JP2005262162A - Catalyst for oxidizing/removing hydrocarbon gas - Google Patents

Catalyst for oxidizing/removing hydrocarbon gas Download PDF

Info

Publication number
JP2005262162A
JP2005262162A JP2004082121A JP2004082121A JP2005262162A JP 2005262162 A JP2005262162 A JP 2005262162A JP 2004082121 A JP2004082121 A JP 2004082121A JP 2004082121 A JP2004082121 A JP 2004082121A JP 2005262162 A JP2005262162 A JP 2005262162A
Authority
JP
Japan
Prior art keywords
catalyst
gas
nox
exhaust gas
noble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004082121A
Other languages
Japanese (ja)
Other versions
JP2005262162A5 (en
Inventor
Makoto Nagata
誠 永田
Takeshi Nagashima
健 長島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NE Chemcat Corp
Original Assignee
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NE Chemcat Corp filed Critical NE Chemcat Corp
Priority to JP2004082121A priority Critical patent/JP2005262162A/en
Publication of JP2005262162A publication Critical patent/JP2005262162A/en
Publication of JP2005262162A5 publication Critical patent/JP2005262162A5/ja
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To produce a catalyst for oxidizing/removing hydrocarbon gas leaking from an NOx storage/reduction-type catalyst employed in a system for removing the NOx in the exhaust gas of a diesel engine. <P>SOLUTION: This catalyst comprises a heat-resistant three-dimensional structure and a noble metal-containing active component carried on the structure, and serves for oxidizing/removing the hydrocarbon gas leaking from the NOx storage/reduction-type catalyst. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ディーゼルエンジン排気ガス中のNOxを除去するために、NOx吸蔵還元型触媒を用いるシステムにおいて、前記触媒に対して排気ガスの流れの下流側に配置され、前記触媒から漏出する炭化水素(HC)ガスを酸化して除去するHCガス酸化除去用触媒に関する。   The present invention relates to a hydrocarbon that is disposed downstream of the exhaust gas flow with respect to the catalyst and leaks from the catalyst in a system that uses a NOx occlusion reduction type catalyst to remove NOx in diesel engine exhaust gas. (HC) The present invention relates to an HC gas oxidation removal catalyst that oxidizes and removes gas.

リーンバーンエンジンを搭載しているディーゼルエンジン車から排出されるNOxを除去するシステムとして、NOx吸蔵還元型触媒を用いるシステムが知られている(特許文献1〜4)。   As a system for removing NOx discharged from a diesel engine vehicle equipped with a lean burn engine, systems using NOx occlusion reduction type catalysts are known (Patent Documents 1 to 4).

上記NOx吸蔵還元型触媒を用いるシステムは、流入排気ガスの空燃比(A/F)がリーン状態(A/F>14.7)のときに、NOx吸蔵還元型触媒中の吸蔵成分(例えば、Ba含有複合酸化物、アルカリ金属含有複合酸化物、アルカリ土類金属複合酸化物等)にNOxを吸蔵させ、NOxの吸蔵が飽和状態に達すると、流入排気ガスの空燃比がストイキオ(理論空燃比、A/F=14.7)〜リッチ(A/F<14.7)の還元性雰囲気となるようにパルス状に制御する(リッチ・スパイク制御)ことにより、NOxを前記吸蔵成分から放出させ、炭化水素(HC)と一酸化炭素(CO)との還元性成分と反応させて除去させるとともに、NOx吸蔵還元触媒を再生させるという特徴を有する。   In the system using the NOx storage reduction catalyst, when the air-fuel ratio (A / F) of the inflowing exhaust gas is in a lean state (A / F> 14.7), the storage component in the NOx storage reduction catalyst (for example, When NOx is occluded in Ba-containing complex oxide, alkali metal-containing complex oxide, alkaline earth metal complex oxide, etc. and the NOx occlusion reaches saturation, the air-fuel ratio of the inflowing exhaust gas is stoichiometric (theoretical air-fuel ratio). , A / F = 14.7) to rich (A / F <14.7) in a pulsed manner (rich spike control) to release NOx from the occlusion component. In addition, it is characterized by reacting with a reducing component of hydrocarbon (HC) and carbon monoxide (CO) to be removed and regenerating the NOx occlusion reduction catalyst.

