JP2005268527A - Manufacturing method of conductive paste and laminated ceramic capacitor - Google Patents

Manufacturing method of conductive paste and laminated ceramic capacitor Download PDF

Info

Publication number
JP2005268527A
JP2005268527A JP2004078704A JP2004078704A JP2005268527A JP 2005268527 A JP2005268527 A JP 2005268527A JP 2004078704 A JP2004078704 A JP 2004078704A JP 2004078704 A JP2004078704 A JP 2004078704A JP 2005268527 A JP2005268527 A JP 2005268527A
Authority
JP
Japan
Prior art keywords
fine particles
conductive paste
resin
conductive
ceramic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004078704A
Other languages
Japanese (ja)
Other versions
JP4495491B2 (en
Inventor
Hideyuki Takahashi
英之 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2004078704A priority Critical patent/JP4495491B2/en
Publication of JP2005268527A publication Critical patent/JP2005268527A/en
Application granted granted Critical
Publication of JP4495491B2 publication Critical patent/JP4495491B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of conductive paste and a laminated ceramic capacitor capable of easily manufacturing even though an internal electrode layer has a thickness less than 1 μm by coating the paste on a ceramic green sheet, in the manufacture of the laminated ceramic capacitor. <P>SOLUTION: The conductive paste comprises conductive fine particles, binder resin and organic solvent while the conductive fine particles are constituted of substrate fine particles consisting of a resin and a metallic layer formed on the surface of the substrate fine particles. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、セラミックグリーンシートに塗工して、厚さ1μm以下の内部電極層であって
も容易に作製することができる導電ペースト及び積層セラミックコンデンサの製造方法に
関する。
The present invention relates to a method for producing a conductive paste and a multilayer ceramic capacitor that can be easily produced even when an internal electrode layer having a thickness of 1 μm or less is applied to a ceramic green sheet.

積層型の電子部品、例えば、積層セラミックコンデンサは、一般に次のような工程を経て
製造される。
まず、ポリビニルブチラール樹脂やポリ(メタ)アクリル酸エステル系樹脂等のバインダ
ー樹脂を有機溶剤に溶解した溶液に可塑剤、分散剤等を添加した後、セラミック原料粉末
を加え、ボールミル等により均一に混合し、脱泡後に一定粘度を有するセラミックスラリ
ー組成物を得る。得られたスラリー組成物をドクターブレード、リバースロールコーター
等を用いて、離型処理したポリエチレンテレフタレートフィルム又はSUSプレート等の
支持体面に流延成形する。これを加熱等により溶剤等の揮発分を溜去させた後、支持体か
ら剥離してセラミックグリーンシートを得る。
A multilayer electronic component, for example, a multilayer ceramic capacitor, is generally manufactured through the following steps.
First, after adding a plasticizer, a dispersing agent, etc. to a solution in which a binder resin such as polyvinyl butyral resin or poly (meth) acrylic ester resin is dissolved in an organic solvent, ceramic raw material powder is added and mixed uniformly by a ball mill or the like. A ceramic slurry composition having a constant viscosity after defoaming is obtained. The obtained slurry composition is cast-molded on a support surface such as a polyethylene terephthalate film or a SUS plate subjected to a release treatment using a doctor blade, a reverse roll coater or the like. After the volatile matter such as a solvent is distilled off by heating or the like, it is peeled off from the support to obtain a ceramic green sheet.

次いで、得られたセラミックグリーンシート上に内部電極となる導電ペーストをスクリー
ン印刷等により塗布したものを交互に複数枚積み重ね、加熱圧着して積層体を得、この積
層体中に含まれるバインダー成分等を熱分解して除去する処理、いわゆる脱脂処理を行っ
た後、焼成して得られるセラミック焼成物の端面に外部電極を焼結する工程を経て積層セ
ラミックコンデンサが得られる。
Next, a plurality of sheets obtained by alternately applying a conductive paste serving as an internal electrode on the obtained ceramic green sheet by screen printing or the like are stacked and heat-pressed to obtain a laminate, and a binder component contained in the laminate, etc. A multilayer ceramic capacitor is obtained through a process of thermally decomposing and removing a so-called degreasing treatment and then sintering an external electrode on the end face of the fired ceramic product obtained by firing.

