JP2005259548A - Photoelectric conversion device and its manufacturing method - Google Patents

Photoelectric conversion device and its manufacturing method Download PDF

Info

Publication number
JP2005259548A
JP2005259548A JP2004070058A JP2004070058A JP2005259548A JP 2005259548 A JP2005259548 A JP 2005259548A JP 2004070058 A JP2004070058 A JP 2004070058A JP 2004070058 A JP2004070058 A JP 2004070058A JP 2005259548 A JP2005259548 A JP 2005259548A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conductive polymer
conversion element
counter electrode
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004070058A
Other languages
Japanese (ja)
Other versions
JP4843904B2 (en
Inventor
Yusuke Suzuki
祐輔 鈴木
Masahiro Morooka
正浩 諸岡
Kazuhiro Noda
和宏 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004070058A priority Critical patent/JP4843904B2/en
Publication of JP2005259548A publication Critical patent/JP2005259548A/en
Application granted granted Critical
Publication of JP4843904B2 publication Critical patent/JP4843904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a photoelectric conversion device which can be fabricated by a simple and low-cost method, and in which high photoelectric conversion efficiency can be realized. <P>SOLUTION: In the photoelectric conversion device 10 equipped with a photo semiconductor electrode 20 equipped with a metal oxide semiconductor layer 3, the counter electrode 21, and an electrolyte layer 4 pinched between these electrodes, the counter electrode 21 is equipped with a conductive polymer film 8 formed by coating an organic solvent dispersion solution of conductive polymer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光電変換素子及びその製造方法に係るものである。   The present invention relates to a photoelectric conversion element and a manufacturing method thereof.

従来、太陽電池には、材料の特性形成方法等の制御性に優れ、高い変換効率が得られる等の理由から、シリコンが材料として用いられてきた。
しかし、Siを用いた太陽電池は、コストが高い、製造に多大なエネルギーを必要とするといった問題があった。一方、色素増感型太陽電池は、これらを解決する次世代の太陽電池として注目され、広く検討されている。
Conventionally, silicon has been used as a material for solar cells because it has excellent controllability such as a material property forming method and provides high conversion efficiency.
However, the solar cell using Si has a problem that it is expensive and requires a lot of energy for manufacturing. On the other hand, dye-sensitized solar cells have attracted attention and are widely studied as next-generation solar cells that solve these problems.

このような、色素増感型太陽電池の対極材料としては、一般にPtを用いて検討が行われてきた。
しかしながら、近年、実用化が現実の課題として述べられるようになるに従って、高価で希少なPtを汎用性のあるものとして適用することは困難と考えられることから、Ptの代替材料として、カーボンや導電性高分子が検討されている。
代替材料のうち、導電性高分子は特に注目を集めており、従来においても各種提案がなされ、Ptに匹敵する光電変換特性が報告されている(例えば、非特許文献1、2参照。)。
As a counter electrode material for such a dye-sensitized solar cell, studies have generally been made using Pt.
However, in recent years, it is considered difficult to apply expensive and rare Pt as a general-purpose material as practical use has been described as an actual issue. Functional polymers have been studied.
Among the alternative materials, the conductive polymer has attracted particular attention, and various proposals have been made in the past, and photoelectric conversion characteristics comparable to Pt have been reported (for example, see Non-Patent Documents 1 and 2).

このような導電性高分子からなる電極の形成方法としては、第1の方法として、導電性高分子を形成するためのモノマーを支持体上で電解重合や熱重合等によって重合反応を起こさせる方法と、第2の方法として、分散あるいは溶解させた溶液を塗布する方法が知られている。このような溶液としては、例えばPEDOT(Poly ethylene di oxy thiophene)とPSS(Poly stylene sulfonate)よりなる水溶液(Aldrich)が知られている。   As a method for forming an electrode composed of such a conductive polymer, as a first method, a monomer for forming a conductive polymer is caused to cause a polymerization reaction on a support by electrolytic polymerization, thermal polymerization, or the like. As a second method, a method of applying a dispersed or dissolved solution is known. As such a solution, for example, an aqueous solution (Aldrich) made of PEDOT (Polyethylenedioxythiophene) and PSS (Polystylene sulfonate) is known.

これらの方法のうち、重合反応を行う第1の方法においては、相対的に高い導電性を有する導電性高分子を形成することが可能であるため、10mA/cm2以上の短絡電流密度が報告されているが、大面積化を考えた場合、全体的に均一な電極層を得ることが困難であると考えられる。また、残留モノマー等の除去を行わなければいけないという問題もある。 Among these methods, in the first method for carrying out the polymerization reaction, it is possible to form a conductive polymer having relatively high conductivity, so that a short-circuit current density of 10 mA / cm 2 or more is reported. However, when an increase in area is considered, it is considered difficult to obtain a uniform electrode layer as a whole. There is also a problem that residual monomers and the like must be removed.

一方、分散溶液を塗布する第2の方法においては、電極の形成が工程上、容易であるという利点を有している。
しかしながら、電極層形成材料である市販のPEDOT(Poly ethylene di oxy thiophene)の溶媒に対する溶解性を確保するために加えられているPSS (Poly stylene sulfonate)が含有されているため、最終的に得られる膜の導電性が低く、充分な光電変換特性を得られない。
On the other hand, the second method of applying the dispersion solution has an advantage that the electrode is easily formed in the process.
However, since PSS (Poly stylene sulfonate) added to ensure the solubility of commercially available PEDOT (Poly ethylene dioxy thiophene), which is an electrode layer forming material, in a solvent is contained, it is finally obtained. The conductivity of the film is low, and sufficient photoelectric conversion characteristics cannot be obtained.

Chemistry Letters 1060 (2002)Chemistry Letters 1060 (2002) Electrochemistry 71, 944-946 (2003)Electrochemistry 71, 944-946 (2003)

そこで本発明においては、色素増感型の光電変換素子(太陽電池)において、簡易かつコストの低い方法により作製可能で、高い導電性を有する導電性高分子材料よりなる電極を具備する光電変換素子を作製することとした。   Therefore, in the present invention, in a dye-sensitized photoelectric conversion element (solar cell), a photoelectric conversion element comprising an electrode made of a conductive polymer material having high conductivity, which can be produced by a simple and low cost method. We decided to make.