このシステムにおける排気ガスの流れを模式的に説明すると、下記のとおりである。
(A)ディーゼルエンジン→(B)ディーゼル酸化触媒→(C)NOx吸蔵還元型触媒→(大気中へ放出)
通常のリーン状態においては、(A)エンジンからの排気ガス中の一酸化窒素(NO)は、(B)ディーゼル酸化触媒(DOC)を通過する際に、酸化されて部分的に二酸化窒素(NO)となり、(C)NOx吸蔵還元型触媒の酸化負担が軽減されるように、排気ガス中のNO/NOのモル比が調整される。そして、これらのNOxは(C)NOx吸蔵還元型触媒に吸蔵される。
The flow of exhaust gas in this system is schematically described as follows.
(A) Diesel engine → (B) Diesel oxidation catalyst → (C) NOx storage reduction catalyst → (released into the atmosphere)
Under normal lean conditions, (A) Nitric oxide (NO) in the exhaust gas from the engine is (B) oxidized and partially nitrogen dioxide (NO) as it passes through the diesel oxidation catalyst (DOC). 2 ), and (C) the NO / NO 2 molar ratio in the exhaust gas is adjusted so that the oxidation burden of the NOx storage reduction catalyst is reduced. These NOx are stored in the (C) NOx storage reduction catalyst.

NOxの除去は、上記のとおり、排気ガスの空燃比を調整して、還元性雰囲気とすることにより、(C)NOx吸蔵還元型触媒に吸蔵されていたNOxを還元して、N等の無害な成分として放出させることにより行われる。実際には、例えば、(C)NOx吸蔵還元型触媒の前後の差圧等を検知し、エンジンコントロールユニット(ECU)の制御により、ディーゼルエンジンシリンダー内へ、通常の軽油噴射とは別に、膨張行程から排気工程の途中で調量された軽油を噴射(ポスト噴射)して、未燃焼の軽油がエンジンからの排気ガス中に含まれるようにしている。この軽油は、(B)DOCにおいて、部分的にCOに酸化され、COおよびHCの混合ガスとなり、この混合ガスが、還元性成分として(C)NOx吸蔵還元型触媒に供給される。 As described above, NOx is removed by adjusting the air-fuel ratio of the exhaust gas to form a reducing atmosphere, thereby reducing (NO) the NOx stored in the NOx storage-reduction catalyst, such as N 2 This is done by releasing it as a harmless component. Actually, for example, (C) a differential pressure before and after the NOx occlusion reduction catalyst is detected and controlled by an engine control unit (ECU) into the diesel engine cylinder separately from normal light oil injection. The light oil metered in the middle of the exhaust process is injected (post-injection) so that unburned light oil is included in the exhaust gas from the engine. This light oil is partially oxidized to CO in (B) DOC to become a mixed gas of CO and HC, and this mixed gas is supplied as a reducing component to the (C) NOx occlusion reduction type catalyst.

特開平8−218920号公報JP-A-8-218920 特開平6−137135号公報JP-A-6-137135 特開平9−13956号公報Japanese Patent Laid-Open No. 9-13956 特開平11−93643号公報JP 11-93643 A 特開2001−132433号公報JP 2001-132433 A

しかし、上記NOx吸蔵還元型システムにおいて、HCガスはCOよりも比較的に還元性能が低いこと、そして、還元反応に十分関与し得ずに(即ち、酸化されず未燃焼のままで)NOx吸蔵還元型触媒を通過してしまうHCガス分が多いことが明らかとされた。このHCガスは有害成分であるから、そのまま大気中に放出されると環境に悪影響を及ぼすことは明らかである。   However, in the above NOx occlusion reduction system, HC gas has a relatively lower reduction performance than CO, and NOx occlusion does not sufficiently participate in the reduction reaction (that is, remains unburned without being oxidized). It has been clarified that there is a large amount of HC gas that passes through the reduced catalyst. Since this HC gas is a harmful component, it is clear that it will adversely affect the environment if it is released into the atmosphere as it is.

