JP2005260875A - Surface mounted patch antenna and its mounting method - Google Patents

Surface mounted patch antenna and its mounting method Download PDF

Info

Publication number
JP2005260875A
JP2005260875A JP2004073341A JP2004073341A JP2005260875A JP 2005260875 A JP2005260875 A JP 2005260875A JP 2004073341 A JP2004073341 A JP 2004073341A JP 2004073341 A JP2004073341 A JP 2004073341A JP 2005260875 A JP2005260875 A JP 2005260875A
Authority
JP
Japan
Prior art keywords
dielectric substrate
hole
patch antenna
power supply
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004073341A
Other languages
Japanese (ja)
Inventor
Katsumi Chiaki
勝巳 千明
Hidekatsu Asai
英克 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokowo Co Ltd
Original Assignee
Yokowo Co Ltd
Yokowo Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokowo Co Ltd, Yokowo Mfg Co Ltd filed Critical Yokowo Co Ltd
Priority to JP2004073341A priority Critical patent/JP2005260875A/en
Priority to CN 200510055932 priority patent/CN1670999A/en
Priority to TW94107797A priority patent/TW200536180A/en
Publication of JP2005260875A publication Critical patent/JP2005260875A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Aerials (AREA)
  • Structure Of Printed Boards (AREA)
  • Details Of Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface mounted patch antenna having a feeding portion at a predetermined position in an x direction and a y direction from a center position of a radiation electrode, capable of performing surface mount without making a feeding pin to pass through a mounting substrate etc. <P>SOLUTION: The radiation electrode 2 is provided to a surface which is a plane of a dielectric substrate 1, and a ground electrode 5 is provided at a back surface which is opposing to the plane of the dielectric substrate 1. One end portion 3a of the feeding pin 3 is connected to the radiation electrode 2, and the other end portion 3b is extracted to the back surface side through a through hole 1a provided on the dielectric substrate 1. At the back surface side of the dielectric substrate 1 of this through hole 1a, a recess portion 1b having the mostly same center as the through hole 1a and an inner circumference larger than a diameter of the through hole 1a is to be formed. The other end portion 3b of the feeding pin 3 is to be formed on the nearly same plane as an exposed surface of the ground electrode 5 to be provided on the back surface of the dielectric substrate 1, and is to be formed as the configuration to be directly mounted on the surface of the mounting substrate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、誘電体基板表面に送受信する信号の周波数帯における1/2波長の電気長で放射電極が形成され、パッチモードで動作する表面実装型パッチアンテナおよびその実装方法に関する。さらに詳しくは、実装基板にパッチアンテナを実装する場合に、給電ピンが実装基板を貫通して実装基板裏面で接続する構造ではなく、実装基板表面のみで給電ピンも接続することができる表面実装型パッチアンテナおよびその実装方法に関する。   The present invention relates to a surface-mount type patch antenna in which a radiation electrode is formed with an electrical length of ½ wavelength in a frequency band of a signal to be transmitted and received on a dielectric substrate surface and operates in a patch mode and a mounting method thereof. More specifically, when a patch antenna is mounted on a mounting board, it is not a structure in which the power feed pin penetrates the mounting board and is connected on the back surface of the mounting board, but a surface mounting type in which the power feeding pin can be connected only on the mounting board surface. The present invention relates to a patch antenna and a mounting method thereof.

パッチアンテナは、たとえばその一例が図10(a)〜(b)に斜視および断面の説明図が示されるように、誘電体基板21の一表面に導電体膜からなるアンテナ放射電極22が、一辺がλ/(2εr 1/2)(λは送受信する周波数帯の波長、εrは誘電体基板の比誘電率)程度のほぼ正方形状(縦と横の比は、利得、帯域幅などの特性に影響する)に形成され、アンテナ放射電極22の中心から、x軸方向およびy軸方向にそれぞれ変位した位置に給電点22aが設けられ、その給電点22aに給電ピン23が接続され、その給電ピン23の他端部が給電回路に接続される構造になっている。パッチアンテナでは、アンテナ放射電極22の中心部が電流の最大点となり、端部で電流が最小、すなわち電圧が最大となる分布をするため、中心部からx軸方向およびy軸方向の両方共に変位したところに、給電側のインピーダンスである50Ω程度のインピーダンスが存在し、その部分に給電点22aが形成されている。そして、誘電体基板21の裏面には、接地電極25とする導電膜が形成されている。なお、給電ピン23は、誘電体基板21の貫通孔21aおよび接地電極25の貫通孔25aを経て、接地電極25と離間して下側に導出されている。 For example, the patch antenna has an antenna radiation electrode 22 formed of a conductor film on one surface of one side of a dielectric substrate 21, as shown in FIGS. Is approximately λ / (2ε r 1/2 ) (λ is the wavelength of the transmitting / receiving frequency band, ε r is the dielectric constant of the dielectric substrate) and is approximately square (the ratio of length to width is the gain, bandwidth, etc. The feed point 22a is provided at a position displaced from the center of the antenna radiation electrode 22 in the x-axis direction and the y-axis direction, respectively, and the feed pin 23 is connected to the feed point 22a. The other end of the power supply pin 23 is connected to the power supply circuit. In the patch antenna, the central portion of the antenna radiation electrode 22 is the maximum point of current and the current is minimum, that is, the voltage is maximum at the end portion. Therefore, both the x-axis direction and the y-axis direction are displaced from the center portion. There is an impedance of about 50Ω, which is the impedance on the power supply side, and the power supply point 22a is formed at that portion. A conductive film serving as the ground electrode 25 is formed on the back surface of the dielectric substrate 21. Note that the power supply pin 23 is led away from the ground electrode 25 through the through hole 21 a of the dielectric substrate 21 and the through hole 25 a of the ground electrode 25.

一方、パッチアンテナで表面実装するタイプとして、たとえば図11に正面側から見た斜視およびその底面の説明図が示されるように、直線偏波用のパッチアンテナの給電ライン43を放射電極42の側壁から誘電体基板41の側面を介して誘電体基板41の裏面に引き出してその裏面に給電部44を形成し、実装基板などに直接リフロー炉などでハンダ付けできる構成にするものも考えられている(たとえば特許文献1参照)。すなわち、直線偏波用であるため、電界の方向は一方向であり、一方向の長さがほぼ1/2波長の電気長を有しその中心部から所定の距離のところに給電されれば、インピーダンス整合をとることができ、その方向と直交する方向である幅方向の位置には余り拘束されないため、放射電極の側部から給電しても問題がなく、誘電体基板の側面を介して給電ライン43を引き出すことができる。なお、図11において、45は接地電極である。
特開2002−314325号公報
On the other hand, as a type that is surface-mounted with a patch antenna, for example, a perspective view seen from the front side and an explanatory view of the bottom surface thereof are shown in FIG. It is also conceivable that the power supply portion 44 is formed on the rear surface of the dielectric substrate 41 by being drawn out from the dielectric substrate 41 to the rear surface through the side surface of the dielectric substrate 41 and can be directly soldered to the mounting substrate with a reflow furnace or the like. (For example, refer to Patent Document 1). That is, since it is for linearly polarized waves, the direction of the electric field is one direction, and the length of one direction has an electrical length of approximately ½ wavelength, and power is supplied at a predetermined distance from the center. Since impedance matching can be achieved and the position in the width direction, which is a direction orthogonal to that direction, is not so constrained, there is no problem even if power is supplied from the side of the radiation electrode, The feed line 43 can be pulled out. In FIG. 11, 45 is a ground electrode.
JP 2002-314325 A

前述のように、従来の円偏波用パッチアンテナでは、その直交するx方向およびy方向共に電界成分を有するため、そのx方向およびy方向共に中心位置から一定の距離にある所定のインピーダンスの位置に給電ピン23を接続する必要があり、誘電体基板21を貫通させた貫通孔21aを介して給電ピン23を誘電体基板21の裏面側に導出しなければならない。そのため、実装基板に搭載する場合でも、図10(c)に示されるように、実装基板26に貫通孔26aを形成し、給電ピン23を実装基板26の貫通孔26aに貫通させて実装基板26の裏面でハンダ付け27をしなければならない。その結果、実装基板上に載置してリフロー炉などで一括ハンダ付けをするという接合方法を取り難く、実装作業が複雑になり、コストアップの原因になっている。さらに、実装基板を貫通させてその裏面側でハンダ付けすると、実装基板の裏面にd=1.5mm程度の出っ張りができ、スペースを取り小型化の妨げになると共に、実装基板裏面に部品を搭載するスペースも制約を受けることになる。   As described above, since the conventional circularly polarized patch antenna has electric field components in the orthogonal x and y directions, the position of a predetermined impedance at a certain distance from the center position in both the x and y directions. It is necessary to connect the power supply pin 23 to the power supply pin 23, and the power supply pin 23 must be led out to the back surface side of the dielectric substrate 21 through the through hole 21 a that penetrates the dielectric substrate 21. Therefore, even when mounted on the mounting board, as shown in FIG. 10C, a through hole 26a is formed in the mounting board 26, and the power supply pin 23 is passed through the through hole 26a of the mounting board 26 so as to be mounted. Soldering 27 must be done on the back side. As a result, it is difficult to adopt a joining method of mounting on a mounting substrate and performing batch soldering in a reflow furnace or the like, which complicates the mounting operation and causes an increase in cost. Furthermore, if the mounting board is penetrated and soldered on the back side, a protrusion of about d = 1.5mm is created on the back side of the mounting board, which saves space and hinders downsizing, and mounts components on the back side of the mounting board. The space to do is also restricted.

