反応させることでグラフトさせることができる。多孔膜と反応する官能基としては、多孔膜の官能基と反応し得るものであれば特に限定はないが、例えば、アルコキシシランのようなシランカップリング基、イソシアネート基、アミノ基、水酸基、カルボキシル基、スルホン酸基、リン酸基、エポキシ基、アリル基、メタクリロイル基、アクリロイル基等を挙げることができる。
ポリマーの末端、または側鎖に反応性官能基を有するポリマーとして特に有用な化合物は、トリアルコキシシリル基をポリマー末端に有するポリマー、アミノ基をポリマー末端に有するポリマー、カルボキシル基をポリマー末端に有するポリマー、エポキシ基をポリマー末端に有するポリマー、イソシアネート基をポリマー末端に有するポリマーが挙げられる。この時に使用されるポリマーとしては、核酸の吸着に関与する親水基を有するものであれば特に限定はないが、具体的には、ポリヒドロキシエチルアクリル酸、ポリヒドロキシエチルメタアクリル酸及びそれらの塩、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸、ポリメタクリル酸及びそれらの塩、ポリオキシエチレンなどを挙げることができる。
多孔膜を起点として重合可能な二重結合を有する化合物を重合させ、グラフトポリマー鎖とする方法は、一般的には表面グラフト重合と呼ばれる。表面グラフト重合法とは、プラズマ照射、光照射、加熱などの方法で基材表面上に活性種を与え、多孔膜と接するように配置された重合可能な二重結合を有する化合物を重合によって多孔膜と結合させる方法を指す。
基材に結合しているグラフトポリマー鎖を形成するのに有用な化合物は、重合可能な二重結合を有しており、核酸の吸着に関与する親水基を有するという、2つの特性を兼ね備えていることが必要である。これらの化合物としては、分子内に二重結合を有していれば、親水基を有するポリマー、オリゴマー、モノマーのいずれの化合物をも用いることができる。特に有用な化合物は親水基を有するモノマーである。
特に有用な親水基を有するモノマーの具体例としては、次のモノマーを挙げることができる。例えば、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、グリセロールモノメタクリレート等の水酸性基含有モノマーを特に好ましく用いることができる。また、アクリル酸、メタアクリル酸等のカルボキシル基含有モノマー、もしくはそのアルカリ金属塩及びアミン塩も好ましく用いることができる。
親水基を持たない有機材料の多孔膜に親水基を導入する別の方法として、親水基を有する材料をコーティングすることができる。コーティングに使用する材料は、核酸の吸着に関与する親水基を有するものであれば特に限定はないが、作業の容易さから有機材料のポリマーが好ましい。ポリマーとしては、ポリヒドロキシエチルアクリル酸、ポリヒドロキシエチルメタアクリル酸及びそれらの塩、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸、ポリメタクリル酸及びそれらの塩、ポリオキシエチレン、アセチルセルロース、アセチル価の異なるアセチルセルロースの混合物などを挙げることができるが、多糖構造を有するポリマーが好ましい。
また、親水基を持たない有機材料の多孔膜に、アセチルセルロースまたはアセチル価の異なるアセチルセルロースの混合物をコーティングした後に、コーティングしたアセチルセルロースまたはアセチル価の異なるアセチルセルロースの混合物を鹸化処理することもできる。この場合、鹸化率が約5%以上100%以下であることが好ましい。さらには、鹸化率が約10%以上100%以下であることが好ましい。
親水基を有する無機材料である多孔膜としては、シリカ化合物を含有する多孔膜を挙げることができる。シリカ化合物を含有する多孔膜としては、ガラスフィルターを挙げることができる。また、特許公報第3058342号に記載されているような、多孔質のシリカ薄膜を挙げることができる。この多孔質のシリカ薄膜とは、二分子膜形成能を有するカチオン型の両親媒性物質の展開液を基板上に展開した後、基板上の液膜から溶媒を除去することによって両親媒性物質の多層二分子膜薄膜を調整し、シリカ化合物を含有する溶液に多層二分子膜薄膜を接触させ、次いで前記多層二分子膜薄膜を抽出除去することで作製することができる。
親水基を持たない無機材料の多孔膜に親水基を導入する方法としては、多孔膜と親水基を持つグラフトポリマー鎖とを化学結合させる方法と、分子内に二重結合を有している親水基を有するモノマーを使用して、多孔膜を起点として、グラフトポリマー鎖を重合する2つの方法がある。