そこで、本発明の目的は、NOx吸蔵還元型触媒を用いるシステムを採用して、ポスト噴射により、前記触媒に吸蔵されていたNOxを還元して除去する際に、還元性ガスであるHCガスが前記触媒から漏出して大気中に放出される前に、該HCガスを酸化して除去するHCガス除去用触媒を提供することである。   Therefore, an object of the present invention is to adopt a system using a NOx occlusion reduction type catalyst, and when reducing and removing NOx occluded in the catalyst by post injection, HC gas which is a reducing gas is reduced. An object of the present invention is to provide an HC gas removal catalyst that oxidizes and removes the HC gas before it leaks from the catalyst and is released into the atmosphere.

本発明らは鋭意検討した結果、本発明の上記目的を達成するため、NOx吸蔵還元型触媒に対し排気ガスの流れの下流側に、HCガスを酸化して除去する触媒を設けることが有効であることを見出し、該知見に基づいて本発明を完成させるに至ったものである。   As a result of intensive studies, the present inventors have found that in order to achieve the above object of the present invention, it is effective to provide a catalyst for oxidizing and removing HC gas on the downstream side of the exhaust gas flow with respect to the NOx storage reduction catalyst. The present invention has been found, and the present invention has been completed based on the findings.

即ち、本発明は、
耐熱性三次元構造体と、該構造体に担持された貴金属含有活性成分とを有してなり、ディーゼルエンジン排気ガス浄化用のNOx吸蔵還元型触媒から漏出する炭化水素ガス酸化除去用触媒を提供する。
That is, the present invention
Provided is a hydrocarbon gas oxidation removal catalyst that has a heat-resistant three-dimensional structure and a noble metal-containing active component supported on the structure and leaks from a NOx occlusion reduction catalyst for purifying diesel engine exhaust gas To do.

本発明の炭化水素ガス酸化除去用触媒は、ポスト噴射時にNOx吸蔵還元型触媒で酸化されずに未燃焼のまま前記触媒から漏出するHCガスを、高効率で酸化して除去することができ、HCガスの大気中への放出量を低減することができることから、HCガス放出に伴う環境問題を生じさせることが少ないとの優れた効果を奏する。   The hydrocarbon gas oxidation removal catalyst of the present invention can oxidize and remove HC gas leaked from the catalyst without being oxidized by the NOx occlusion reduction catalyst during post-injection and remaining unburned with high efficiency, Since the amount of HC gas released into the atmosphere can be reduced, an excellent effect that environmental problems associated with HC gas release are less likely to occur.

本発明の炭化水素ガス酸化除去用触媒(以下、「本発明触媒」という)を採用したディーゼルエンジンNOx除去システムにおける排気ガスの流れを模式的に示すと、下記のとおりである。
(A)ディーゼルエンジン→(B)ディーゼル酸化触媒→(C)NOx吸蔵還元型触媒→(D)[本発明触媒]→(大気中へ放出)
The flow of exhaust gas in a diesel engine NOx removal system employing the hydrocarbon gas oxidation removal catalyst of the present invention (hereinafter referred to as “the present invention catalyst”) is schematically shown as follows.
(A) Diesel engine → (B) Diesel oxidation catalyst → (C) NOx occlusion reduction catalyst → (D) [Catalyst of the present invention] → (released into the atmosphere)

[耐熱性三次元構造体]
本発明触媒は、耐熱性三次元構造体と、該構造体に担持された貴金属含有活性成分とを有してなるものである。
本発明で用いる耐熱性三次元構造体の材質としては、金属、セラミック等が挙げられ、中でもコージェライト等の耐熱性セラミックが好ましい。
[Heat-resistant three-dimensional structure]
The catalyst of the present invention comprises a heat-resistant three-dimensional structure and a noble metal-containing active component supported on the structure.
Examples of the material of the heat-resistant three-dimensional structure used in the present invention include metals and ceramics, and among them, heat-resistant ceramics such as cordierite are preferable.