一方、近年では、アンテナ性能向上の観点から、携帯電話機など非常に小型で安価な製品にもパッチアンテナが搭載されるようになり、パッチアンテナを用いる場合に、実装基板に搭載する部品の高集積化およびさらなるコストダウンが要求されてきており、そのニーズに応えられないという問題がある。この問題を解決するため、誘電体基板を薄くしたり、給電ピンの出っ張り部の厚さdを0.5mm以下などに短くすることが考えられるが、誘電体基板を薄くすると電気特性、とくに帯域が狭くなったり、利得が低くなるという問題があり、また、給電ピンの出っ張り部を短くすると、ハンダ付けの信頼性が低下すると共に、短くしても他の部品を実装基板裏面にできるだけ多く搭載するという要求には応えることができない。   On the other hand, in recent years, patch antennas have been mounted on very small and inexpensive products such as cellular phones from the viewpoint of improving antenna performance. When patch antennas are used, the components mounted on the mounting board are highly integrated. However, there is a problem that it is impossible to meet the needs. In order to solve this problem, it is conceivable to reduce the thickness of the dielectric substrate or shorten the thickness d of the protruding portion of the feed pin to 0.5 mm or less. In addition, there is a problem that the width of the power supply pin is shortened, and if the protruding portion of the power supply pin is shortened, the reliability of soldering is reduced. It cannot meet the demand to do.

本発明は、このような問題を解決するためになされたもので、放射電極の中心位置からx方向およびy方向共に所定の位置のところに給電部を有するパッチアンテナでありながら、実装基板などに給電ピンを貫通させることなく、表面実装をすることができる表面実装型パッチアンテナを提供することを目的とする。   The present invention has been made to solve such a problem, and is a patch antenna having a power feeding portion at a predetermined position in both the x and y directions from the center position of the radiation electrode. An object of the present invention is to provide a surface mount type patch antenna that can be surface mounted without penetrating a feed pin.

本発明の他の目的は、給電ピンを有するパッチアンテナを実装基板などに表面実装する場合でも、給電ピンを確実に実装基板に接続させ、接続の信頼性を低下させることのない表面実装型パッチアンテナの実装方法を提供することにある。   Another object of the present invention is to provide a surface-mounted patch that reliably connects the power supply pins to the mounting substrate even when the patch antenna having the power supply pins is surface-mounted on a mounting substrate or the like, and does not reduce the connection reliability. An object is to provide an antenna mounting method.

本発明による表面実装型パッチアンテナは、誘電体基板と、該誘電体基板の一面である表面に設けられる放射電極と、前記誘電体基板の前記一面と対向する面である裏面に設けられる接地電極と、一端部が前記放射電極に接続され、他端部が前記誘電体基板に設けられる貫通孔を介して前記裏面側に導出される給電ピンとを有するパッチアンテナであって、前記貫通孔の前記誘電体基板裏面側に該貫通孔とほぼ同心で、かつ、該貫通孔の直径より大きい内周を有する凹部が形成されると共に、前記給電ピンの他端部が前記誘電体基板の裏面に設けられる接地電極の露出面とほぼ面一で、実装基板表面に直接表面実装され得る構造に形成されている。   A surface-mounted patch antenna according to the present invention includes a dielectric substrate, a radiation electrode provided on a surface that is one surface of the dielectric substrate, and a ground electrode provided on a back surface that is a surface facing the one surface of the dielectric substrate. A patch antenna having one end connected to the radiation electrode and the other end fed to the back surface through a through hole provided in the dielectric substrate, the patch antenna having the through hole A recess is formed on the back side of the dielectric substrate that is substantially concentric with the through hole and has an inner circumference larger than the diameter of the through hole, and the other end of the power supply pin is provided on the back side of the dielectric substrate. It is formed in a structure that is substantially flush with the exposed surface of the ground electrode and can be directly mounted on the surface of the mounting substrate.

ここに「貫通孔とほぼ同心で、かつ、該貫通孔の直径より大きい内周を有する凹部」とは、凹部は断面形状が円形でなくてもよく、それぞれの中心部がほぼ同じ位置になるように凹部が大きく形成されることを意味する。   Here, “a concave portion that is substantially concentric with the through-hole and has an inner circumference larger than the diameter of the through-hole” means that the concave portion does not have to have a circular cross-sectional shape, and the respective central portions are located at substantially the same position. This means that the recess is formed large.

前記給電ピンの他端部に、前記実装基板との接続を容易にするフランジ部が形成されていることにより、実装基板などにハンダ付けなどにより接続する際に、安定して接続することができ、接続の信頼性が向上する。ここにフランジ部とは、給電ピンの太さより大きい外形を有する平坦部分を意味する。   A flange portion that facilitates connection with the mounting board is formed at the other end of the power supply pin, so that when connecting to the mounting board by soldering or the like, stable connection can be achieved. , Connection reliability is improved. Here, the flange portion means a flat portion having an outer shape larger than the thickness of the power supply pin.

本発明による表面実装型パッチアンテナの他の形態は、誘電体基板と、該誘電体基板の一面である表面に設けられる放射電極と、前記誘電体基板の前記一面と対向する面である裏面に設けられる接地電極とを有し、前記放射電極の給電ピンが接続される位置および該給電ピンが接続される位置に対応する部分の前記誘電体基板に貫通孔が形成され、該貫通孔の前記誘電体基板の裏面側に該貫通孔とほぼ同心で、かつ、該貫通孔の直径より大きい内周を有する凹部が形成されることにより、実装基板表面に設けられた給電ピンを前記貫通孔に挿入して前記放射電極と接続し得る構造に形成されている。   Another embodiment of the surface-mounted patch antenna according to the present invention includes a dielectric substrate, a radiation electrode provided on a surface that is one surface of the dielectric substrate, and a back surface that is a surface facing the one surface of the dielectric substrate. A through hole is formed in a portion of the dielectric substrate corresponding to a position where the power supply pin of the radiation electrode is connected and a position where the power supply pin is connected. A recess having an inner circumference larger than the diameter of the through hole is formed on the back surface side of the dielectric substrate, and the power supply pin provided on the surface of the mounting substrate is formed in the through hole. It is formed in a structure that can be inserted and connected to the radiation electrode.

本発明による表面実装型パッチアンテナのさらに他の形態は、誘電体基板と、該誘電体基板の一面である表面に設けられる放射電極と、前記誘電体基板の前記一面と対向する面である裏面に設けられる接地電極と、一端部が前記放射電極に接続され、他端部が前記誘電体基板に設けられる貫通孔を介して前記裏面側に導出される給電ピンとを有するパッチアンテナであって、前記給電ピンは、前記他端部がスプリングを介して突出長を可変できる可動ピンで形成され、該可動ピンの先端部が前記接地電極の露出面よりも突出するように設けられ、実装基板上に固定されるとき該可動ピンの可動力により実装基板上に押し付けることにより、実装基板表面に表面実装され得る構造になっている。   Still another embodiment of the surface-mounted patch antenna according to the present invention includes a dielectric substrate, a radiation electrode provided on the surface that is one surface of the dielectric substrate, and a back surface that is the surface facing the one surface of the dielectric substrate. A patch antenna having a ground electrode provided at one end and a feed pin that is connected to the radiation electrode at one end and led to the back side through a through hole provided in the dielectric substrate at the other end; The power supply pin is formed of a movable pin whose other end can be changed in protrusion length via a spring, and the tip of the movable pin is provided so as to protrude from the exposed surface of the ground electrode. By being pressed onto the mounting substrate by the moving force of the movable pin when fixed to the surface, the surface can be mounted on the surface of the mounting substrate.

前記貫通孔の前記誘電体基板裏面側に該貫通孔とほぼ同心で、かつ、該貫通孔の直径より大きい内周を有する凹部が形成され、前記給電ピンの外周に前記凹部内に挿入される鍔が形成され、該鍔を基準として前記給電ピンの一端部が前記放射電極と接続して固定される構造にすることができる。そうすることにより、給電ピンの位置決めをしやすく、給電ピンと放射電極との接続固定を、一定の長さで、しかも治具無しでリフロー炉などにより簡単に行いやすい。   A concave portion having an inner circumference substantially concentric with the through hole and larger than the diameter of the through hole is formed on the back surface side of the dielectric substrate of the through hole, and is inserted into the concave portion on the outer circumference of the power feed pin. A ridge is formed, and one end of the power supply pin can be connected and fixed to the radiation electrode with the ridge as a reference. By doing so, it is easy to position the power supply pin, and it is easy to easily connect and fix the power supply pin and the radiation electrode with a fixed length and without a jig in a reflow furnace or the like.

本発明による表面実装型アンテナの実装方法は、(a)誘電体基板の一面に放射電極、他面に接地電極が形成されると共に、該放射電極に接続される給電ピンが設けられる部分の前記放射電極、誘電体基板および接地電極に貫通孔が形成されたパッチアンテナ用の誘電体基板と電極部との組立体を形成し、(b)パッチアンテナを実装する実装基板表面の給電端子に給電ピンを立てて固着し、(c)前記給電ピンが、前記パッチアンテナ用の組立体の貫通孔を貫通するように前記パッチアンテナ用の組立体を前記実装基板表面に装着し、(d)前記給電ピンの先端部を前記放射電極と電気的に接続することを特徴とする。   The surface-mounted antenna mounting method according to the present invention includes: (a) a portion where a radiation electrode is formed on one surface of a dielectric substrate, a ground electrode is formed on the other surface, and a feed pin connected to the radiation electrode is provided; An assembly of a patch antenna dielectric substrate having through holes formed in the radiation electrode, the dielectric substrate, and the ground electrode and an electrode portion is formed, and (b) power is supplied to the power supply terminal on the surface of the mounting substrate on which the patch antenna is mounted. (C) mounting the patch antenna assembly on the surface of the mounting substrate so that the feed pin penetrates the through hole of the patch antenna assembly; The tip of the power supply pin is electrically connected to the radiation electrode.

