JP2005263555A - Method of manufacturing porous glass preform and glass preform for optical fiber - Google Patents

Method of manufacturing porous glass preform and glass preform for optical fiber Download PDF

Info

Publication number
JP2005263555A
JP2005263555A JP2004078144A JP2004078144A JP2005263555A JP 2005263555 A JP2005263555 A JP 2005263555A JP 2004078144 A JP2004078144 A JP 2004078144A JP 2004078144 A JP2004078144 A JP 2004078144A JP 2005263555 A JP2005263555 A JP 2005263555A
Authority
JP
Japan
Prior art keywords
base material
porous glass
glass preform
core
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004078144A
Other languages
Japanese (ja)
Inventor
Makoto Yoshida
真 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2004078144A priority Critical patent/JP2005263555A/en
Priority to KR1020050003781A priority patent/KR20050093705A/en
Priority to PCT/JP2005/003924 priority patent/WO2005090244A1/en
Priority to TW94108240A priority patent/TW200536797A/en
Publication of JP2005263555A publication Critical patent/JP2005263555A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01486Means for supporting, rotating or translating the preforms being formed, e.g. lathes
    • C03B37/01493Deposition substrates, e.g. targets, mandrels, start rods or tubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a porous glass preform by which a core rod to be a starting preform is large-scaled without making core soot large-scaled. <P>SOLUTION: In the method of manufacturing the porous glass preform, a plurality of core rods are connected to form the starting preform and a clad layer is formed thereon. A quartz rod having the same coefficient of thermal expansion as that of the clad part can be connected between the core rods to be used as the starting preform. In the manufacture of the core rod, it is preferable that the difference of diameter between the core rods to be connected to each other or the core rod and the quartz rod to be connected to each other is controlled to ≤2 mm. It is preferable that the length of the quartz rod to be connected is ≥5 mm and <50mm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光ファイバの原材である多孔質ガラス母材の製造方法及び光ファイバ用ガラス母材に関する。   The present invention relates to a method for producing a porous glass preform, which is a raw material for optical fibers, and a glass preform for optical fibers.

従来、光ファイバ用ガラス母材を製造するために、様々な方法が提案されている。それらの方法のなかでもOVD法(外付け法)は、回転する出発母材に沿って、バーナー又は出発母材を相対的に往復移動させ、バーナー火炎中で生成したガラス微粒子(スート)を出発母材上に付着堆積させて多孔質スート体を合成し、これを電気炉内で高温に加熱し、脱水・透明ガラス化して光ファイバ用ガラス母材を製造するものであり(例えば、特許文献1参照)、比較的任意の屈折率分布のものが得られ、しかも、大型の光ファイバ用ガラス母材を量産できることから、広く汎用されている方法である。
特開昭60−141634号公報
Conventionally, various methods have been proposed for producing a glass preform for an optical fiber. Among these methods, the OVD method (external method) is a method in which a burner or a starting base material is relatively reciprocated along a rotating starting base material to start glass fine particles (soot) generated in the burner flame. A porous soot body is synthesized by adhering and depositing on a base material, which is heated to a high temperature in an electric furnace, dehydrated and made into a transparent glass to produce a glass base material for an optical fiber (for example, patent document) 1), a method having a relatively arbitrary refractive index distribution is obtained, and a large-sized glass preform for an optical fiber can be mass-produced.
JP-A-60-141634

光ファイバ用ガラス母材の大型化を進めていくには、出発母材として使用するコアロッドの大型化が必要となる。しかしながら、コアロッドの前駆体であるコアスートを大型化しようとすると、その堆積途中で割れや気泡が発生しやすくなり、歩留りが低下するという問題が生じる。さらに、その長手方向で光学特性を安定化させるのが困難であった。   In order to increase the size of the optical fiber glass base material, it is necessary to increase the size of the core rod used as the starting base material. However, when trying to increase the size of the core soot, which is the precursor of the core rod, cracks and bubbles are likely to occur during the deposition, resulting in a problem that the yield decreases. Furthermore, it is difficult to stabilize the optical characteristics in the longitudinal direction.

本発明は、コアスートを大型化することなく、出発母材となるコアロッドを大型化することのできる大型の多孔質ガラス母材の製造方法及び光ファイバ用ガラス母材を提供することを目的としている。   An object of the present invention is to provide a method for producing a large porous glass preform and a glass preform for an optical fiber capable of enlarging a core rod as a starting preform without enlarging the core soot. .

