JP2005257702A - Co detector - Google Patents

Co detector Download PDF

Info

Publication number
JP2005257702A
JP2005257702A JP2005165939A JP2005165939A JP2005257702A JP 2005257702 A JP2005257702 A JP 2005257702A JP 2005165939 A JP2005165939 A JP 2005165939A JP 2005165939 A JP2005165939 A JP 2005165939A JP 2005257702 A JP2005257702 A JP 2005257702A
Authority
JP
Japan
Prior art keywords
gas
resistance value
gas sensor
period
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005165939A
Other languages
Japanese (ja)
Inventor
Mariko Hanada
真理子 花田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FIS Inc
Original Assignee
FIS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FIS Inc filed Critical FIS Inc
Priority to JP2005165939A priority Critical patent/JP2005257702A/en
Publication of JP2005257702A publication Critical patent/JP2005257702A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a CO sensor capable of reducing a heat capacity, capable of reducing a heating time for cleaning, capable of obtaining, in a short time, a low temperature condition for detection after finishing a cleaning period, and capable of detecting highly toxic CO gas quickly. <P>SOLUTION: A temperature of the gas sensor 2 where a resistance value Rs indicated by the gas sensor 2 in response to a prescribed CO comes to the vicinity of the minimum value and is widely different from the resistance value Rs of the gas sensor 2 indicated when detecting a nondetecting-objective gas is found on the basis of a temperature-resistance value characteristic, and a length of a high temperature condition period, a length of a low temperature condition period, and on-duties of a transistor Q in the respective periods are determined to be set in an operation program of an arithmetic and control circuit 34. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、低温活性のCOを検知するCO検知装置に関するものである。   The present invention relates to a CO detector that detects low-temperature active CO.

従来金属酸化物半導体からなるガスセンサを用いてガス検知を行うものとして、ガスセンサに内蔵してあるヒータの印加電圧を高くする期間と、低くする期間とを交互に一定周期で切り換えて高温状態と低温状態とを交互に設定し、高温状態で半導体膜面に付着した吸着ガスを取り除くクリーニングを行い、低温側でガス検知を行うようにしたものである。   Conventionally, a gas sensor made of a metal oxide semiconductor is used for gas detection. A high temperature state and a low temperature are switched by alternately switching a period during which the applied voltage of the heater built in the gas sensor is increased and a period during which the applied voltage is decreased alternately. The state is alternately set, cleaning is performed to remove the adsorbed gas adhering to the semiconductor film surface at a high temperature, and gas detection is performed on the low temperature side.

この際の検知対象ガスは、いずれも低温で感度ピークを持つガスであり、例えば一般にSnO2 等の半導体ガスセンサを用いた場合COに対しては約80〜100℃付近に最大感度を有するため、後者の従来例では低温側温度をCOに対する感度が最大付近となるように60℃〜100℃に設定している。ところが、このように低い温度に設定した場合、ガスセンサのガスレスポンスは非常に遅く、そのため後者の従来例では低温状態の期間を30〜180秒としている。また現在の市場では低温状態の期間を90秒程度としたものが主に出回っている。 The detection target gas at this time is a gas having a sensitivity peak at a low temperature. For example, when a semiconductor gas sensor such as SnO 2 is generally used, it has a maximum sensitivity around 80 to 100 ° C. with respect to CO. In the latter conventional example, the low temperature side temperature is set to 60 ° C. to 100 ° C. so that the sensitivity to CO is in the vicinity of the maximum. However, when the temperature is set to such a low temperature, the gas response of the gas sensor is very slow. Therefore, in the latter conventional example, the period of the low temperature state is set to 30 to 180 seconds. In the current market, those with a low temperature period of about 90 seconds are mainly available.

上記のような高温状態の期間と、低温状態の期間とを交互に設定する従来例においては高温状態の期間が60秒程度設定されるため、低温状態の期間と併せると、90乃至250秒といった長時間のデッドタイムが生じ、COのように危険性の高いガスを検知する場合には警報遅れとなり、惨事発生の恐れがあった。   In the conventional example in which the high-temperature period and the low-temperature period are alternately set as described above, the high-temperature period is set to about 60 seconds. Therefore, when combined with the low-temperature period, the period is 90 to 250 seconds. A long dead time occurs, and when a highly dangerous gas such as CO is detected, an alarm is delayed and there is a risk of a disaster.

このような問題を解消する方法は、ガスセンサの熱容量を小さくしてガスレンスポンスを早めることが必要であったが、ヒータや電極の構造上の問題により、余り熱容量の小さなものが実現できなかった。   In order to solve such problems, it was necessary to reduce the heat capacity of the gas sensor and speed up the gas response. However, due to problems in the structure of the heater and the electrode, it was not possible to realize a device with a small heat capacity. .

その結果COのように危険性の高いガスを検知する場合には警報遅れとなり、惨事発生の恐れがあった。またこの熱容量の大きい素子では短時間でクリーニングを行うための所定温度に上昇させるには高い電圧をヒータに通電しなければならないが、熱衝撃が大きくてヒータの断線等が起きるという問題があり、しかも熱容量が大きいため加熱に必要とする電力が大きくなり小容量の電池電源等を用いる携帯用のガスセンサ等には不向きであった。   As a result, when a highly dangerous gas such as CO is detected, an alarm is delayed, which may cause a disaster. In addition, in this element having a large heat capacity, a high voltage must be applied to the heater in order to increase the temperature to a predetermined temperature for cleaning in a short time, but there is a problem that the heater is disconnected due to a large thermal shock, Moreover, since the heat capacity is large, the electric power required for heating becomes large, and it is not suitable for a portable gas sensor using a battery power source with a small capacity.

本発明は上記の問題点に鑑みて為されたもので、その目的とするところは熱容量が小さく、クリーニングの加熱時間が短く済み、且つクリーニングの期間終了後検知のための低温状態を短時間で得られ、危険性の高いCOガスを速やかに検知できるCOセンサ装置を提供することにある。   The present invention has been made in view of the above-mentioned problems, and the object thereof is a small heat capacity, a short heating time for cleaning, and a low temperature state for detection after the end of the cleaning period in a short time. An object of the present invention is to provide a CO sensor device that can quickly detect highly dangerous CO gas.