この耐熱性三次元構造体は、排気ガスの流れの方向に、複数の平行貫通孔(セル)を有するフロースルー型のハニカムモノリス体として構成されることが好ましい。
また、コージェライト等の微小細孔を有する多孔質耐熱性セラミックを材料として用いて、前記と同様のハニカムモノリス体を形成し、前記各セル両端部が交互に(市松模様に)閉じられた構造のフィルターとしてもよい。この場合は、排気ガス中に含まれる煤(スート)、サルフェート等の硫黄系微粒子、高分子量の炭化水素微粒子乃至可溶性有機成分(SOF)等の微粒子を捕集するディーゼル・パティキュレート・フィルター(DPF)として用いることができる。
何れの場合も、セルの径方向の断面形状としては、三角径、矩形、六角形等とすることができるが、製造および入手が容易であることから、正方形であるものが好ましい。
The heat-resistant three-dimensional structure is preferably configured as a flow-through type honeycomb monolith body having a plurality of parallel through holes (cells) in the direction of the exhaust gas flow.
Also, a porous monolithic ceramic material having fine pores such as cordierite is used as a material to form a honeycomb monolith body similar to the above, and each cell is closed alternately (in a checkered pattern) It is good also as a filter. In this case, diesel particulate filter (DPF) that collects sulfur-based fine particles such as soot and sulfate, high-molecular-weight hydrocarbon fine particles or soluble organic component (SOF) fine particles contained in the exhaust gas. ).
In any case, the radial cross-sectional shape of the cell may be a triangular diameter, a rectangle, a hexagon, or the like, but is preferably a square because it is easy to manufacture and obtain.

[活性成分]
本発明触媒のHCガス酸化除去機能を発揮する貴金属含有活性成分としては、担体に担持された貴金属を用いることが好ましい。前記貴金属としては、パラジウム(Pd)、白金(Pt)、ロジウム(Rh)等が挙げられる。特に、HCガス酸化活性に優れていることから、Pdが好ましい。また、PdとPtを組み合わせて用いることにより、触媒活性の耐久性を向上させることができるので好ましい。
[Active ingredients]
As the noble metal-containing active component that exhibits the HC gas oxidation removal function of the catalyst of the present invention, it is preferable to use a noble metal supported on a carrier. Examples of the noble metal include palladium (Pd), platinum (Pt), and rhodium (Rh). In particular, Pd is preferable because of its excellent HC gas oxidation activity. Further, it is preferable to use a combination of Pd and Pt because the durability of the catalyst activity can be improved.

このPd等の貴金属の担体としては、例えば、γ-アルミナ、シリカ、アルミナ-シリカ複合体、ジルコニア、チタニア、ゼオライト等の金属酸化物を挙げられる。これらの中でも、汎用的なγ-アルミナが好ましく用いられる。γ-アルミナ等の担体は、活性成分のHCガスとの接触面積を大きくするために、細孔構造を有しているものがよく、その比表面積(BET法)が、通常、100〜250m/g、好ましくは100〜200m/g程度のものが好ましい。 Examples of the noble metal carrier such as Pd include metal oxides such as γ-alumina, silica, alumina-silica composite, zirconia, titania, and zeolite. Among these, general-purpose γ-alumina is preferably used. The carrier such as γ-alumina preferably has a pore structure in order to increase the contact area with the active ingredient HC gas, and the specific surface area (BET method) is usually 100 to 250 m 2. / g, preferably about 100 to 200 m 2 / g.

貴金属をアルミナ等の担体に担持させる方法には、特に制限がなく、当該技術分野で常用される方法で担持させることができる。例えば、硝酸パラジウム、ジニトロジアンミン白金、水酸化白金アミン、塩化白金酸・6水和物等の水溶液乃至水/硝酸系溶液をγ-アルミナ等の担体粒子に含浸させ、乾燥させる。そして、その後、ハニカムモノリス体等に、常法によりウオッシュ・コートし、乾燥・焼成させて、ハニカムモノリス体等に担持されたPd/γ-アルミナ等を得ることができる。   The method for supporting the noble metal on a carrier such as alumina is not particularly limited, and can be supported by a method commonly used in the art. For example, carrier particles such as γ-alumina are impregnated with an aqueous solution such as palladium nitrate, dinitrodiammine platinum, platinum hydroxide amine, chloroplatinic acid hexahydrate, or a water / nitric acid solution and dried. Then, the honeycomb monolith body and the like are washed and coated by a conventional method, dried and fired, and Pd / γ-alumina supported on the honeycomb monolith body and the like can be obtained.