このとき、内部電極を形成するのに用いる導電ペーストとしては、通常、主に電極を構成
するパラジウムやニッケル等からなる導電性微粒子と、塗布するセラミックグリーンシー
ト表面に適合するα−テルピネオール等の有機溶剤と、エチルセルロース等のバインダー
樹脂とで構成される(例えば、特許文献1及び特許文献2)。
At this time, as the conductive paste used to form the internal electrode, usually, conductive fine particles mainly composed of palladium, nickel and the like constituting the electrode, and organic such as α-terpineol suitable for the surface of the ceramic green sheet to be applied. It comprises a solvent and a binder resin such as ethyl cellulose (for example, Patent Document 1 and Patent Document 2).

近年積層セラミックコンデンサには更なる高容量化が求められており、より一層の多層化
、薄膜化が検討されている。これに伴い、導電ペーストを塗工することにより形成される
内部電極層もよりいっそうの薄膜化が求められている。通常、導電ペーストはスクリーン
印刷により塗工されるが、この方法により得られる内部電極層の厚さはせいぜい3μm、
薄くても2μm程度が限界であった。
In recent years, multilayer ceramic capacitors have been required to have higher capacities, and further multilayering and thinning have been studied. Along with this, further thinning of the internal electrode layer formed by applying the conductive paste is required. Usually, the conductive paste is applied by screen printing, but the thickness of the internal electrode layer obtained by this method is at most 3 μm,
Even if it was thin, the limit was about 2 μm.

これに対して、特許文献3及び特許文献4には、グラビア印刷により導電ペーストを塗工
することにより、より薄い内部電極層を形成する方法が記載されている。しかしながら、
グラビア印刷により導電ペーストを塗工した場合であっても、得られる内部電極層の厚さ
は1μm程度が限界であり、近年の積層セラミックコンデンサの薄型化の要求を充分に満
たすことはできなかった。
On the other hand, Patent Literature 3 and Patent Literature 4 describe a method of forming a thinner internal electrode layer by applying a conductive paste by gravure printing. However,
Even when the conductive paste is applied by gravure printing, the thickness of the obtained internal electrode layer is limited to about 1 μm, and it has not been able to sufficiently satisfy the recent demand for thinning of multilayer ceramic capacitors. .

一方、内部電極層を薄層化するための別のアプローチとして、含有する導電性微粒子の微
細化も検討されている。しかしながら、粒子径の極端に小さな導電性微粒子を用いた場合
、導電性微粒子の表面エネルギーが高くなることから凝集体ができやすくなり、導電ペー
スト中に均一に分散させることが非常に困難になるという問題があった。
On the other hand, as another approach for reducing the thickness of the internal electrode layer, miniaturization of the conductive fine particles contained therein has been studied. However, when conductive fine particles having an extremely small particle size are used, the surface energy of the conductive fine particles is increased, so that aggregates are easily formed, and it is very difficult to uniformly disperse in the conductive paste. There was a problem.

特公平3−35762号公報Japanese Patent Publication No. 3-35762 特公平4−49766号公報Japanese Patent Publication No. 4-49766 特開平8−250370号公報JP-A-8-250370 特開2003−133160号公報JP 2003-133160 A

本発明は、上記現状に鑑み、セラミックグリーンシートに塗工して、厚さ1μm以下の内
部電極層であっても容易に作製することができる導電ペースト及び積層セラミックコンデ
ンサの製造方法を提供することを目的とする。
In view of the above situation, the present invention provides a method for producing a conductive paste and a multilayer ceramic capacitor that can be easily produced even when an internal electrode layer having a thickness of 1 μm or less is applied to a ceramic green sheet. With the goal.

本発明は、導電性微粒子、バインダー樹脂及び有機溶剤を含有する導電ペーストであって
、前記導電性微粒子は、樹脂からなる基材微粒子と前記基材微粒子の表面に形成された金
属層とからなるものである導電ペーストである。
以下に本発明を詳述する。
The present invention is a conductive paste containing conductive fine particles, a binder resin, and an organic solvent, wherein the conductive fine particles are composed of resin-made substrate fine particles and a metal layer formed on the surface of the substrate fine particles. This is a conductive paste.
The present invention is described in detail below.