上記目的を達成するために請求項1の発明のガスセンサでは、円球、楕円球等の略球体状に形成されたガス感応金属酸化半導体中に貴金属線からなるヒータ兼用電極コイルを埋設するとともにヒータ兼用電極コイルの内部に貴金属からなる検知電極を設けて形成され、ヒータ兼用電極コイルの長手方向に対応するガス感応金属酸化半導体の外形寸法を約0.8mm以下とし且つ上記長手方向に直交する外形寸法を約0.7mm以下としたガスセンサと、該ガスセンサのヒータ兼用電極コイルに印加する電圧を高くする高温状態期間と、印加電圧を低くして低温状態期間とを設定する温度設定手段と、低温状態期間に切り替わったときからのガス感応金属酸化半導体の抵抗値変化を検出してその抵抗値変化から検出ガス種を弁別するガス検知手段とを備え、温度設定手段は、所定量のCOに対する前記抵抗値が最小値付近で且つ他のガス種に対する抵抗値が前記最小値から離れるようにガスセンサの温度−抵抗値特性から求まる温度に基づいて高温状態期間、低温状態期間の長さと各期間における印加電圧を制御して温度設定を行い、ガス検知手段は、COと他のガス種の抵抗値の差からCOを検知することを特徴とする。   In order to achieve the above object, in the gas sensor according to the first aspect of the present invention, a heater combined electrode coil made of a noble metal wire is embedded in a gas-sensitive metal oxide semiconductor formed in a substantially spherical shape such as a sphere or an ellipsoid. Formed by providing a sensing electrode made of a noble metal inside the dual-purpose electrode coil, the outer dimension of the gas-sensitive metal oxide semiconductor corresponding to the longitudinal direction of the heater-cumulative electrode coil is about 0.8 mm or less, and is perpendicular to the longitudinal direction. A gas sensor having a dimension of about 0.7 mm or less; a temperature setting means for setting a high voltage state period for increasing a voltage applied to the heater / electrode coil of the gas sensor; A gas detector that detects changes in the resistance value of a gas-sensitive metal oxide semiconductor from when it switches to a state period and discriminates the detected gas type from the change in resistance value And the temperature setting means is based on a temperature determined from a temperature-resistance value characteristic of the gas sensor so that the resistance value with respect to a predetermined amount of CO is in the vicinity of the minimum value and the resistance value with respect to other gas species is separated from the minimum value. The temperature is set by controlling the length of the high temperature state period and the low temperature state period and the applied voltage in each period, and the gas detection means detects CO from the difference in resistance value between CO and other gas types. To do.

本発明は、円球、楕円球等の略球体状に形成されたガス感応金属酸化半導体中に貴金属線からなるヒータ兼用電極コイルを埋設するとともにヒータ兼用電極コイルの内部に貴金属からなる検知電極を設けて形成され、ヒータ兼用電極コイルの長手方向に対応するガス感応金属酸化半導体の外形寸法を約0.8mm以下とし且つ上記長手方向に直交する外形寸法を約0.7mm以下としたものであるから、熱容量が小さくて熱平衡に達する時間が短く、しかも加熱冷却による熱衝撃に強い構造となるため、高温でクリーニングを行うことが可能となり、そのためクリーニングに要する加熱期間を短くでき、更に加熱期間の終了後ガス検知のための低温状態を短時間で得ることができるものであって、温度設定手段は、所定量のCOに対する前記抵抗値が最小値付近で且つ他のガス種に対する抵抗値が前記最小値から離れるようにガスセンサの温度−抵抗値特性から求まる温度に基づいて高温状態期間、低温状態期間の長さと各期間における印加電圧を制御して温度設定を行い、ガス検知手段は、COと他のガス種の抵抗値の差からCOを検知するので、危険性の高いCOを短時間に確実に検知することができる。   The present invention embeds a heater-use electrode coil made of a noble metal wire in a gas-sensitive metal oxide semiconductor formed in a substantially spherical shape such as a sphere or an ellipsoid, and has a detection electrode made of a noble metal inside the heater-use electrode coil. The external dimension of the gas-sensitive metal oxide semiconductor corresponding to the longitudinal direction of the electrode coil for heaters is about 0.8 mm or less, and the external dimension orthogonal to the longitudinal direction is about 0.7 mm or less. Therefore, since the heat capacity is small and the time to reach thermal equilibrium is short, and the structure is strong against heat shock due to heating and cooling, it is possible to perform cleaning at a high temperature, so that the heating period required for cleaning can be shortened, and the heating period is further reduced. A low-temperature state for gas detection after completion can be obtained in a short time, and the temperature setting means is configured to perform the above-described operation with respect to a predetermined amount of CO. The high temperature state period, the length of the low temperature state period, and the application in each period based on the temperature obtained from the temperature-resistance value characteristic of the gas sensor so that the resistance value is near the minimum value and the resistance value for other gas types is away from the minimum value. The temperature is set by controlling the voltage, and the gas detection means detects CO from the difference in resistance value between CO and other gas types, so that highly dangerous CO can be reliably detected in a short time.

以下本発明を実施形態により説明する。   Embodiments of the present invention will be described below.

まず本発明のCO検知装置に用いるガスセンサ2の構成例を説明する。   First, a configuration example of the gas sensor 2 used in the CO detection device of the present invention will be described.

例1
例えば、図1(a)(b)に示すように外形形状がラクビーボール状若しくは楕円球状に形成したSnO2 に貴金属触媒を加えたガス感応金属酸化物半導体2c中に貴金属線(25μφ以下)からなるヒータ兼用電極コイル2aを埋設し、このヒータ兼用電極コイル2aの内部に貴金属線(25μφ以下)からなる検知電極2bを設けた構造のものであり、ガス感応金属酸化物半導体2cのヒータ兼用電極コイル2aの長手方向の寸法aを約0.4mmとするとともに、長手方向に対して直交する方向の断面の直径を約0.4mmとし、またヒータ兼用電極コイル2aの内径Rと、ヒータ兼用電極コイル2aの長さlとの関係を1:1乃至4の範囲に設定したものである。
Example 1
For example, as shown in FIGS. 1 (a) and 1 (b), a noble metal wire (25 μφ or less) is formed in a gas-sensitive metal oxide semiconductor 2c obtained by adding a noble metal catalyst to SnO 2 whose outer shape is formed into a rugby ball shape or an elliptical sphere shape. The heater combined electrode coil 2a is embedded, and the heater combined electrode coil 2a is provided with a detection electrode 2b made of a noble metal wire (25 μφ or less). The heater combined electrode of the gas-sensitive metal oxide semiconductor 2c The longitudinal dimension a of the coil 2a is about 0.4 mm, the diameter of the cross section in the direction orthogonal to the longitudinal direction is about 0.4 mm, the inner diameter R of the heater combined electrode coil 2a, and the heater combined electrode The relationship with the length l of the coil 2a is set in the range of 1: 1 to 4.