本発明の光電変換素子は、金属酸化物半導体層を具備する光半導体電極と、対向電極と、光半導体電極、及び対向電極との間に挟持されてなる電解質層とを有するものであり、対向電極は、導電性高分子の有機溶媒分散溶液を塗布することにより形成された導電性高分子膜を具備しているものとする。   The photoelectric conversion element of the present invention includes an optical semiconductor electrode provided with a metal oxide semiconductor layer, a counter electrode, and an electrolyte layer sandwiched between the optical semiconductor electrode and the counter electrode. The electrode includes a conductive polymer film formed by applying an organic solvent dispersion solution of a conductive polymer.

また、本発明の光電変換素子の製造方法においては、有機溶媒中に、導電性高分子を分散させ有機溶媒分散溶液を作製し、この有機溶媒分散溶液を導電性基板上に塗布することにより対向電極を構成する導電性高分子膜を形成する。   Further, in the method for producing a photoelectric conversion element of the present invention, a conductive polymer is dispersed in an organic solvent to prepare an organic solvent dispersion solution, and the organic solvent dispersion solution is applied onto the conductive substrate to face the photoelectric conversion element. A conductive polymer film constituting the electrode is formed.

本発明によれば、従来のPt材料により対向電極を形成した場合に比較しても、充分に高い導電性を有する対向電極を具備し、優れた光電変換効率が実現可能な光電変換素子が得られた。
また、本発明方法によれば、作製工程の容易化が図られ、大面積化が容易、成膜設備を簡易化でき低コスト化が図られ、生産効率の向上、パターンニングが容易等の効果が得られた。
According to the present invention, a photoelectric conversion element having a counter electrode having sufficiently high conductivity and capable of realizing excellent photoelectric conversion efficiency is obtained even when the counter electrode is formed of a conventional Pt material. It was.
In addition, according to the method of the present invention, the manufacturing process can be facilitated, the area can be easily increased, the film forming equipment can be simplified, the cost can be reduced, the production efficiency can be improved, and the patterning can be easily performed. was gotten.

以下、本発明の具体的な実施の形態について、図面を参照して説明するが、本発明は、以下の例に限定されるものではない。
なお、以下においては本発明の光電変換素子の説明と共に、その製造方法についても説明する。
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following examples.
In addition, below, the manufacturing method is demonstrated with description of the photoelectric conversion element of this invention.

図1に、本発明の光電変換素子10の一例の概略構成図を示す。
この光電変換素子10は、色素増感型の太陽電池を構成するものであり、透明基板1、透明電極2、及び金属酸化物半導体層3よりなる光半導体電極20と、透明基板6、集電層7、及び導電性高分子膜8よりなる対向電極21と、これらの電極20、21間に挟持されてなる電解質層4とを具備するものである。
この光電変換素子10においては、透明電極1側から光が照射されるようになされる。
なお、透明基板6と集電層7と導電性高分子膜8とは、互いの密着性を向上させるために、例えばCr等よりなる層を介在させてもよく、集電層7は適宜省略してもよい。
In FIG. 1, the schematic block diagram of an example of the photoelectric conversion element 10 of this invention is shown.
This photoelectric conversion element 10 constitutes a dye-sensitized solar cell. The photoelectric conversion element 10 includes a transparent substrate 1, a transparent electrode 2, and a metal oxide semiconductor layer 3, a transparent substrate 6, and a current collector. The counter electrode 21 made of the layer 7 and the conductive polymer film 8 and the electrolyte layer 4 sandwiched between the electrodes 20 and 21 are provided.
In this photoelectric conversion element 10, light is irradiated from the transparent electrode 1 side.
Note that the transparent substrate 6, the current collecting layer 7 and the conductive polymer film 8 may be provided with a layer made of, for example, Cr in order to improve mutual adhesion, and the current collecting layer 7 is omitted as appropriate. May be.

先ず、光半導体電極20について説明する。
透明基板1は、例えば、ガラス基板、透明プラスチック基板、金属基板等からなるものとすることができる。
透明電極2は、透明導電性物質からなるものとする。
透明導電性物質としては、例えば、ZnO(酸化亜鉛)、SnO2(酸化錫)、In23(酸化インジウム)、SnO2−In23(酸化錫と酸化インジウムの固溶体、ITO)等が好適なものとして挙げられる。
特にITOが好適であり、ITO単独膜であっても、あるいはこれにZr、Hf、Te、F等の元素をドープしたものであってもよく、他の透明導電体材料と積層構造を形成したものであってもよい。
積層構造としては、例えばITO層間にAu、Ag、Cu等の金属を積層介在させたり、酸化物層間に窒化物層を積層させたり、二種類以上の酸化物層を積層させる構造等が知られているが、本発明の光電変換素子10は、これらの構造に限定されるものではない。
First, the optical semiconductor electrode 20 will be described.
The transparent substrate 1 can be made of, for example, a glass substrate, a transparent plastic substrate, a metal substrate, or the like.
The transparent electrode 2 is made of a transparent conductive material.
Examples of the transparent conductive material include ZnO (zinc oxide), SnO 2 (tin oxide), In 2 O 3 (indium oxide), SnO 2 —In 2 O 3 (solid solution of tin oxide and indium oxide, ITO), etc. Are mentioned as preferred.
In particular, ITO is preferable, and it may be a single ITO film or may be doped with elements such as Zr, Hf, Te, F, etc., and a laminated structure is formed with other transparent conductor materials. It may be a thing.
As a laminated structure, for example, a structure in which a metal such as Au, Ag, or Cu is laminated between ITO layers, a nitride layer is laminated between oxide layers, or two or more types of oxide layers are laminated is known. However, the photoelectric conversion element 10 of the present invention is not limited to these structures.