多孔膜と親水基を持つグラフトポリマー鎖とを化学結合させる場合は、グラフトポリマー鎖の末端の官能基と反応する官能基を無機材料に導入し、そこにグラフトポリマーを化学結合させる。また、分子内に二重結合を有している親水基を有するモノマーを使用して、多孔膜を起点として、グラフトポリマー鎖を重合する場合は、二重結合を有する化合物を重合する際の起点となる官能基を無機材料に導入する。
親水基を持つグラフトポリマー、および分子内に二重結合を有している親水基を有するモノマーとしては、上記、親水基を持たない有機材料の多孔膜に親水基を導入する方法において、記載した親水性基を有するグラフトポリマー、および分子内に二重結合を有している親水基を有するモノマーを好ましく使用することができる。
親水基を持たない無機材料の多孔膜に親水基を導入する別の方法として、親水基を有する材料をコーティングすることができる。コーティングに使用する材料は、核酸の吸着に関与する親水基を有するものであれば特に限定はないが、作業の容易さから有機材料のポリマーが好ましい。ポリマーとしては、ポリヒドロキシエチルアクリル酸、ポリヒドロキシエチルメタアクリル酸及びそれらの塩、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸、ポリメタクリル酸及びそれらの塩、ポリオキシエチレン、アセチルセルロース、アセチル価の異なるアセチルセルロースの混合物などを挙げることができる。
また、親水基を持たない無機材料の多孔膜に、アセチルセルロースまたは、アセチル価の異なるアセチルセルロースの混合物をコーティングした後に、コーティングしたアセチルセルロースまたは、アセチル価の異なるアセチルセルロースの混合物を鹸化処理することもできる。この場合、鹸化率が約5%以上であることが好ましい。さらには、鹸化率が約10%以上であることが好ましい。
親水基を持たない無機材料の多孔膜としては、アルミニウム等の金属、ガラス、セメント、陶磁器等のセラミックス、もしくはニューセラミックス、シリコン、活性炭等を加工して作製した多孔膜を挙げることができる。
上記の核酸吸着性多孔膜は、溶液が内部を通過可能であり、厚さが10μm〜500μmであることが好ましい。さらに好ましくは、厚さが50μm〜250μmである。洗浄がし易い点で、厚さが薄いほど好ましい。
上記の、溶液が内部を通過可能な核酸吸着性多孔膜は、最小孔径が0.22μm以上であることが好ましい。さらに好ましくは、最小孔径が0.5μm以上である。また、最大孔径と最小孔径の比が2以上である多孔膜を用いる事が好ましい。これにより、核酸が吸着するのに十分な表面積が得られるとともに、目詰まりし難い。さらに好ましくは、最大孔径と最小孔径の比が5以上である。
上記の、溶液が内部を通過可能な核酸吸着性多孔膜は、空隙率が50〜95%であることが好ましい。さらに好ましくは、空隙率が65〜80%である。また、バブルポイントが、0.1〜10kgf/cmである事が好ましい。さらに好ましくは、バブルポイントが、0.2〜4kgf/cmである。
上記の、溶液が内部を通過可能な核酸吸着性多孔膜は、圧力損失が、0.1〜100kPaであることが好ましい。これにより、過圧時に均一な圧力が得られる。さらに好ましくは、圧力損失が、0.5〜50kPaである。ここで、圧力損失とは、膜の厚さ100μmあたり、水を通過させるのに必要な最低圧力である。
上記の、溶液が内部を通過可能な核酸吸着性多孔膜は、25℃で1kg/cmの圧力で水を通過させたときの透水量が、膜1cmあたり1分間で1〜5000mLであることが好ましい。さらに好ましくは、25℃で1kg/cmの圧力で水を通過させたときの透水量が、膜1cmあたり1分間で5〜1000mLである。
上記の、溶液が内部を通過可能な核酸吸着性多孔膜は、多孔膜1mgあたりの核酸の吸着量が0.1μg以上である事が好ましい。さらに好ましくは、多孔膜1mgあたりの核酸の吸着量が0.9μg以上である。
上記の、溶液が内部を通過可能な核酸吸着性多孔膜は、一辺が5mmの正方形の多孔膜をトリフルオロ酢酸5mLに浸漬したときに、1時間以内では溶解しないが48時間以内に溶解するセルロース誘導体が、好ましい。また、一辺が5mmの正方形の多孔膜をトリフルオロ酢酸5mLに浸漬したときに1時間以内に溶解するが、ジクロロメタン5mLに浸漬したときには24時間以内に溶解しないセルロース誘導体がさらに好ましい。