本発明の多孔質ガラス母材の製造方法は、複数本のコアロッドを接続して出発母材とし、この上にクラッド層を形成することを特徴とするものである。
なお、前記コアロッド間に、クラッド部と熱膨張率がほぼ同じ石英棒を接続したものを出発母材とすることもできる。
コアロッドの製作に際しては、接続するコアロッド同士又は接続するコアロッドと石英棒との径の差が2mm以下となるように調製するのが好ましい。接続する石英棒の長さは5mm以上50mm未満とするのが好ましい。
このようにして製造された多孔質ガラス母材を加熱し、脱水・透明ガラス化することで、長手方向に光学特性の安定した光ファイバ用ガラス母材が得られる。
The method for producing a porous glass base material of the present invention is characterized in that a plurality of core rods are connected to form a starting base material, and a cladding layer is formed thereon.
It is also possible to use a starting base material in which a quartz rod having approximately the same thermal expansion coefficient as that of the clad portion is connected between the core rods.
In manufacturing the core rod, it is preferable to prepare the core rods to be connected so that the difference in diameter between the core rods to be connected and the quartz rod to be connected is 2 mm or less. The length of the quartz rod to be connected is preferably 5 mm or more and less than 50 mm.
By heating the porous glass preform produced in this manner to dehydrate and form a transparent glass, a glass preform for optical fiber having a stable optical characteristic in the longitudinal direction can be obtained.

本発明によれば、コアロッドを大型化する際に生じる堆積途中での割れや気泡の発生が抑制され、大型で大口径の多孔質ガラス母材が高い歩留りで得られる。特に、コアロッド間にクラッドと同質の石英棒を挟んで出発母材としたものは、これにスートを堆積して得た多孔質ガラス母材の焼結後、その冷却中に生じる割れを防止できる。さらに、長手方向に光学特性の安定した光ファイバ用ガラス母材が得られる。   According to the present invention, generation of cracks and bubbles during the deposition that occurs when the core rod is enlarged is suppressed, and a large-sized large-diameter porous glass preform can be obtained with a high yield. In particular, a starting base material with a quartz rod of the same quality as the cladding sandwiched between core rods can prevent cracks that occur during the cooling of the porous glass base material obtained by depositing soot on the starting material. . Further, a glass preform for optical fiber having a stable optical characteristic in the longitudinal direction can be obtained.

本発明は、スートを堆積させる出発母材として、複数本のコアロッドを接続することにより、大型で大口径の光ファイバ用ガラス母材の製造を容易としたものである。また、コアロッド間にクラッドとほぼ同じ熱膨張率を有する石英棒を挟むことにより、透明ガラス化時に発生する割れを防止している。   The present invention facilitates the production of a large-diameter glass preform for an optical fiber by connecting a plurality of core rods as a starting preform for depositing soot. In addition, a quartz rod having substantially the same coefficient of thermal expansion as that of the clad is sandwiched between the core rods, thereby preventing cracks that occur during transparent vitrification.

コアロッドと石英棒との接続部で径差があると、外付けされるスートの密度分布、堆積量分布が変化するため、コアロッドと石英棒との径差は2mm以下とするのが望ましい。また、接続する石英棒の長さが5mm未満では、割れ防止の効果が僅かであり、50mm以上ではコアロッド長に対する石英棒長の比が大きくなるため、非製品部が多くなり非効率的である。従って、石英棒の長さは5mm以上50mm未満とされる。   If there is a difference in diameter at the connecting portion between the core rod and the quartz rod, the density distribution and deposition amount distribution of the soot attached to the outside will change, so the diameter difference between the core rod and the quartz rod is preferably 2 mm or less. In addition, if the length of the quartz rod to be connected is less than 5 mm, the effect of preventing cracking is small, and if it is 50 mm or more, the ratio of the quartz rod length to the core rod length increases, resulting in an increase in non-product parts and inefficiency. . Therefore, the length of the quartz rod is 5 mm or more and less than 50 mm.