金属酸化物半導体層3は、金属酸化物粒子を透明電極2上に焼結することにより形成されたものとする。
この金属酸化物半導体層3は、多孔質化された半導体層であることが好適である。金属酸化物半導体層3と、後述する電解質層4との間での光電気化学反応を利用した光電変換素子においては、これらの層界面での電荷移動反応を効果的に行わせることが重要であり、半導体層を多孔質化することにより、この電荷移動の反応部位を増大させることができ、光電変換効率の向上が図られる。また、このような多孔質構造をとることにより、光が入射する際に生じる光の散乱の効果についても増大され、これによって、平坦な材料を適用した場合に比較して、光の利用効率の向上も図られる。
上記金属酸化物粒子の材料としては、例えばTiO2、MgO、ZnO、SnO2、WO3、Nb25、TiSrO3等が挙げられる。これら金属酸化物の形状としては、粒子状のものの他にチューブ状、繊維状のものが知られているが、いずれであってもよい。
なお、本発明においては、これらに限定されるものではなく、また、これらを二種以上組み合わせて混合、あるいは複合化して使用することも可能である。
The metal oxide semiconductor layer 3 is formed by sintering metal oxide particles on the transparent electrode 2.
The metal oxide semiconductor layer 3 is preferably a porous semiconductor layer. In a photoelectric conversion element using a photoelectrochemical reaction between the metal oxide semiconductor layer 3 and an electrolyte layer 4 described later, it is important to effectively perform a charge transfer reaction at the interface between these layers. In addition, by making the semiconductor layer porous, the charge transfer reaction sites can be increased, and the photoelectric conversion efficiency can be improved. In addition, by adopting such a porous structure, the effect of light scattering that occurs when light is incident is also increased, which makes it possible to use light more efficiently than when a flat material is applied. Improvement is also achieved.
Examples of the material of the metal oxide particles include TiO 2 , MgO, ZnO, SnO 2 , WO 3 , Nb 2 O 5 , and TiSrO 3 . As the shape of these metal oxides, a tube shape and a fiber shape are known in addition to a particulate shape, but any shape may be used.
In addition, in this invention, it is not limited to these, Moreover, these can also be used combining and mixing or compounding 2 or more types.

また、金属酸化物半導体層3上には、増感色素が担持されているものとする。
増感色素としては、増感作用をもたらすものであれば、いかなるものでも使用することができる。例えば、ビピリジン、フェナントリン誘導体、キサンテン系色素、シアニン系色素、塩基性染料、ポルフィリン系化合物、アゾ染料、フタロシアニン化合物、アントラキノン系色素、多環キノン系色素等が挙げられる。これらは、一種のみで用いてもよいが、異なる吸収波長特性をもつ増感色素を併用することにより、光の利用効率の向上を図ることができる。またこれらは、ルテニウム、亜鉛、白金、 Pdのような金属と錯体を形成したものであってもよい。
このような増感色素を担持させる方法は、特に制限されるものではなく、公知の技術を使用できる。例えば真空蒸着法等のドライプロセス、スピンコート法等の塗布法、電界析出法、電界重合法や、担持させる化合物の溶液に浸す自然吸着法等の方法を、適宜選定することができる。
Further, it is assumed that a sensitizing dye is supported on the metal oxide semiconductor layer 3.
Any sensitizing dye can be used as long as it provides a sensitizing action. Examples include bipyridine, phenanthrine derivatives, xanthene dyes, cyanine dyes, basic dyes, porphyrin compounds, azo dyes, phthalocyanine compounds, anthraquinone dyes, polycyclic quinone dyes, and the like. These may be used alone, but the use efficiency of light can be improved by using together sensitizing dyes having different absorption wavelength characteristics. Further, these may be complexes formed with metals such as ruthenium, zinc, platinum and Pd.
The method for supporting such a sensitizing dye is not particularly limited, and a known technique can be used. For example, a dry process such as a vacuum deposition method, a coating method such as a spin coating method, an electric field deposition method, an electric field polymerization method, and a natural adsorption method in which the compound is supported are immersed in a solution.

電解質層4としては、公知の溶液系電解質を用いることができるものとし、少なくとも一種類の、可逆的に酸化/還元の状態変化を起す物質系(酸化還元系)が溶解されてなるものとする。
溶媒としては、アセトニトリル等のニトリル系、プロピレンカーボネート、エチレンカーボネート等のカーボネート系、ガンマブチロラクトン、ピリジン、ジメチルアセトアミド、その他の極性溶媒、メチルプロピルイミダゾリウム−ヨウ素といった常温溶融塩、あるいはそれらの混合物が使用できる。
酸化還元系としては、例えばI-/I3 -、Br-/Br2といったハロゲン類、キノン/ハイドロキノン、SCN-/(SCN)2といった擬ハロゲン類、鉄(II)イオン/鉄(III)イオン、銅(I)イオン/銅(II)イオン等を挙げることができるが、これらに限られるものではない。
また、電解質中に、支持電解質を加えてもよい。支持電解質としては、ヨウ化リチウム、 ヨウ化ナトリウムといった無機塩やイミダゾリウム、4級アンモニウムといった溶融塩を挙げることができる。
電解質は液体電解質であってもよいし、またはこれを高分子物質中に含有させたゲル状電解質、高分子固体電解質、無機の固体電解質であってもよい。
電解質層4は、上記金属酸化物半導体層3上に形成材料を塗布し、後述する対向電極21とで挟み込むことにより形成することができる。
As the electrolyte layer 4, a known solution-based electrolyte can be used, and at least one substance system (oxidation-reduction system) that reversibly causes an oxidation / reduction state change is dissolved. .
Solvents include nitriles such as acetonitrile, carbonates such as propylene carbonate and ethylene carbonate, gamma-butyrolactone, pyridine, dimethylacetamide, other polar solvents, room temperature molten salts such as methylpropylimidazolium-iodine, or mixtures thereof. it can.
Examples of the redox system include halogens such as I / I 3 and Br / Br 2 , pseudohalogens such as quinone / hydroquinone and SCN / (SCN) 2 , iron (II) ions / iron (III) ions, and the like. , Copper (I) ions / copper (II) ions, and the like, but are not limited thereto.
Further, a supporting electrolyte may be added to the electrolyte. Examples of the supporting electrolyte include inorganic salts such as lithium iodide and sodium iodide, and molten salts such as imidazolium and quaternary ammonium.
The electrolyte may be a liquid electrolyte, or may be a gel electrolyte, a polymer solid electrolyte, or an inorganic solid electrolyte containing this in a polymer material.
The electrolyte layer 4 can be formed by applying a forming material on the metal oxide semiconductor layer 3 and sandwiching it between the counter electrode 21 described later.

次に、対向電極21について説明する。
透明基板6は、例えば、ガラス基板、透明プラスチック基板、金属基板等からなるものとすることができる。
Next, the counter electrode 21 will be described.
The transparent substrate 6 can be made of, for example, a glass substrate, a transparent plastic substrate, a metal substrate, or the like.