核酸吸着性多孔膜中を、核酸を含む試料溶液を通過させる場合、試料溶液を一方の面から他方の面へと通過させることが、液を多孔膜へ均一に接触させることができる点で、好ましい。核酸吸着性多孔膜中を、核酸を含む試料溶液を通過させる場合、試料溶液を核酸吸着性多孔膜の孔径が大きい側から小さい側に通過させることが、目詰まりし難い点で好ましい。
核酸を含む試料溶液を核酸吸着性多孔膜を通過させる場合の流速は、液の多孔膜への適切な接触時間を得るために、膜の面積cmあたり、2〜1500μL/secである事が好ましい。液の多孔膜への接触時間が短すぎると十分な分離精製効果が得られず、長すぎると操作性の点から好ましくない。さらに、上記流速は、膜の面積cmあたり、5〜700μL/secである事が好ましい。
また、使用する溶液が内部を通過可能な核酸吸着性多孔膜は、1枚であってもよいが、複数枚を使用することもできる。複数枚の核酸吸着性多孔膜は、同一のものであっても、異なるものであって良い。
複数枚の核酸吸着性多孔膜は、無機材料の核酸吸着性多孔膜と有機材料の核酸吸着性多孔膜との組合せであっても良い。例えば、ガラスフィルターと再生セルロースの多孔膜との組合せを挙げることができる。また、複数枚の核酸吸着性多孔膜は、無機材料の核酸吸着性多孔膜と有機材料の核酸非吸着性多孔膜との組合せであってもよい、例えば、ガラスフィルターと、ナイロンまたはポリスルホンの多孔膜との組合せを挙げることができる。
少なくとも二個の開口を有する容器内に、上記のような溶液が内部を通過可能な核酸吸着性多孔膜を収容した核酸分離精製カートリッジを好ましく使用することができる。また、少なくとも二個の開口を有する容器内に、上記のような溶液が内部を通過可能な核酸吸着性多孔膜を複数枚収容した核酸分離精製カートリッジを好ましく使用することができる。この場合、少なくとも二個の開口を有する容器内に収容される複数枚の核酸吸着性多孔膜は、同一のものであっても、異なるものであって良い。
核酸分離精製カートリッジは、少なくとも二個の開口を有する容器内に、上記のような溶液が内部を通過可能な核酸吸着性多孔膜を収容する以外、その他の部材を収容していないことが好ましい。上記の容器の材料としては、ポリプロピレン、ポリスチレン、ポリカーボネート、ポリ塩化ビニルなどのプラスチックを使用することができる。また、生分解性の材料も好ましく使用することができる。また、上記の容器は透明であっても、着色してあっても良い。
核酸分離精製カートリッジとして、個々の核酸分離精製カートリッジを識別する手段を備えている核酸分離精製カートリッジを使用する事ができる。個々の核酸分離精製カートリッジを識別する手段としては、バーコード、磁気テープなどが挙げられる。
また、少なくとも二個の開口を有する容器内から核酸吸着性多孔膜を容易に取り出す事が可能になっている構造を有した核酸分離精製カートリッジを使用することもできる。
以下、洗浄工程について説明する。
洗浄を行うことにより、核酸の回収量及び純度が向上し、必要な核酸を含む検体の量を微量とすることができる。また、洗浄や回収操作を自動化することによって、操作が簡便かつ迅速に行うことが可能になる。洗浄工程は、迅速化のためには1回の洗浄で済ませてもよく、また純度がより重要な場合には複数回洗浄を繰り返すことが好ましい。
洗浄工程において、洗浄液は、チューブ、ピペット、又は自動注入装置、もしくはこれらと同じ機能をもつ供給手段を使用して、核酸吸着性多孔膜を収容した核酸分離精製カートリッジへ供給される。供給された洗浄液は、核酸分離精製カートリッジの一の開口(核酸を含む試料溶液を注入した開口)から供給され、該開口に結合された圧力差発生装置(例えばスポイド、注射器、ポンプ、パワーピペットなど)を用いて核酸分離精製カートリッジ内を加圧状態にして核酸吸着性多孔膜を通過させ、一の開口と異なる開口より排出させることができる。また、洗浄液を一の開口から供給し、同じ一の開口より排出させることもできる。さらには、核酸分離精製カートリッジの核酸を含む試料溶液を供給した一の開口と異なる開口より洗浄液を供給し、排出させることも可能である。しかしながら、核酸分離精製カートリッジの一の開口から供給し、核酸吸着性多孔膜を通過させ、一の開口と異なる開口より排出さる方法が、洗浄効率が優れてより好ましい。
洗浄工程における洗浄液の液量は、2μl/mm以上が好ましい。洗浄液量が多量であれば洗浄効果は向上する。しかし、200μl/mm以下とすることで、操作性を保ち、試料の流出を抑止することができ、好ましい。