本発明触媒における、HCガスの酸化活性を有するPd、Pt等の貴金属の含有量は、ハニカムモノリス体等に担持された状態で、ハニカムモノリス体等の単位体積当り、通常、0.1〜10g/L、好ましくは0.5〜8g/L、より好ましくは1〜6g/L程度とするのがよい。前記含有量が少なすぎると酸化活性に乏しく、逆に多すぎても、特段の効果の向上はなく、かつ、経済的に不利である。   In the catalyst of the present invention, the content of noble metals such as Pd and Pt having oxidation activity of HC gas is usually 0.1 to 10 g per unit volume of the honeycomb monolith body or the like while being supported on the honeycomb monolith body or the like. / L, preferably 0.5-8 g / L, more preferably about 1-6 g / L. If the content is too small, the oxidation activity is poor. Conversely, if the content is too large, there is no particular improvement in the effect and it is economically disadvantageous.

HCガスの酸化活性を有するPd、Pt等の貴金属とともに、更に、酸素供給機能を有するセリア(CeO)を組み合わせて用いることが、HCガスの酸化反応を促進し、HC除去率を向上させることができることから好ましい。
このセリアを用いる場合には、上記のとおりにして調製された貴金属化合物が含浸・担持された担体粒子と一緒にして、スラリーとし、ハニカムモノリス体等に担持させることができる。
また、セリアの含有量としては、上記と同様に、ハニカムモノリス体等の単位体積当り、通常、5〜200g/L、好ましくは10〜100g/L程度とするのがよい。
Use of a combination of noble metals such as Pd and Pt having HC gas oxidation activity and ceria (CeO 2 ) having an oxygen supply function promotes the HC gas oxidation reaction and improves the HC removal rate. Is preferable.
When this ceria is used, it can be made into a slurry together with carrier particles impregnated and supported by the noble metal compound prepared as described above, and supported on a honeycomb monolith body or the like.
Further, the ceria content is usually about 5 to 200 g / L, preferably about 10 to 100 g / L per unit volume of the honeycomb monolith body or the like as described above.

[実施例1]
(1)容器内にγ-アルミナ粉末(BET比表面積:150m/g)をほぼ均一な厚さとなるように入れた。
[Example 1]
(1) γ-alumina powder (BET specific surface area: 150 m 2 / g) was placed in a container so as to have a substantially uniform thickness.

パラジウム金属に換算して20gとなる量の硝酸パラジウムを、水に溶解して1000mLの溶液を調製した。この溶液を、上記γ-アルミナ粉末に少量ずつ全量滴下した。滴下終了後、軽度に攪拌して、硝酸パラジウムが担持されたγ-アルミナ粉末を調製した。   An amount of 20 g of palladium nitrate in terms of palladium metal was dissolved in water to prepare a 1000 mL solution. This solution was added dropwise to the γ-alumina powder little by little. After completion of the dropping, the mixture was gently stirred to prepare γ-alumina powder carrying palladium nitrate.

(2)上記(1)で得られた硝酸パラジウムが担持されたγ-アルミナ粉末の固形分が4kgとなる量、セリア4kgおよび脱イオン水2kgを混合してスラリーを調製した。 (2) A slurry was prepared by mixing 4 kg of ceria and 2 kg of deionized water so that the solid content of the γ-alumina powder carrying palladium nitrate obtained in (1) above was 4 kg.