本発明者らは、鋭意検討の結果、樹脂からなる基材微粒子と基材微粒子の表面に形成され
た金属層とからなる導電性微粒子(以下、金属被覆樹脂微粒子ともいう)を用いれば、通
常のスクリーン印刷やグラビア印刷により塗工した場合であっても、1μm以下の厚さの
内部電極層を容易に作製することができることを見出し、本発明を完成するに至った。
これは、金属被覆樹脂微粒子を含有する導電ペーストを用いた場合、塗工時の塗膜の厚さ
が多少厚くても、その後の焼結時に上記樹脂からなる基材微粒子が分解して全体の体積が
減少することから、金属被覆樹脂微粒子表面を構成していた金属層のみが重なって焼結さ
れ、形成される内部電極層の厚さが薄くなるためと考えられる。
As a result of intensive studies, the present inventors usually use conductive fine particles (hereinafter, also referred to as metal-coated resin fine particles) composed of resin-made substrate fine particles and a metal layer formed on the surface of the substrate fine particles. It was found that an internal electrode layer having a thickness of 1 μm or less could be easily produced even when applied by screen printing or gravure printing, and the present invention was completed.
This is because when the conductive paste containing the metal-coated resin fine particles is used, the substrate fine particles made of the resin are decomposed during the subsequent sintering even if the thickness of the coating film is somewhat thick at the time of coating. Since the volume is reduced, it is considered that only the metal layer constituting the surface of the metal-coated resin fine particles is overlapped and sintered, and the thickness of the formed internal electrode layer is reduced.

上記金属被覆樹脂微粒子は、基材微粒子と金属層とからなる。
上記基材微粒子を構成する樹脂としては、積層セラミックコンデンサを製造する際の焼結
温度において分解するものであれば特に限定されず、例えば、ポリエチレン、ポリプロピ
レン、ポリスチレン、ポリプロピレン、ポリイソブチレン、ポリブタジエン等のポリオレ
フィン樹脂;ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂;ポ
リアルキレンテレフタレート、ポリスルホン、ポリカーボネート、ポリアミド、フェノー
ルホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアル
デヒド樹脂、尿素ホルムアルデヒド樹脂等が挙げられる。これらの樹脂は単独で用いられ
てもよく、2種類以上が併用されてもよい。
The metal-coated resin fine particles are composed of base material fine particles and a metal layer.
The resin constituting the substrate fine particles is not particularly limited as long as it decomposes at the sintering temperature when producing the multilayer ceramic capacitor. For example, polyethylene, polypropylene, polystyrene, polypropylene, polyisobutylene, polybutadiene, etc. Polyolefin resins; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; polyalkylene terephthalate, polysulfone, polycarbonate, polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin and the like. These resins may be used alone or in combination of two or more.

上記基材微粒子の平均粒子径の好ましい下限は0.05μm、好ましい上限は4μmであ
る。0.05μm未満であると、得られる金属被覆樹脂微粒子の粒子径が小さくなりすぎ
て、導電ペースト中における分散性が劣ることがあり、4μmを超えると、金属被覆樹脂
微粒子の粒子径が大きくなりすぎて、導電ペーストを塗工して得られる塗膜の厚さが厚く
なりすぎることがある。
The preferable lower limit of the average particle diameter of the substrate fine particles is 0.05 μm, and the preferable upper limit is 4 μm. If the particle size is less than 0.05 μm, the particle diameter of the resulting metal-coated resin particles becomes too small, and the dispersibility in the conductive paste may be inferior. If it exceeds 4 μm, the particle size of the metal-coated resin particles becomes large. Thus, the thickness of the coating film obtained by applying the conductive paste may become too thick.

上記金属層を構成する金属としては、充分な導電性を示すものであれば特に限定されず、
例えば、金、銀、銅、白金、亜鉛、鉄、錫、アルミニウム、コバルト、インジウム、ニッ
ケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム、カドミウム、珪素等が挙
げられる。これらの金属は単独で用いられてもよく、2種類以上が併用されてもよい。
また、上記金属層は、1層からなるものであってもよく、多層からなるものであってもよ
い。上記金属層が多層からなる場合には、層ごとに異なる金属からなるものであってもよ
い。例えば、ポリスチレン樹脂等からなる上記基材微粒子に、ニッケル層を設けた後、更
に該ニッケル層上に錫−銀の合金層を設ける等の構成が挙げられる。
The metal constituting the metal layer is not particularly limited as long as it exhibits sufficient conductivity,
For example, gold, silver, copper, platinum, zinc, iron, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, cadmium, silicon, and the like can be given. These metals may be used alone or in combination of two or more.
The metal layer may be composed of a single layer or a multilayer. When the said metal layer consists of a multilayer, it may consist of a different metal for every layer. For example, after the nickel layer is provided on the base material fine particles made of polystyrene resin or the like, a tin-silver alloy layer is further provided on the nickel layer.