洗浄工程において、洗浄液を核酸吸着性多孔膜を通過させる場合の流速は、膜の単位面積(cm)あたり、2〜1500μL/secであることが好ましく、5〜700μL/secであることがより好ましい。通過速度を下げて時間を掛ければ洗浄がそれだけ十分に行なわれることになる。しかし、前記の範囲とすることで、洗浄効率を落とすことなく、核酸の分離精製操作の迅速化でき、好ましい。
洗浄工程において、洗浄液の液温は4〜70℃であることが好ましい。さらには、洗浄液の液温を室温とすることがより好ましい。また、洗浄工程において、洗浄工程と同時にその核酸分離精製カートリッジに器械的な振動や超音波による攪拌を与えることもできる。または遠心分離を行うことにより洗浄することもできる。
洗浄工程において、洗浄液は、水溶性有機溶媒及び/または水溶性塩を含んでいる溶液であることが好ましい。洗浄液は、核酸吸着性多孔膜に核酸と共に吸着した試料溶液中の不純物を洗い流す機能を有する必要がある。そのためには、核酸吸着性多孔膜から核酸は脱着させないが不純物は脱着させる組成であることが必要である。この目的には、アルコール等の水溶性有機溶媒が核酸に難溶性であるので、核酸を保持したまま核酸以外の成分を脱着させるのに適している。また、水溶性塩を添加することにより、核酸の吸着効果が高まるので、不純物及び不要成分の選択的除去作用が向上する。
洗浄液に含まれる水溶性有機溶媒としては、アルコール、アセトン等を用いることができ、アルコールが好ましい。アルコールとしては、メタノール、エタノール、イソプロパノール、n−イソプロパノール、ブタノール、アセトンなどを用いることができ、中でもエタノ―ルを用いることが好ましい。これらのアルコールは複数種類を使用することもできる。洗浄液中に含まれる水溶性有機溶媒の量は、20〜100質量%であることが好ましく、40〜80質量%であることがより好ましい。
一方、洗浄液に含まれる水溶性塩は、ハロゲン化物の塩であることが好ましく、中でも塩化物が好ましい。また、水溶性塩は、一価または二価のカチオンであることが好ましく、特にアルカリ金属塩、アルカリ土類金属塩が好ましく、中でもナトリウム塩及びカリウム塩が好ましく、ナトリウム塩が最も好ましい。
水溶性塩が洗浄液中に含まれる場合、その濃度は10mM/L以上であることが好ましく、その上限は不純物の溶解性を損なわない範囲であれば特に問わないが、1M/L以下であることが好ましく、0.1M/L以下であることがより好ましい。更に好ましくは、水溶性塩が塩化ナトリウムであり、特に、塩化ナトリウムが20mM/L以上含まれていることが好ましい。
洗浄液は、カオトロッピック物質を含んでいないことが好ましい。それによって、洗浄工程に引き続く回収工程にカオトロピック物質が混入する可能性を減らすことができる。回収工程時に、カオトロピック物質が混入すると、しばしばPCR反応等の酵素反応を阻害するので、後の酵素反応等を考慮すると洗浄液にカオトロッピク物質を含まないことが理想的である。また、カオトロピック物質は、腐食性で有害であるので、この点でもカオトロピック物質を用いないで済むことは、実験者にとっても試験操作の安全上極めて有利である。ここで、カオトロピック物質とは、前記したように尿素、グアニジン塩、イソチアン酸ナトリウム、ヨウ化ナトリウム、ヨウ化カリウムなどである。
従来、核酸分離精製工程における洗浄工程の際、洗浄液がカートリジなどの容器に対する濡れ性が高いため、しばしば洗浄液が容器中に残留することになり、洗浄工程に続く回収工程への洗浄液の混入して核酸の純度の低下や次工程における反応性の低下などの原因となっている。したがって、カートリッジなどの容器を用いて核酸の吸着及び脱着を行う場合、吸着、洗浄時に用いる液、特に洗浄液が、次の工程に影響を及ぼさないように、カートリッジ内に洗浄残液が残留しないことは重要である。
したがって、洗浄工程における洗浄液が次工程の回収液に混入することを防止して、洗浄液のカートリッジ内への残留を最小限に留めるため、洗浄液の表面張力を0.035J/m2未満が好ましい。表面張力が低いと、洗浄液とカートリッジの濡れ性が向上し、残留する液量を抑えることができる。
しかし、洗浄効率を上げる為に、水の割合を増やすことができるが、この場合、洗浄液の表面張力は上昇し、残留する液量が増える。洗浄液の表面張力が0.035J/m2以上の場合は、カートリッジの撥水性を高めることで、残留する液量を抑えることができる。カートリッジの撥水性を高めることで、液滴を形成させ、その液滴が流れ落ちることによって残留する液量が抑制できる。撥水性を高める方法としては、カートリッジ表面にシリコン等の撥水剤をコートするか、カートリッジ成型時にシリコン等の撥水剤を練り込む等の手段があるが、これに限らない。