得られたスラリーを、市販のコージェライト製ハニカムモノリス(セル形:正方形、セル密度:400cpsi)に浸漬し、引き上げ、過剰量のスラリーを空気流により除去した。次いで、100℃で30間かけて乾燥し、その後、500℃で1分間焼成して、Pd/γ-アルミナおよびセリアが担持された触媒を得た。
得られた触媒に含まれるPd金属の量は、ハニカムモノリスの単位体積当り、2g/Lであり、同じくセリアの量は70g/Lであった。
The resulting slurry was immersed in a commercially available cordierite honeycomb monolith (cell shape: square, cell density: 400 cpsi), pulled up, and excess slurry was removed by an air stream. Subsequently, it was dried at 100 ° C. for 30 minutes, and then calcined at 500 ° C. for 1 minute to obtain a catalyst carrying Pd / γ-alumina and ceria.
The amount of Pd metal contained in the obtained catalyst was 2 g / L per unit volume of the honeycomb monolith, and the amount of ceria was 70 g / L.

[実施例2]
上記実施例1に記載のパラジウム金属に換算して20gとなる量の硝酸パラジウムに代えて、パラジウム金属に換算して50gとなる量の硝酸パラジウムを用いるように変更したこと以外は、実施例1と同じにしてPd/γ-アルミナおよびセリアが担持された触媒を得た。
得られた触媒に含まれるPd金属の量は、ハニカムモノリスの単位体積当り、5g/Lであり、同じくセリアの量は70g/Lであった。
[Example 2]
Example 1 except that instead of palladium nitrate in an amount of 20 g in terms of palladium metal described in Example 1, palladium nitrate in an amount of 50 g in terms of palladium metal was used. In the same manner as above, a catalyst carrying Pd / γ-alumina and ceria was obtained.
The amount of Pd metal contained in the obtained catalyst was 5 g / L per unit volume of the honeycomb monolith, and the amount of ceria was also 70 g / L.

[実施例3]
上記実施例1に記載の硝酸パラジウムに代えて、白金金属に換算して20gとなる量のジニトロジアンミン白金の水/硝酸系溶液を用いるように変更したこと以外は、実施例1と同じにしてPt/γ-アルミナおよびセリアが担持された触媒を得た。
得られた触媒に含まれるPt金属の量は、ハニカムモノリスの単位体積当り、2g/Lであり、同じくセリアの量は70g/Lであった。
[Example 3]
In place of palladium nitrate described in Example 1 above, the same procedure as in Example 1 was carried out except that a water / nitric acid solution of dinitrodiammine platinum in an amount of 20 g in terms of platinum metal was used. A catalyst carrying Pt / γ-alumina and ceria was obtained.
The amount of Pt metal contained in the obtained catalyst was 2 g / L per unit volume of the honeycomb monolith, and the amount of ceria was 70 g / L.

<触媒性能評価手法および評価結果>
ディーゼルエンジン(20L、インタークーラー付ターボ)の排気ガス通路内に、エンジン側からみて、順に、DOC(白金含有量:3g/L)、NOx吸蔵還元型触媒(白金(含有量:5g/L)−炭酸バリウム系)および上記各実施例で得られた触媒を配置した。エンジンを運転させて、上記各実施例で得られた触媒の体積を基準として、空間速度(SV)が150,000/hrとなるように排気ガス流を、前記各触媒を順次通して流した。
<Catalyst performance evaluation method and evaluation results>
In the exhaust gas passage of a diesel engine (20L, turbo with intercooler), DOC (platinum content: 3 g / L), NOx storage reduction catalyst (platinum (content: 5 g / L) − The barium carbonate system) and the catalyst obtained in each of the above examples were arranged. The engine was operated, and an exhaust gas flow was caused to flow through each of the catalysts sequentially so that the space velocity (SV) was 150,000 / hr, based on the volume of the catalyst obtained in each of the above examples. .

エンジン出口の排気ガス口温度が、リーン運転状態で250℃となるように、エンジンに負荷をかけて調整した。
1分間に1回および1秒間の条件で間欠的にエンジン内への軽油のポスト噴射を行うことにより、リッチ・スパイク制御を行い、排気ガス中の空燃比がリーンおよびリッチ状態を繰り返すように、エンジンを運転させた。
The engine was adjusted by applying a load so that the exhaust gas outlet temperature at the engine outlet was 250 ° C. in the lean operation state.
By performing post injection of light oil into the engine intermittently once per minute and under conditions of 1 second, rich spike control is performed so that the air-fuel ratio in the exhaust gas repeats lean and rich states. The engine was operated.