本発明の一実施形態によれば、パッチアンテナを構成する放射電極の所定の位置に一端部が接続される給電ピンの他端部は、実装基板を貫通するように長くは形成されないで、その他端部が誘電体基板裏面に設けられる接地電極の露出面とほぼ面一になるように形成さると共に、その他端部近傍の給電ピンを貫通させる貫通孔部分に、貫通孔の直径より大きい内周を有する凹部が形成されているので、給電ピンの他端部を実装基板表面で直接ハンダ付けなどにより固定することができ、実装基板の表面だけで、簡単に実装することができる。すなわち、本発明者らが鋭意検討を重ねた結果、誘電体基板裏面にハンダ付けのためのスペースを確保する凹部を形成しても、その凹部の大きさが直径で(凹部の形状が円形とは限らないが、平均的な大きさで)10mm以下程度であれば、アンテナの特性であるVSWRや放射特性に殆ど影響を与えないことを見出し、放射電極の内部で所定の場所に接続する必要のある給電ピンでも、その他端部を接地電極の露出面の位置と合せて表面実装をすることができることを見出した。   According to one embodiment of the present invention, the other end of the feed pin whose one end is connected to a predetermined position of the radiation electrode constituting the patch antenna is not formed so long as to penetrate the mounting substrate. The end is formed so as to be substantially flush with the exposed surface of the ground electrode provided on the back surface of the dielectric substrate, and the inner circumference larger than the diameter of the through hole is formed in the through hole portion that penetrates the power feed pin near the other end. Therefore, the other end of the power supply pin can be fixed directly on the surface of the mounting substrate by soldering or the like, and can be easily mounted only on the surface of the mounting substrate. That is, as a result of extensive studies by the present inventors, even when a concave portion that secures a space for soldering is formed on the back surface of the dielectric substrate, the size of the concave portion is a diameter (the shape of the concave portion is circular). It is not limited, but if it is about 10 mm or less (average size), it is found that the antenna characteristics VSWR and radiation characteristics are hardly affected, and it is necessary to connect to a predetermined place inside the radiation electrode. It has been found that even a power supply pin having a surface can be surface mounted with the other end aligned with the position of the exposed surface of the ground electrode.

また、給電ピンの他端部を可動ピンで形成することにより、ハンダ付けなどにより実装基板表面に固着しなくても、可動力による接触だけで実装基板の給電部に接触させることができ、同様に実装基板を貫通させることなく表面実装をすることができる。この場合は、ハンダ付けなどをしなくてもよいため、誘電体基板に凹部を形成しなくても貫通孔だけで表面実装をすることができる。しかし、前述のように、小さい凹部であれば、特性的に殆ど影響しないため、凹部を形成して、可動ピンの外周に鍔を形成しておくことにより、放射電極と可動ピンを有する給電ピンとの接続を簡単に、しかも確実に行うことができる。   In addition, by forming the other end of the power supply pin with a movable pin, it can be brought into contact with the power supply part of the mounting substrate only by contact with a movable force without being fixed to the surface of the mounting substrate by soldering or the like. It is possible to perform surface mounting without penetrating the mounting substrate. In this case, since it is not necessary to perform soldering or the like, surface mounting can be performed with only the through hole without forming a recess in the dielectric substrate. However, as described above, since a small concave portion has little influence on characteristics, by forming a concave portion and forming a flange on the outer periphery of the movable pin, a feeding pin having a radiation electrode and a movable pin Can be connected easily and reliably.

さらに、給電ピンを予め実装基板側に立てて固着し、パッチアンテナの給電ピンが設けられる部分に貫通孔のみを形成しておき、給電ピンのない誘電体と放射電極や接地電極が形成された誘電体基板と電極部との組立体を挿入することにより実装基板に実装することができる。この場合、パッチアンテナ用の組立体としては、給電ピン以外のパッチアンテナの部分を形成しておき、給電ピンの部分は貫通孔のみを形成しておくことになる。この場合も、誘電体基板裏面には貫通孔の直径より大きい内周を有する凹部を形成しておくことにより、実装基板に給電ピンを立てて固着する場合に、固着部は給電ピンの太さより大きくなる可能性が大きいが、凹部があることにより、その凹部で吸収することができる。   In addition, the power supply pins are fixed in advance on the mounting board side, and only the through holes are formed in the portions where the power supply pins of the patch antenna are provided, and the dielectric, radiation electrode, and ground electrode without the power supply pins are formed. By mounting the assembly of the dielectric substrate and the electrode portion, it can be mounted on the mounting substrate. In this case, as an assembly for the patch antenna, a portion of the patch antenna other than the feed pin is formed, and the feed pin portion is formed with only a through hole. Also in this case, by forming a recess having an inner circumference larger than the diameter of the through hole on the back surface of the dielectric substrate, when fixing the power supply pin upright on the mounting substrate, the fixed portion is larger than the thickness of the power supply pin. Although the possibility of becoming large is large, since there is a recess, it can be absorbed by the recess.

このような構成にすることにより、放射電極のx方向およびy方向共に放射電極の端部ではなく、内部に給電部が形成されるパッチアンテナであっても、その給電ピンを実装基板の貫通孔に挿入するように伸ばさないで、表面実装をすることができ、実装基板裏面に出っ張りが形成されず、薄型を達成することができたり、実装基板の裏面にも高密度で部品を搭載することができ、実装基板全体の小型化を達成できたりする。また、組み立ててハンダリフロー炉などに流すだけで接続することができ、実装基板への組立を非常に簡単に行うことができる。その結果、携帯電話機などの非常に小型化されてきている電気機器であっても、高性能なパッチアンテナを用いることができ、小型で、安価でありながら、高特性のアンテナを内蔵することができる。   With such a configuration, even in a patch antenna in which a feeding portion is formed inside the radiation electrode in both the x-direction and the y-direction instead of the end portion of the radiation electrode, the feeding pin is connected to the through hole of the mounting substrate. Can be surface-mounted without being stretched to be inserted into the board, no protrusion is formed on the back surface of the mounting board, can achieve a low profile, and high-density components can also be mounted on the back surface of the mounting board And miniaturization of the entire mounting board can be achieved. Moreover, it can be connected simply by assembling and flowing in a solder reflow furnace or the like, and assembling to a mounting board can be performed very easily. As a result, even a highly miniaturized electrical device such as a mobile phone can use a high-performance patch antenna, and can be built in a high-performance antenna that is small and inexpensive. it can.

また、パッチアンテナを表面実装する場合、実装基板に接続される給電ピンの他端部は、誘電体基板や放射電極などにより完全に隠れて接着状態を確認することができないが、本発明の実装方法によれば、給電ピンを先に実装基板表面に固着し、その後に誘電体基板と電極部との組立体を給電ピンに挿入して、給電ピンの一端部と放射電極の給電部との接続を行うため、給電ピンのいずれの接続部も確認をすることができ、接続の信頼性を非常に向上させることができる。   When the patch antenna is surface-mounted, the other end portion of the power supply pin connected to the mounting substrate is completely hidden by the dielectric substrate or the radiation electrode and the adhesion state cannot be confirmed. According to the method, the power supply pin is first fixed to the surface of the mounting substrate, and then the assembly of the dielectric substrate and the electrode portion is inserted into the power supply pin, and the one end of the power supply pin and the power supply portion of the radiation electrode are connected. Since the connection is made, any connection portion of the power supply pin can be confirmed, and the reliability of the connection can be greatly improved.

つぎに、図面を参照しながら本発明の表面実装型パッチアンテナについて説明をする。本発明による表面実装型パッチアンテナは、図1にその一実施形態の斜視および断面の説明図が示されるように、誘電体基板1の一面である表面に放射電極2が設けられ、誘電体基板1の一面と対向する面である裏面に接地電極5が設けられている。そして、給電ピン3の一端部3aが放射電極2に接続され、他端部3bが誘電体基板1に設けられる貫通孔1aを介して裏面側に導出されている。この貫通孔1aの誘電体基板1裏面側には、貫通孔1aとほぼ同心で、かつ、貫通孔1aの直径より大きい内周を有する凹部1bが形成されると共に、給電ピン3の他端部3bが誘電体基板1の裏面に設けられる接地電極5の露出面とほぼ面一で、実装基板表面に直接表面実装され得る構造に形成されている。   Next, the surface mount type patch antenna of the present invention will be described with reference to the drawings. The surface mount type patch antenna according to the present invention is provided with a radiation electrode 2 on a surface which is one surface of a dielectric substrate 1, as shown in FIG. A ground electrode 5 is provided on the back surface which is a surface facing one surface of the first electrode. One end 3 a of the power feed pin 3 is connected to the radiation electrode 2, and the other end 3 b is led out to the back side through a through hole 1 a provided in the dielectric substrate 1. On the back side of the dielectric substrate 1 of the through hole 1a, a recess 1b is formed which is substantially concentric with the through hole 1a and has an inner circumference larger than the diameter of the through hole 1a. 3b is substantially flush with the exposed surface of the ground electrode 5 provided on the back surface of the dielectric substrate 1, and is formed in a structure that can be directly mounted on the surface of the mounting substrate.