本発明に係る核酸吸着性多孔膜を利用して洗浄工程を簡素化することができる。(1)洗浄液が核酸吸着性多孔膜を通過する回数を1回としてもよい。(2)洗浄工程を室温でできる。(3)洗浄後、直ちに回収液をカートリッジに注入することもできる。(4)前記(1)、(2)及び(3)のいずれか1つもしくは2つ以上組み合わせることも可能である。従来法においては、洗浄液中に含まれる有機溶媒を迅速に取り除くためには、しばしば乾燥工程を必要としたが、本発明に用いる核酸吸着性多孔膜は薄膜であるために乾燥工程を省略できる。
従来、核酸分離精製方法において、洗浄工程の際、しばしば洗浄液が飛散し他に付着することによって、試料のコンタミネーション(汚染)が起きることが問題となっている。洗浄工程におけるこの種のコンタミネーションは、二個の開口を有する容器内に核酸吸着性多性孔膜を収容した核酸分離精製カートリッジと廃液容器の形状とを工夫することによって抑止することができる。
以下に核酸吸着性多性孔膜から核酸を脱着させて回収する工程について示す。
回収工程において、回収液は、チューブ、ピペット、又は自動注入装置、もしくはこれらと同じ機能をもつ供給手段を使用して、核酸吸着性多孔膜を装着した核酸分離精製カートリッジへ供給される。回収液は、核酸分離精製カートリッジの一の開口(核酸を含む試料溶液を注入した開口)から供給され、該開口に結合された圧力差発生装置(例えばスポイド、注射器、ポンプ、パワーピペットなど)を用いて核酸分離精製カートリッジ内を加圧状態にして核酸吸着性多孔膜を通過させ、一の開口と異なる開口より排出させることができる。また、回収液を一の開口から供給し、同じ一の開口より排出させることもできる。さらには、核酸分離精製カートリッジの核酸を含む試料溶液を供給した一の開口と異なる開口より回収液を供給し、排出させることも可能である。しかしながら、核酸分離精製カートリッジの一の開口から供給し、核酸吸着性多孔膜を通過させ、一の開口と異なる開口より排出さる方法が回収効率が優れてより好ましい。
検体から調整した核酸を含む試料溶液の体積に対して、回収液の体積を調整して核酸の脱着を行うことができる。分離精製された核酸を含む回収液量は、そのとき使用する検体量による。一般的によく使われる回収液量は数10から数100μlであるが、検体量が極微量である時や、逆に大量の核酸を分離精製したい場合には回収液量は1μlから数10mlの範囲で変える事ができる。
回収液としては好ましくは精製蒸留水、Tris/EDTAバッファ等が使用できる。また、回収した核酸をPCR(ポリメラーゼ連鎖反応)に供する場合、PCR反応において用いる緩衝溶液 (例えば、KCl50mmol/L、Tris-HCl10mmol/L、MgCl2 1.5mmol/Lを最終濃度とする水溶液)を用いることもできる。
回収液のpHは、pH2〜11であることが好ましい。さらには、pH5〜9であることが好ましい。また特にイオン強度と塩濃度は吸着核酸の溶出に効果を及ぼす。回収液は、290mmol/L以下のイオン強度であることが好ましく、さらには、90mmol/L以下の塩濃度であることが好ましい。こうすることで、核酸の回収率が向上し、より多くの核酸を回収できることができる。回収される核酸は1本鎖でもよく、2本鎖でも良い。
回収液の体積を当初の核酸を含む試料溶液の体積と比較して少なくすることによって、濃縮された核酸を含む回収液を得ることができる。好ましくは、(回収液体積):(試料溶液体積)=1:100〜99:100であり、更に好ましくは、(回収液体積):(試料溶液体積)=1:10〜9:10である。これにより核酸分離精製後工程において濃縮のための操作をすることなく、簡単に核酸を濃縮できる。これらの方法により検体よりも核酸が濃縮されている核酸溶液を得る方法を提供できる。
また別の方法としては、回収液の体積を当初の核酸を含む試料溶液よりも多い条件で核酸の脱着を行うことにより、希望の濃度の核酸を含む回収液を得ることができ、次工程(PCRなど)に適した濃度の核酸を含む回収液を得ることができる。好ましくは、(回収液体積):(試料溶液体積)=1:1〜50:1、更に好ましくは、 (回収液体積):(試料溶液体積)=1:1〜5:1にすることができる。これにより核酸分離精製後に濃度調整をする煩雑さがなくなるというメリットを得られる。更に、十分量の回収液を使用することにより、多孔膜からの核酸回収率の増加を図ることができる。