上記金属層の厚さの好ましい下限は0.01μm、好ましい上限は0.5μmである。0
.01μm未満であると、得られる内部電極層の導電性が不充分となることがあり、0.
5μmを超えると、得られる内部電極層の厚さを充分に薄くできないことがある。
The preferable lower limit of the thickness of the metal layer is 0.01 μm, and the preferable upper limit is 0.5 μm. 0
. If it is less than 01 μm, the resulting internal electrode layer may have insufficient conductivity.
If it exceeds 5 μm, the thickness of the obtained internal electrode layer may not be sufficiently reduced.

上記基材微粒子上に金属層を形成して金属被覆樹脂微粒子を製造する方法としては特に限
定されず、例えば、無電解メッキ、溶融メッキ、拡散メッキ、溶射、蒸着等の方法が挙げ
られる。なかでも、無電解メッキが好適である。
The method for producing metal-coated resin fine particles by forming a metal layer on the substrate fine particles is not particularly limited, and examples thereof include electroless plating, hot dipping, diffusion plating, thermal spraying, and vapor deposition. Of these, electroless plating is preferred.

上記金属被覆樹脂微粒子の粒子径としては特に限定されないが、好ましい下限は0.1μ
m、好ましい上限は5μmである。0.1μm未満であると、導電ペースト中における分
散性が劣ることがあり、5μmを超えると、導電ペーストを塗工して得られる塗膜の厚さ
が厚くなりすぎることがある。
The particle diameter of the metal-coated resin fine particles is not particularly limited, but the preferred lower limit is 0.1 μm.
m, the preferred upper limit is 5 μm. When the thickness is less than 0.1 μm, dispersibility in the conductive paste may be inferior. When the thickness exceeds 5 μm, the thickness of the coating film obtained by applying the conductive paste may be too thick.

本発明の導電ペーストはバインダー樹脂を含有する。上記バインダーとしては特に限定さ
れず、エチルセルロース等のセルロース誘導体や、アクリル樹脂、ポリビニルブチラール
樹脂等が挙げられる。これらのバインダー樹脂は単独で用いられてもよく、2種類以上が
併用されてもよい。
The conductive paste of the present invention contains a binder resin. The binder is not particularly limited, and examples thereof include cellulose derivatives such as ethyl cellulose, acrylic resins, and polyvinyl butyral resins. These binder resins may be used alone or in combination of two or more.

本発明の導電ペーストは有機溶剤を含有する。上記有機溶剤としては特に限定されず、例
えば、テルピネオール、テトラリン、ブチルカルビトール、カルビトールアセテート等が
挙げられる。これらの有機溶剤は単独で用いられてもよく、2種類以上が併用されてもよ
い。
The conductive paste of the present invention contains an organic solvent. The organic solvent is not particularly limited, and examples thereof include terpineol, tetralin, butyl carbitol, carbitol acetate and the like. These organic solvents may be used alone or in combination of two or more.

本発明の導電ペーストは、本発明の効果を損なわない範囲で、可塑剤、潤滑剤、分散剤、
帯電防止剤等の従来公知の添加剤を含有してもよい。
As long as the conductive paste of the present invention does not impair the effects of the present invention, a plasticizer, a lubricant, a dispersant,
A conventionally known additive such as an antistatic agent may be contained.

本発明の導電ペーストにおける上記バインダー樹脂の配合量としては特に限定されないが
、上記導電性微粒子100重量部に対して好ましい下限は1重量部、好ましい上限は20
重量部である。1重量部未満であると、導電ペーストの成膜性能が劣ることがあり、20
重量部を超えると、脱脂・焼成後にカーボン成分が残留しやすくなったり、充分な導電性
を有する内部電極層が得られなかったりすることがある。より好ましい下限は2重量部、
より好ましい上限は15重量部である。
The blending amount of the binder resin in the conductive paste of the present invention is not particularly limited, but the preferred lower limit is 1 part by weight and the preferred upper limit is 20 parts with respect to 100 parts by weight of the conductive fine particles.
Parts by weight. If it is less than 1 part by weight, the conductive paste may have poor film forming performance,
When the amount exceeds 50 parts by weight, the carbon component tends to remain after degreasing and firing, or an internal electrode layer having sufficient conductivity may not be obtained. A more preferred lower limit is 2 parts by weight,
A more preferred upper limit is 15 parts by weight.

本発明の導電ペーストを製造する方法としては特に限定されず、例えば、上記導電性微粒
子、バインダー樹脂、有機溶剤及び必要に応じて添加する各種添加剤をブレンダーミル、
3本ロール等の各種混合機を用いて混合する方法が挙げられる。
The method for producing the conductive paste of the present invention is not particularly limited. For example, the conductive fine particles, the binder resin, the organic solvent, and various additives added as necessary are blender mill,
The method of mixing using various mixers, such as a 3 roll, is mentioned.