而して上述のガスセンサ2は図1(c)に示すように樹脂ベース6に横一列に植設した端子7に接続してあるヒータ兼用電極コイル2aの両端及び検知電極2bをワイヤボンディングにより接続することにより保持されるとともに樹脂ベース6に被着した金属製パッケージ8で被蔽され、金属製パッケージ8の上面の開口よりメッシュ9を介して金属パッケージ8内に浸入するガスと接触するようになっている。   Thus, as shown in FIG. 1C, the gas sensor 2 described above is connected by wire bonding to both ends of the heater / electrode coil 2a and the detection electrode 2b connected to the terminals 7 arranged in a horizontal row on the resin base 6. So that the metal package 8 is covered with the metal base 8 attached to the resin base 6 and comes into contact with the gas entering the metal package 8 through the mesh 9 from the opening on the upper surface of the metal package 8. It has become.

例2
本例のガスセンサ2は、構造的に例1と同じであるが、ガス感応金属酸化物半導体2cのヒータ兼用電極コイル2aの長手方向の寸法aを約0.6mmとし、且つ長手方向に対して直交する方向の断面の直径を約0.5mmとしたものである。
Example 2
The gas sensor 2 of this example is structurally the same as that of Example 1, but the dimension a in the longitudinal direction of the heater / electrode coil 2a of the gas-sensitive metal oxide semiconductor 2c is set to about 0.6 mm, and with respect to the longitudinal direction. The diameter of the cross section in the orthogonal direction is about 0.5 mm.

例3
本例のガスセンサ2は、構造的には例1、2と同じであるが、ガス感応金属酸化物半導体2cのヒータ兼用電極コイル2aの長手方向の寸法aを約0.8mmとし、且つ長手方向に対して直交する方向の断面の直径を約0.65mmとしたものである。
Example 3
The gas sensor 2 of this example is structurally the same as Examples 1 and 2, but the dimension a in the longitudinal direction of the heater / electrode coil 2a of the gas-sensitive metal oxide semiconductor 2c is about 0.8 mm, and the longitudinal direction The diameter of the cross section in the direction orthogonal to the angle is about 0.65 mm.

以上のように構成した例1〜3のガスセンサ2のヒータ兼用電極コイル2aに0.9Vの直流電圧を所定時間印加した後、印加電圧をオフしてそのオフ時から各ガスセンサ2の検知電極2bとヒータ兼用電極コイル2aとの間の抵抗値RS の変化を各ガス種(空気(air)、H2 、CO)毎に測定してみたところ、図2(a)〜(c)のような特性が得られた。尚上記電圧印加時間は夫々のガスセンサ2の熱平衡時間の略3倍とし、例1,2のガスセンサ2では3秒間、例3のガスセンサ2では5秒間となった。 After applying a DC voltage of 0.9 V to the heater combined electrode coil 2a of the gas sensor 2 of Examples 1 to 3 configured as described above for a predetermined time, the applied voltage is turned off, and the detection electrode 2b of each gas sensor 2 from the off time. When the change of the resistance value R S between the heater and the electrode coil 2a serving as a heater is measured for each gas type (air, H 2 , CO), it is as shown in FIGS. 2 (a) to 2 (c). Characteristics were obtained. The voltage application time was approximately three times the thermal equilibrium time of each gas sensor 2, and was 3 seconds for the gas sensors 2 of Examples 1 and 2 and 5 seconds for the gas sensor 2 of Examples 3.

さて図2(a)(b)の特性から分かるように例1、2のガスセンサ2は空気に対しては電圧印加のオフ直後から抵抗値RS が高抵抗値となって数秒後には最大値を示し、その後徐々に低下するが、COに対しては印加電圧のオフ直後から抵抗値RS が高抵抗値となってその後急速に低下し、6〜7秒後には空気に対して示す抵抗値RS との比が最大となる。またH2 に対しては印加電圧のオフから数秒経過した後最大となってその後徐々に低下し、途中2〜3秒でCOに対して示す抵抗値RS と逆転する。 Now FIG. 2 (a) (b) the gas sensor 2 of Examples 1 and 2 as seen from the characteristics of the maximum a few seconds later the resistance value R S immediately after the off voltage is applied a high resistance to air The resistance value R S becomes a high resistance value immediately after the applied voltage is turned off and then rapidly decreases with respect to CO. Then, the resistance value decreases with respect to air after 6 to 7 seconds. The ratio with the value R S is maximized. Further, H 2 reaches a maximum after a few seconds have passed since the applied voltage is turned off, then gradually decreases, and reverses to the resistance value R S shown for CO in the course of 2 to 3 seconds.