誘電体基板1は、たとえばチタン酸バリウム(比誘電率が約20)などからなる高誘電率のセラミックスが用いられることが、アンテナを小型化し得る点から好ましい。すなわち、パッチアンテナの場合、その一辺は送受信する信号の波長λに対してほぼλ/2の電気長に形成されるが、物理的長さは誘電体基板の比誘電率をεrとすると、1/(εr1/2に比例することが知られており、比誘電率が4倍になれば、アンテナの一辺の大きさを1/2にすることができる。したがって、高誘電率の誘電体が用いられることにより、アンテナを小型化することができる。また、誘電体基板1は厚いほど帯域特性などの電気特性を向上させることができるため好ましいが、余り厚くしすぎると、 となり、通常は2〜5mm程度(図1に示される例では4mm)のセラミックスが用いられる。 The dielectric substrate 1 is preferably made of ceramics having a high dielectric constant made of, for example, barium titanate (having a relative dielectric constant of about 20), from the viewpoint of miniaturizing the antenna. That is, in the case of a patch antenna, if the but one side is formed on the electrical length of approximately lambda / 2 with respect to the wavelength lambda of the signal to be transmitted and received, the physical length is the relative permittivity of the dielectric substrate and epsilon r, It is known that it is proportional to 1 / (ε r ) 1/2 , and if the relative permittivity is quadrupled, the size of one side of the antenna can be halved. Therefore, the antenna can be reduced in size by using a dielectric having a high dielectric constant. The dielectric substrate 1 is preferably thicker because it can improve electrical characteristics such as band characteristics. However, if the dielectric substrate 1 is too thick, the thickness is usually about 2 to 5 mm (4 mm in the example shown in FIG. 1). Ceramics are used.

誘電体基板1の大きさは、後述する放射電極2の大きさと同じ大きさでもよいが、通常は放射電極2よりやや大きく形成され、たとえば1.575GHz用で、誘電体基板1の比誘電率が20であるとき、放射電極2の大きさが21mm角で、誘電体基板1の大きさは25mm角程度に形成される。また、誘電体基板1の所定の場所には、後述する給電ピン3を貫通させるための貫通孔1aが形成されている。この貫通孔1aは、後述する給電ピン3を貫通させるもので、たとえば1.2mmφ程度に形成されている。さらに、図1に示される例では、誘電体基板1の裏面側で貫通孔1aとほぼ同心で3.5mmφ程度で、深さが1.5mm程度の凹部1bが形成されている。この凹部1bは、後述する給電ピン3を実装基板にハンダ付けなどをして接続する際に、ハンダなどの導電性部材が給電ピン3にしっかりと固着するスペースを確保すると共に、接地電極5との接触を避けるためのもので、断面が円形である必要はないが、円形の方が必要最小限に誘電体を除去することができる。また、後述するハンダ付けなどをしないで電気的に接続する場合は凹部1bを必要とはしない。   The size of the dielectric substrate 1 may be the same as the size of the radiation electrode 2 described later, but is usually formed slightly larger than the radiation electrode 2, for example, for 1.575 GHz, the relative dielectric constant of the dielectric substrate 1 Is 20, the size of the radiation electrode 2 is 21 mm square, and the size of the dielectric substrate 1 is about 25 mm square. In addition, a through hole 1 a for penetrating a power feed pin 3 described later is formed at a predetermined location on the dielectric substrate 1. This through-hole 1a allows a power feed pin 3 to be described later to pass through, and is formed, for example, to about 1.2 mmφ. Further, in the example shown in FIG. 1, a recess 1 b is formed on the back side of the dielectric substrate 1, which is substantially concentric with the through hole 1 a and about 3.5 mmφ and about 1.5 mm deep. The recess 1b secures a space for a conductive member such as solder to be firmly fixed to the power supply pin 3 when the power supply pin 3 to be described later is connected to the mounting substrate by soldering or the like. However, the circular shape can remove the dielectric material to the minimum necessary. In addition, the concave portion 1b is not necessary in the case of electrical connection without soldering described later.

放射電極2は、銀ペーストなどの良伝導体が印刷されたものを焼成することにより、10〜20μm程度の厚さの導電体膜として形成される。この放射電極2と対向する誘電体基板1の裏面には、同様に銀ペーストなどの導電体膜が厚膜印刷などにより設けられることにより、接地電極5が形成されている。すなわち、誘電体基板1を挟んで放射電極2と接地電極5とが設けられることにより、パッチアンテナが形成されている。なお、放射電極2や接地電極5の材料は、銀ペーストを焼結して形成するものに限らず、銅などの良伝導体を真空蒸着などにより被膜してパターニングすることにより形成してもよい。この場合は、厚さは0.1〜1μm程度に形成される。   The radiation electrode 2 is formed as a conductor film having a thickness of about 10 to 20 μm by firing a printed material having a good conductor such as silver paste. Similarly, a ground electrode 5 is formed on the back surface of the dielectric substrate 1 facing the radiation electrode 2 by providing a conductive film such as silver paste by thick film printing or the like. That is, the patch antenna is formed by providing the radiation electrode 2 and the ground electrode 5 with the dielectric substrate 1 interposed therebetween. The material of the radiation electrode 2 and the ground electrode 5 is not limited to a material formed by sintering a silver paste, and may be formed by coating a good conductor such as copper by vacuum deposition or the like and patterning. . In this case, the thickness is about 0.1 to 1 μm.

この放射電極2は、円偏波用として用いるため、横(x方向)と縦(y方向)の長さLは共にほぼ1/2波長の電気長を有する正方形状に形成されているが、必ずしも正方形状にする必要はない。この一辺の物理的長さLは、前述のように、誘電体基板1の比誘電率が大きいほど小さくすることができ、前述の送受信する信号の周波数が1.575GHzである場合に、比誘電率εrが20の誘電体基板1を用いると、その一辺の長さLを21mm程度で形成することができる。この放射電極2には、その中心部Cから若干x方向およびy方向共にずれた所定の位置に給電部2aが設けられ、その給電部2aに後述する給電ピン3を挿入するための貫通孔が形成されている。しかし、貫通孔を形成しないで、放射電極2の裏面に接続して給電ピン3が設けられてもよい。この給電部2aは、給電部が接続される回路側の特性インピーダンス(たとえば50Ω)と整合するインピーダンスの位置に形成され、その中心部Cから若干ずれた位置に設けられている。 Since the radiation electrode 2 is used for circularly polarized waves, the horizontal (x direction) and vertical (y direction) lengths L are both formed in a square shape having an electrical length of approximately ½ wavelength. It need not necessarily be square. As described above, the physical length L of one side can be reduced as the relative dielectric constant of the dielectric substrate 1 increases, and when the frequency of the signal to be transmitted / received is 1.575 GHz, the relative dielectric constant is increased. When the dielectric substrate 1 having a rate ε r of 20 is used, the length L of one side thereof can be formed with about 21 mm. The radiation electrode 2 is provided with a power feeding portion 2a at a predetermined position slightly shifted from the center portion C in both the x direction and the y direction, and a through hole for inserting a power feeding pin 3 to be described later is provided in the power feeding portion 2a. Is formed. However, the feed pin 3 may be provided so as to be connected to the back surface of the radiation electrode 2 without forming a through hole. The power feeding unit 2a is formed at a position where the impedance matches the characteristic impedance (for example, 50Ω) on the circuit side to which the power feeding unit is connected, and is provided at a position slightly deviated from the central portion C.

図1に示される例では、この給電部2aに設けられた貫通孔に給電ピン3の一端部3aがハンダ6などにより接続固着されている。給電ピン3は、たとえば太さが1.2mmφ程度の真鍮などからなる線材が用いられ、その他端部3bは接地電極5の露出面(下面)とほぼ面一になるように設けらている。その結果、実装基板などの給電ピン3を接続する部分にクリームハンダなどを塗布しておいて、このパッチアンテナを実装基板などに載置し、リフロー炉などに通すだけで、給電ピン3と実装基板とを電気的に接続し固着することができる。なお、誘電体基板1の裏面側には、前述のように凹部1bが形成されているため、ハンダが給電ピン3に上ってハンダフィレットを形成しやすく、かつ、接地電極5との接触を防止することができる。   In the example shown in FIG. 1, one end portion 3 a of the power supply pin 3 is connected and fixed to the through hole provided in the power supply portion 2 a by solder 6 or the like. For example, a wire rod made of brass having a thickness of about 1.2 mmφ is used for the power supply pin 3, and the other end 3 b is provided so as to be substantially flush with the exposed surface (lower surface) of the ground electrode 5. As a result, it is possible to apply cream solder etc. to the part where the power supply pin 3 such as the mounting board is connected, place this patch antenna on the mounting board, etc., and pass it through the reflow furnace etc. The substrate can be electrically connected and fixed. Since the concave portion 1b is formed on the back surface side of the dielectric substrate 1 as described above, it is easy for the solder to go up to the power supply pin 3 to form a solder fillet and to make contact with the ground electrode 5. Can be prevented.