次に、本発明の導電ペーストを用いた積層セラミックコンデンサの製造方法の好適な一例
について説明する。
まず、セラミックグリーンシート上に導電ペーストを塗工する。塗工により形成する塗膜
の厚さはできる限り薄いことが好ましい。塗工の方法としては特に限定されず、例えば、
スクリーン印刷、グラビア印刷、凸版印刷等の方法を用いることができるが、なかでもス
クリーン印刷、グラビア印刷が好適である。
次いで、塗工済のセラミックグリーンシートを通常の方法により積層し、加熱圧着して積
層体を得、脱脂処理を行った後、焼成して得られるセラミック焼成物の端面に外部電極を
焼結することにより積層セラミックコンデンサが得られる。
焼結により、金属被覆樹脂微粒子を構成していた基材微粒子が分解、消滅して全体の体積
が減少することから、得られる内部電極層の厚さは、導電ペーストを塗工して得られた塗
膜の厚さよりも薄くなる。
セラミックグリーンシート上に、樹脂からなる基材微粒子と上記基材微粒子の表面に形成
された金属層とからなる導電性微粒子、バインダー樹脂及び有機溶剤とを含有する導電ペ
ーストを塗工する工程、上記塗工されたセラミックグリーンシートを交互に複数枚積み重
ね、加熱圧着して積層体を得る工程、上記積層体を加熱して脱脂処理を施した焼成物を得
る工程、及び、上記焼成物の端面に外部電極を焼結する工程を有する積層セラミックコン
デンサの製造方法もまた、本発明の1つである。
Next, a preferred example of a method for manufacturing a multilayer ceramic capacitor using the conductive paste of the present invention will be described.
First, a conductive paste is applied on a ceramic green sheet. The thickness of the coating film formed by coating is preferably as thin as possible. The coating method is not particularly limited. For example,
Methods such as screen printing, gravure printing and letterpress printing can be used, but screen printing and gravure printing are particularly preferred.
Next, the coated ceramic green sheets are laminated by a normal method, and heat-pressed to obtain a laminated body. After degreasing, the external electrode is sintered on the end face of the fired ceramic product. Thus, a multilayer ceramic capacitor can be obtained.
By sintering, the substrate fine particles constituting the metal-coated resin fine particles are decomposed and disappeared, and the total volume is reduced. Therefore, the thickness of the obtained internal electrode layer is obtained by applying a conductive paste. It becomes thinner than the thickness of the coated film.
Coating a conductive paste containing conductive fine particles, a binder resin, and an organic solvent, which are formed on a surface of the substrate fine particles and a metal layer formed on the surface of the substrate fine particles, on the ceramic green sheet, A plurality of coated ceramic green sheets are alternately stacked, a step of obtaining a laminated body by thermocompression bonding, a step of obtaining a fired product obtained by heating and degreasing the laminated body, and an end face of the fired product A method for producing a multilayer ceramic capacitor having a step of sintering an external electrode is also one aspect of the present invention.