対向電極は、従来においては、良導体であり化学的、電気化学的に安定なレドックス対の酸化・還元反応に対する過電圧の小さい白金、白金黒、パラジウム、ロジウム、ルテニウム等の金属や炭、白金等あるいはそれらの化合物を単独あるいは2種以上組み合わせて用いることが可能であることが知られていた。   Conventionally, the counter electrode is a good conductor and has a low overvoltage for oxidation / reduction reactions of chemically and electrochemically stable redox couples, such as platinum, platinum black, palladium, rhodium, ruthenium and other metals, charcoal, platinum, etc. It has been known that these compounds can be used alone or in combination of two or more.

一方、本発明の光電変換素子10においては、この対向電極21が、必須の構成要素として導電性高分子膜8を具備するものとした。
導電性高分子膜8は、導電性高分子の有機溶媒分散溶液を塗布することにより形成されたものとする。
On the other hand, in the photoelectric conversion element 10 of the present invention, the counter electrode 21 includes the conductive polymer film 8 as an essential component.
The conductive polymer film 8 is formed by applying an organic solvent dispersion solution of a conductive polymer.

導電性高分子の材料としては、例えば、ポリアニリン、ポリピロール、ポリアセチレン、ポリチオフェン、ポリパラフェニレン、ポリパラフェニレンビニレン、ポリチェニレンビニレン、ポリアズレン、ポリフラン等を用いることができる。
また、これらの導電性高分子材料に、例えばPt等の金属微粒子を担持させる構成としてもよく、また、カーボン等と組み合わせて用いてもよい。これにより、最終的に得られる光電変換素子において、変換効率の向上が図られる。
Examples of the conductive polymer material that can be used include polyaniline, polypyrrole, polyacetylene, polythiophene, polyparaphenylene, polyparaphenylene vinylene, polychenylene vinylene, polyazulene, and polyfuran.
Further, these conductive polymer materials may be configured to carry metal fine particles such as Pt, or may be used in combination with carbon or the like. Thereby, the conversion efficiency is improved in the finally obtained photoelectric conversion element.

なお、導電性高分子材料の平均一次粒径は10μm以下とすることが好ましく、特に1μm以下とすることがより好ましい。このような粒径とすることにより、有機溶媒中に充分に溶解あるいは均一に分散せしめることができ、優れた膜質を有する導電性高分子膜8が形成できるようになる。   The average primary particle size of the conductive polymer material is preferably 10 μm or less, more preferably 1 μm or less. By setting it as such a particle size, it can fully dissolve or disperse | distribute uniformly in an organic solvent, and the conductive polymer film 8 which has the outstanding film quality can be formed now.

有機溶媒としては、導電性高分子材料を充分に溶解あるいは均一に分散させることができる材料を選定するものとし、例えば、アルコール、カーボネート、ラクトン、ピロリドン、ニトリル類を適用できる。   As the organic solvent, a material that can sufficiently dissolve or uniformly disperse the conductive polymer material is selected. For example, alcohol, carbonate, lactone, pyrrolidone, and nitriles can be applied.

なお、導電性高分子の有機溶媒分散溶液には、所定の高分子バインダー、あるいは高分子バインダー前駆体を含有させてもよい。これにより、成膜容易性の向上を図ることができる。
例えば、セルロース、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、脂環式ポリオレフィン、ポリスチレン、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、ポリイミド等の熱可塑性樹脂や、例えばフェノール樹脂、メラミン樹脂、エポキシ樹脂、ウレタン樹脂、シリコン樹脂等の熱硬化性樹脂が挙げられる。
なお、有機溶媒分散溶液中に高分子バインダーを含有させる場合、この含有量は、上述した導電性高分子に対し、重量比で、1:1未満であるものとする。これよりも多く含有させると、実用上の光電変換効率が劣化するためである。
The organic polymer dispersion solution of the conductive polymer may contain a predetermined polymer binder or polymer binder precursor. Thereby, the easiness of film formation can be improved.
For example, thermoplastic resins such as cellulose, polyvinylidene fluoride, polyethylene, polypropylene, alicyclic polyolefin, polystyrene, polytetrafluoroethylene, polyphenylene sulfide, polyimide, and phenol resins, melamine resins, epoxy resins, urethane resins, silicone resins And other thermosetting resins.
In addition, when making a polymer binder contain in an organic-solvent dispersion solution, this content shall be less than 1: 1 by weight ratio with respect to the conductive polymer mentioned above. This is because if the content is larger than this, the practical photoelectric conversion efficiency deteriorates.

導電性高分子膜8は、上述した導電性高分子を有機溶媒中に溶解分散せしめ、適宜高分子バインダー(あるいは高分子バインダー前駆体)を加えて塗料を作製し、この塗料を、任意のコーティング法により塗布することによって形成できる。
コーティング法としては、例えば、ディップコーティング法、スピンコーティング法、ワイヤーバーコーティング法、スプレーコーティング法等、従来公知の方法をいずれも適用できる。
The conductive polymer film 8 is obtained by dissolving and dispersing the above-described conductive polymer in an organic solvent, adding a polymer binder (or polymer binder precursor) as appropriate, and preparing a paint. It can be formed by coating by the method.
As the coating method, for example, any conventionally known method such as a dip coating method, a spin coating method, a wire bar coating method, or a spray coating method can be applied.

集電層7は、対向電極の集電層であり、例えばITO等の透明導電膜や、良導電性、且つ電解液成分に対して化学的、電気化学的に安定な金属等を用いて形成することができる。
なお、本発明の光電変換素子10においては、この集電層7を省略した構造であってもよい。
The current collecting layer 7 is a current collecting layer of a counter electrode, and is formed using a transparent conductive film such as ITO, a metal having good conductivity and chemically and electrochemically stable with respect to an electrolyte component, for example. can do.
In addition, in the photoelectric conversion element 10 of this invention, the structure which abbreviate | omitted this current collection layer 7 may be sufficient.

上述したような構成を有する色素増感型の光電変換素子10は、各要素がケース15内に収納され封止されるか、またはそれら全体が樹脂封止されているものとする。   In the dye-sensitized photoelectric conversion element 10 having the above-described configuration, each element is housed in a case 15 and sealed, or the whole is sealed with resin.