また図2(c)から分かるように例3のガスセンサ2は例1,2とはやや異なり空気に対しては印加電圧のオフから1〜2秒で抵抗値RS が急速に増加し、以後は徐々に増加していき15秒経過迄には最大値は現れてこない。更にまたCOに対しては印加電圧のオフから1〜2秒で抵抗値RS が最大値に達するが、その変化は例1,2のガスセンサ2に比べて少なく、最大値を経過した後は徐々に低下する。またH2 に対しては例1、2のガスセンサ2のように印加電圧のオフ直後の抵抗値RS の急速な増加はなく、始めから徐々に増加していき、COに対する抵抗値RS との逆転は略10秒経過後に起き、例1、2のガスセンサ2の2秒〜3秒経過後に比べて遅い。従って実施例3のガスセンサ2の場合、H2 に対する抵抗値RS は印加電圧のオフから数秒で空気に対する抵抗値RS との比が最大となり、またCOに対する抵抗値RS との差も大きく、この時点で検出すればH2 を選択的に検知できることになる。 The 2 gas sensor 2 of Example 3 as seen from (c) is increasing rapidly the resistance value R S 1-2 seconds off the applied voltage for the slightly different air from the example 1, thereafter Gradually increases until the maximum value does not appear by 15 seconds. Furthermore, for CO, the resistance value R S reaches the maximum value in 1 to 2 seconds after the applied voltage is turned off, but the change is smaller than that of the gas sensor 2 of Examples 1 and 2, and after the maximum value has elapsed, Decrease gradually. The rather rapid increase in the resistance R S immediately off the applied voltage as in the gas sensor 2 of Examples 1 and 2 relative to H 2, gradually increasing from the beginning, and the resistance value R S to CO The reverse rotation occurs after approximately 10 seconds, and is slower than after 2 seconds to 3 seconds of the gas sensor 2 of Examples 1 and 2. Therefore, in the case of the gas sensor 2 of Example 3, the resistance value R S with respect to H 2 has a maximum ratio with the resistance value R S with respect to air within a few seconds after the applied voltage is turned off, and the difference from the resistance value R S with respect to CO is also large. If detected at this time, H 2 can be selectively detected.

次に構造的には例1〜3のガスセンサ2と同じであるが、ガス感応金属酸化物半導体2cのヒータ兼用電極コイル2aの長手方向の寸法aを約1.0mmとして且つ長手方向に対して直交する方向の断面の直径を0.9mmとしたものを比較例として作成し、上記例1〜3のガスセンサ2と同様な特性を測定してみたところ、約400℃に達する迄に10秒程度の電圧印加を必要とし、また印加電圧のオフ後の特性も図2(d)に示すように従来からある、例えば後述する図3のガスセンサ2’と同様な特性となった。つまり比較例の場合、COの検知を感度良く行おうとすれば、空気に対する抵抗値RS ができるだけ高抵抗値で、H2 に対する抵抗値RS と逆転する時点以後ということになり、結果少なくとも印加電圧のオフから10秒経過後の検知動作ということになり、デッドタイムが20秒以上となる。 Next, it is structurally the same as the gas sensor 2 of Examples 1 to 3, but the longitudinal dimension “a” of the heater-sensitive electrode coil 2a of the gas-sensitive metal oxide semiconductor 2c is set to about 1.0 mm, and with respect to the longitudinal direction. When the cross-sectional diameter in the orthogonal direction is 0.9 mm as a comparative example, the same characteristics as those of the gas sensors 2 of Examples 1 to 3 were measured, and about 10 seconds until reaching 400 ° C. In addition, as shown in FIG. 2D, the characteristics after the application voltage is turned off are similar to those of the conventional gas sensor 2 ′ shown in FIG. 3, for example. In other words, in the case of the comparative example, if the detection of CO is performed with high sensitivity, the resistance value R S for air is as high as possible and after the point of reversal with the resistance value R S for H 2 . This is a detection operation 10 seconds after the voltage is turned off, and the dead time is 20 seconds or more.

このような実験を繰り返すことにより、ヒータ兼用電極コイル2aの長手方向に対応するガス感応金属酸化半導体2cの外形寸法を約0.8mm以下とし且つ上記長手方向に直交する外形寸法を約0.7mm以下とすれば、所定温度まで加熱するために直流電圧をヒータ兼用電極コイル2aに印加する時間が短く、また加熱停止から低温状態で熱平衡するまでの時間が短い所望する特性のガスセンサ2が得られることが分かった。   By repeating such an experiment, the outer dimension of the gas-sensitive metal oxide semiconductor 2c corresponding to the longitudinal direction of the heater / electrode coil 2a is about 0.8 mm or less, and the outer dimension perpendicular to the longitudinal direction is about 0.7 mm. If it is set as follows, the gas sensor 2 having desired characteristics can be obtained in which the time for applying a DC voltage to the heater / electrode coil 2a for heating to a predetermined temperature is short and the time from the heating stop to the thermal equilibrium in a low temperature state is short. I understood that.

更に図1に示す例1のガスセンサ2は0.9Vの直流電圧をヒータ兼用電極コイル2aに印加して熱平衡した時点で電圧印加をオフしたときときから室温まで低下する時間と、図3に示すようにヒータコイル2a’と検知電極2b’とを別体にガス感応金属酸化物半導体2cに埋設した従来構造のガスセンサ2’のヒータコイル2a’に約1.2Vの電圧を印加して熱平衡した時点で電圧印加をオフしたときから室温まで低下する時間とを測定したところ図4に示すような結果(イ)、(ロ)が得られた。この結果(イ)、(ロ)から図4の従来例構造に比べて加熱時、冷却時における熱平衡に要する時間が例1の場合極めて短いことが分かった。   Further, the gas sensor 2 of Example 1 shown in FIG. 1 has a time to decrease to room temperature from when the voltage application is turned off when a DC voltage of 0.9 V is applied to the heater / electrode coil 2a to achieve thermal equilibrium, as shown in FIG. Thus, the heater coil 2a ′ and the detection electrode 2b ′ are separately provided and thermally balanced by applying a voltage of about 1.2 V to the heater coil 2a ′ of the gas sensor 2 ′ having a conventional structure embedded in the gas-sensitive metal oxide semiconductor 2c. When the voltage application was turned off at the time point and the time to decrease to room temperature was measured, results (i) and (b) as shown in FIG. 4 were obtained. From the results (a) and (b), it was found that the time required for thermal equilibrium at the time of heating and cooling is extremely short in the case of Example 1 as compared with the conventional structure of FIG.

尚上記例1乃至3について650℃に加熱する電圧を3秒間印加し、略室温に戻るまでに要する略7秒間電圧の印加を停止することにより加熱冷却の熱衝撃実験を繰り返したところ、130万回以上の繰り返しでも何等トラブルが生じなかった。上記例1乃至3で示された請求項1の発明に対応するガスセンサ2は、加熱を終了した後熱平衡するまでに各種ガスに対する相対的な感度差が大きい点に特徴がある。   In Examples 1 to 3, the heating and cooling thermal shock experiment was repeated by applying a voltage for heating to 650 ° C. for 3 seconds and stopping the voltage application for about 7 seconds required to return to about room temperature. No trouble occurred even after repeated times. The gas sensor 2 corresponding to the invention of claim 1 shown in Examples 1 to 3 is characterized in that there is a large difference in sensitivity relative to various gases from the end of heating until the thermal equilibrium is achieved.