このように本発明によれば、複数本のコアロッドを直接あるいは石英棒を介して接続して出発母材とし、この上に外付けでクラッド層を形成し、得られた多孔質ガラス母材を脱水・透明ガラス化することにより、光ファイバ用ガラス母材が得られる。
これを適宜所望の径に延伸縮径し、コアロッドの接続部もしくは接続した石英棒の部分で切断することにより、線引きに好適なプリフォームが低コストで得られる。
As described above, according to the present invention, a plurality of core rods are connected directly or via a quartz rod as a starting base material, and a cladding layer is formed on the outer surface of the starting base material. An optical fiber glass preform can be obtained by dehydration and transparent vitrification.
A preform suitable for drawing can be obtained at a low cost by appropriately extending and expanding the diameter to a desired diameter and cutting at the connecting portion of the core rod or the connected quartz rod portion.

以下、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれらに限定されず、様々な態様が可能である。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these, Various aspects are possible.

(実施例1)
図1は、本発明で使用した多孔質ガラス母材製造装置の一例を示したものであり、装置のほぼ中央に出発母材1が、図示していない基材支持部材により軸回りに回転自在に支持されている。出発母材1の下方には、出発母材1に沿って左右に移動自在なバーナー2が配置されている。バーナー2には、通常、酸水素バーナーが使用され、光ファイバ用原料、例えば、SiCl4等の蒸気と燃焼ガス(水素ガス及び酸素ガス)を供給し、火炎加水分解反応により生成するガラス微粒子(スート)を出発母材1に吹き付け、付着堆積させて多孔質スート体3が形成される。
(Example 1)
FIG. 1 shows an example of a porous glass base material manufacturing apparatus used in the present invention. A starting base material 1 is rotatable about an axis by a base material support member (not shown) at the center of the apparatus. It is supported by. Below the starting base material 1, a burner 2 that is movable to the left and right along the starting base material 1 is arranged. As the burner 2, an oxyhydrogen burner is usually used, and glass fine particles generated by a flame hydrolysis reaction by supplying a raw material for an optical fiber, for example, a vapor such as SiCl 4 and a combustion gas (hydrogen gas and oxygen gas). The soot is sprayed on the starting base material 1 and deposited and deposited to form the porous soot body 3.

燃焼排ガス及び未付着のスートは、排気フード4、排気管5を経て系外に排出される。なお、バーナー2と排気フード4は往復動制御装置6により制御され、螺子棒7を介してモーター8により同期して左右に移動可能に設置されている。   The combustion exhaust gas and unattached soot are discharged out of the system through the exhaust hood 4 and the exhaust pipe 5. The burner 2 and the exhaust hood 4 are controlled by a reciprocation control device 6 and are installed so as to be movable to the left and right in synchronism with a motor 8 via a screw rod 7.

以下、本発明による多孔質ガラス母材の製造方法について具体的に説明する。
先ず、テトラクロロシランとテトラクロロゲルマニウムをガラス原料として作製した直径30mm、長さ400mmのコアロッド9を3本溶着し、さらにその両端にダミー棒10を溶着して出発母材1とした(図2参照)。
Hereinafter, the manufacturing method of the porous glass base material by this invention is demonstrated concretely.
First, three core rods 9 having a diameter of 30 mm and a length of 400 mm made of tetrachlorosilane and tetrachlorogermanium as glass materials were welded, and dummy rods 10 were welded to both ends thereof to form a starting base material 1 (see FIG. 2). ).

この出発母材1を装置の基材支持部材で支持し、その軸回りに回転モーターで回転させながら、ガラス原料としてテトラクロロシランをバーナー2に供給し、合成したスートを出発母材上に堆積させた。バーナー2をバーナーガイド機構により、出発母材1に沿って往復移動させながらクラッド層が所定の径に達するまで堆積を続け、多孔質ガラス母材11を製造した。なお、バーナー2の移動に代えて、出発母材1の方を移動するようにしてもよい。   The starting base material 1 is supported by the base material support member of the apparatus, and while rotating with a rotary motor around the axis, tetrachlorosilane is supplied to the burner 2 as a glass material, and the synthesized soot is deposited on the starting base material. It was. While the burner 2 was reciprocated along the starting base material 1 by the burner guide mechanism, the deposition was continued until the cladding layer reached a predetermined diameter, and the porous glass base material 11 was manufactured. Instead of moving the burner 2, the starting base material 1 may be moved.

得られた多孔質ガラス母材11を焼結装置に移し、脱水反応用ガスである塩素ガスと不活性ガスであるヘリウムガスを含む雰囲気中で脱水・透明ガラス化を行った。
このようにして製造された光ファイバ用ガラス母材には、焼結後の冷却工程において亀裂が入ったり、割れたりすることはなかった。
The obtained porous glass base material 11 was transferred to a sintering apparatus, and dehydrated and made into a transparent glass in an atmosphere containing chlorine gas as a dehydration reaction gas and helium gas as an inert gas.
The thus produced optical fiber glass preform was not cracked or cracked in the cooling step after sintering.