エンジン出口における排気ガス中のHCガス濃度(HC・IN)、および上記各実施例で得られた触媒の出口における排気ガス中HCガス濃度(HC・OUT)を、いずれも連続的に計測した。そして、前記計測結果のピーク値に基づき、リッチ・スパイク制御時のHC・IN、およびこれに対応するHC・OUTを求め、HC除去率(%)を、下式により算出した。
HC除去率(%)=[(HC・IN−HC・OUT)/HC・IN]×100
上記と同様にして、エンジン出口の排気ガス口温度が、300℃および350℃の場合についても、HC除去率(%)を求めた。
The HC gas concentration (HC · IN) in the exhaust gas at the engine outlet and the HC gas concentration (HC · OUT) in the exhaust gas at the catalyst outlet obtained in each of the above examples were continuously measured. Then, based on the peak value of the measurement result, HC · IN at the time of rich spike control and HC · OUT corresponding thereto were obtained, and the HC removal rate (%) was calculated by the following equation.
HC removal rate (%) = [(HC · IN−HC · OUT) / HC · IN] × 100
In the same manner as described above, the HC removal rate (%) was also obtained when the exhaust gas outlet temperature at the engine outlet was 300 ° C. and 350 ° C.

更に、本発明のHCガス除去用触媒を使用しない場合についてのブランク値を同様に各温度について求め、これを「比較例」とした。測定結果を表1に示す。   Further, blank values for the case where the catalyst for removing HC gas of the present invention was not used were similarly determined for each temperature, and this was designated as “Comparative Example”. The measurement results are shown in Table 1.

Figure 2005262162

(注:比較例では、評価温度350℃におけるデータを採取していない。)
Figure 2005262162

(Note: In the comparative example, data at an evaluation temperature of 350 ° C. is not collected.)

[評価]
本発明のHCガス除去触媒を用いない比較例のデータとの対比から明らかなように、本発明触媒は、NOx吸蔵還元型触媒から漏出するHCガスを効果的に酸化して除去するこができる。
[Evaluation]
As is clear from the comparison with the data of the comparative example that does not use the HC gas removal catalyst of the present invention, the catalyst of the present invention can effectively oxidize and remove the HC gas leaked from the NOx occlusion reduction type catalyst. .

Claims (5)

耐熱性三次元構造体と、該構造体に担持された貴金属含有活性成分とを有してなり、ディーゼルエンジン排気ガス浄化用のNOx吸蔵還元型触媒から漏出する炭化水素ガス酸化除去用触媒。   A hydrocarbon gas oxidation removal catalyst comprising a heat-resistant three-dimensional structure and a noble metal-containing active component supported on the structure and leaking from a NOx occlusion reduction catalyst for purifying diesel engine exhaust gas. 前記貴金属含有活性成分が、担体に担持されたパラジウムである、請求項1に記載の触媒。   The catalyst according to claim 1, wherein the noble metal-containing active component is palladium supported on a support. 前記パラジウムの含有量が、前記耐熱性三次元構造体の単位体積当り0.1〜10g/Lである請求項2に記載の触媒。   The catalyst according to claim 2, wherein the palladium content is 0.1 to 10 g / L per unit volume of the heat-resistant three-dimensional structure. 前記貴金属含有活性成分が、更に、セリア(CeO)を含む、請求項2または3に記載の触媒。 The catalyst according to claim 2 or 3, wherein the noble metal-containing active ingredient further contains ceria (CeO 2 ). 前記セリアの含有量が、前記耐熱性三次元構造体の単位体積当り5〜200g/Lである請求項4に記載の触媒。   The catalyst according to claim 4, wherein a content of the ceria is 5 to 200 g / L per unit volume of the heat-resistant three-dimensional structure.
JP2004082121A 2004-03-22 2004-03-22 Catalyst for oxidizing/removing hydrocarbon gas Pending JP2005262162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004082121A JP2005262162A (en) 2004-03-22 2004-03-22 Catalyst for oxidizing/removing hydrocarbon gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004082121A JP2005262162A (en) 2004-03-22 2004-03-22 Catalyst for oxidizing/removing hydrocarbon gas