ところで、図9に示す回路を用いて例1におけるガスセンサ2の温度が約400℃となるように図8に示す如く0.9Vの直流電圧VH をガスセンサ2のヒータ兼用電極コイル2aに3秒間印加した後に、0.2Vの直流電圧VH に切り換えて約60℃の温度となるように設定したときの、空気及びH2 、C2 5 OH、COの一定量(100pmm)の各種ガスに対するガスセンサ2の抵抗値Rsの変化を測定してみたところ、図10に示すようにガスセンサ2の空気に対する抵抗値変化は(イ)、H2 に対する抵抗値変化は(ロ)、C2 5 OHに対する抵抗値変化は(ハ)、COに対する抵抗値変化は(ニ)のようになった。この測定結果から低温状態に切り換えた時点から数秒乃至十数秒迄のレスポンス変化は夫々のガス特有の変化が見られることが分かった。 By the way, by using the circuit shown in FIG. 9, a DC voltage V H of 0.9 V is applied to the heater combined electrode coil 2a of the gas sensor 3 for 3 seconds so that the temperature of the gas sensor 2 in Example 1 becomes about 400 ° C. as shown in FIG. After application, when switching to DC voltage V H of 0.2V and setting to reach a temperature of about 60 ° C., various gases of air and a certain amount (100 pmm) of H 2 , C 2 H 5 OH and CO As shown in FIG. 10, when the change in the resistance value Rs of the gas sensor 2 with respect to is measured, the change in the resistance value of the gas sensor 2 with respect to air is (A), the change in resistance value with respect to H 2 is (B), and C 2 H 5 The change in resistance value with respect to OH was (c), and the change in resistance value with respect to CO was (d). From this measurement result, it was found that the response change from several seconds to several tens of seconds from the time of switching to a low temperature state shows a change specific to each gas.

そして高温状態(400℃)の期間(3秒間)と、低温状態(60℃)の期間(7秒)とを交互に繰り返して空気、H2 (100pmm)、CO(100pmm)、H2 S(100pmm)H2 (1000pmm)、CO(1000pmm)、H2 S(1000pmm)の場合についてガスセンサのガスセンサ両端の抵抗の両端電圧を測定してみたところ図11(a)乃至(g)に示すような結果が得られ、この結果からレスポンスパターンの再現性が良好であることが確認できた。 Then, a period of high temperature (400 ° C.) (3 seconds) and a period of low temperature (60 ° C.) (7 seconds) are alternately repeated to generate air, H 2 (100 pmm), CO (100 pmm), H 2 S ( 100 pmm) H 2 (1000 pmm), CO (1000 pmm), H 2 S (1000 pmm), the voltage across the gas sensor of the gas sensor was measured, and as shown in FIGS. 11A to 11G. A result was obtained, and it was confirmed from this result that the reproducibility of the response pattern was good.

また空気、CO(1000ppm)、H2 S(10ppm)、NO2 (10ppm)、CH4 (1000ppm)、C2 5 OH(1000ppm)を検知する場合のガスセンサ2の温度とガスセンサ2の抵抗値RS の関係を測定したものが図12である。測定方法は各々の温度で抵抗値RS が安定するまで待って測定したもので、低温では空気の場合30分後に、その他のガス場合各々5分後に、中高温では2分後に夫々測定したものである。 The temperature of the gas sensor 2 and the resistance value of the gas sensor 2 when detecting air, CO (1000 ppm), H 2 S (10 ppm), NO 2 (10 ppm), CH 4 (1000 ppm), and C 2 H 5 OH (1000 ppm). FIG. 12 shows the measured R S relationship. The measurement method in which the resistance value R S at each temperature was measured waited to stabilize, after 30 minutes for air at low temperature, each 5 minutes later if other gases, those in the intermediate to high temperature was respectively measured after 2 minutes It is.

この図12からH2 S、CO等のガスは低温度側に感度ピークが存在し、また各ガスによって感度ピークを示す温度の異なっていることが分かる。しかし低温に感度ピークを有するガスを検出する場合、平衡状態に達してから測定すると、レスポンスが遅く長時間かかるため実用的でない。ところが、図9の場合、図11に示したように高温状態から低温状態に切り換えたときのレスポンス変化は図2に示したオフ時のレスポンス変化に近く、図12の温度変化とは必ずしも一致しないが、この両者が組み合わされてガス特有の特性を発現することが判明した。 It can be seen from FIG. 12 that gases such as H 2 S and CO have a sensitivity peak on the low temperature side, and the temperature at which the sensitivity peak is shown varies depending on each gas. However, when detecting a gas having a sensitivity peak at a low temperature, if it is measured after reaching an equilibrium state, the response is slow and it takes a long time, which is not practical. However, in the case of FIG. 9, the response change when switching from the high temperature state to the low temperature state as shown in FIG. 11 is close to the response change at the time of OFF shown in FIG. 2, and does not necessarily match the temperature change in FIG. However, it has been found that these two are combined to develop gas-specific characteristics.

従って、高温状態下での温度、時間、低温状態下での温度、時間を適宜に選ぶことにより、簡単にガス弁別が行える上に、短時間で検知対象ガスを検知することができる。
(実施形態1)
本実施形態は、上述の結果に基づいて実現したもので、図5に示す本実施形態のCO検知装置では、交流電源電圧を一定の直流電圧Vccに定電圧回路1で変換したのち、この直流電圧Vccをスイッチング素子Qとガスセンサ2のヒータ兼用電極コイル2aとの直列回路に印加するとともに、負荷抵抗Rとガスセンサ2との直列回路に印加し、更にガスセンサ2の検知状態の監視とヒータ兼用電極コイル2aに印加する電圧VH のスイッチング制御とを行う信号処理部3に印加してる。
Therefore, by appropriately selecting the temperature and time under the high temperature state and the temperature and time under the low temperature state, the gas discrimination can be easily performed and the detection target gas can be detected in a short time.
(Embodiment 1)
The present embodiment is realized based on the above-described results. In the CO detection device of the present embodiment shown in FIG. 5, the AC power supply voltage is converted into a constant DC voltage Vcc by the constant voltage circuit 1, and then this DC applies a voltage Vcc to the series circuit of the heater combined electrode coil 2a of the switching element Q 1, the gas sensor 2, and applied to a series circuit of a load resistor R and the gas sensor 2, further monitoring and heater combined detection state of the gas sensor 2 It is applied to the signal processing unit 3 that performs switching control of the voltage V H applied to the electrode coil 2a.