また、目的に応じて回収液の温度を変化させることで簡便に核酸を回収することができる。例えば、回収液の温度を0〜10℃にして多孔膜からの核酸の脱着を行うことで、酵素による分解を防止する何らかの試薬や特別な操作を加えることなく核酸分解酵素の働きを抑制して、核酸の分解を防ぎ、簡便に、効率よく核酸溶液を得ることができる。
また、回収液の温度を10〜35℃とした場合、一般的な室温で核酸の回収を実施することが出来、複雑な工程を必要とせずに核酸を脱着させて分離精製することができる。
また別の方法としては、回収液の温度を高温、例えば35〜70℃することで、多孔膜からの核酸の脱着を煩雑な操作を経ず簡便に高い回収率で実施することができる
回収液の注入回数は限定されるものではなく、1回でも複数回でもよい。通常、迅速、簡便に核酸を分離精製する場合は、1回の回収で実施するが、大量の核酸を回収する場合等複数回にわたり回収液を注入する事がある。
回収工程においては、核酸の回収液をその後の後工程に使用できる組成にしておくことが可能である。分離精製された核酸は、しばしばPCR(ポリメラーゼチェインリアクション)法により増幅される。この場合、分離精製された核酸溶液はPCR法に適したバッファー液で希釈する必要がある。本方法による回収工程において、回収液にPCR法に適したバッファー液を用いることで、その後のPCR工程へ簡便、迅速に移行することができる。
また、回収工程において、核酸の回収液に回収した核酸の分解を防ぐための安定化剤を添加しておくことも可能である。安定化剤としては、抗菌剤、抗カビ剤や核酸分解抑制剤などを添加することができる。核酸分解酵素の阻害剤としてはEDTAなどが上げられる。また別の実施態様として、回収容器にあらかじめ安定化剤を添加しておくこともできる。
また、回収工程で用いられる回収容器には特に限定はないが、260nmの吸収が無い素材で作製された回収容器を用いることができる。この場合、回収した核酸溶液の濃度を、他の容器に移し替えずに測定できる。260nmに吸収のない素材は、例えば石英ガラス等が挙げられるがそれに限定されるものではない。
上記の、少なくとも二個の開口を有する容器内に核酸吸着性多孔膜を収容した核酸分離精製カートリッジと圧力発生装置を用いて、核酸を含む検体から核酸を分離精製する工程は、工程を自動で行う自動装置を用いて行うことが好ましい。それにより、操作が簡便化および迅速化するだけでなく、作業者の技能によらず一定の水準の、核酸を得ることが可能になる。
以下に、少なくとも二個の開口を有する容器内に核酸吸着性多孔膜を収容した核酸分離精製カートリッジと圧力発生装置を用いて、核酸を含む検体から核酸を分離精製する工程を自動で行う自動で行う自動装置の例を示すが、自動装置はこれの限定されるものではない。
自動装置は、溶液が内部を通過可能な、核酸吸着性多孔膜を収容した核酸分離精製カートリッジを用い、該核酸分離精製カートリッジに核酸を含む試料液を注入し加圧して該試料液中の核酸を前記核酸吸着性多孔膜に吸着させた後、前記核酸分離精製カートリッジに洗浄液を分注し加圧して不純物を除去した後、前記核酸分離精製カートリッジに、回収液を分注し核酸吸着性多孔膜に吸着した核酸を脱着して回収液とともに回収する、分離精製動作を自動的に行う核酸分離精製装置であって、前記核酸分離精製カートリッジ、前記試料液および洗浄液の排出液を収容する廃液容器および前記核酸を含む回収液を収容する回収容器を保持する搭載機構と、前記核酸分離精製カートリッジに加圧エアを導入する加圧エア供給機構と、前記核酸分離精製カートリッジに洗浄液および回収液を分注する分注機構とを備えてなることが好ましい。
以下、実施例により本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
(1)多孔膜の鹸化処理
アセチル化の異なるアセチルセルロースの混合物として、トリアセチルセルロースとジアセチルセルロースの混合比が6:4の多孔膜に対し、アルカリの濃度を変える(0〜1.0Nアルカリ水溶液による鹸化処理)ことで、鹸化の程度を変えた多孔膜(膜径=7mm、膜厚=70μm、平均孔径=2.5μm)を作成する。
(2)多孔膜のIR測定
上記、鹸化の程度を変えた膜について、下記の条件にてそのIR測定を行う。IR測定は、サーモニコレージャパン製の装置を用いて行った。