図1に示される例では、給電ピンの他端部3b側は、給電ピン3の太さのままであるが、たとえば図2に示されるように、給電ピン3の他端部側にフランジ(給電ピン3より大きい径の平板部分)3cが形成されていることにより、さらに実装基板との接続を確実にすることができるし、図3に示されるように、給電ピン3を先に実装基板7に接続固着してから、後で誘電体基板1および放射電極2や接地電極5の電極部を組み立てたパッチアンテナ用の誘電体基板と電極部との組立体9を、その貫通孔1aの部分が給電ピン3に挿入されるように嵌め合せて組み立てる実装方法を採用することができる。そうすることにより、給電ピン3と実装基板7との接続を確実に確認してから組立体9を被せることができるため、給電ピン3の接続および接地電極5との非接触の信頼性を向上させることができる。なお、この場合の凹部1bの内径も前述と同様の3.5mmφで、フランジ1cの大きさは、直径が2.5mmφ程度であった。   In the example shown in FIG. 1, the other end 3 b side of the power feed pin remains the thickness of the power feed pin 3. For example, as shown in FIG. 2, a flange ( Since the flat plate portion 3c having a diameter larger than that of the power supply pin 3 is formed, the connection with the mounting substrate can be further ensured. As shown in FIG. 3, the power supply pin 3 is first mounted on the mounting substrate. 7, the assembly 9 of the dielectric substrate 1 for the patch antenna and the electrode portion of the dielectric substrate 1 and the electrode portion of the radiation electrode 2 and the ground electrode 5 which are assembled later is connected to the through-hole 1a. A mounting method in which the parts are fitted and assembled so that the part is inserted into the power supply pin 3 can be adopted. By doing so, since the assembly 9 can be covered after the connection between the power supply pin 3 and the mounting substrate 7 is confirmed securely, the reliability of the connection of the power supply pin 3 and the non-contact with the ground electrode 5 is improved. Can be made. In this case, the inner diameter of the recess 1b was 3.5 mmφ as described above, and the size of the flange 1c was about 2.5 mmφ.

すなわち、図3に示されるパッチアンテナの実装方法は、まず、図3(a)に示されるように、図1に示される構造と同様の貫通孔1aや凹部1bが形成された誘電体基板1の表面に放射電極2、裏面に接地電極5が形成されたパッチアンテナ用の誘電体基板と電極部との組立体9を形成する。ついで、図3(b)に示されるように実装基板7の給電ピンを接続する場所に給電ピン3を立ててハンダ8により接続固着する。この際、給電ピン3の他端部側にフランジ3cが形成されているため、実装基板7上にこのまま立ててリフロー炉などでハンダ付けすることができ、非常に簡単にハンダ付けすることができると共に、そのハンダ付け状態および横への広がりが多すぎて接地電極5と接触する可能性がないかを確認することができる。その後、図3(c)に示されるように、前述の組立体9を被せて給電ピン3の先端部3aをハンダ6により放射電極2と接続固着することにより、実装基板7に直接パッチアンテナを搭載することができる。   That is, in the patch antenna mounting method shown in FIG. 3, first, as shown in FIG. 3A, the dielectric substrate 1 having the same through-holes 1a and recesses 1b as the structure shown in FIG. An assembly 9 of a dielectric substrate for a patch antenna and an electrode portion, in which a radiation electrode 2 is formed on the front surface and a ground electrode 5 is formed on the rear surface, is formed. Next, as shown in FIG. 3 (b), the power supply pin 3 is erected at a place where the power supply pin of the mounting substrate 7 is connected, and is fixedly connected by the solder 8. At this time, since the flange 3c is formed on the other end portion side of the power supply pin 3, it can stand on the mounting substrate 7 as it is and soldered in a reflow furnace or the like, and can be soldered very easily. At the same time, it is possible to confirm whether the soldered state and the lateral spread are too large and there is a possibility of contact with the ground electrode 5. Thereafter, as shown in FIG. 3 (c), the patch antenna is directly attached to the mounting substrate 7 by covering the assembly 9 and fixing the tip 3a of the feed pin 3 to the radiation electrode 2 by the solder 6. Can be installed.

図3に示される実装方法で、実装基板に実装した状態のパッチアンテナのVSWRおよび放射特性を調べた結果が図6および図7に示されている。すなわち、本発明によると、誘電体基板1に貫通孔1aだけでなく、凹部1bがその裏面側に形成されているが、図6に示されるように、1.575GHzでは、1.56程度のVSWRで、従来構造の1.52程度と殆ど測定誤差程度の差しかなく、また、放射特性も全平均(後述する図7に示される直交する両方向のそれぞれの放射角度360°の全平均)が、従来構造では−0.59dBiであったのが、図3に示される構造では、−0.72dBiで、殆ど変らず(数値が大きいほど良い)、図7に示される放射特性が得られた。なお、図7において、(a)は、図8に示されるようにアンテナの放射電極2の正面側をz軸とし、放射電極2の中心Cに対して給電点2aが図8に示されるようにx軸、y軸を設定した場合のz−x面における放射特性で、(b)は、その直交方向であるy−z面内における放射特性を示す。(a)の放射特性の平均は−0.85dBiで、従来構造の−0.73dBiであり、(b)の放射特性の平均は−0.59dBiで、従来構造の−0.45dBiより若干低下したが、殆ど遜色はない。   FIG. 6 and FIG. 7 show the results of examining the VSWR and the radiation characteristics of the patch antenna mounted on the mounting board by the mounting method shown in FIG. That is, according to the present invention, not only the through-hole 1a but also the recess 1b is formed on the back surface side of the dielectric substrate 1, but as shown in FIG. With VSWR, there is almost no measurement error of about 1.52 of the conventional structure, and the radiation characteristics are also the total average (the total average of each radiation angle 360 ° in both orthogonal directions shown in FIG. 7 described later). The conventional structure was -0.59 dBi, but the structure shown in FIG. 3 was -0.72 dBi, almost unchanged (the larger the value, the better), and the radiation characteristic shown in FIG. 7 was obtained. . 7A, as shown in FIG. 8, the front side of the radiation electrode 2 of the antenna is the z axis, and the feeding point 2a is shown in FIG. 8 with respect to the center C of the radiation electrode 2. (B) shows the radiation characteristic in the yz plane which is the orthogonal direction. The average radiation characteristic of (a) is -0.85 dBi, -0.73 dBi of the conventional structure, and the average radiation characteristic of (b) is -0.59 dBi, which is slightly lower than -0.45 dBi of the conventional structure. However, there is almost no discoloration.

すなわち、本発明者らは、表面実装をするため誘電体基板裏面1に凹部1bを設けることによるアンテナ特性の影響を調べた結果、凹部1bの大きさ(誘電体基板1の大きさおよび厚さは前述の例の寸法で、凹部の深さが1.5mmで断面が円形の凹部1bとしたときの直径)を種々変化させたときの1.575GHzにおけるVSWRの変化が図9に示されるように、凹部1bの大きさが直径で10mm程度までは、殆ど凹部1bの影響を受けないことを見出した。その結果、表面実装をしてもハンダ付けのためのスペースを確保することができ、給電ピン3を信頼性よく実装基板に接続することができ、かつ、給電ピン3と接地電極5とを短絡させることなく接続することができるこを見出した。なお、凹部1bの大きさに対する放射特性の影響も同様の傾向が得られた。   That is, as a result of examining the influence of the antenna characteristics by providing the concave portion 1b on the dielectric substrate back surface 1 for surface mounting, the present inventors have found that the size of the concave portion 1b (the size and thickness of the dielectric substrate 1). FIG. 9 shows the change in VSWR at 1.575 GHz when the dimensions of the above-described example are variously changed (diameter when the depth of the concave portion is 1.5 mm and the concave portion 1b has a circular cross section). Furthermore, it has been found that the concave portion 1b is hardly affected by the concave portion 1b until the size of the concave portion 1b is about 10 mm in diameter. As a result, a space for soldering can be secured even when surface mounting is performed, the power feed pin 3 can be reliably connected to the mounting board, and the power feed pin 3 and the ground electrode 5 are short-circuited. I found that I can connect without letting it. The same tendency was obtained for the influence of the radiation characteristics on the size of the recess 1b.

このように、誘電体基板1の給電ピン3を貫通させる貫通孔1aの基板裏面側に凹部1bを設けて給電ピンの他端部3bを接地電極5の露出面とほぼ面一にする構造にすることにより、給電ピン3の他端部3b側を実装基板表面に直接ハンダ付けなどにより接続して実装することができる。すなわち、給電ピン3の他端部3bにフランジがなく、細い給電ピン3のままでも、給電ピン3の周囲に凹部1bによるスペースがあるため、給電ピン3の他端部側周囲にハンダなどの接着剤を昇らせて接続固着することができる。その結果、実装基板の貫通孔に給電ピン3を貫通させて、実装基板裏面側でハンダ付けなどを一々行わなくても、実装基板表面にパッチアンテナを載置したものを何個も並べて一斉にリフロー炉などを通すだけで実装することができ、非常に実装効率を向上させることができる。   As described above, the concave portion 1b is provided on the back surface side of the through hole 1a through which the power supply pin 3 of the dielectric substrate 1 passes, and the other end portion 3b of the power supply pin is substantially flush with the exposed surface of the ground electrode 5. By doing so, the other end 3b side of the power supply pin 3 can be directly connected to the surface of the mounting substrate by soldering or the like. That is, the other end 3b of the power supply pin 3 has no flange, and even if the power supply pin 3 remains thin, there is a space due to the recess 1b around the power supply pin 3. The adhesive can be raised to fix the connection. As a result, it is possible to arrange a number of patch antennas on the surface of the mounting board all at once without penetrating the feed pin 3 through the through hole of the mounting board and performing soldering on the back side of the mounting board. It can be mounted simply by passing it through a reflow furnace, and the mounting efficiency can be greatly improved.