信号処理部3はタイマ32と、ガスセンサ2の温度が高温状態となる期間とガスセンサ2の温度が低温状態となる期間とをタイマ32の計時出力により交互に設定し且つ高温状態期間でのトランジスタQのオンデュティと低温状態期間でのトランジスタQのオンデュティとを駆動回路33を通じて制御する機能及び低温状態期間の所定タイミングで取り込んだガスセンサ2の電圧値と予め設定してある基準値とから汚染度を判定するとともに汚染度と予め設定してある警報動作閾値とを比較して汚染度が警報動作閾値を越えたときに警報制御出力回路37を通じて外部に警報信号を出力する機能を備えた演算制御回路34と、負荷抵抗Rの両端電圧をA/D変換するA/D変換回路31と、デジタル変換された負荷抵抗Rの両端電圧値を再度D/A変換してアナログ出力として外部に出力するD/A変換回路35と、上記基準値や警報動作閾値を格納するメモリ26と、実際には1チップのマイクロコンピュータにより構成される。   The signal processing unit 3 alternately sets the timer 32, the period during which the temperature of the gas sensor 2 is in a high temperature state, and the period during which the temperature of the gas sensor 2 is in a low temperature state by the time-measured output of the timer 32, and the transistor Q during the high temperature state period The degree of contamination is determined from the function of controlling the on-duty of the transistor Q and the on-duty of the transistor Q in the low temperature state period through the drive circuit 33 and the voltage value of the gas sensor 2 taken at a predetermined timing in the low temperature state period and a preset reference value. At the same time, the operation control circuit 34 having a function of outputting an alarm signal to the outside through the alarm control output circuit 37 when the contamination level exceeds the alarm operation threshold by comparing the contamination level with a preset alarm operation threshold. The A / D conversion circuit 31 for A / D converting the voltage across the load resistor R, and the voltage value across the digitally converted load resistor R again. / A conversion and D / A conversion circuit 35 for output as an analog output, a memory 26 for storing the reference value and alarm operation threshold, in practice constituted by one-chip microcomputer.

警報信号は外付けのブザー4の駆動制御や警報表示用の発光素子LEDの駆動制御等に用いられ、また換気装置等の外部機器の制御のための接点出力となる。信号処理部3の外付け回路として設けた温度補償回路4はA/D変換される負荷抵抗Rの両端電圧をガスセンサ2の温度特性に対応して補正し、温度の影響を無くすためのものである。   The alarm signal is used for drive control of the external buzzer 4, drive control of the light emitting element LED for alarm display, and the like, and serves as a contact output for control of an external device such as a ventilator. The temperature compensation circuit 4 provided as an external circuit of the signal processing unit 3 is for correcting the voltage across the load resistor R subjected to A / D conversion in accordance with the temperature characteristics of the gas sensor 2 so as to eliminate the influence of temperature. is there.

而して検知対象ガスをCOとした場合、所定量のCOに対応してガスセンサ2が示す抵抗値Rsが最小値付近となり且つ非検知対象ガスを検知したときに示すガスセンサ2の抵抗値Rsからかけ離れるガスセンサ2の温度を図10の温度−抵抗値特性から求めて、高温状態期間の長さ及び低温状態期間の長さと各期間におけるトランジスタQのオンデュティを定めて、演算制御回路34の動作プログラムにセットしておく。   Thus, when the detection target gas is CO, the resistance value Rs indicated by the gas sensor 2 is near the minimum value corresponding to a predetermined amount of CO, and from the resistance value Rs of the gas sensor 2 indicated when the non-detection target gas is detected. The temperature of the gas sensor 2 that is far away is obtained from the temperature-resistance value characteristics of FIG. 10, the length of the high temperature state period, the length of the low temperature state period, and the on-duty of the transistor Q in each period are determined. Set to.

ここでは実際には高温状態期間では、約0.9Vの電圧をヒータ兼用電極コイル2aに連続的に印加した場合と同じ温度(約400℃)でガスセンサ2を加熱することができるように、第6図(a)の如くオンデュティが0.4msecで周期が10msecのパルス信号でトランジスタQをオンオフしてヒータ兼用電極コイル2aの印加電圧の平均値が約0.9Vになるようにし、且つその期間を3秒としてある。   Here, in practice, in the high temperature period, the gas sensor 2 can be heated at the same temperature (about 400 ° C.) as when a voltage of about 0.9 V is continuously applied to the heater / electrode coil 2a. As shown in FIG. 6 (a), the transistor Q is turned on / off by a pulse signal having an on-duty of 0.4 msec and a period of 10 msec so that the average value of the applied voltage of the heater / electrode coil 2a is about 0.9 V, and the period Is 3 seconds.

また低温状態期間では、約0.2Vの電圧をヒータ兼用電極コイル2aに連続的に印加した場合と同じ温度(約60℃)でガスセンサ2を加熱することができるように、第6図(b)の如くオンデュティが0.03msecで周期が10msecのパルス信号でトランジスタQをオンオフしてヒータ兼用電極コイル2aの印加電圧の平均値が約0.2Vになるようにし、且つその期間を7秒としてある。   In the low temperature period, the gas sensor 2 can be heated at the same temperature (about 60 ° C.) as when a voltage of about 0.2 V is continuously applied to the heater / electrode coil 2a (FIG. 6B). ), The transistor Q is turned on / off with a pulse signal having an on-duty of 0.03 msec and a period of 10 msec so that the average value of the applied voltage of the heater / electrode coil 2a is about 0.2 V, and the period is set to 7 seconds. is there.

かように構成された本実施形態の装置では、高温状態期間と低温状態期間とが交互に切り換えられ、低温状態期間において、ガスセンサ2の温度がCOの感度ピークになる時点、つまり約7秒後に演算制御回路34がA/D変換した負荷抵抗Rの両端電圧を取り込み汚染度を判定するとともに警報動作閾値と比較し、警報動作閾値を越えている場合には警報信号を出力するのである。   In the apparatus of the present embodiment configured as described above, the high temperature state period and the low temperature state period are alternately switched, and the temperature of the gas sensor 2 reaches the CO sensitivity peak in the low temperature state period, that is, after about 7 seconds. The arithmetic control circuit 34 takes in the voltage across the load resistor R after A / D conversion, determines the contamination level, compares it with the alarm operation threshold value, and outputs an alarm signal when the alarm operation threshold value is exceeded.