作成した多孔膜と、IR測定データの3000〜3500cm-1/900cm-1の強度比について、表1に示す。
Figure 2005270034
(3)核酸精製カートリッジの作成
内径7mm、核酸吸着性多孔膜を収容する部分を持つ核酸分離精製カートリッジ用容器をハイインパクトポリスチレンで作成する。上記、鹸化の程度を変えた多孔膜を、核酸分離精製カートリッジ用容器の核酸吸着性多孔膜を収容する部分に収容し、核酸分離精製カートリッジとする。
(4)核酸可溶化試薬及び洗浄液の調製
表2に示す処方の核酸可溶化試薬溶液及び洗浄液を調製した。
Figure 2005270034
(5)DNA分離精製操作
人全血検体200μlに、実施例1で作製した核酸可溶化試薬200μlと、プロテアーゼ(SIGMA社製、"Protease“ Type XXIV Bacterial)溶液20μlを添加して、60℃で10分間インキュベートする。インキュベート後、エタノール200μlを加え攪拌することで、核酸を含む試料溶液を作製する。該核酸を含む試料溶液を、上記(1)で作製した、アセチル化の異なるアセチルセルロースの混合物の鹸化物の核酸吸着性多孔膜を備えた、核酸分離精製カートリッジの一の開口に注入し、続いて上記一の開口に圧力発生装置を結合し、核酸分離精製カートリッジ内を加圧状態にし、注入した該核酸を含む試料溶液を、上記核酸吸着性多孔膜に通過させることで、上記核酸吸着性多孔膜に接触させ、核酸分離精製カートリッジの他の開口より排出する。続いて、上記核酸分離精製カートリッジの上記一の開口に、実施例1で作製した洗浄液を注入し、上記核酸分離精製カートリッジの上記一の開口に圧力発生装置を結合し、核酸分離精製カートリッジ内を加圧状態にし、注入した洗浄液を、上記核酸吸着性多孔膜に通過させ、他の開口より排出する。この操作を3回繰り返す。続いて、上記核酸分離精製カートリッジの上記一の開口に回収液を注入し、上記核酸分離精製カートリッジの上記一の開口に圧力発生装置を結合して、核酸分離精製カートリッジ内を加圧状態にし、注入した回収液を、上記核酸吸着性多孔膜に通過させ、他の開口より排出し、この液を回収する。
(6)DNAの回収量の確認
回収液を用いてUV測定を行い、260nmの吸光度(OD)から回収液中に含まれるDNAの量を求める。表3に、実施例1で測定した値を示す。
Figure 2005270034
表3の結果から、多孔膜のIRスペクトルデータにおける3000〜3500cm-1/900cm-1の強度比が、6以上、好ましくは、8以上である膜を用いると、十分量のDNAが回収できることがわかる。
一方、この強度比が、6未満の膜を用いると、その場合のDNA収量は激減してしまうことが明らかである。

Claims (13)

  1. (1)核酸を含む試料溶液を、溶液が通過可能な核酸吸着性多孔膜に通過させて、核酸を吸着させる工程、(2)洗浄液を該核酸吸着性多孔膜に通過させて、核酸が吸着した状態で、該多孔膜を洗浄する工程、及び(3)回収液を該核酸吸着性多孔膜に通過させて、該多孔膜内から核酸を脱着させる工程を含む核酸の分離精製方法であって、該核酸吸着性多孔膜の赤外吸収スペクトル(以下IR)における3000〜3500cm-1ピークと900cm-1のピークの強度比が6以上であることを特徴とする核酸の分離精製方法。
  2. 上記核酸吸着性多孔膜のIR測定における13000〜3500cm-1ピークと900cm-1のピークの強度比が8以上である請求項1に記載の核酸の分離精製方法。
  3. 上記核酸吸着性多孔膜が、イオン結合が関与しない弱い相互作用で核酸が吸着する、有機高分子からなる多孔膜である、請求項1又は2に記載の核酸の分離精製方法。
  4. 上記酸吸着性多孔膜が、水酸基を有する有機高分子からなる多孔膜である、請求項1〜3の何れかに記載の核酸の分離精製方法。
  5. 上記核酸吸着性多孔膜が、アセチル価の異なるアセチルセルロースの混合物の多孔膜を鹸化処理したものである、請求項1〜4の何れかに記載の核酸の分離精製方法。
  6. 上記核酸吸着性多孔膜が、表裏非対称性の多孔膜である、請求項1〜5の何れかに記載の核酸の分離精製方法。
  7. 核酸を含む試料溶液が、細胞又はウイルスを含む検体を核酸可溶化試薬で処理して得られた溶液に水溶性有機溶媒を添加した溶液である、請求項1〜6の何れかに記載の核酸の分離精製方法。
  8. 核酸可溶化試薬が、カオトロピック塩、界面活性剤、タンパク質分解酵素、消泡剤及び還元剤のうちの少なくとも1種を含む溶液である、請求項7に記載の核酸の分離精製方法。