光電変換素子10は、以下のように動作する。
すなわち、透明基板1側より入射した光が、金属酸化物半導体層3の表面に担時された色素を励起し、色素は金属酸化物半導体層3へ電子を速やかに渡す。
一方、電子を失った色素は、キャリア移動層である電解質層4のイオンから電子を受け取る。電子を渡した分子は、再び対向電極21を構成する導電性高分子膜8で電子を受け取る。このようにして両極間に電流が流れるのである。
The photoelectric conversion element 10 operates as follows.
That is, light incident from the transparent substrate 1 side excites the dye carried on the surface of the metal oxide semiconductor layer 3, and the dye quickly passes electrons to the metal oxide semiconductor layer 3.
On the other hand, the dye that has lost electrons receives electrons from the ions of the electrolyte layer 4 that is the carrier transfer layer. The molecules that have passed the electrons again receive the electrons at the conductive polymer film 8 constituting the counter electrode 21. In this way, current flows between the two electrodes.

なお、上述した実施の形態においては、光電変換素子10として、色素増感型太陽電池を例に挙げて説明したが、本発明は、色素増感型以外の太陽電池や、太陽電池以外の光電変換素子についても適用可能である。
また、本発明の趣旨を逸脱しない範囲で、必要に応じて適宜変更が可能である。
In the embodiment described above, a dye-sensitized solar cell has been described as an example of the photoelectric conversion element 10, but the present invention is not limited to a dye-sensitized solar cell or a photoelectric cell other than a solar cell. The present invention can also be applied to a conversion element.
Moreover, it can change suitably as needed in the range which does not deviate from the meaning of this invention.

〔実施例1〕
下記に示すようにして、図1に示した構成の光電変換素子を作製した。
先ず、光半導体電極20を形成した。
透明基板1、透明電極2としては、FTOガラス(フッ素ドープ酸化錫を表面コートしたガラス)を用いた。
次に、平均粒子径15nmのアナターゼ型TiO2を15wt%、PEG(Mw=500000)を5wt%、及び水80wt%の割合で混合し、遊星ボールミルを用いて均一なTiO2ペーストを作製した。
上記のようにして作製したTiO2ペーストを、FTOガラス上に、スクリーン印刷法で0.7cm×0.7cmの大きさで塗布した。
次に、電気炉において100℃〜600℃で1時間加熱焼成を行い、金属酸化物半導体層3を形成した。
[Example 1]
As shown below, the photoelectric conversion element having the configuration shown in FIG. 1 was produced.
First, the optical semiconductor electrode 20 was formed.
As the transparent substrate 1 and the transparent electrode 2, FTO glass (glass coated with a surface of fluorine-doped tin oxide) was used.
Next, 15 wt% of anatase TiO 2 having an average particle diameter of 15 nm, 5 wt% of PEG (Mw = 500,000), and 80 wt% of water were mixed, and a uniform TiO 2 paste was produced using a planetary ball mill.
The TiO 2 paste produced as described above was applied on FTO glass in a size of 0.7 cm × 0.7 cm by screen printing.
Next, the metal oxide semiconductor layer 3 was formed by heating and baking at 100 ° C. to 600 ° C. for 1 hour in an electric furnace.

次に、0.5mMのシス−ビス(イソチオシアナート)−N,N−ビス(2,2’−ジピリジル−4,4’−ジカルボン酸)−ルテニウム(II)二水和物及び20mMのデオキシコール酸を溶解した脱水エタノール溶液に12時間浸漬させ、増感色素を吸着させた。
このようにして作製した光半導体電極20を、4−tert−ブチルピリジンのエタノール溶液、脱水エタノールの順で洗浄し、暗所で乾燥させた。
Then 0.5 mM cis-bis (isothiocyanate) -N, N-bis (2,2′-dipyridyl-4,4′-dicarboxylic acid) -ruthenium (II) dihydrate and 20 mM deoxy The sensitizing dye was adsorbed by immersing in a dehydrated ethanol solution in which cholic acid was dissolved for 12 hours.
The photo-semiconductor electrode 20 thus produced was washed with an ethanol solution of 4-tert-butylpyridine and dehydrated ethanol in this order and dried in the dark.

次に、対向電極21を以下のようにして形成した。
下記式(1)に示すPEDOT(Poly ethylene di oxy thiophene)(nは1以上の整数)の2wt%GBL(γ−ブチロラクトン)分散溶液50μlを、透明基板6と集電層7を構成するITO基板上にキャストし、120℃で30min加熱乾燥を行い、PEDOT膜よりなる導電性高分子膜8を具備する対向電極21を得た。
Next, the counter electrode 21 was formed as follows.
An ITO substrate constituting the transparent substrate 6 and the current collecting layer 7 with 50 μl of a 2 wt% GBL (γ-butyrolactone) dispersion of PEDOT (Polyethylenedioxythiophene) (n is an integer of 1 or more) represented by the following formula (1) It casts on top and heat-drys for 30 minutes at 120 degreeC, The counter electrode 21 which comprises the conductive polymer film 8 which consists of a PEDOT film | membrane was obtained.

Figure 2005259548
Figure 2005259548

また、アセトニトリル30.5gに、ヨウ化リチウム(LiI)2g、1−プロピル−2.3−ジメチルイミダゾリウムヨーダイド5g、ヨウ素(I2)0.5g、4−tert−ブチルピリジン2gを溶解させ、電解液を調製した。
この電解液を、上記のようにして形成した金属酸化物半導体層3上に滴下し、シリコンゴムスペーサー(厚さ30μm)を介して上記対向電極21と組み合わせることにより、色素増感型の光電変換素子(太陽電池)10が作製された。
Further, 2 g of lithium iodide (LiI), 5 g of 1-propyl-2.3-dimethylimidazolium iodide, 0.5 g of iodine (I 2 ), and 2 g of 4-tert-butylpyridine were dissolved in 30.5 g of acetonitrile. An electrolyte solution was prepared.
This electrolytic solution is dropped on the metal oxide semiconductor layer 3 formed as described above, and combined with the counter electrode 21 through a silicon rubber spacer (thickness 30 μm), thereby dye-sensitized photoelectric conversion. An element (solar cell) 10 was produced.

〔実施例2〕
上記式(1)に示すPEDOT(Poly ethylene di oxy thiophene)の2wt%IPA(イソプロパノール)分散溶液50μlを、透明基板6と集電層7を構成するITO基板上にキャストし、120℃で30min加熱乾燥を行い、PEDOT膜よりなる導電性高分子膜8を具備する対向電極21を得た。
その他の条件は、上記実施例1と同様として光電変換素子10を作製した。
[Example 2]
50 μl of a 2 wt% IPA (isopropanol) dispersion of PEDOT (Polyethylenedioxythiophene) represented by the above formula (1) is cast on the ITO substrate constituting the transparent substrate 6 and the current collecting layer 7 and heated at 120 ° C. for 30 minutes. It dried and obtained the counter electrode 21 which comprises the conductive polymer film 8 which consists of a PEDOT film | membrane.
Other conditions were the same as in Example 1 above, and the photoelectric conversion element 10 was produced.