なお、給電ピン3の他端部側にフランジ1cが形成されていることにより、凹部1bの大きさを若干大きくする必要はあるが、前述のように、凹部1bは10mm程度の直径の大きさまでは特性的に殆ど影響がなく、このようなフランジ1cが設けられることにより、実装基板との接着の信頼性を一層向上させることができる。さらに、図3に示されるように、先に給電ピンのみを実装基板にハンダ付けなどにより接続固定し、その後で誘電体基板と電極部とを形成した組立体の貫通孔を給電ピンに挿入して、リフロー炉などにより給電ピンの一端部と放射電極とを接続することにより、実装基板と給電ピンの接続および給電ピンが接地電極と短絡する危険性のないことを予め確認することができるため、より一層信頼性を向上させることができる。   Although the flange 1c is formed on the other end side of the power supply pin 3, it is necessary to slightly increase the size of the recess 1b. However, as described above, the recess 1b has a diameter of about 10 mm. Then, there is almost no influence on the characteristics, and by providing such a flange 1c, the reliability of adhesion to the mounting substrate can be further improved. Further, as shown in FIG. 3, first, only the power supply pin is connected and fixed to the mounting substrate by soldering or the like, and then the through hole of the assembly in which the dielectric substrate and the electrode portion are formed is inserted into the power supply pin. By connecting one end of the power supply pin and the radiation electrode using a reflow furnace or the like, it is possible to confirm in advance that there is no risk of a short circuit between the power supply pin and the mounting substrate and the power supply pin. Therefore, the reliability can be further improved.

図4は、本発明による表面実装型パッチアンテナの他の実施形態を示す断面説明図である。すなわち、この例は給電ピン3の他端部3bが、たとえばスプリングなどを介して突出長を可変できる可動ピンで形成され、その他端部3bが接地電極5の露出面よりも突出するように設けられている。そして、実装基板上に固定されるとき給電ピン3の他端部の可動力により実装基板上に押し付けられ、実装基板表面と電気的接触を保ちながら縮んで、実装基板表面に表面実装され得る構造になっている。換言すると、ハンダ付けなどの接着剤による接続ではなく、押し付けによる接触による接続で行う例である。その結果、ハンダフィレットなど接着剤を溜めるスペースを必要とはせず、図4(a)に示されるように、誘電体基板1の裏面側に凹部を必要とはせず、給電ピン3の一端部3aが放射電極2とハンダ材6などにより接続固定されるだけで、他端部3b側はフリーの状態になっている。   FIG. 4 is a cross-sectional explanatory view showing another embodiment of the surface-mounted patch antenna according to the present invention. That is, in this example, the other end portion 3b of the power feed pin 3 is formed of a movable pin whose projecting length can be changed via, for example, a spring, and the other end portion 3b is provided so as to project beyond the exposed surface of the ground electrode 5. It has been. A structure that can be surface-mounted on the surface of the mounting substrate by being pressed onto the mounting substrate by the moving force of the other end of the power supply pin 3 when being fixed on the mounting substrate and contracting while maintaining electrical contact with the surface of the mounting substrate. It has become. In other words, it is an example in which the connection is not a connection by an adhesive such as soldering but a connection by pressing. As a result, a space for storing an adhesive such as solder fillet is not required, and no recess is required on the back side of the dielectric substrate 1 as shown in FIG. Only the portion 3a is connected and fixed by the radiation electrode 2 and the solder material 6 and the other end portion 3b side is in a free state.

給電ピン3は、具体的には、図4(b)に、その一例の断面説明図が示されるように、一端部3a側が閉塞された金属パイプ31の内部にスプリング32を介して可動ピン33が設けられる構造にすることにより、スプリング32のバネ性により可動ピン33が押し出され、実装基板の表面などに押し付けられるとスプリング32が縮み、電気的接触性を確保しながら実装基板表面に実装することができる。なお、可動ピン33は金属パイプ31から抜け出ないように金属パイプ31に設けられたカシメ部31aなどにより保持される構造になっている。このように給電ピン3の他端部3b側を可動し得る構造にすることにより、その可動力により実装基板の給電端子と接続することができ、凹部がなくても確実に接触させることができる。なお、スプリングは、図4(b)に示されるようなコイルバネでなくても、板バネなど、バネ性を有するものであれば、他の部材を用いることができるし、可動ピンを抜け出ないようにする手段も、他の手段を用いることができる。   Specifically, as shown in FIG. 4B, the power supply pin 3 is a movable pin 33 via a spring 32 inside a metal pipe 31 closed at one end 3 a side. With this structure, the movable pin 33 is pushed out by the spring property of the spring 32, and when pressed against the surface of the mounting substrate, the spring 32 contracts and mounts on the surface of the mounting substrate while ensuring electrical contact. be able to. The movable pin 33 is configured to be held by a caulking portion 31 a provided on the metal pipe 31 so as not to come out of the metal pipe 31. By adopting a structure in which the other end 3b side of the power supply pin 3 can be moved in this way, it can be connected to the power supply terminal of the mounting substrate by its movable force, and can be reliably brought into contact without a recess. . In addition, even if the spring is not a coil spring as shown in FIG. 4B, other members can be used as long as they have a spring property such as a leaf spring, and the movable pin does not come out. Other means can be used as the means.

給電ピン3として、このような可動ピンを用いる場合、後述する図5に示される例のように、パッチアンテナを実装基板の表面に押し付ける接続具が必要となるが、この接続具は、図5に示されるような接続具を別途設けなくても、そのスプリング力は僅かな力であるため、従来のパッチアンテナを実装基板上に固定するように、両面接着テープで固定したり、接地電極部でハンダ付けなどにより実装基板に固定したりする従来の実装方法により固定すれば充分である。   When such a movable pin is used as the power supply pin 3, a connection tool for pressing the patch antenna against the surface of the mounting substrate is required as in an example shown in FIG. 5 described later. Even if a connector as shown in Fig. 1 is not provided separately, the spring force is slight, so it can be fixed with double-sided adhesive tape to fix the conventional patch antenna on the mounting board, It is sufficient to fix by a conventional mounting method such as soldering or fixing to a mounting substrate.

図5に示される例は、図4に示される例の変形例である。すなわち、この例は給電ピン3を可動ピンで構成しながら、その下方に鍔34が形成されると共に、誘電体基板1の貫通孔1aの裏面側に凹部1bが形成されている。前述のように、1.5mm程度の深さで、直径が10mmφ以下の凹部1bであれば、その放射特性に殆ど影響がないため、給電ピン3の外周に鍔34を形成するスペースとして、凹部1bが形成されている。その結果、給電ピン3を鍔34が凹部の底に当るように突っ込んで、その一端部3aを放射電極2とハンダ材6などにより接続固定することにより、給電ピン3の位置を正確に合せて固定することができると共に、非常に作業効率が向上する。   The example shown in FIG. 5 is a modification of the example shown in FIG. That is, in this example, the feed pin 3 is configured by a movable pin, and a flange 34 is formed below the feed pin 3, and a recess 1 b is formed on the back side of the through hole 1 a of the dielectric substrate 1. As described above, the recess 1b having a depth of about 1.5 mm and a diameter of 10 mmφ or less has almost no influence on the radiation characteristics. 1b is formed. As a result, the feed pin 3 is pushed so that the flange 34 touches the bottom of the recess, and its one end 3a is connected and fixed by the radiation electrode 2 and the solder material 6 so that the position of the feed pin 3 can be accurately aligned. It can be fixed and the working efficiency is greatly improved.

このパッチアンテナの実装方法は、まず、図5(a)に示されるように、図1に示される例と同様に、所定の位置に貫通孔1aと凹部1bが形成された誘電体基板1の表面に放射電極2を、裏面に接地電極5をそれぞれ形成し、組立体9を形成する。つぎに、図5(b)に示されるように、図4に示されたのと同様の可動ピン33とその外周に鍔34を有する給電ピン3の一端部3a側を誘電体基板1の裏面側から貫通孔1a内に挿入する。この場合、鍔34が凹部1bの底に当るように挿入したときに、先端部3aが放射電極2の表面近傍になるように形成されている。その後、図5(c)に示されるように、給電ピン3の一端部3aと放射電極2とをハンダ材6などにより接続固定する。この場合、放射電極2の接続部にハンダクリームなどを塗布しておいて、誘電体基板1を裏返しにし、可動ピン33および鍔34を有する給電ピン3を、鍔34が凹部1bの底に当たるように、貫通孔1a内に挿入した状態で、ハンダリフロー炉などに通すことにより、多数個を一括して簡単に固着することができ、パッチアンテナ10を形成することができる。   As shown in FIG. 5A, the patch antenna mounting method is as shown in FIG. 5A. As in the example shown in FIG. 1, the dielectric substrate 1 having through holes 1a and recesses 1b formed at predetermined positions is used. The radiation electrode 2 is formed on the front surface and the ground electrode 5 is formed on the back surface, thereby forming the assembly 9. Next, as shown in FIG. 5 (b), the one end 3 a side of the power supply pin 3 having the movable pin 33 and the outer periphery 34 similar to that shown in FIG. 4 is connected to the back surface of the dielectric substrate 1. It inserts into the through-hole 1a from the side. In this case, the tip 3a is formed in the vicinity of the surface of the radiation electrode 2 when the flange 34 is inserted so as to contact the bottom of the recess 1b. After that, as shown in FIG. 5C, the one end 3a of the power feed pin 3 and the radiation electrode 2 are connected and fixed by a solder material 6 or the like. In this case, solder cream or the like is applied to the connection portion of the radiation electrode 2 so that the dielectric substrate 1 is turned upside down so that the feed pin 3 having the movable pin 33 and the flange 34 contacts the bottom of the recess 1b. In addition, by passing through a solder reflow furnace while being inserted into the through-hole 1a, a large number can be easily fixed together and the patch antenna 10 can be formed.