本発明によれば、セラミックグリーンシートに塗工して、厚さ1μm以下の内部電極層で
あっても容易に作製することができる導電ペースト及び積層セラミックコンデンサの製造
方法を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the electrically conductive paste and multilayer ceramic capacitor which can be easily produced even if it is an internal electrode layer with a thickness of 1 micrometer or less by applying to a ceramic green sheet can be provided.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定
されるものではない。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
(1)導電性微粒子の作製
チッソ導入管、コンデンサ、攪拌翼を有した5L容のセパラブルフラスコに、メタノール
2500mL、ポリビニルピロリドン25g、スチレン250g及び過酸化ベンゾイル2
.5gを投入し、チッソ気流下、55℃で12時間重合することにより、平均粒子径1.
1μmのスチレン粒子を得た。なお、粒子径は、コールターカウンターにより測定した。
得られたスチレン粒子を遠心分離及び超音波にて洗浄した後、その120gを1%−硫酸
水溶液中に超音波照射下で分散させ、エッチング処理を行った。濾過、洗浄後、硫酸パラ
ジウム水溶液中に超音波照射下で分散し、濾過洗浄後、更に、アクチベイティングを行い
、スチレン粒子表面にパラジウム核を生成させた。得られた粒子を蒸留水1000mLに
分散し、硫酸ニッケルを主成分とする無電解メッキ液を添加し、無電解Niメッキを行い
導電性微粒子得た。得られた導電性微粒子の表面のNiメッキ厚みは100nmであった
(Example 1)
(1) Production of conductive fine particles In a 5 L separable flask having a nitrogen inlet tube, a condenser and a stirring blade, 2500 mL of methanol, 25 g of polyvinylpyrrolidone, 250 g of styrene and benzoyl peroxide 2
. 5 g was added and polymerization was carried out at 55 ° C. for 12 hours under a nitrogen flow to obtain an average particle size of 1.
1 μm styrene particles were obtained. The particle size was measured with a Coulter counter.
After the obtained styrene particles were washed by centrifugation and ultrasonic waves, 120 g of the styrene particles were dispersed in a 1% -sulfuric acid aqueous solution under ultrasonic irradiation, and etching treatment was performed. After filtration and washing, the mixture was dispersed in an aqueous solution of palladium sulfate under ultrasonic irradiation. After filtration and washing, activation was further performed to generate palladium nuclei on the surface of the styrene particles. The obtained particles were dispersed in 1000 mL of distilled water, an electroless plating solution mainly composed of nickel sulfate was added, and electroless Ni plating was performed to obtain conductive fine particles. The Ni plating thickness on the surface of the obtained conductive fine particles was 100 nm.

(2)導電ペーストの調製
得られた導電性微粒子100重量部、バインダー樹脂としてエチルセルロース(ダウケミ
カル社製、「STD型」)7重量部及びα−テルピネオール60重量部を混合した後、三
本ロールで混練して導電ペーストを得た。
(2) Preparation of conductive paste After mixing 100 parts by weight of the obtained conductive fine particles, 7 parts by weight of ethyl cellulose (manufactured by Dow Chemical Co., “STD type”) and 60 parts by weight of α-terpineol as a binder resin, three rolls Kneaded to obtain a conductive paste.

(3)積層セラミックコンデンサの製造
ポリビニルブチラール樹脂(積水化学工業製、エスレックB「BM−S」、重合度800
)10重量部を、トルエン30重量部とエタノール15重量部との混合溶剤に加え、攪拌
溶解し、更に、可塑剤としてジブチルフタレート3重量部を加え、攪拌溶解した。得られ
た樹脂溶液に、セラミック粉末としてチタン酸バリウム(堺化学工業製「BT−03(平
均粒径0.3μm)」)100重量部を加え、ボールミルで48時間混合してセラミック
スラリー組成物を得た。得られたスラリー組成物を、離型処理したポリエステルフィルム
上に、乾燥後の厚みが約5μmになるように塗布し、常温で1時間風乾し、熱風乾燥機、
80℃で3時間、続いて120℃で2時間乾燥させてセラミックグリーンシートを得た。
(3) Manufacture of multilayer ceramic capacitor Polyvinyl butyral resin (manufactured by Sekisui Chemical Co., Ltd., ESREC B “BM-S”, polymerization degree 800)
) 10 parts by weight was added to a mixed solvent of 30 parts by weight of toluene and 15 parts by weight of ethanol and dissolved by stirring. Further, 3 parts by weight of dibutyl phthalate as a plasticizer was added and dissolved by stirring. To the obtained resin solution, 100 parts by weight of barium titanate (“BT-03 (average particle size: 0.3 μm)” manufactured by Sakai Chemical Industry) as ceramic powder was added and mixed for 48 hours with a ball mill to obtain a ceramic slurry composition. Obtained. The obtained slurry composition was applied on a release-treated polyester film so that the thickness after drying was about 5 μm, air-dried at room temperature for 1 hour, a hot-air dryer,
A ceramic green sheet was obtained by drying at 80 ° C. for 3 hours and then at 120 ° C. for 2 hours.