このようにして検知対象ガスに応じて低温状態期間の長さとトランジスタQのオンデュティの長さを設定することにより、短時間で且つ確実に検知対象ガスを検知することができるのである。   Thus, by setting the length of the low temperature period and the length of the on-duty of the transistor Q according to the detection target gas, the detection target gas can be detected reliably in a short time.

(実施形態2)
実施形態1に用いる装置はガスセンサ2のヒータ兼用電極コイル2aに印加する電圧をスイッチング制御により設定しているが、連続制御により設定するようにしても良い。
(Embodiment 2)
In the apparatus used in the first embodiment, the voltage applied to the heater / electrode coil 2a of the gas sensor 2 is set by switching control, but may be set by continuous control.

図7はこの連続制御を行う装置の回路を示しており、この装置では定電圧回路1の出力端間にヒータ2aと直列制御用のトランジスタQ2 との直列回路を接続し、トランジスタQ2 の基準電圧を決めるオペアンプOPの非反転入力端の電圧値をトランジスタQ1 のオン/オフで切り換えてトランジスタQ2 の基準電圧を2段階に切り換えるようになっている。 Figure 7 shows the circuit of a device for performing the continuous control, to connect the series circuit of the transistor Q 2 of the heater 2a series control between the output terminal of the constant voltage circuit 1 in this device, the transistor Q 2 The voltage value of the non-inverting input terminal of the operational amplifier OP that determines the reference voltage is switched by turning on / off the transistor Q 1 to switch the reference voltage of the transistor Q 2 in two stages.

トランジスタQ1 のオン/オフ制御は演算制御部34から駆動回路33を介して出力される制御信号により行われ、トランジスタQ1 をオンする期間とオフ期間は高温状態期間と低温状態期間に対応しており、その設定はタイマ32の計時出力に基づいて行われる。而して図7の装置においても検知対象ガスがCOの場合には図8に示すように高温状態期間を3秒とするとともにヒータ兼用電極コイル2aの印加電圧を約0.9Vとし、低温状態期間を7秒とするとともにヒータ兼用電極コイル2aの印加電圧を約0.2Vとすれば、他のガスと弁別して短時間で検知することができることになる。 On / off control of the transistor Q 1 is conducted by the control signal outputted through the drive circuit 33 from the calculation control unit 34, period and OFF period to turn on the transistor Q 1 is corresponding to the high temperature period and a low temperature period The setting is performed based on the time output of the timer 32. Thus, in the apparatus of FIG. 7, when the detection target gas is CO, the high temperature state period is set to 3 seconds and the applied voltage of the heater / electrode coil 2a is set to about 0.9 V as shown in FIG. If the period is set to 7 seconds and the voltage applied to the heater / electrode coil 2a is about 0.2 V, it can be detected in a short time by being distinguished from other gases.

またガスセンサ2に熱時定数の小さい素子を用いれば検知時間をより短くすることができる。またFe2 3 ,ZnO2 系のガスセンサ2を使用しても良い。 If an element having a small thermal time constant is used for the gas sensor 2, the detection time can be shortened. Alternatively, an Fe 2 O 3 or ZnO 2 gas sensor 2 may be used.

更に耐久性から言えばヒータ2aと電極を半導体チップ内に埋め込んだ一体構造型のものが望ましいが平板積層型のガスセンサ2を使用しても良い。   Further, from the viewpoint of durability, an integrated structure type in which the heater 2a and electrodes are embedded in a semiconductor chip is desirable, but a flat plate type gas sensor 2 may be used.


(a)は本発明に用いるガスセンサの各例1〜3の概略構成図である。(b)は同上の電極コイルと検知電極の概略構成図である。(c)は同上の外観斜視図である。(A) is a schematic block diagram of each example 1-3 of the gas sensor used for this invention. (B) is a schematic block diagram of an electrode coil and a detection electrode same as the above. (C) is an external perspective view of the above. ガスセンサの各例1〜3の抵抗値変化の測定説明図である。It is a measurement explanatory view of resistance value change of each example 1-3 of a gas sensor. ガスセンサの各例と比較する比較例の概略構成図である。It is a schematic block diagram of the comparative example compared with each example of a gas sensor. 各例1〜3と比較例の熱平衡の比較説明図である。It is comparative explanatory drawing of the thermal balance of each example 1-3 and a comparative example. 実施形態1の回路構成図である。1 is a circuit configuration diagram of Embodiment 1. FIG. 同上のガスセンサのヒータの電圧制御を説明するためのタイミングチャートである。It is a timing chart for demonstrating voltage control of the heater of a gas sensor same as the above. 実施形態2の回路構成図である。6 is a circuit configuration diagram of Embodiment 2. FIG. 同上のガスセンサのヒータの電圧制御を説明するためのタイミングチャートである。It is a timing chart for demonstrating voltage control of the heater of a gas sensor same as the above. 本発明の原理説明用のレスポンス測定用の回路図である。It is a circuit diagram for response measurement for explaining the principle of the present invention. 同上で測定して得られた各種ガスのレスポンスパターン図である。It is a response pattern figure of various gas obtained by measuring above. 同上で測定して得られた各種ガスのレスポンスの再現性の説明図である。It is explanatory drawing of the reproducibility of the response of various gas obtained by measuring above. 各ガスに対応するガスセンサの温度と抵抗値との関係説明図である。It is explanatory drawing of the relationship between the temperature of a gas sensor corresponding to each gas, and resistance value.