  9. 水溶性有機溶媒が、メタノール、エタノール、プロパノール及びその異性体、ならびにブタノール及びその異性体から選択される少なくとも1種のアルコールである、請求項7または8に記載の核酸の分離精製方法。
  10. 洗浄液が、メタノール、エタノール、プロパノール及びその異性体、ならびにブタノール及びその異性体から選択される少なくとも1種の溶媒を20〜100質量%含む溶液である、請求項1〜9の何れかに記載の核酸の分離精製方法。
  11. 回収液が、塩濃度が0.5M以下の溶液である、請求項1〜10の何れかに記載の核酸の分離精製方法。
  12. 請求項1〜11のいずれかに記載の核酸の分離精製方法を行うための装置。
  13. 請求項1〜11のいずれかに記載の核酸の分離精製方法を行うための試薬キット。
JP2004090391A 2004-03-25 2004-03-25 核酸の分離精製方法 Pending JP2005270034A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004090391A JP2005270034A (ja) 2004-03-25 2004-03-25 核酸の分離精製方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004090391A JP2005270034A (ja) 2004-03-25 2004-03-25 核酸の分離精製方法

Publications (1)

Publication Number Publication Date
JP2005270034A true JP2005270034A (ja) 2005-10-06

Family

ID=35170333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004090391A Pending JP2005270034A (ja) 2004-03-25 2004-03-25 核酸の分離精製方法

Country Status (1)

Country Link
JP (1) JP2005270034A (ja)

Similar Documents

Publication Publication Date Title
JP4956727B2 (ja) Rna分離精製方法
JP2006094857A (ja) 核酸分離精製方法
JP2005154416A (ja) 核酸の分離精製方法、核酸分離精製カートリッジ、及び核酸分離精製キット
JP4568614B2 (ja) 核酸の分離精製方法
JP2007117084A (ja) 核酸抽出法
JP2006238854A (ja) 核酸の分離精製方法
JP2005192558A (ja) 核酸分離精製用の核酸吸着性多孔性膜及び核酸分離精製装置
JP2008220380A (ja) 核酸の分離精製方法
JP2005272397A (ja) 核酸の分離精製方法
JP2006271201A (ja) Rnaの選択的分離精製方法
JP4284250B2 (ja) 核酸分離精製方法
JP4825528B2 (ja) 核酸の分離精製方法
JP2005118020A (ja) 核酸の分離精製方法
JP2005137298A (ja) 核酸の分離精製方法
JP2005151977A (ja) 核酸の分離精製方法
JP2005270034A (ja) 核酸の分離精製方法
JP2005154299A (ja) 核酸の分離精製方法
JP2005270033A (ja) 核酸の分離精製方法
JP2006025724A (ja) 核酸の分離精製方法
JP2005162659A (ja) 核酸の分離精製方法
JP2005118018A (ja) 核酸の分離精製方法
JP2006217839A (ja) 核酸の分離精製方法
JP4825527B2 (ja) 核酸の分離精製方法
JP2005143417A (ja) 核酸の分離精製方法
JP2005185161A (ja) 核酸の分離精製方法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060613

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071108

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090805