(実施例2)
図3に示すように、2個所のコアロッド9間にそれぞれ石英棒12を接続して出発母材1とした以外は、実施例1と同様にして多孔質ガラス母材11を製造し、これを脱水・透明ガラス化して光ファイバ用ガラス母材を得たが、これには焼結後の冷却工程において亀裂が入ったり、割れたりすることはなかった。
(Example 2)
As shown in FIG. 3, a porous glass preform 11 was produced in the same manner as in Example 1 except that a quartz rod 12 was connected between two core rods 9 to obtain a starting preform 1, The glass preform for optical fiber was obtained by dehydration and transparent vitrification, but this did not crack or break in the cooling step after sintering.

長手方向に光学特性の安定した光ファイバ用ガラス母材が低コストで得られる。   An optical fiber glass base material having stable optical characteristics in the longitudinal direction can be obtained at low cost.

多孔質ガラス母材の製造装置の一例を示す概略図である。It is the schematic which shows an example of the manufacturing apparatus of a porous glass base material. 本発明による多孔質ガラス母材の製造方法の一例を示す概略図である。It is the schematic which shows an example of the manufacturing method of the porous glass base material by this invention. 本発明による多孔質ガラス母材の製造方法の他の例を示す概略図である。It is the schematic which shows the other example of the manufacturing method of the porous glass base material by this invention.

符号の説明Explanation of symbols

1……出発母材、
2……バーナー、
3……多孔質スート体、
4……排気フード、
5……排気管、
6……往復動制御装置、
7……螺子棒、
8……モーター、
9……コアロッド、
10……ダミー棒、
11……多孔質ガラス母材、
12……石英棒。


1 …… Departure base material,
2 ... Burner,
3 …… Porous soot body,
4 …… Exhaust hood,
5 …… Exhaust pipe,
6 …… Reciprocation control device,
7 ... Screw rod,
8 …… Motor,
9 …… Core rod,
10 ... Dummy stick,
11 ... Porous glass base material,
12 ... Quartz rod.


Claims (5)

複数本のコアロッドを接続して出発母材とし、この上にクラッド層を形成することを特徴とする多孔質ガラス母材の製造方法。 A method for producing a porous glass base material, comprising: connecting a plurality of core rods to form a starting base material; and forming a cladding layer thereon. 前記コアロッド間に、クラッド部と熱膨張率がほぼ同じ石英棒を接続したものを出発母材とする請求項1に記載の多孔質ガラス母材の製造方法。 The method for producing a porous glass base material according to claim 1, wherein a starting base material is formed by connecting a quartz rod having substantially the same thermal expansion coefficient as that of the clad portion between the core rods. 接続するコアロッド同士又は接続するコアロッドと石英棒との径の差が2mm以下である請求項1又は2に記載の多孔質ガラス母材の製造方法。 The method for producing a porous glass base material according to claim 1 or 2, wherein a difference in diameter between the connecting core rods or between the connecting core rod and the quartz rod is 2 mm or less. 接続する石英棒の長さが5mm以上50mm未満である請求項2又は3に記載の多孔質ガラス母材の製造方法。 The method for producing a porous glass base material according to claim 2 or 3, wherein the length of the quartz rod to be connected is 5 mm or more and less than 50 mm. 請求項1乃至4のいずれかに記載の製造方法を用いて製造された多孔質ガラス母材を加熱し、脱水・透明ガラス化してなることを特徴とする光ファイバ用ガラス母材。


A glass base material for optical fiber, wherein the porous glass base material manufactured by using the manufacturing method according to claim 1 is heated, dehydrated and made into a transparent glass.