一方、図5(d)に示されるように、実装基板7のパッチアンテナを取り付ける場所に、パッチアンテナを固定するための固定具35を取り付けておく。この固定具35は、たとえばバネ性のある樹脂などによりパッチアンテナの大きさに合せて形成され、パッチアンテナ10をその給電ピン3が実装基板7の給電端子と接続される所定の場所に固定できるように形成されている。しかし、このような特別な固定具を設けなくても、従来のパッチアンテナの固定手段である両面テープのような接着剤、接地電極をハンダなどにより固定する導電性接着剤などにより、スプリング力に耐え得る力で固定されていればよい。そして、図5(e)に示されるように、固定具35によりパッチアンテナ10を固定することにより、給電ピンを実装基板7の給電部と接続させて搭載することができる。なお、接地電極5が実装基板7の接地部と直接導電性部材により接着されていなくても、高周波的に接続されていればよく、前述のように通常の両面接着テープで接着することができる。   On the other hand, as shown in FIG. 5 (d), a fixture 35 for fixing the patch antenna is attached to the mounting substrate 7 where the patch antenna is attached. The fixing device 35 is formed of, for example, a springy resin according to the size of the patch antenna, and the patch antenna 10 can be fixed to a predetermined place where the power supply pin 3 is connected to the power supply terminal of the mounting substrate 7. It is formed as follows. However, even without such a special fixture, the spring force can be reduced by using an adhesive such as double-sided tape, which is a conventional means for fixing a patch antenna, or a conductive adhesive that fixes the ground electrode with solder. It only has to be fixed with a force that can be withstood. Then, as shown in FIG. 5E, the patch antenna 10 is fixed by the fixture 35, so that the power supply pin can be connected to the power supply portion of the mounting substrate 7 and mounted. Note that even if the ground electrode 5 is not directly bonded to the ground portion of the mounting substrate 7 by the conductive member, it is only required to be connected at a high frequency, and it can be bonded with the usual double-sided adhesive tape as described above. .

このような可動ピンを有する給電ピンにすることにより、誘電体基板の裏面側に凹部を設けることなく給電ピンを実装基板表面で接続することができ、誘電体基板は従来と同様の構造でありながら、パッチアンテナを実装基板上に表面実装をすることができる。また、ハンダ付けなどをすることなく実装することができるため、非常に簡単な工程でパッチアンテナを実装基板に実装することができる。また、誘電体基板の裏面に凹部を形成することにより、可動ピンを有する給電ピンを鍔付きにすることができ、給電ピンと放射電極とを接続する工程が非常に簡単になり、一定の品質のものを簡単に得ることができる。   By using such a power supply pin having a movable pin, the power supply pin can be connected on the surface of the mounting substrate without providing a recess on the back side of the dielectric substrate, and the dielectric substrate has the same structure as before. However, the patch antenna can be surface-mounted on the mounting substrate. Further, since it can be mounted without soldering or the like, the patch antenna can be mounted on the mounting substrate by a very simple process. In addition, by forming a recess on the back surface of the dielectric substrate, it is possible to hook the power supply pin having a movable pin, and the process of connecting the power supply pin and the radiation electrode becomes very simple, with a certain quality. You can get things easily.

本発明によれば、一端部が放射電極と接続固定された給電ピンの他端部を実装基板の表面に直接ハンダ付けなどの接着剤、または接触により接続することができるため、実装基板へのパッチアンテナの搭載が非常に簡単になり、安価に組み立てることができる。また、給電ピンが取り付けられないで貫通孔を有する誘電体基板と電極部との組立体を形成しておき、実装基板に先に給電ピンを接続固定し、その給電ピンに組立体を挿入して実装することもできる。このような実装方法を用いることにより、実装基板の表面にパッチアンテナを簡単に実装しながら、給電ピンと実装基板との接続の確認などを行なうことができ、非常に信頼性の優れたパッチアンテナの搭載をすることができる。   According to the present invention, the other end of the power supply pin whose one end is connected and fixed to the radiation electrode can be directly connected to the surface of the mounting substrate by an adhesive such as soldering, or contact. The patch antenna can be mounted very easily and can be assembled at low cost. In addition, an assembly of a dielectric substrate having a through-hole and an electrode portion is formed without attaching the power supply pin, and the power supply pin is connected and fixed to the mounting substrate first, and the assembly is inserted into the power supply pin. Can also be implemented. By using such a mounting method, it is possible to check the connection between the power supply pin and the mounting board while simply mounting the patch antenna on the surface of the mounting board. Can be mounted.

本発明によるパッチアンテナの一実施形態を示す斜視および断面の説明図である。It is explanatory drawing of the perspective view and cross section which show one Embodiment of the patch antenna by this invention. 図1のパッチアンテナの変形例を示す断面説明図である。FIG. 8 is a cross-sectional explanatory view showing a modification of the patch antenna of FIG. 1. 本発明によるパッチアンテナを実装する一実施形態の工程説明図である。It is process explanatory drawing of one Embodiment which mounts the patch antenna by this invention. 本発明によるパッチアンテナの他の実施形態を示す説明図である。It is explanatory drawing which shows other embodiment of the patch antenna by this invention. 図4に示されるパッチアンテナの製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the patch antenna shown by FIG. 図3の方法により実装基板に搭載したパッチアンテナのVSWRを示す図である。It is a figure which shows VSWR of the patch antenna mounted in the mounting board | substrate by the method of FIG. 図3の方法により実装基板に搭載したパッチアンテナの放射特性を示す図である。It is a figure which shows the radiation characteristic of the patch antenna mounted in the mounting board | substrate by the method of FIG. 図7の放射特性のときのアンテナの位置関係を示す図である。It is a figure which shows the positional relationship of the antenna in the case of the radiation | emission characteristic of FIG. 誘電体基板に設ける凹部の大きさを変化させたときのVSWRの変化を示す図である。It is a figure which shows the change of VSWR when the magnitude | size of the recessed part provided in a dielectric substrate is changed. 従来のパッチアンテナを示す斜視および断面の説明図である。It is explanatory drawing of the perspective and cross section which shows the conventional patch antenna. 従来の表面実装型パッチアンテナの例を示す説明図である。It is explanatory drawing which shows the example of the conventional surface mount type patch antenna.

符号の説明Explanation of symbols

1 誘電体基板
1a 貫通孔
1b 凹部
2 放射電極
3 給電ピン
3a 一端部
3b 他端部
3c 鍔部
5 接地電極
DESCRIPTION OF SYMBOLS 1 Dielectric board | substrate 1a Through-hole 1b Recessed part 2 Radiation electrode 3 Feeding pin 3a One end part 3b Other end part 3c Gutter part 5 Ground electrode

Claims (6)