〔実施例3〕
上記式(1)に示すPEDOT(Poly ethylene di oxy thiophene)の2wt%GBL(γ−ブチロラクトン)分散溶液に、PVDF(ポリフッ化ビニリデン)の20wt%溶液を、PVDFとPEDOTの重量比が1:0.3となるように溶解させて塗料を作製し、この塗料50μlを、透明基板6と集電層7を構成するITO基板上にキャストし、120℃で30min加熱乾燥を行い、高分子バインダーが含有されたPEDOT膜よりなる導電性高分子膜8を具備する対向電極21を得た。
その他の条件は、上記実施例1と同様として光電変換素子10を作製した。
Example 3
A 20 wt% solution of PVDF (polyvinylidene fluoride) is added to a 2 wt% GBL (γ-butyrolactone) dispersion solution of PEDOT (Polyethylene dioxy thiophene) represented by the above formula (1), and the weight ratio of PVDF to PEDOT is 1: 0. .3 is dissolved to prepare a coating material, and 50 μl of this coating material is cast on an ITO substrate constituting the transparent substrate 6 and the current collecting layer 7 and dried by heating at 120 ° C. for 30 minutes. The counter electrode 21 including the conductive polymer film 8 made of the contained PEDOT film was obtained.
Other conditions were the same as in Example 1 above, and the photoelectric conversion element 10 was produced.

〔実施例4〕
上記式(1)に示すPEDOT(Poly ethylene di oxy thiophene)の2wt%GBL(γ−ブチロラクトン)分散溶液に、PVDF(ポリフッ化ビニリデン)の20wt%溶液を、PVDFとPEDOTの重量比が1:0.5となるように溶解させて塗料を作製し、この塗料50μlを、透明基板6と集電層7を構成するITO基板上にキャストし、120℃で30min加熱乾燥を行い、高分子バインダーが含有されたPEDOT膜よりなる導電性高分子膜8を具備する対向電極21を得た。
その他の条件は、上記実施例1と同様として光電変換素子10を作製した。
Example 4
A 20 wt% solution of PVDF (polyvinylidene fluoride) is added to a 2 wt% GBL (γ-butyrolactone) dispersion solution of PEDOT (Polyethylene dioxy thiophene) represented by the above formula (1), and the weight ratio of PVDF to PEDOT is 1: 0. A coating material is prepared by dissolving so as to be 0.5, and 50 μl of this coating material is cast on an ITO substrate constituting the transparent substrate 6 and the current collecting layer 7 and dried by heating at 120 ° C. for 30 minutes. The counter electrode 21 including the conductive polymer film 8 made of the contained PEDOT film was obtained.
Other conditions were the same as in Example 1 above, and the photoelectric conversion element 10 was produced.

〔比較例1〕
上記式(1)に示すPEDOT(Poly ethylene di oxy thiophene)の2wt%GBL(γ−ブチロラクトン)分散溶液に、PVDF(ポリフッ化ビニリデン)の20wt%溶液を、PVDFとPEDOTの重量比が1:1となるように溶解させて塗料を作製し、この塗料50μlを、透明基板6と集電層7を構成するITO基板上にキャストし、120℃で30min加熱乾燥を行い、高分子バインダーが含有されたPEDOT膜よりなる導電性高分子膜8を具備する対向電極21を得た。
その他の条件は、上記実施例1と同様として光電変換素子10を作製した。
[Comparative Example 1]
A 20 wt% solution of PVDF (polyvinylidene fluoride) is added to a 2 wt% GBL (γ-butyrolactone) dispersion solution of PEDOT (Polyethylene dioxy thiophene) represented by the above formula (1), and the weight ratio of PVDF to PEDOT is 1: 1. A coating material is prepared by dissolving so that 50 μl of this coating material is cast on an ITO substrate constituting the transparent substrate 6 and the current collecting layer 7, and is heated and dried at 120 ° C. for 30 minutes to contain a polymer binder. A counter electrode 21 having a conductive polymer film 8 made of a PEDOT film was obtained.
Other conditions were the same as in Example 1 above, and the photoelectric conversion element 10 was produced.

〔比較例2〕
Pt板よりなる対向電極21を用い、その他の条件は上記実施例1と同様として光電変換素子10を作製した。
[Comparative Example 2]
Using the counter electrode 21 made of a Pt plate, the other conditions were the same as in Example 1, and the photoelectric conversion element 10 was produced.

上述のようにして作製した実施例1〜4、比較例1、2の光電変換素子10について、I−V測定を行った。
〔I−V特性の評価〕
光電変換効率は、各色素増感型光電変換素子の両電極に、それぞれワニ口クリップを接続し、光を照射して発生した電流を電流電圧測定装置にて測定することにより評価した。
この測定で得られた最高出力と光照射強度との比を光電変換効率とした。
なお、光の照射は光源としてキセノンランプを用い、色素増感型光電変換素子上での光強度を100mW/cm2とした。
光電変換効率の評価結果を下記表1に示す。
IV measurement was performed on the photoelectric conversion elements 10 of Examples 1 to 4 and Comparative Examples 1 and 2 manufactured as described above.
[Evaluation of IV characteristics]
The photoelectric conversion efficiency was evaluated by connecting the alligator clips to both electrodes of each dye-sensitized photoelectric conversion element and measuring the current generated by irradiating light with a current-voltage measuring device.
The ratio between the maximum output obtained by this measurement and the light irradiation intensity was defined as the photoelectric conversion efficiency.
The light irradiation was performed using a xenon lamp as a light source, and the light intensity on the dye-sensitized photoelectric conversion element was set to 100 mW / cm 2 .
The evaluation results of the photoelectric conversion efficiency are shown in Table 1 below.

Figure 2005259548
Figure 2005259548

上記表1に示すように、本発明に係る実施例1〜4の光電変換素子においては、Ptよりなる対向電極を具備する比較例2の光電変換素子と比較しても、より優れた光電変換効率が得られることが分かった。
また、実施例3、4と、比較例1の結果から、対向電極を構成する導電性高分子膜8中の高分子バインダーの含有量は、導電性高分子に対して重量比で、1:1未満とすることが好適であることが分かった。
As shown in Table 1 above, in the photoelectric conversion elements of Examples 1 to 4 according to the present invention, even better photoelectric conversion than the photoelectric conversion element of Comparative Example 2 having a counter electrode made of Pt. It turns out that efficiency is obtained.
Further, from the results of Examples 3 and 4 and Comparative Example 1, the content of the polymer binder in the conductive polymer film 8 constituting the counter electrode was 1: 1 by weight with respect to the conductive polymer. It turned out that it is suitable to set it as less than 1.