Publications (2)

Publication Number Publication Date
JP2005262162A true JP2005262162A (en) 2005-09-29
JP2005262162A5 JP2005262162A5 (en) 2007-02-15

Family

ID=35087250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004082121A Pending JP2005262162A (en) 2004-03-22 2004-03-22 Catalyst for oxidizing/removing hydrocarbon gas

Country Status (1)

Country Link
JP (1) JP2005262162A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013500862A (en) * 2009-08-05 2013-01-10 ビー・エイ・エス・エフ、コーポレーション Production of diesel oxidation catalyst by precipitation of colloidal nanoparticles
WO2014141903A1 (en) * 2013-03-15 2014-09-18 エヌ・イーケムキャット株式会社 Oxidation catalyst and exhaust gas purification device using same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013500862A (en) * 2009-08-05 2013-01-10 ビー・エイ・エス・エフ、コーポレーション Production of diesel oxidation catalyst by precipitation of colloidal nanoparticles
US9687818B2 (en) 2009-08-05 2017-06-27 Basf Corporation Preparation of diesel oxidation catalyst via deposition of colloidal nanoparticles
JP2017159296A (en) * 2009-08-05 2017-09-14 ビーエーエスエフ コーポレーション Preparation of diesel oxidation catalyst via deposition of colloidal nanoparticles
WO2014141903A1 (en) * 2013-03-15 2014-09-18 エヌ・イーケムキャット株式会社 Oxidation catalyst and exhaust gas purification device using same
JPWO2014141903A1 (en) * 2013-03-15 2017-02-16 エヌ・イーケムキャット株式会社 Oxidation catalyst and exhaust gas purification apparatus using the same
US10030559B2 (en) 2013-03-15 2018-07-24 N.E. Chemcat Corporation Oxidation catalyst and exhaust gas purification device using same

Similar Documents

Publication Publication Date Title
EP2539040B1 (en) Improved catalyzed soot filter
JP5651589B2 (en) NOx adsorption catalyst with excellent low-temperature performance
JP6474809B2 (en) Ammonia slip catalyst
US11865497B2 (en) Monometallic rhodium-containing four-way conversion catalysts for gasoline engine emissions treatment systems
JP4782335B2 (en) Catalyst wall flow filter
KR101870397B1 (en) Dual function catalytic filter
JP5806131B2 (en) NOx storage denitration catalyst
CN102454453B (en) There is the SO of reduction 3the discharge SCR NO of the durability produced and improve xafter-treatment system
JP2018526195A (en) SCR catalyzed soot filter with integrated lean NOx trap catalyst for use in passive selective catalytic reduction
CN103370131B (en) Exhaust gas purification catalyst and exhaust gas purification catalyst structure
EP3097977B1 (en) Exhaust-gas purifying catalyst for lean-burn engine
JP2016531736A (en) Tungsten / titania oxidation catalyst
JP2006272288A (en) Catalyst for purifying diesel exhaust gas
JP6443501B1 (en) Exhaust gas purification system
JP2008151100A (en) Exhaust emission control device
JP2002361047A (en) Method for cleaning exhaust and apparatus therefor
JP2006346605A (en) Exhaust gas cleaning filter and exhaust gas cleaning device for internal engine
KR20080066944A (en) Exhaust gas clean-up system and exhaust gas clean-up method
JP2007117954A (en) Catalyst for cleaning exhaust gas from diesel engine
JP2010270695A (en) Exhaust emission control device and exhaust emission control method
JP3874246B2 (en) Filter type catalyst for diesel exhaust gas purification
JP5806157B2 (en) Exhaust gas purification catalyst composition
JP2006150223A (en) Exhaust-gas cleaning filter, production method of the filter and exhaust-gas cleaning apparatus
JP4793316B2 (en) Sulfur storage catalyst
JP2005288362A (en) Diesel engine exhaust gas purification apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091104