得られたセラミックグリーンシートを5cm角の大きさに切断し、これに導電ペーストを
塗膜の厚さが2μmとなるようにスクリーン印刷により塗工した。塗工済セラミックグリ
ーンシートを100枚積重ね、温度70℃、圧力150kg/cm、10分間の熱圧着
条件で圧着して、セラミックグリーンシート積層体を得た。
得られたセラミックグリーンシート積層体を窒素雰囲気で、昇温速度3℃/分で450℃
まで昇温し、5時間保持後、更に昇温速度5℃/分で1350℃まで昇温し、10時間保
持してセラミック焼結体を得た。
得られたセラミック焼結体を常温まで冷却した後、半分に割り、その断面を電子顕微鏡で
観察したところ、内部電極層の厚さは約0.1μmであった。
The obtained ceramic green sheet was cut into a size of 5 cm square, and a conductive paste was applied thereto by screen printing so that the thickness of the coating film was 2 μm. 100 coated ceramic green sheets were stacked and pressed under a thermocompression condition of a temperature of 70 ° C. and a pressure of 150 kg / cm 2 for 10 minutes to obtain a ceramic green sheet laminate.
The obtained ceramic green sheet laminate was 450 ° C. at a temperature rising rate of 3 ° C./min in a nitrogen atmosphere.
The temperature was raised to 1350 ° C. at a rate of temperature rise of 5 ° C./min and held for 10 hours to obtain a ceramic sintered body.
After cooling the obtained ceramic sintered body to room temperature, it was divided in half and the cross section was observed with an electron microscope. The thickness of the internal electrode layer was about 0.1 μm.

(比較例1)
導電性微粒子としてニッケル微粒子(三井金属社製、「2020SS」、平均粒子径0.
4μm)を用いた以外は実施例1と同様の方法により導電ペーストを得た。
得られた導電ペーストを用い、実施例1と同様の方法によりセラミック焼結体を得た。
得られたセラミック焼結体を半分に割り、その断面を電子顕微鏡で観察したところ、内部
電極層の厚さは約2.0μmであった。
(Comparative Example 1)
Nickel fine particles (“2020SS” manufactured by Mitsui Kinzoku Co., Ltd., average particle size of 0.1 as conductive fine particles)
A conductive paste was obtained in the same manner as in Example 1 except that 4 μm) was used.
Using the obtained conductive paste, a ceramic sintered body was obtained in the same manner as in Example 1.
When the obtained ceramic sintered body was divided in half and the cross section was observed with an electron microscope, the thickness of the internal electrode layer was about 2.0 μm.

本発明によれば、セラミックグリーンシートに塗工して、厚さ1μm以下の内部電極層で
あっても容易に作製することができる導電ペースト及び積層セラミックコンデンサの製造
方法を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the electrically conductive paste and multilayer ceramic capacitor which can be easily produced even if it is an internal electrode layer with a thickness of 1 micrometer or less by applying to a ceramic green sheet can be provided.

Claims (2)

導電性微粒子、バインダー樹脂及び有機溶剤を含有する導電ペーストであって、前記導電
性微粒子は、樹脂からなる基材微粒子と前記基材微粒子の表面に形成された金属層とから
なるものであることを特徴とする導電ペースト。
A conductive paste containing conductive fine particles, a binder resin, and an organic solvent, wherein the conductive fine particles are composed of substrate fine particles made of resin and a metal layer formed on the surface of the substrate fine particles. Conductive paste characterized by
セラミックグリーンシート上に、樹脂からなる基材微粒子と前記基材微粒子の表面に形成
された金属層とからなる導電性微粒子、バインダー樹脂及び有機溶剤を含有する導電ペー
ストを塗工する工程、前記塗工されたセラミックグリーンシートを交互に複数枚積み重ね
、加熱圧着して積層体を得る工程、前記積層体を加熱して脱脂処理を施した焼成物を得る
工程、及び、上記焼成物の端面に外部電極を焼結する工程を有することを特徴とする積層
セラミックコンデンサの製造方法。
Coating a conductive paste containing conductive fine particles, a binder resin and an organic solvent on a ceramic green sheet comprising substrate fine particles made of resin and a metal layer formed on the surface of the substrate fine particles; A plurality of processed ceramic green sheets are alternately stacked, a step of obtaining a laminate by thermocompression bonding, a step of obtaining a fired product obtained by heating the laminate and performing a degreasing process, and an external surface on the end face of the fired product A method for producing a multilayer ceramic capacitor comprising a step of sintering an electrode.
JP2004078704A 2004-03-18 2004-03-18 Method for manufacturing conductive paste and multilayer ceramic capacitor Expired - Lifetime JP4495491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004078704A JP4495491B2 (en) 2004-03-18 2004-03-18 Method for manufacturing conductive paste and multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004078704A JP4495491B2 (en) 2004-03-18 2004-03-18 Method for manufacturing conductive paste and multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JP2005268527A true JP2005268527A (en) 2005-09-29
JP4495491B2 JP4495491B2 (en) 2010-07-07