以上、本発明の実施形態、及び具体的な実施例について説明したが、本発明は、上述の実施形態、及び実施例に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。
例えば、上述の実施形態、及び実施例において挙げた数値、構造、形状、材料、原料、プロセス等はあくまでも一例に過ぎず、必要に応じてこれらと異なる数値、構造、形状、材料、原料、プロセス等を用いてもよい。
Although the embodiments and specific examples of the present invention have been described above, the present invention is not limited to the above-described embodiments and examples, and various modifications based on the technical idea of the present invention. Is possible.
For example, the numerical values, structures, shapes, materials, raw materials, processes, and the like given in the above-described embodiments and examples are merely examples, and different numerical values, structures, shapes, materials, raw materials, processes, as necessary. Etc. may be used.

本発明の光電変換素子の概略構成図を示す。The schematic block diagram of the photoelectric conversion element of this invention is shown.

符号の説明Explanation of symbols

1……透明基板、2……透明電極、3……金属酸化物半導体層、4……電解質層、6……透明基板、7……集電層、8……導電性高分子膜、15……ケース、20……光半導体電極、21……対向電極





DESCRIPTION OF SYMBOLS 1 ... Transparent substrate, 2 ... Transparent electrode, 3 ... Metal oxide semiconductor layer, 4 ... Electrolyte layer, 6 ... Transparent substrate, 7 ... Current collection layer, 8 ... Conductive polymer film, 15 ... Case, 20 ... Optical semiconductor electrode, 21 ... Counter electrode





Claims (9)

金属酸化物半導体層を具備する光半導体電極と、
対向電極と、
前記光半導体電極、及び前記対向電極との間に挟持されてなる電解質層とを有する光電変換素子であって、
前記対向電極は、導電性高分子の有機溶媒分散溶液を塗布することにより形成された導電性高分子膜を具備していることを特徴とする光電変換素子。
An optical semiconductor electrode comprising a metal oxide semiconductor layer;
A counter electrode;
A photoelectric conversion element having an electrolyte layer sandwiched between the optical semiconductor electrode and the counter electrode,
The counter electrode includes a conductive polymer film formed by applying an organic solvent dispersion solution of a conductive polymer.
前記対向電極を構成する前記導電性高分子膜は、
前記導電性高分子の有機溶媒分散溶液に、高分子バインダーあるいは高分子バインダー前躯体を溶解させて作製した塗料を塗布することにより形成されたものであることを特徴とする請求項1に記載の光電変換素子。
The conductive polymer film constituting the counter electrode is
The organic solvent dispersion solution of the conductive polymer is formed by applying a paint prepared by dissolving a polymer binder or a polymer binder precursor. Photoelectric conversion element.
前記導電性高分子膜中の、前記導電性高分子に対する前記高分子バインダーあるいは高分子バインダーの含有量が、重量比で、1:1未満であることを特徴とする請求項2に記載の光電変換素子。   3. The photoelectric device according to claim 2, wherein a content of the polymer binder or the polymer binder with respect to the conductive polymer in the conductive polymer film is less than 1: 1 by weight ratio. Conversion element. 前記有機溶媒が、アルコール、カーボネート、ラクトン、ピロリドン、ニトリル類であることを特徴とする請求項1に記載の光電変換素子。   The photoelectric conversion element according to claim 1, wherein the organic solvent is alcohol, carbonate, lactone, pyrrolidone, or nitrile. 前記導電性高分子の平均一次粒径が、10μm以下であることを特徴とする請求項1に記載の光電変換素子。   The photoelectric conversion element according to claim 1, wherein the conductive polymer has an average primary particle size of 10 μm or less. 前記導電性高分子が、ポリチオフェン、あるいはこの誘導体であることを特徴とする請求項1に記載の光電変換素子。   The photoelectric conversion element according to claim 1, wherein the conductive polymer is polythiophene or a derivative thereof. 前記導電性高分子に、金属微粒子が担持されてなることを特徴とする請求項1に記載の光電変換素子。   The photoelectric conversion element according to claim 1, wherein metal particles are supported on the conductive polymer. 金属酸化物半導体層を具備する光半導体電極と、
対向電極と、
前記光半導体電極、及び前記対向電極との間に挟持されてなる電解質層とを有する光電変換素子の製造方法であって、
有機溶媒中に、導電性高分子を分散させ、有機溶媒分散溶液を作製する工程と、前記有機溶媒分散溶液を導電性基板上に塗布する工程とにより、前記対向電極を構成する前記導電性高分子膜を形成することを特徴とする光電変換素子の製造方法。
An optical semiconductor electrode comprising a metal oxide semiconductor layer;
A counter electrode;
A method of manufacturing a photoelectric conversion element having an electrolyte layer sandwiched between the optical semiconductor electrode and the counter electrode,
The conductive polymer constituting the counter electrode includes a step of dispersing a conductive polymer in an organic solvent to produce an organic solvent dispersion solution and a step of applying the organic solvent dispersion solution on a conductive substrate. A method for producing a photoelectric conversion element, comprising forming a molecular film.
前記有機溶媒分散溶液に、バインダーあるいは高分子バインダー前躯体を溶解させることを特徴とする請求項8に記載の光電変換素子の製造方法。


The method for producing a photoelectric conversion element according to claim 8, wherein a binder or a polymer binder precursor is dissolved in the organic solvent dispersion.