符号の説明Explanation of symbols

1 定電圧回路
2 ガスセンサ
2a ヒータ兼用電極コイル
2c ガス感応金属酸化物半導体
3 信号処理部
4 ブザー
5 温度補償回路
31 A/D変換回路
32 タイマ
33 駆動回路
34 演算制御回路
35 D/A変換回路
37 警報制御出力回路
36 メモリ
33 駆動回路
R 負荷抵抗
Q トランジスタ
1 Constant voltage circuit
2 Gas sensor 2a Heater combined electrode coil 2c Gas sensitive metal oxide semiconductor 3 Signal processing unit 4 Buzzer 5 Temperature compensation circuit 31 A / D conversion circuit 32 Timer 33 Drive circuit 34 Operation control circuit 35 D / A conversion circuit 37 Alarm control output circuit 36 Memory 33 Drive circuit R Load resistance Q Transistor

Claims (1)

円球、楕円球等の略球体状に形成されたガス感応金属酸化半導体中に貴金属線からなるヒータ兼用電極コイルを埋設するとともにヒータ兼用電極コイルの内部に貴金属からなる検知電極を設けて形成され、ヒータ兼用電極コイルの長手方向に対応するガス感応金属酸化半導体の外形寸法を約0.8mm以下とし且つ上記長手方向に直交する外形寸法を約0.7mm以下としたガスセンサと、該ガスセンサのヒータ兼用電極コイルに印加する電圧を高くする高温状態期間と、印加電圧を低くして低温状態期間とを設定する温度設定手段と、低温状態期間に切り替わったときからのガス感応金属酸化半導体の抵抗値変化を検出してその抵抗値変化から検出ガス種を弁別するガス検知手段とを備え、
温度設定手段は、所定量のCOに対する前記抵抗値が最小値付近で且つ他のガス種に対する抵抗値が前記最小値から離れるようにガスセンサの温度−抵抗値特性から求まる温度に基づいて高温状態期間、低温状態期間の長さと各期間における印加電圧を制御して温度設定を行い、
ガス検知手段は、COと他のガス種の抵抗値の差からCOを検知することを特徴とするCO検知装置。
It is formed by embedding a heater combined electrode coil made of noble metal wire in a gas-sensitive metal oxide semiconductor formed in a substantially spherical shape such as a circular sphere, elliptical sphere, etc. and providing a detection electrode made of noble metal inside the heater combined electrode coil. A gas sensor having an outer dimension of the gas-sensitive metal oxide semiconductor corresponding to the longitudinal direction of the electrode coil serving as a heater of about 0.8 mm or less and an outer dimension perpendicular to the longitudinal direction of about 0.7 mm or less, and a heater for the gas sensor A temperature setting means for setting a high temperature state period for increasing the voltage applied to the dual-purpose electrode coil, a low temperature state period for decreasing the applied voltage, and a resistance value of the gas-sensitive metal oxide semiconductor after switching to the low temperature state period Gas detection means for detecting a change and discriminating a detected gas type from the resistance value change,
The temperature setting means is a high temperature state period based on a temperature obtained from the temperature-resistance value characteristic of the gas sensor so that the resistance value with respect to a predetermined amount of CO is in the vicinity of the minimum value and the resistance value with respect to other gas species is separated from the minimum value. , Set the temperature by controlling the length of the low temperature period and the applied voltage in each period,
The CO detection device, wherein the gas detection means detects CO from a difference in resistance value between CO and another gas type.
JP2005165939A 2005-06-06 2005-06-06 Co detector Pending JP2005257702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005165939A JP2005257702A (en) 2005-06-06 2005-06-06 Co detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005165939A JP2005257702A (en) 2005-06-06 2005-06-06 Co detector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000403096A Division JP2001221761A (en) 2000-12-28 2000-12-28 Gas sensor

Publications (1)

Publication Number Publication Date
JP2005257702A true JP2005257702A (en) 2005-09-22

Family

ID=35083529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005165939A Pending JP2005257702A (en) 2005-06-06 2005-06-06 Co detector

Country Status (1)

Country Link
JP (1) JP2005257702A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110199193A (en) * 2017-01-19 2019-09-03 Tdk株式会社 Gas sensor
CN113566996A (en) * 2021-07-26 2021-10-29 安徽威格仪表有限公司 Double-branch automatic switching temperature transmitter
JP7469447B1 (en) 2022-12-15 2024-04-16 新コスモス電機株式会社 Gas detector and method of operating the gas detector
JP7469446B1 (en) 2022-12-15 2024-04-16 新コスモス電機株式会社 Gas sensor and method of operating the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110199193A (en) * 2017-01-19 2019-09-03 Tdk株式会社 Gas sensor
CN110199193B (en) * 2017-01-19 2022-03-01 Tdk株式会社 Gas sensor
CN113566996A (en) * 2021-07-26 2021-10-29 安徽威格仪表有限公司 Double-branch automatic switching temperature transmitter
JP7469447B1 (en) 2022-12-15 2024-04-16 新コスモス電機株式会社 Gas detector and method of operating the gas detector
JP7469446B1 (en) 2022-12-15 2024-04-16 新コスモス電機株式会社 Gas sensor and method of operating the same

Similar Documents

Publication Publication Date Title
JP4785927B2 (en) Electric kettle control method
JP3750998B2 (en) Exhalation detection method and apparatus
JP2005257702A (en) Co detector
JP2007059097A (en) Heater controller system
US8555701B1 (en) Enhanced metal oxide gas sensor
CN210803349U (en) Device for detecting gas
JP3670674B2 (en) Gas detection method and gas detection device
JP3167798B2 (en) Gas sensor
JP6960645B2 (en) Gas detector and gas detection method
JPH11142356A (en) Semiconductor gas sensor
JP7317318B2 (en) GAS DETECTION DEVICE INCLUDING PLURAL GAS SENSORS AND GAS DETECTION METHOD
JP3670959B2 (en) Gas detector
JP3897327B2 (en) Portable gas detector
JP4755365B2 (en) Gas detector
JP6300203B2 (en) Gas detector
JP4116989B2 (en) Gas detector
JP2010054486A (en) Infrared sensor device
JP3999831B2 (en) Gas detection method and apparatus
JP4248126B2 (en) Gas detection method and apparatus
JP3999891B2 (en) Gas detection method and apparatus
JP4081605B2 (en) Controller for heating element for floor heating
JP6920905B2 (en) Gas detector
JP2001221761A (en) Gas sensor
JP5629418B2 (en) Gas alarm device and alarm concentration output setting method of gas alarm device
JPH0799358B2 (en) Gas detection method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20061010

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20061211

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

A131 Notification of reasons for refusal

Effective date: 20070417

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080318