JP2004078144A 2004-03-18 2004-03-18 Method of manufacturing porous glass preform and glass preform for optical fiber Pending JP2005263555A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004078144A JP2005263555A (en) 2004-03-18 2004-03-18 Method of manufacturing porous glass preform and glass preform for optical fiber
KR1020050003781A KR20050093705A (en) 2004-03-18 2005-01-14 Fabrication method of porous glass preform and glass preform for optical fiber fabricated thereby
PCT/JP2005/003924 WO2005090244A1 (en) 2004-03-18 2005-03-07 Method for producing porous glass base material and glass base material for optical fiber
TW94108240A TW200536797A (en) 2004-03-18 2005-03-17 Method for producing porous glass base material and glass base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004078144A JP2005263555A (en) 2004-03-18 2004-03-18 Method of manufacturing porous glass preform and glass preform for optical fiber

Publications (1)

Publication Number Publication Date
JP2005263555A true JP2005263555A (en) 2005-09-29

Family

ID=34993591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004078144A Pending JP2005263555A (en) 2004-03-18 2004-03-18 Method of manufacturing porous glass preform and glass preform for optical fiber

Country Status (4)

Country Link
JP (1) JP2005263555A (en)
KR (1) KR20050093705A (en)
TW (1) TW200536797A (en)
WO (1) WO2005090244A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4366196B2 (en) * 2004-01-15 2009-11-18 住友電気工業株式会社 Optical fiber manufacturing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191034A (en) * 1984-10-08 1986-05-09 Furukawa Electric Co Ltd:The Production of optical fiber preform
KR890005136B1 (en) * 1987-06-30 1989-12-11 삼성전기 주식회사 Making method of permanent magnet for step motor
JPH03261631A (en) * 1990-03-12 1991-11-21 Fujikura Ltd Production of optical fiber preform
JP2521186B2 (en) * 1990-09-11 1996-07-31 株式会社フジクラ Glass body manufacturing method
TW342457B (en) * 1996-04-29 1998-10-11 Corning Inc Method of making optical fibers
JPH1171125A (en) * 1997-08-26 1999-03-16 Sumitomo Electric Ind Ltd Production of preform for optical fiber
JP3745895B2 (en) * 1998-01-13 2006-02-15 古河電気工業株式会社 Manufacturing method of base material for polarization optical fiber
JP3917115B2 (en) * 2003-07-02 2007-05-23 日本電信電話株式会社 Optical fiber manufacturing method
JP2005089241A (en) * 2003-09-17 2005-04-07 Sumitomo Electric Ind Ltd Optical fiber preform, optical fiber, method of manufacturing optical fiber, and method of manufacturing optical fiber preform

Also Published As

Publication number Publication date
KR20050093705A (en) 2005-09-23
TW200536797A (en) 2005-11-16
WO2005090244A1 (en) 2005-09-29

Similar Documents

Publication Publication Date Title
RU2236386C2 (en) Method of manufacturing optic fiber intermediate product
JP2002097033A (en) Method for producing optical fiber accompanied by over- cladding during sintering
JP4348341B2 (en) Optical fiber preform manufacturing method
JP2005092211A (en) Low loss optical fiber and manufacturing method of optical fiber preform
US20060179889A1 (en) Method for dehydrating and consolidating a porous optical fiber preform
JP5163416B2 (en) Method for producing porous glass base material
WO2011136324A1 (en) Manufacturing method for glass base material
JP2005263555A (en) Method of manufacturing porous glass preform and glass preform for optical fiber
KR100521958B1 (en) method and apparatus for fabricating of optical fiber preform with double torch in MCVD
JP4104558B2 (en) Manufacturing method of glass tube
JP2014177390A (en) Burner for producing porous glass preform
JP5533205B2 (en) Glass base material manufacturing method
JP2005060148A (en) Optical fiber preform production method, optical fiber preform, optical fiber production method, and optical fiber
US20070157674A1 (en) Apparatus for fabricating optical fiber preform and method for fabricating low water peak fiber using the same
JP5671837B2 (en) Glass base material manufacturing method
JP5778895B2 (en) Glass base material manufacturing method
JP2005089241A (en) Optical fiber preform, optical fiber, method of manufacturing optical fiber, and method of manufacturing optical fiber preform
JP4472308B2 (en) Method for producing porous quartz base material
JP5907565B2 (en) Burner for manufacturing porous glass base material
KR100762611B1 (en) Method for fabricating optical fiber preform and method for fabricating optical fiber using the same
JPH0986948A (en) Production of porous glass base material for optical fiber
JP2003165736A (en) Method for manufacturing optical fiber preform and device and manufacturing optical fiber preform using it
JPH05116980A (en) Production of performed base material for optical fiber
JP2006117496A (en) Method for manufacturing optical fiber preform and method for manufacturing optical fiber
JP2011230985A (en) Manufacturing method for glass preform

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060119

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081117

A02 Decision of refusal

Effective date: 20090331

Free format text: JAPANESE INTERMEDIATE CODE: A02