Family

ID=35092759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004078704A Expired - Lifetime JP4495491B2 (en) 2004-03-18 2004-03-18 Method for manufacturing conductive paste and multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP4495491B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351615A (en) * 1986-08-21 1988-03-04 トヨタ自動車株式会社 Manufacture of laminated ceramic unit
JPS63190204A (en) * 1987-01-30 1988-08-05 積水フアインケミカル株式会社 Conducting fine pellet
JPH0582386A (en) * 1991-09-25 1993-04-02 Matsushita Electric Ind Co Ltd Manufacture of semiconductor ceramic capacitor of laminated grain-boundary insulation type
JPH07122457A (en) * 1993-10-26 1995-05-12 Murata Mfg Co Ltd Manufacture of multilayered ceramic electronic component
WO2003025955A1 (en) * 2001-09-14 2003-03-27 Sekisui Chemical Co., Ltd. Coated conductive particle, coated conductive particle manufacturing method, anisotropic conductive material, and conductive connection structure
JP2003197028A (en) * 2001-12-26 2003-07-11 Sekisui Chem Co Ltd Conductive fine particle, manufacturing method for conductive fine particle, and anisotropic conductive material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351615A (en) * 1986-08-21 1988-03-04 トヨタ自動車株式会社 Manufacture of laminated ceramic unit
JPS63190204A (en) * 1987-01-30 1988-08-05 積水フアインケミカル株式会社 Conducting fine pellet
JPH0582386A (en) * 1991-09-25 1993-04-02 Matsushita Electric Ind Co Ltd Manufacture of semiconductor ceramic capacitor of laminated grain-boundary insulation type
JPH07122457A (en) * 1993-10-26 1995-05-12 Murata Mfg Co Ltd Manufacture of multilayered ceramic electronic component
WO2003025955A1 (en) * 2001-09-14 2003-03-27 Sekisui Chemical Co., Ltd. Coated conductive particle, coated conductive particle manufacturing method, anisotropic conductive material, and conductive connection structure
JP2003197028A (en) * 2001-12-26 2003-07-11 Sekisui Chem Co Ltd Conductive fine particle, manufacturing method for conductive fine particle, and anisotropic conductive material

Also Published As

Publication number Publication date
JP4495491B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
JP6376176B2 (en) Copper powder, copper paste, method for producing conductive coating film and conductive coating film
JP4299833B2 (en) Electrode step absorbing printing paste and method of manufacturing electronic component
US20120135262A1 (en) Method of manufacturing fine metal powder and fine metal powder manufactured by using the same
JP4980439B2 (en) Method for manufacturing metallized ceramic substrate
JP2004362950A (en) Conductive paste mainly composed of silver powder, and its manufacturing method
WO2005007710A1 (en) Binder resin for coating paste
JP2017527943A (en) Conductive composition
JP2017179551A (en) Nickel particle, conductive paste, internal electrode and laminate ceramic capacitor
CN110315090A (en) A kind of high temperature sintering type electrocondution slurry bronze and preparation method thereof
JP2005015654A (en) Binder resin for conductive past and conductive paste
JP4991158B2 (en) Manufacturing method of electronic parts
JP2007297671A (en) Silver powder, its production method and electrically conductive paste containing the silver powder
JP4495491B2 (en) Method for manufacturing conductive paste and multilayer ceramic capacitor
JP3642000B2 (en) Manufacturing method of conductive thick film paste, conductive thick film paste and multilayer ceramic electronic component
JP2006073836A (en) Ceramic electronic component and conductive paste therefor
JP5267487B2 (en) Printed wiring board substrate and method for manufacturing printed wiring board substrate
JP2013149855A (en) Conductive paste for multilayer ceramic capacitor and multilayer ceramic capacitor
JP7032127B2 (en) Method for manufacturing printed wiring board base material, printed wiring board and printed wiring board base material
JP2007294361A (en) Conductive paste
JP4412012B2 (en) Dielectric paste for multilayer ceramic electronic component and method for producing multilayer unit for multilayer ceramic electronic component
WO2011043265A1 (en) FLAT Ni PARTICLE, MULTILAYER CERAMIC ELECTRONIC COMPONENT USING THE SAME, AND PRODUCTION METHOD FOR FLAT Ni PARTICLE
JPH07197103A (en) Method for coating surface of metallic powder with metallic compound
JP2005259667A (en) Conductive paste
JP2016125117A (en) Composite copper particles
JP2011198470A (en) Conductive paste for film electrode, conductive film for electrode, and film electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100409

R151 Written notification of patent or utility model registration

Ref document number: 4495491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

EXPY Cancellation because of completion of term