誘電体基板と、該誘電体基板の一面である表面に設けられる放射電極と、前記誘電体基板の前記一面と対向する面である裏面に設けられる接地電極と、一端部が前記放射電極に接続され、他端部が前記誘電体基板に設けられる貫通孔を介して前記裏面側に導出される給電ピンとを有するパッチアンテナであって、前記貫通孔の前記誘電体基板裏面側に該貫通孔とほぼ同心で、かつ、該貫通孔の直径より大きい内周を有する凹部が形成されると共に、前記給電ピンの他端部が前記誘電体基板の裏面に設けられる接地電極の露出面とほぼ面一で、実装基板表面に直接表面実装され得る表面実装型パッチアンテナ。   A dielectric substrate, a radiation electrode provided on a surface that is one surface of the dielectric substrate, a ground electrode provided on a back surface that is a surface facing the one surface of the dielectric substrate, and one end connected to the radiation electrode The other end of the patch antenna having a feed pin led out to the back side through a through hole provided in the dielectric substrate, wherein the through hole is formed on the back side of the dielectric substrate with the through hole. A recess having an inner circumference larger than the diameter of the through hole is formed, and the other end of the power supply pin is substantially flush with the exposed surface of the ground electrode provided on the back surface of the dielectric substrate. A surface mount type patch antenna that can be directly surface mounted on the surface of the mounting substrate. 前記給電ピンの他端部に、前記実装基板との接続を容易にするフランジ部が形成されてなる請求項1記載のパッチアンテナ。   The patch antenna according to claim 1, wherein a flange portion that facilitates connection to the mounting substrate is formed at the other end portion of the power supply pin. 誘電体基板と、該誘電体基板の一面である表面に設けられる放射電極と、前記誘電体基板の前記一面と対向する面である裏面に設けられる接地電極とを有し、前記放射電極の給電ピンが接続される位置および該給電ピンが接続される位置に対応する部分の前記誘電体基板に貫通孔が形成され、該貫通孔の前記誘電体基板の裏面側に該貫通孔とほぼ同心で、かつ、該貫通孔の直径より大きい内周を有する凹部が形成されることにより、実装基板表面に設けられた給電ピンを前記貫通孔に挿入して前記放射電極と接続し得る構造の表面実装型パッチアンテナ。   A dielectric substrate; a radiation electrode provided on a surface that is one surface of the dielectric substrate; and a ground electrode provided on a back surface that is a surface opposite to the one surface of the dielectric substrate. A through hole is formed in the dielectric substrate at a portion corresponding to a position where the pin is connected and a position where the power supply pin is connected, and the through hole is substantially concentric with the through hole on the back surface side of the dielectric substrate. In addition, by forming a recess having an inner circumference larger than the diameter of the through-hole, a surface mount having a structure in which a power supply pin provided on the surface of the mounting substrate can be inserted into the through-hole and connected to the radiation electrode Type patch antenna. 誘電体基板と、該誘電体基板の一面である表面に設けられる放射電極と、前記誘電体基板の前記一面と対向する面である裏面に設けられる接地電極と、一端部が前記放射電極に接続され、他端部が前記誘電体基板に設けられる貫通孔を介して前記裏面側に導出される給電ピンとを有するパッチアンテナであって、前記給電ピンは、前記他端部がスプリングを介して突出長を可変できる可動ピンで形成され、該可動ピンの先端部が前記接地電極の露出面よりも突出するように設けられ、実装基板上に固定されるとき該可動ピンの可動力により実装基板上に押し付けることにより、実装基板表面に表面実装され得る表面実装型パッチアンテナ。   A dielectric substrate, a radiation electrode provided on a surface that is one surface of the dielectric substrate, a ground electrode provided on a back surface that is a surface facing the one surface of the dielectric substrate, and one end connected to the radiation electrode A patch antenna having a feeding pin led to the back side through a through hole provided in the dielectric substrate, the other end of the feeding pin protruding through a spring. It is formed of a movable pin whose length can be changed, and the tip of the movable pin is provided so as to protrude from the exposed surface of the ground electrode. A surface-mountable patch antenna that can be surface-mounted on the surface of a mounting board by being pressed against the surface. 前記貫通孔の前記誘電体基板裏面側に該貫通孔より大きい凹部が形成され、前記給電ピンの外周に前記凹部内に挿入される鍔が形成され、該鍔を基準として前記給電ピンの一端部が前記放射電極と接続して固定されてなる請求項4記載の表面実装型パッチアンテナ。   A recess larger than the through hole is formed on the back surface side of the dielectric substrate of the through hole, and a flange inserted into the recess is formed on the outer periphery of the power supply pin, and one end portion of the power supply pin with reference to the flange The surface mount type patch antenna according to claim 4, wherein the surface mount type patch antenna is fixed in connection with the radiation electrode. (a)誘電体基板の一面に放射電極、他面に接地電極が形成されると共に、該放射電極に接続される給電ピンが設けられる部分の前記放射電極、誘電体基板および接地電極に貫通孔が形成されたパッチアンテナ用の誘電体基板と電極部との組立体を形成し、
(b)パッチアンテナを実装する実装基板表面の給電端子に給電ピンを立てて固着し、
(c)前記給電ピンが、前記パッチアンテナ用の組立体の貫通孔を貫通するように前記パッチアンテナ用の組立体を前記実装基板表面に装着し、
(d)前記給電ピンの先端部を前記放射電極と電気的に接続する
ことを特徴とする表面実装型パッチアンテナの実装方法。
(A) A radiation electrode is formed on one surface of the dielectric substrate, a ground electrode is formed on the other surface, and a through-hole is formed in the radiation electrode, dielectric substrate and ground electrode in a portion where a feed pin connected to the radiation electrode is provided Forming an assembly of the dielectric substrate for the patch antenna formed with the electrode part,
(B) A power supply pin is erected and fixed to a power supply terminal on the surface of the mounting substrate on which the patch antenna is mounted,
(C) mounting the assembly for the patch antenna on the surface of the mounting substrate so that the feed pin penetrates the through hole of the assembly for the patch antenna;
(D) A method for mounting a surface-mounted patch antenna, wherein a front end portion of the feed pin is electrically connected to the radiation electrode.
JP2004073341A 2004-03-15 2004-03-15 Surface mounted patch antenna and its mounting method Pending JP2005260875A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004073341A JP2005260875A (en) 2004-03-15 2004-03-15 Surface mounted patch antenna and its mounting method
CN 200510055932 CN1670999A (en) 2004-03-15 2005-03-15 Panel type antenna mounted on surface and its mounting method
TW94107797A TW200536180A (en) 2004-03-15 2005-03-15 Surface mounting type patch antenna and method for mounting the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004073341A JP2005260875A (en) 2004-03-15 2004-03-15 Surface mounted patch antenna and its mounting method

Publications (1)

Publication Number Publication Date
JP2005260875A true JP2005260875A (en) 2005-09-22

Family

ID=35042114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004073341A Pending JP2005260875A (en) 2004-03-15 2004-03-15 Surface mounted patch antenna and its mounting method

Country Status (3)

Country Link
JP (1) JP2005260875A (en)
CN (1) CN1670999A (en)
TW (1) TW200536180A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7683837B2 (en) 2006-09-06 2010-03-23 Mitsumi Electric Co., Ltd. Patch antenna
JP2010154077A (en) * 2008-12-24 2010-07-08 Fujitsu Component Ltd Antenna device
DE202010011837U1 (en) * 2010-08-26 2011-05-12 Kathrein-Werke Kg Ceramic patch antenna and ceramic patch antenna mounted on a printed circuit board
JP2012109821A (en) * 2010-11-18 2012-06-07 Casio Comput Co Ltd Mounting method of patch antenna
JP2012109822A (en) * 2010-11-18 2012-06-07 Casio Comput Co Ltd Patch antenna and mounting method of the same
KR101406752B1 (en) * 2013-01-15 2014-06-17 한국광성전자 주식회사 Patch antenna capable of selecting compex impedance
KR101432789B1 (en) 2013-01-23 2014-08-22 주식회사 아모텍 Multilayer patch antenna
US8830127B2 (en) 2010-11-18 2014-09-09 Casio Computer Co., Ltd Patch antenna and method of mounting the same
CN110998974A (en) * 2017-07-31 2020-04-10 株式会社村田制作所 Antenna module and communication device
CN113009515A (en) * 2019-12-19 2021-06-22 法雷奥舒适驾驶助手公司 GNSS module comprising rubber connector

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7834873B2 (en) * 2006-08-25 2010-11-16 Intel Corporation Display processing line buffers incorporating pipeline overlap
CN103199343B (en) * 2006-11-06 2016-08-10 株式会社村田制作所 Patch antenna device and antenna assembly
CN101651254B (en) * 2008-08-12 2013-01-23 太盟光电科技股份有限公司 Surface mount panel antenna
JP6593444B2 (en) 2015-09-17 2019-10-23 株式会社村田製作所 Communication module with integrated antenna
CN105514082A (en) * 2016-01-29 2016-04-20 南京航空航天大学 Inter-chip wireless interconnection structure
CN106876969A (en) * 2017-01-22 2017-06-20 华为机器有限公司 A kind of antenna and wireless signal receive-transmit system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7683837B2 (en) 2006-09-06 2010-03-23 Mitsumi Electric Co., Ltd. Patch antenna
JP2010154077A (en) * 2008-12-24 2010-07-08 Fujitsu Component Ltd Antenna device
DE202010011837U1 (en) * 2010-08-26 2011-05-12 Kathrein-Werke Kg Ceramic patch antenna and ceramic patch antenna mounted on a printed circuit board
JP2012109821A (en) * 2010-11-18 2012-06-07 Casio Comput Co Ltd Mounting method of patch antenna
JP2012109822A (en) * 2010-11-18 2012-06-07 Casio Comput Co Ltd Patch antenna and mounting method of the same
US8830127B2 (en) 2010-11-18 2014-09-09 Casio Computer Co., Ltd Patch antenna and method of mounting the same
KR101406752B1 (en) * 2013-01-15 2014-06-17 한국광성전자 주식회사 Patch antenna capable of selecting compex impedance
KR101432789B1 (en) 2013-01-23 2014-08-22 주식회사 아모텍 Multilayer patch antenna
CN110998974A (en) * 2017-07-31 2020-04-10 株式会社村田制作所 Antenna module and communication device
CN113009515A (en) * 2019-12-19 2021-06-22 法雷奥舒适驾驶助手公司 GNSS module comprising rubber connector

Also Published As

Publication number Publication date
TW200536180A (en) 2005-11-01
CN1670999A (en) 2005-09-21

Similar Documents

Publication Publication Date Title
JP2005260875A (en) Surface mounted patch antenna and its mounting method
JP5293181B2 (en) ANTENNA DEVICE AND RADIO COMMUNICATION DEVICE USING THE SAME
CN101068056B (en) Inverted-F antenna and mobile communication terminal using the same
US6323824B1 (en) Dielectric resonator antenna
US7679569B2 (en) Antenna device and multi-band type wireless communication apparatus using same
JP3185513B2 (en) Surface mount antenna and method of mounting the same
JPH07249925A (en) Antenna and antenna system
JP3206825B2 (en) Printed antenna
JP2007142796A (en) Loop antenna and communication apparatus
KR20040047571A (en) Surface mount antena and antena equipment
JP2005142785A (en) Composite antenna
JP2011142431A (en) Antenna, antenna device, and communication apparatus mounted with the antenna and the antenna device
KR101183646B1 (en) Small broadband helical antennal
JP2009124403A (en) Antenna unit
US8791871B2 (en) Open slot trap for a dipole antenna
JPH07297626A (en) Antenna device
EP1122810B1 (en) Antenna device
JP2007516635A (en) Communication device and antenna for communication device
US7154445B2 (en) Omni-directional collinear antenna
JPH09153730A (en) Plane antenna
JP2007306507A (en) Antenna unit and wireless communication device using the same
JP2002314325A (en) Surface mount patch antenna for linear polarization
CN210040663U (en) Cable connector
JPH08162846A (en) Print antenna
JP3246160B2 (en) Surface mount antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090210