JP2004070058A 2004-03-12 2004-03-12 Photoelectric conversion element and manufacturing method thereof Expired - Fee Related JP4843904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004070058A JP4843904B2 (en) 2004-03-12 2004-03-12 Photoelectric conversion element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004070058A JP4843904B2 (en) 2004-03-12 2004-03-12 Photoelectric conversion element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005259548A true JP2005259548A (en) 2005-09-22
JP4843904B2 JP4843904B2 (en) 2011-12-21

Family

ID=35085059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004070058A Expired - Fee Related JP4843904B2 (en) 2004-03-12 2004-03-12 Photoelectric conversion element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4843904B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012297A (en) * 2005-06-28 2007-01-18 Teijin Dupont Films Japan Ltd Counter electrode for dye-sensitized solar cell and dye-sensitized solar cell using it
JP2007207709A (en) * 2006-02-06 2007-08-16 Teijin Dupont Films Japan Ltd Counter electrode for dye-sensitized solar battery and dye-sensitized solar battery
WO2009157462A1 (en) 2008-06-24 2009-12-30 ソニー株式会社 Method for manufacturing a photoelectric conversion element
JP2010020976A (en) * 2008-07-09 2010-01-28 Japan Carlit Co Ltd:The Conductive polymer electrode and its manufacturing method, coating liquid for forming conductive polymer layer, and dye-sensitized solar battery equipped with it
JP2011165423A (en) * 2010-02-08 2011-08-25 Nsk Ltd Photoelectric conversion element
JP2014154498A (en) * 2013-02-13 2014-08-25 Nsk Ltd Photoelectric conversion element
JP2016003312A (en) * 2014-06-18 2016-01-12 日立マクセル株式会社 Transparent conductive coating composition, transparent conductive sheet and method of manufacturing the same, and method of forming transparent conductive pattern

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101516474B1 (en) * 2013-05-07 2015-05-20 국립대학법인 울산과학기술대학교 산학협력단 Plasmonic organic optoelectronic devices comprising conducting polymer electrode incoporated with silver nanoparticles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001043908A (en) * 1999-06-29 2001-02-16 Inst Fuer Angewandte Photovoltaik Gmbh Photo-electrochemical cell, and manufacture of pair electrode for photo-electrochemical cell
JP2005158380A (en) * 2003-11-25 2005-06-16 Sony Corp Photoelectric conversion element, its manufacturing method, electronic apparatus and its manufacturing method
JP2005209458A (en) * 2004-01-21 2005-08-04 Toin Gakuen Composition for forming conductive cover, electrode using the same, and photoelectric cell using the electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001043908A (en) * 1999-06-29 2001-02-16 Inst Fuer Angewandte Photovoltaik Gmbh Photo-electrochemical cell, and manufacture of pair electrode for photo-electrochemical cell
JP2005158380A (en) * 2003-11-25 2005-06-16 Sony Corp Photoelectric conversion element, its manufacturing method, electronic apparatus and its manufacturing method
JP2005209458A (en) * 2004-01-21 2005-08-04 Toin Gakuen Composition for forming conductive cover, electrode using the same, and photoelectric cell using the electrode

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012297A (en) * 2005-06-28 2007-01-18 Teijin Dupont Films Japan Ltd Counter electrode for dye-sensitized solar cell and dye-sensitized solar cell using it
JP2007207709A (en) * 2006-02-06 2007-08-16 Teijin Dupont Films Japan Ltd Counter electrode for dye-sensitized solar battery and dye-sensitized solar battery
WO2009157462A1 (en) 2008-06-24 2009-12-30 ソニー株式会社 Method for manufacturing a photoelectric conversion element
JP2010020976A (en) * 2008-07-09 2010-01-28 Japan Carlit Co Ltd:The Conductive polymer electrode and its manufacturing method, coating liquid for forming conductive polymer layer, and dye-sensitized solar battery equipped with it
JP2011165423A (en) * 2010-02-08 2011-08-25 Nsk Ltd Photoelectric conversion element
JP2014154498A (en) * 2013-02-13 2014-08-25 Nsk Ltd Photoelectric conversion element
JP2016003312A (en) * 2014-06-18 2016-01-12 日立マクセル株式会社 Transparent conductive coating composition, transparent conductive sheet and method of manufacturing the same, and method of forming transparent conductive pattern

Also Published As

Publication number Publication date
JP4843904B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP5308661B2 (en) Catalyst electrode for dye-sensitized solar cell and dye-sensitized solar cell including the same
KR101166018B1 (en) Method for modifying surface of a counter electrode and surface-modified counter electrode
KR100825730B1 (en) Die-sensitized solar cells including polymer electrolyte containing conductive particles suspended therein and method for manufacturing the same
KR101635758B1 (en) Sensitizing dye solution, working electrode prepared thereby, and dye-sensitized solar cell comprising the same
US20230104362A1 (en) Dye sensitized photovoltaic cells
KR101726127B1 (en) Counter electrode with block copolymer for dye sensitized solar cell and dye sensitized solar cell comprising the same
JP4561073B2 (en) Photoelectric conversion element and electronic device
JP4843904B2 (en) Photoelectric conversion element and manufacturing method thereof
Li et al. Components control for high-voltage quasi-solid state dye-sensitized solar cells based on two-phase polymer gel electrolyte
US10270050B2 (en) Photoelectric conversion layer composition and photoelectric conversion element
JP2012156096A (en) Photoelectric conversion element, and dye-sensitized solar cell comprising the same
JP2005116301A (en) Photoelectric conversion element, its manufacturing method, electronic equipment, its manufacturing method, electrode, and its manufacturing method
JP4281539B2 (en) Semiconductor fine particle assembly evaluation method, semiconductor electrode evaluation method, semiconductor fine particle assembly production method, semiconductor electrode production method, electronic device production method, and photoelectric conversion device production method
JP5521419B2 (en) Electrolyte forming coating solution and dye-sensitized solar cell using the same
TWI833810B (en) Dye-sensitized photovoltaic cells
JP2004303463A (en) Dye-sensitized solar cell module and its manufacturing method
JP2011181361A (en) Photoelectric conversion element and dye-sensitized solar cell using the same
JP2011192452A (en) Photoelectric conversion element, and dye-sensitized solar cell using the same
JP2010182467A (en) Manufacturing method of dye-sensitized photoelectric conversion element and dye-sensitized solar cell
JP5607439B2 (en) Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell having the same
JP4520142B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JPWO2004109840A1 (en) ELECTRODE AND METHOD FOR FORMING THE SAME, PHOTOELECTRIC CONVERSION ELEMENT AND ITS MANUFACTURING METHOD, ELECTRONIC DEVICE, AND ITS MANUFACTURING METHOD
JP2018049941A (en) Photoelectric conversion element and method for manufacturing the same
JP2012119181A (en) Photoelectric conversion element and dye-sensitized solar cell using the same
JP2013065418A (en) Method for manufacturing counter electrode of dye-sensitized solar battery, method for manufacturing dye-sensitized solar battery and dye-sensitized solar battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090916

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090916

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees