JP2005255514A - Method of manufacturing iodide - Google Patents

Method of manufacturing iodide Download PDF

Info

Publication number
JP2005255514A
JP2005255514A JP2005021631A JP2005021631A JP2005255514A JP 2005255514 A JP2005255514 A JP 2005255514A JP 2005021631 A JP2005021631 A JP 2005021631A JP 2005021631 A JP2005021631 A JP 2005021631A JP 2005255514 A JP2005255514 A JP 2005255514A
Authority
JP
Japan
Prior art keywords
hydrogen
iodide
gas
reaction
iodine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005021631A
Other languages
Japanese (ja)
Other versions
JP4713895B2 (en
Inventor
Satoshi Kanbe
智 神部
Masahiro Wada
正大 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippoh Chemicals Co Ltd
Nippon Shokubai Co Ltd
Original Assignee
Nippoh Chemicals Co Ltd
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippoh Chemicals Co Ltd, Nippon Shokubai Co Ltd filed Critical Nippoh Chemicals Co Ltd
Priority to JP2005021631A priority Critical patent/JP4713895B2/en
Publication of JP2005255514A publication Critical patent/JP2005255514A/en
Application granted granted Critical
Publication of JP4713895B2 publication Critical patent/JP4713895B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing hydrogen iodide and/or methyl iodide. <P>SOLUTION: In the manufacture of hydrogen iodide and/or methyl iodide from gaseous hydrogen and/or methane or hydrogen-containing gas and gaseous iodine, hydrogen iodide and/or methyl iodide is manufactured easily, efficiently and stably for a long period by using a catalyst formed by supporting one or more kinds of platinum group elements on an oxide and/or activated carbon. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、酸化物や活性炭に白金族元素を担持した触媒を用いて、気相法によってヨウ化水素やヨウ化メチルなどのヨウ化物を製造する方法に関する。   The present invention relates to a method for producing an iodide such as hydrogen iodide or methyl iodide by a gas phase method using a catalyst in which a platinum group element is supported on an oxide or activated carbon.

ヨウ化水素は、医薬中間体やメチル化剤であるヨウ化メチルなどの原料として重要な商品である。現在、ヨウ素と水とを懸濁冷却させながら赤リンを加え、これを蒸留および精製して製造している。また、水に懸濁させたヨウ素を硫化水素で還元させる方法によっても製造することができる。また、ヨウ化メチルは、メチルアルコールにヨウ素と赤リンを作用させることで製造することもでき、ガス状水素とヨウ素からヨウ化水素を製造する方法が種々提案されている。例えば、ヨウ素を飽和した水素気流を100℃に加熱した白金上を通す方法がある(非特許文献1)。   Hydrogen iodide is an important product as a raw material for pharmaceutical intermediates and methyl iodide, which is a methylating agent. Currently, red phosphorus is added while suspending and cooling iodine and water, and this is distilled and purified. It can also be produced by a method in which iodine suspended in water is reduced with hydrogen sulfide. Methyl iodide can also be produced by allowing iodine and red phosphorus to act on methyl alcohol, and various methods for producing hydrogen iodide from gaseous hydrogen and iodine have been proposed. For example, there is a method of passing a hydrogen stream saturated with iodine over platinum heated to 100 ° C. (Non-patent Document 1).

このようなヨウ化水素やヨウ化メチルなどのヨウ化物の製造方法として、天然ガスの主成分であるメタンとヨウ素とから、ヨウ化水素酸もしくはその誘導体を製造する方法が開示されている(特許文献1)。しかしながら、該方法は触媒を使用しないため反応温度が950℃以上と極めて高く、反応域の空間速度が385hr−1以下であって低く、生産性が低い。 As a method for producing such iodides such as hydrogen iodide and methyl iodide, a method for producing hydroiodic acid or a derivative thereof from methane and iodine, which are main components of natural gas, is disclosed (patent) Reference 1). However, since this method does not use a catalyst, the reaction temperature is extremely high at 950 ° C. or higher, the space velocity in the reaction zone is 385 hr −1 or less, and the productivity is low.

一方、飽和炭化水素またはそのハロゲン化合物を溶媒として、ロジウム、ルテニウム、パラジウム、白金黒等の白金族元素触媒の存在下に、ヨウ素と水素を50〜200℃で直接反応させてヨウ化水素を製造する方法が開示されている(特許文献2)。該方法は溶媒を使用しており、液相法によるヨウ化水素の製造方法である。   On the other hand, iodine is produced by reacting iodine and hydrogen directly at 50 to 200 ° C. in the presence of a platinum group element catalyst such as rhodium, ruthenium, palladium, or platinum black using a saturated hydrocarbon or a halogen compound thereof as a solvent. Is disclosed (Patent Document 2). This method uses a solvent and is a method for producing hydrogen iodide by a liquid phase method.

このような液相法による合成として、金属成分がロジウムあるいはイリジウムである金属性触媒との接触状態で約75〜200℃の反応温度、約25〜500psigの反応圧力、約5〜300psigの一酸化炭素分圧で強酸含有反応媒体中でヨウ素を水ならびに一酸化炭素と反応させてヨウ化水素を製造する方法も開示されている(特許文献3)。上記の温度と圧力に保たれた固定床反応器中でアランダム、活性炭、粘土、アルミナ、シリカ−アルミナその他の不活性支持担体物質上に沈着させたロジウムあるいはイリジウム触媒を用いている。なお、全反応物を気相で行うには、HI、HBr、HCl、HSO、HNOなどの強酸の強酸反応媒体が必要である。 As a synthesis by such a liquid phase method, the reaction temperature is about 75 to 200 ° C., the reaction pressure is about 25 to 500 psig, and the monoxide is about 5 to 300 psig in contact with a metallic catalyst whose metal component is rhodium or iridium. A method for producing hydrogen iodide by reacting iodine with water and carbon monoxide in a strong acid-containing reaction medium at a carbon partial pressure is also disclosed (Patent Document 3). A rhodium or iridium catalyst deposited on an inert support carrier material such as alundum, activated carbon, clay, alumina, silica-alumina or the like in a fixed bed reactor maintained at the above temperature and pressure is used. In order to carry out all the reactants in the gas phase, a strong acid reaction medium of strong acid such as HI, HBr, HCl, H 2 SO 4 , HNO 3 is required.

更に液相法によるヨウ化アルキルの製造方法として、触媒として不活性物質に坦持させた金属ロジウム、ルテニウム、イリジウムから選ばれた元素またはこれらの元素のヨード化合物の存在下、炭素数1〜6のアルカノールと水素とヨウ素とから、反応温度70〜125℃でヨウ化アルキルを製造させる方法も開示されている(特許文献4)。また、液相法によるヨウ化水素の製造方法として、触媒として不活性物に坦持させた金属ロジウムとルテニウムまたはこれらの元素のヨード化合物の存在下、水を反応媒体とし水素とヨウ素とから、反応温度70〜125℃でヨウ化水素を製造させる方法も開示されている(特許文献5)。なお、水素源には、窒素、一酸化炭素、二酸化炭素、低級炭化水素などの水素以外の成分を含むことが可能であると記載されている。
特公昭48−995号報公報 特公昭47−15456号公報 特開昭48−32796号公報 US3,784,518号 US3,848,065号 共立出版株式会社発行、化学大辞典9巻、ページ410
Furthermore, as a method for producing alkyl iodide by a liquid phase method, an element selected from rhodium, ruthenium and iridium supported on an inert substance as a catalyst or an iodo compound of these elements is used. A method of producing alkyl iodide at a reaction temperature of 70 to 125 ° C. from alkanol, hydrogen and iodine is also disclosed (Patent Document 4). Further, as a method for producing hydrogen iodide by a liquid phase method, in the presence of metal rhodium and ruthenium supported on an inert substance as a catalyst or an iodo compound of these elements, water is used as a reaction medium from hydrogen and iodine. A method of producing hydrogen iodide at a reaction temperature of 70 to 125 ° C. is also disclosed (Patent Document 5). It is described that the hydrogen source can contain components other than hydrogen, such as nitrogen, carbon monoxide, carbon dioxide, and lower hydrocarbons.
Japanese Patent Publication No. 48-995 Japanese Patent Publication No.47-15456 JP-A-48-32796 US 3,784,518 US 3,848,065 Published by Kyoritsu Publishing Co., Ltd., Chemical Dictionary 9, page 410

ヨウ化水素やヨウ化メチルは、医療用原料などとして多用される化合物であり、簡単な工程、安価な原料で収率高く製造されることが望まれる。しかしながら、非特許文献1記載の方法では生産性が低い。また、特許文献2記載の方法では、飽和炭化水素またはそのハロゲン化合物を溶媒を使うため、工程が複雑である。また、特許文献3、4は液相法によるヨウ化水素やヨウ化アルキル製造方法であるが、気相法で合成できればその後の目的物の処理が容易である。しかしながら、気相法による効率的なヨウ化物の製造方法は存在しない。   Hydrogen iodide and methyl iodide are compounds that are frequently used as medical raw materials and the like, and it is desired that they be produced with a simple process and inexpensive raw materials with a high yield. However, the method described in Non-Patent Document 1 has low productivity. Further, in the method described in Patent Document 2, a saturated hydrocarbon or its halogen compound is used as a solvent, so that the process is complicated. Patent Documents 3 and 4 are methods for producing hydrogen iodide or alkyl iodide by a liquid phase method, but if they can be synthesized by a gas phase method, the subsequent treatment of the target product is easy. However, there is no efficient method for producing iodide by the vapor phase method.

そこで、本発明は、効率よくヨウ化水素やヨウ化メチルなどのヨウ化物を製造する方法を提供することを目的とする。   Then, an object of this invention is to provide the method of manufacturing iodides, such as hydrogen iodide and methyl iodide, efficiently.

また、水素源として他の成分が含まれる場合であっても、長期に亘り安定してヨウ化物を製造し得る、ヨウ化物の製造方法を提供することを目的とする。   Moreover, even if it is a case where another component is contained as a hydrogen source, it aims at providing the manufacturing method of the iodide which can manufacture an iodide stably over a long period of time.

本願発明者等は、ヨウ化物の製造方法について詳細に検討した結果、酸化物および/または活性炭に白金族元素を坦持してなる触媒の存在下に、気相法でヨウ素と、水素および/またはメタンを反応させると、ヨウ素転化率を向上させ、その結果効率よくヨウ化水素やヨウ化メチルなどのヨウ化物を製造できることを見出し、本発明を完成させた。   The inventors of the present invention have studied in detail the method for producing iodide, and as a result, in the presence of a catalyst in which a platinum group element is supported on oxide and / or activated carbon, iodine, hydrogen and / or Alternatively, when methane was reacted, the iodine conversion was improved, and as a result, it was found that iodides such as hydrogen iodide and methyl iodide could be produced efficiently, and the present invention was completed.

しかも、原料の水素として、メタンやメタノールからの改質ガスを使用することができる。これらはガス状で入手できるため特に気相反応に好適に使用することができる。このため、ヨウ化水素やヨウ化メチルの需要拡大に伴い、安価に入手できる原料を用いて簡便に大量のヨウ化水素やヨウ化メチルを生産することができる。   Moreover, reformed gas from methane or methanol can be used as the raw material hydrogen. Since these can be obtained in a gaseous state, they can be suitably used particularly for a gas phase reaction. For this reason, with the expansion of demand for hydrogen iodide and methyl iodide, a large amount of hydrogen iodide and methyl iodide can be easily produced using raw materials that can be obtained at low cost.

本願発明によれば、気相法で反応させるため、低温かつ高空間速度で生産性高くヨウ化物を製造することができる。   According to the present invention, since the reaction is carried out by the gas phase method, iodide can be produced with high productivity at low temperature and high space velocity.

本発明では、炭化水素などの改質反応によって得られる改質ガスに含まれる水素を利用することができ、安価な水素源を利用することでヨウ化水素および/またはヨウ化メチルを安価に製造することができる。   In the present invention, hydrogen contained in a reformed gas obtained by a reforming reaction such as hydrocarbon can be used, and hydrogen iodide and / or methyl iodide can be produced at low cost by using an inexpensive hydrogen source. can do.

本発明のヨウ化物の製造方法によれば、不純物を含む水素源を使用しても、長期に亘り安定してヨウ化物を製造することができる。   According to the method for producing iodide of the present invention, iodide can be produced stably over a long period of time even when a hydrogen source containing impurities is used.

本発明は、ヨウ素と、分子状水素含有ガスおよび/またはメタンとを、白金族元素の一種以上の元素を酸化物および/または活性炭に分散担持させた触媒の存在下に気相反応させることを特徴とするヨウ化物の製造方法である。   In the present invention, iodine, a molecular hydrogen-containing gas and / or methane are subjected to a gas phase reaction in the presence of a catalyst in which one or more elements of a platinum group element are dispersed and supported on an oxide and / or activated carbon. This is a method for producing iodide.

従来から、水素とヨウ素とを触媒存在下に気相法で効率的にヨウ化物を製造する例は存在しない。触媒を使用した場合であっても触媒活性が低下く、このため生産性が向上しないと考えられる。しかしながら、本発明では特定の触媒を使用することで気相法によってヨウ化物を製造することができ、転化率の向上に加えてヨウ化水素やヨウ化メチルなどのヨウ化物の回収が容易となり、極めて収率および操作性高くヨウ化物を製造することができる。   Conventionally, there is no example of efficiently producing iodide by a gas phase method in the presence of a catalyst of hydrogen and iodine. Even when a catalyst is used, the catalytic activity is lowered, and it is considered that productivity is not improved. However, in the present invention, iodide can be produced by a vapor phase method using a specific catalyst, and in addition to improving the conversion rate, it is easy to recover iodides such as hydrogen iodide and methyl iodide. Iodide can be produced with extremely high yield and operability.

すなわち、本願発明では白金族元素を酸化物および/または活性炭に分散坦持させることを要件とするが、白金族元素を酸化物および/または活性炭などの担体に坦持させずに単体で使用すると、ヨウ素の転化率が向上せずその結果ヨウ化水素などのヨウ化物の収率が低くなる。また、酸化物や活性炭に代えて金属担体に白金族元素を坦持させると、担体基材がヨウ化水素などのヨウ化物で腐食されるため、長期にわたる製造に適しない。本発明では、白金族元素を酸化物および/または活性炭の表面に分散坦持させることでヨウ素と水素とを活性化させることができ、この結果、比較的低い反応温度でもヨウ化水素の生成速度を向上させることができる。また、本願発明はガス状水素および/またはメタンまたは水素含有ガスとガス状ヨウ素とから、触媒を固定床とした気相法で反応を行うことにより、生産性よく、触媒寿命が長く、ヨウ化水素および/またはヨウ化メチルの回収が容易なヨウ化水素および/またはヨウ化メチルを製造する方法を提供するものである。   That is, in the present invention, the platinum group element is required to be dispersed and supported on the oxide and / or activated carbon, but when the platinum group element is used alone without being supported on a support such as oxide and / or activated carbon. Therefore, the conversion rate of iodine is not improved, and as a result, the yield of iodide such as hydrogen iodide is lowered. In addition, when a platinum group element is supported on a metal support instead of oxide or activated carbon, the support base material is corroded with an iodide such as hydrogen iodide, which is not suitable for long-term production. In the present invention, iodine and hydrogen can be activated by dispersing and supporting platinum group elements on the surface of oxide and / or activated carbon. As a result, the production rate of hydrogen iodide can be achieved even at a relatively low reaction temperature. Can be improved. In addition, the invention of the present application is carried out by reacting gaseous hydrogen and / or methane or hydrogen-containing gas and gaseous iodine by a gas phase method using a catalyst as a fixed bed. The present invention provides a method for producing hydrogen iodide and / or methyl iodide, in which hydrogen and / or methyl iodide can be easily recovered.

本発明における白金族元素とは、白金、パラジウム、ロジウム、オスミウム、ルテニウム及びイリジウムからなる群より選ばれる少なくとも一種の元素である。これらの中でも、白金、パラジウム、ロジウムまたはルテニウムを使用することが好ましい。転化率に優れるからである。これらの元素を含有する化合物としては、上記白金族元素の硝酸塩、硫酸塩、アンモニウム塩、アミン、炭酸塩、重炭酸塩、ハロゲン塩、亜硝酸塩、蓚酸などの無機塩類、ギ酸塩などのカルボン酸塩および水酸化物、アルコキサイド、酸化物などが例示でき、これらを溶解する溶媒の種類やpHなどによって適宜選択することができる。これらの中でも、工業的に使用するにあっては硝酸塩、炭酸塩、酸化物、水酸化物などが好ましい。   The platinum group element in the present invention is at least one element selected from the group consisting of platinum, palladium, rhodium, osmium, ruthenium and iridium. Among these, it is preferable to use platinum, palladium, rhodium or ruthenium. This is because the conversion rate is excellent. Compounds containing these elements include nitrates, sulfates, ammonium salts, amines, carbonates, bicarbonates, halogen salts, nitrites, oxalic acid, and other inorganic salts, and carboxylic acids such as formate. Examples thereof include salts and hydroxides, alkoxides, oxides, and the like, which can be appropriately selected depending on the type of solvent in which these are dissolved, pH, and the like. Among these, nitrates, carbonates, oxides, hydroxides and the like are preferable for industrial use.

より具体的には、白金の場合は塩化白金、塩化白金酸、ヘキサクロロ白金酸、ジクロロアンミン白金、トリクロロアンミン白金塩、ヘキサアンミン白金塩、白金黒などが使用される。また、パラジウムの場合には塩化パラジウム、酢酸パラジウム、硝酸パラジウム、バラジウムアセチルアセトナート、バラジウム黒などが使用される。ロジウムの場合には酢酸ロジウム、硝酸ロジウム、塩化ロジウム、ジニトロジアミノロジウム、ロジウムアセチルアセトナートなどが使用される。また、ルテニウムの場合は、塩化ルテニウム水和物、ルテニウムアセチルアセトナート、ルテニウムブロマイド等が使用される。   More specifically, in the case of platinum, platinum chloride, chloroplatinic acid, hexachloroplatinic acid, dichloroammineplatinum, trichloroammineplatinum salt, hexaammineplatinum salt, platinum black and the like are used. In the case of palladium, palladium chloride, palladium acetate, palladium nitrate, baradium acetylacetonate, baradium black and the like are used. In the case of rhodium, rhodium acetate, rhodium nitrate, rhodium chloride, dinitrodiamino rhodium, rhodium acetylacetonate and the like are used. In the case of ruthenium, ruthenium chloride hydrate, ruthenium acetylacetonate, ruthenium bromide and the like are used.

酸化物としては、酸化チタン、ジルコニア、酸化亜鉛、酸化クロム、酸化セリウムなどの遷移金属酸化物、酸化マグネシウムなどのアルカリ土類金属の酸化物、シリカ、アルミナ、その他コージライト、ゼオライト、シリカアルミナ、コランダム、ムライト、リチウムアルミニウムシリケート、アルミニウムシリケート、ヘキサアルミネート、チタニヤシリカ、メソポーラスマテリアル、酸化物層状化合物、ペロブスカイト型酸化物、スピネル型酸化物、逆スピネル型酸化物等の複合酸化物が好ましい。   Examples of oxides include transition metal oxides such as titanium oxide, zirconia, zinc oxide, chromium oxide and cerium oxide, oxides of alkaline earth metals such as magnesium oxide, silica, alumina, other cordierite, zeolite, silica alumina, Complex oxides such as corundum, mullite, lithium aluminum silicate, aluminum silicate, hexaaluminate, titania silica, mesoporous material, oxide layered compound, perovskite oxide, spinel oxide, and reverse spinel oxide are preferred.

ゼオライトには、ZSM−5、A型、Y型、X型、モルデナイト、β型、シリカライトなどのマイクロポーラスマテリアル、アルミノシリケート型の結晶性マイクロポーラスマテリアルがあり、メソポーラスマテリアルにはMCM−41、FSM−16等がある。また、酸化物層状化合物としてはモンモリロナイト、ハイドロタルサイト、アパタイト、セピオライト、雲母などがある。ペロブスカイト型酸化物としては、LaFeO,BaTiO、La−xSrxCoO等があり、スピネル型酸化物としては、MgAl、ZnAl等がある。また、逆スピネル型酸化物には、Fe(MgFe)Oなどがある。本発明では、上記酸化物その中でも特に酸化マグネシウム、酸化チタン、シリカ、アルミナ、コージライト、ジルコニヤ、シリカアルミナ、またはゼオライトであることが好ましい。 Zeolite includes ZSM-5, A type, Y type, X type, mordenite, β type, silicalite and other microporous materials, aluminosilicate type crystalline microporous materials, and mesoporous materials include MCM-41, FSM-16 etc. Examples of the oxide layered compound include montmorillonite, hydrotalcite, apatite, sepiolite, and mica. Examples of perovskite oxides include LaFeO 3 , BaTiO 3 , and La 1 -xSrxCoO 3. Examples of spinel oxides include MgAl 2 O 4 and ZnAl 2 O 4 . In addition, examples of the reverse spinel oxide include Fe (MgFe) O 4 . In the present invention, among these oxides, magnesium oxide, titanium oxide, silica, alumina, cordierite, zirconia, silica alumina, or zeolite is particularly preferable.

また、活性炭としては、木片、木粉、ヤシ殻、クルミ殻などを原料として活性化した植物系活性炭、泥炭、石炭コークス、タール等を原料として活性化した鉱物系活性炭、その他再生繊維、レーヨンなどの天然素材やフェノール樹脂、アクリル樹脂などの合成素材を原料として活性化した活性炭がある。一般には、BET比表面積が300〜10,000m/g、好ましくは500〜3,000m/gである。BET比表面積が300m/gを下回ると活性炭上の白金族元素の分散性が悪くなり、粒子径が大きくなり活性が低くなり好ましくない。一方、BET比表面積が10,000m/gを上回るとサブミクロンの細孔が多くなり、白金族元素の分散性が高くなりすぎ超高分散となり、反応初期は活性が高いが反応時間とともに元素の凝集が起こり活性の低下を招き好ましくない。 In addition, as activated carbon, plant activated carbon activated using wood chips, wood flour, coconut husk, walnut shell, etc., mineral activated carbon activated using peat, coal coke, tar, etc. as raw materials, other regenerated fibers, rayon, etc. Activated carbon made from synthetic materials such as natural materials, phenolic resins and acrylic resins. Generally, the BET specific surface area is 300 to 10,000 m 2 / g, preferably 500 to 3,000 m 2 / g. When the BET specific surface area is less than 300 m 2 / g, the dispersibility of the platinum group element on the activated carbon is deteriorated, the particle size is increased, and the activity is lowered, which is not preferable. On the other hand, when the BET specific surface area exceeds 10,000 m 2 / g, the number of submicron pores increases, the dispersibility of the platinum group element becomes too high, and the dispersion becomes extremely high. Aggregation occurs and the activity is lowered, which is not preferable.

上記酸化物や活性炭は白金族元素の担体として使用され、担体として酸化物や活性炭を単独で使用しても両者を併用してもよい。これら担体は、粉体状態であってもよく、あらかじめリング状、球状、ハニカム状、円柱状、サドル状等に成型しておき、かかる成型体に白金族元素を坦持させてもよい。また、粉末状の担体に白金族元素を坦持させ、その後にリング状、球状、ハニカム状、円柱状、サドル状等に成型してもよい。また、上記酸化物の粉体に白金族元素を坦持させたものを、予めリング状、球状、ハニカム状、円柱状、サドル状等の形状に成型したコージライトを含む酸化物、SiCや窒化物等に坦持させて使用してもよい。SiCや窒化物等を使用すると熱伝導性、耐熱性に優れるからである。   The oxides and activated carbons are used as platinum group element carriers, and the oxides and activated carbons may be used alone or in combination. These carriers may be in a powder state, or may be previously formed into a ring shape, a spherical shape, a honeycomb shape, a cylindrical shape, a saddle shape, and the like, and a platinum group element may be supported on the formed body. Alternatively, a platinum group element may be supported on a powdery carrier, and then molded into a ring shape, a spherical shape, a honeycomb shape, a cylindrical shape, a saddle shape, or the like. In addition, oxides containing cordierite formed by supporting platinum group elements on the above oxide powder in a ring shape, spherical shape, honeycomb shape, cylindrical shape, saddle shape, SiC or nitriding It may be used by being carried on an object. This is because using SiC, nitride, or the like is excellent in thermal conductivity and heat resistance.

白金族元素は、酸化物および/または活性炭に分散担持されるが、この際の白金族元素の平均粒子径は、0.5〜20,000nm、より好ましくは1〜10,000nmである。平均粒子径がこの範囲であれば転化率に優れ、白金族元素の単位質量当たりの触媒活性量を増大させることができる。なお、本発明において触媒金属の平均粒子径とは、ガス吸着法、粉末X線回折法、走査型電子顕微鏡、透過型電子顕微鏡等によって測定することができる。   The platinum group element is dispersed and supported on the oxide and / or activated carbon, and the average particle size of the platinum group element at this time is 0.5 to 20,000 nm, more preferably 1 to 10,000 nm. If the average particle diameter is within this range, the conversion rate is excellent, and the amount of catalytic activity per unit mass of the platinum group element can be increased. In the present invention, the average particle diameter of the catalyst metal can be measured by a gas adsorption method, a powder X-ray diffraction method, a scanning electron microscope, a transmission electron microscope, or the like.

本願発明における白金族元素の好ましい坦持量は酸化物および/または活性炭1リットル当たり、白金族元素の量は0.05〜20g、より好ましくは0.5〜10gである。この範囲で転化率が高く、かつ活性が安定する。   In the present invention, a preferable carrying amount of the platinum group element is 0.05 to 20 g, more preferably 0.5 to 10 g, per liter of oxide and / or activated carbon. Within this range, the conversion is high and the activity is stable.

本発明においては、白金族元素と共にCr、Ni、Fe、Co、V、Mn、Sn、W、Moを担体上に担持させてもよい。これによって触媒活性を更に向上させることができる。   In the present invention, Cr, Ni, Fe, Co, V, Mn, Sn, W, and Mo may be supported on the carrier together with the platinum group element. As a result, the catalytic activity can be further improved.

また、ヨウ素とメタンとを反応させる場合には、白金族元素と共に、アルカリ金属、アルカリ土類金属、稀土類元素の酸化物や塩化物を担体1L当たり0.01〜10gより好ましくは0.02〜5g加えることが好ましい。メタンを原料とする場合には炭素が析出しやすいが、上記元素を併用することで炭素の析出を防ぐことができる。特にこれらは酸化物や塩化物として使用すると、その効果が高い。   In the case of reacting iodine and methane, 0.01 to 10 g, more preferably 0.02 g of oxide or chloride of alkali metal, alkaline earth metal, or rare earth element together with platinum group element per 1 L of carrier. It is preferable to add ~ 5g. When methane is used as a raw material, carbon is likely to be precipitated, but carbon can be prevented from being precipitated by using the above elements in combination. These are particularly effective when used as oxides or chlorides.

ここで白金族元素を担体としての酸化物および/または活性炭へ坦持する方法としては、特別の調製方法を必要とせず従来公知の浸漬法や含侵法、イオン交換法、カルボニルなどの揮発性錯体の蒸着法などで坦持させることができる。白金族元素含有化合物としてヘキサクロロ白金(IV)酸(H[PtCl]・6HO)を、担体としてアルミナを使用する場合で例示すると、ヘキサクロロ白金(IV)酸を塩酸酸性のイオン交換水に溶解させ、熱処理後の白金坦持量がアルミナ担体1L当たり例えば1gとなるように該溶液を量りとりアルミナに添加する。攪拌下にアルミナ担体に白金元素を担持させた後に、熱風空気気流中で水分を蒸発させ、充分に乾燥させる。次いで、空気、水素、あるいは窒素等のガス雰囲気下200〜800℃で1〜24時間熱処理を行うと触媒を得ることができる。このような方法で白金族元素を酸化物および/または活性炭に高分散させるとヨウ素の転化率が向上し、従ってヨウ化水素および/またはヨウ化メチルなどのヨウ化物の収率が高くなる。 Here, as a method for supporting platinum group elements on oxides and / or activated carbons as a carrier, no special preparation method is required, and a conventionally known immersion method, impregnation method, ion exchange method, volatility such as carbonyl, etc. It can be supported by the vapor deposition method of the complex. For example, hexachloroplatinum (IV) acid (H 2 [PtCl 6 ] · 6H 2 O) is used as the platinum group element-containing compound and alumina is used as the carrier. The solution is weighed and added to alumina so that the amount of platinum supported after heat treatment is, for example, 1 g per liter of alumina support. After the platinum element is supported on the alumina carrier under stirring, moisture is evaporated in a hot air stream and dried sufficiently. Next, a catalyst can be obtained by performing heat treatment at 200 to 800 ° C. for 1 to 24 hours in a gas atmosphere such as air, hydrogen, or nitrogen. When the platinum group element is highly dispersed in the oxide and / or activated carbon by such a method, the conversion rate of iodine is improved, and thus the yield of iodide such as hydrogen iodide and / or methyl iodide is increased.

本発明のヨウ化物の製造方法によれば、ヨウ素と分子状水素含有ガスとを気相法で反応させることでヨウ化水素を製造することができる。または、ヨウ素とメタンとを気相法で反応させることでヨウ化メチルおよび/またはヨウ化水素を製造することができる。ヨウ素1モルとメタン2モルとを反応させると2モルのヨウ化メチルと1モルの水素とが生成するが、過剰のヨウ素が含まれる場合には副生する水素がヨウ素と反応し、生成したヨウ化メチルが分解するためヨウ化水素のみが製造される場合がある。したがって、本発明のヨウ化物の製造方法としては、上記原料を使用して、ヨウ化物としてヨウ化水素および/またはヨウ化メチルを製造することができる。   According to the method for producing iodide of the present invention, hydrogen iodide can be produced by reacting iodine with a molecular hydrogen-containing gas by a gas phase method. Alternatively, methyl iodide and / or hydrogen iodide can be produced by reacting iodine and methane by a gas phase method. When 1 mol of iodine and 2 mol of methane are reacted, 2 mol of methyl iodide and 1 mol of hydrogen are produced, but when excess iodine is contained, hydrogen produced as a by-product reacts with iodine and produced. Since methyl iodide decomposes, only hydrogen iodide may be produced. Therefore, as a method for producing iodide according to the present invention, hydrogen iodide and / or methyl iodide can be produced as iodide using the above raw materials.

本発明において、ヨウ素と分子状水素含有ガスとを反応させてヨウ化水素を製造する場合には、両者の混合比はヨウ素1モルに対して水素20〜0.5モルであることが好ましく、より好ましくは10〜1モルである。また、ヨウ素とメタンとを反応させてヨード化合物を製造する場合には、両者の混合比はヨウ素1モルに対してメタン20〜1モルであることが好ましく、より好ましくは10〜1モルである。なお、原料ガスには、ヨウ素、分子状水素含有ガス、メタンのほかに、窒素ガス、アルゴンガス、ヘリウムガスなどの不活性ガスが含まれていてもよい。   In the present invention, when hydrogen iodide is produced by reacting iodine with a molecular hydrogen-containing gas, the mixing ratio of the two is preferably 20 to 0.5 mol of hydrogen with respect to 1 mol of iodine. More preferably, it is 10-1 mol. Moreover, when iodine and methane are made to react and an iodo compound is manufactured, it is preferable that both mixing ratio is 20-1 mol of methane with respect to 1 mol of iodine, More preferably, it is 10-1 mol. . The source gas may contain an inert gas such as nitrogen gas, argon gas, helium gas, in addition to iodine, molecular hydrogen-containing gas, and methane.

本発明において上記触媒を使用し、ヨウ素と、分子状水素含有ガスおよび/またはメタンとを気相法で反応させる場合の反応温度は原料化合物の種類によって相違するが、150〜1,000℃、より好ましくは200〜900℃、特に好ましくは250〜850℃である。150℃を下回ると水素やヨウ素の活性化が不十分となり、また生成物の触媒表面からの脱離が不十分となる場合がある。特に一酸化炭素が共存する場合には、一酸化炭素が優先的に白金族元素上に吸着されるためその影響が大きくなる。一方、温度が1,000℃を超えると、ヨウ素の転化率が著しく低下してヨウ化水素やヨウ化メチルなどのヨウ化物の収率が低くなる場合がある。更に、白金族元素が担体上で凝集しやすくなり、または担体内部への移動が生じるため反応時間と共に触媒活性が低下する場合がある。更に熱力学平衡の観点からも反応温度は低い方が有利である。   In the present invention, the above catalyst is used, and the reaction temperature in the case of reacting iodine with a molecular hydrogen-containing gas and / or methane by a gas phase method varies depending on the kind of the raw material compound. More preferably, it is 200-900 degreeC, Most preferably, it is 250-850 degreeC. When the temperature is lower than 150 ° C., activation of hydrogen and iodine is insufficient, and the product may be insufficiently detached from the catalyst surface. In particular, when carbon monoxide coexists, carbon monoxide is preferentially adsorbed on the platinum group element, so that the influence is increased. On the other hand, when the temperature exceeds 1,000 ° C., the conversion rate of iodine is significantly lowered, and the yield of iodides such as hydrogen iodide and methyl iodide may be lowered. Furthermore, the platinum group element tends to aggregate on the support, or the catalyst activity may decrease with the reaction time because of movement into the support. Further, from the viewpoint of thermodynamic equilibrium, a lower reaction temperature is advantageous.

なお、水素を原料とする場合に比べて、メタンを使用する場合にはガスの活性化に高温度を必要とする。より具体的には、水素とヨウ素からヨウ化水素を得るには比較的低温の反応でよいが、メタンとヨウ素とからヨウ化水素及び/またはヨウ化メチルをはじめとするヨード化合物を得る場合にはより高い温度が必要となる。しかしこの場合であっても、1,000℃を越えるような場合にはメタンが更に活性化されてCH3−x基が生成し、メチル基やCH3−x基のカップリング反応を起したり、さらには炭化物や炭素にまで進み目的とするヨード化合物の選択率及び収率を下げる結果となり好ましくない。したがって本願発明の実施に当たり、メタンとヨウ素の反応、または反応原料ガス中にメタンを含みこのメタンも有効に利用する場合においては、反応温度は250〜1,000℃、より好ましくは300〜1,000℃、特に好ましくは400〜1,000℃の範囲であることが好適である。 Note that, when methane is used, a higher temperature is required for gas activation than when hydrogen is used as a raw material. More specifically, in order to obtain hydrogen iodide from hydrogen and iodine, a reaction at a relatively low temperature may be used. However, when obtaining an iodine compound such as hydrogen iodide and / or methyl iodide from methane and iodine. Requires a higher temperature. However, even in this case, when the temperature exceeds 1,000 ° C., methane is further activated to form a CH 3-x group, which causes a coupling reaction of a methyl group or a CH 3-x group. Further, the process proceeds to carbides and carbon, which is not preferable because the selectivity and yield of the target iodo compound are lowered. Therefore, in carrying out the present invention, when the reaction between methane and iodine, or when methane is contained in the reaction raw material gas and effectively used, the reaction temperature is 250 to 1,000 ° C., more preferably 300 to 1, It is suitable that it is 000 degreeC, Most preferably, it is the range of 400-1,000 degreeC.

なお、反応原料ガス中のメタンを活性化させて有効に使うには、反応温度ほどには重要な要件とはならないが反応系内の圧力が、常圧より高い方が好ましい。   In order to activate and use methane in the reaction raw material gas effectively, it is not as important as the reaction temperature, but the pressure in the reaction system is preferably higher than normal pressure.

本発明においては、ガス空間速度(標準状態で、単位時間当たりの反応ガス容積と触媒容積の比率)は重要な要件であり、300〜10,000Hr−1の範囲が好ましく、より好ましくは500〜4,000Hr−1の範囲である。300Hr−1を下回ると、ヨウ素や生成物の触媒表面からの脱離が不十分となり、特にメタンを水素源に使用した場合は炭素の析出を引き起こしやすくなる。特に、一酸化炭素が共存すると一酸化炭素の脱離が不十分となる場合がある。一方、10,000Hr−1を超えると、原料水素やメタン、ヨウ素の触媒上での滞留時間が短か過ぎて反応性が低下して、ヨウ化水素および/またはヨウ化メチルの収率が大幅に低下する場合がある。 In the present invention, the gas space velocity (reaction gas volume / catalyst volume ratio per unit time in the standard state) is an important requirement, and is preferably in the range of 300 to 10,000 Hr −1 , more preferably 500 to It is in the range of 4,000 Hr- 1 . When it is below 300 Hr −1 , iodine and products are not sufficiently desorbed from the catalyst surface, and particularly when methane is used as a hydrogen source, carbon is likely to be precipitated. In particular, when carbon monoxide coexists, desorption of carbon monoxide may be insufficient. On the other hand, if it exceeds 10,000 Hr −1 , the residence time of the raw material hydrogen, methane, and iodine on the catalyst is too short and the reactivity is lowered, resulting in a large yield of hydrogen iodide and / or methyl iodide. May fall.

なお、反応圧力は特に制限はないが、通常は常圧から10Mpaまでの範囲で実施される。   The reaction pressure is not particularly limited, but it is usually carried out in the range from normal pressure to 10 MPa.

本発明は、気相法でヨウ素と分子状水素含有ガスおよび/またはメタンとを反応させ、ヨウ化水素やヨウ化メチルなどのヨウ化物を製造するものである。生成したヨウ化水素を捕集するには、例えば、冷却して液状ヨウ化水素として回収してもよく、水で回収してヨウ化水素酸として回収することもでき、または水酸化カリウム溶液でヨウ化カリウムとして捕集してもよい。ヨウ化水素と同様にしてヨウ化メチルを捕集することができる。   The present invention produces iodine such as hydrogen iodide and methyl iodide by reacting iodine with a molecular hydrogen-containing gas and / or methane by a gas phase method. In order to collect the produced hydrogen iodide, for example, it may be cooled and recovered as liquid hydrogen iodide, recovered with water and recovered as hydroiodic acid, or with potassium hydroxide solution. It may be collected as potassium iodide. Methyl iodide can be collected in the same manner as hydrogen iodide.

なお、生成したヨウ化水素、ヨウ化メチル、未反応ヨウ素の水での回収に当たり、反応生成ガスを耐食性の材質からなる例えば、セラミック製、磁器製、ガラス製、ハステロイ製などの充填材を充填した充填塔に導入し、そこに回収液水を反応生成ガスに対して向流または並流に供給させて生成物などを回収することが好ましい。ここで回収液は一回使用でも、循環使用でも可能である。   In the recovery of the generated hydrogen iodide, methyl iodide, and unreacted iodine with water, the reaction product gas is made of a corrosion-resistant material, for example, filled with a filler such as ceramic, porcelain, glass, or Hastelloy. It is preferable to introduce the recovered liquid water into the packed tower and supply the recovered liquid water countercurrently or in parallel with the reaction product gas to recover the product and the like. Here, the recovered liquid can be used once or circulated.

なお、ヨウ化物製造装置の出口ガスに未反応水素やヨウ素が含まれる場合には、ヨウ化物回収後、水素ガスやヨウ素を回収し原料の一部として再利用したり、ヨウ化物回収後の排ガスの一部を水素源の一部として再使用することもできる。   In addition, when unreacted hydrogen and iodine are contained in the exit gas of the iodide manufacturing apparatus, after recovering iodide, hydrogen gas and iodine are recovered and reused as part of the raw material, or exhaust gas after iodide recovery Can be reused as part of the hydrogen source.

また、本発明で使用する上記触媒の活性が低下した場合には、触媒を反応器に充填したまま、または一旦反応器から抜き出して空気、酸素、窒素、ヘリウムなどの不活性ガス、またはメタンなどの低級炭化水素ガスと共に熱処理すると、容易に触媒活性を回復させることができる。   Further, when the activity of the catalyst used in the present invention is reduced, the catalyst is filled in the reactor, or once extracted from the reactor, an inert gas such as air, oxygen, nitrogen, helium, or methane, etc. When the heat treatment is performed together with the lower hydrocarbon gas, the catalytic activity can be easily recovered.

本発明では、分子状水素含有ガスとして、純水素のほか、(1)メタンの水蒸気改質および/または二酸化炭素改質により得られる改質ガス、(2)メタンの部分酸化反応により得られる改質ガス、(3)メタノールの水蒸気改質または分解反応により得られる改質ガスを使用することができる。本発明における反応ガス組成は(ヨウ素ガス量を除いて)、水素ガス10〜99体積%、一酸化炭素0〜70体積%、二酸化炭素0〜70体積%、水蒸気0〜70体積%、メタン0〜99体積%であることが好ましい。   In the present invention, as the molecular hydrogen-containing gas, in addition to pure hydrogen, (1) a reformed gas obtained by steam reforming and / or carbon dioxide reforming of methane, and (2) a modified gas obtained by partial oxidation reaction of methane. A reformed gas obtained by a gas reforming or (3) steam reforming or decomposition reaction of methanol can be used. The reaction gas composition in the present invention (excluding the amount of iodine gas) is 10 to 99% by volume of hydrogen gas, 0 to 70% by volume of carbon monoxide, 0 to 70% by volume of carbon dioxide, 0 to 70% by volume of water vapor, 0% of methane. It is preferable that it is -99 volume%.

分子状水素含有ガスなどの水素源としては、昨今燃料電池や電気自動車などの燃料用としての需要の高まりに加えて水素の製造技術の向上によって安価に水素が入手できるようになっている。現在実施されたり開発中の水素製造技術として、メタンをはじめとする低級飽和炭化水素を原料とする改質方法、メタノールを原料とする改質方法などが知られている。本発明では、メタン、メタノールなどを原料とする改質ガスを分子状水素含有ガスとして使用することができ、安価にヨウ化物を製造することができる。一方、このような改質ガスには、改質反応に由来する一酸化炭素が含まれており、一酸化炭素は白金触媒に対する触媒毒として作用することが知られている。しかしながら本発明によれば、触媒としてアルミナやコージライト等の酸化物や活性炭を担体に白金族元素を分散担持させた触媒を使用することで一酸化炭素による活性低下を防止することができる。この効果は反応ガス中に酸化作用のあるヨウ素ガスが含まれるためと考えられる。特に、反応温度150〜1,000℃、ガス空間速度300〜10,000hr−1でガス状ヨウ素と分子状水素含有ガスおよび/またはメタンとを反応させる場合には、初期から触媒活性が高く、触媒活性を長期に亘り安定させることができ、原料ガス中の水素ガスのヨウ素ガスに対する比率を理論比率にまで下げても高い生産性を確保でき、かつ一酸化炭素による触媒毒を抑制して長期にわたる安定したヨウ化水素および/またはヨウ化メチルの製造を行うことができる。 As a hydrogen source such as a molecular hydrogen-containing gas, hydrogen has recently become available at low cost due to an increase in demand for fuels such as fuel cells and electric vehicles, as well as improvement of hydrogen production technology. As a hydrogen production technology currently being implemented or under development, a reforming method using lower saturated hydrocarbons such as methane as a raw material, a reforming method using methanol as a raw material, and the like are known. In the present invention, a reformed gas using methane, methanol or the like as a raw material can be used as a molecular hydrogen-containing gas, and iodide can be produced at low cost. On the other hand, such reformed gas contains carbon monoxide derived from the reforming reaction, and carbon monoxide is known to act as a catalyst poison for the platinum catalyst. However, according to the present invention, it is possible to prevent a decrease in activity due to carbon monoxide by using a catalyst in which a platinum group element is dispersed and supported on an oxide or activated carbon such as alumina or cordierite as a catalyst. This effect is considered to be because iodine gas having an oxidizing action is contained in the reaction gas. In particular, when reacting gaseous iodine with molecular hydrogen-containing gas and / or methane at a reaction temperature of 150 to 1,000 ° C. and a gas space velocity of 300 to 10,000 hr −1 , the catalytic activity is high from the beginning, The catalyst activity can be stabilized over a long period of time, high productivity can be secured even if the ratio of hydrogen gas to iodine gas in the raw material gas is lowered to the theoretical ratio, and the catalyst poison caused by carbon monoxide is suppressed for a long time. A wide range of stable hydrogen iodide and / or methyl iodide can be produced.

このような改質ガスを使用する場合には、予め他所で製造した改質ガスをボンベに収納し、該ボンベから必要量を供給してもよいし、本発明のヨウ化物の製造方法の一部として改質工程を含ませてもよい。改質反応で得た水素ガスを直接ヨウ化物の製造工程で使用する場合には、改質装置をヨウ化物製造装置に配設し、改質装置の出口ガスを分子状水素含有ガスとしてヨウ化物製造装置に供給すればよい。さらに、上記改質ガスに含まれる水素濃度を高め、一酸化炭素を下げるために更にシフト工程をはさみ、これらの工程によって得られた分子状水素含有ガスを使用してもよい。   When such a reformed gas is used, a reformed gas produced in advance elsewhere may be stored in a cylinder, and a necessary amount may be supplied from the cylinder, or one of the methods for producing an iodide of the present invention. A reforming step may be included as a part. When the hydrogen gas obtained by the reforming reaction is used directly in the production process of iodide, the reformer is disposed in the iodide production apparatus, and the outlet gas of the reformer is used as the molecular hydrogen-containing gas. What is necessary is just to supply to a manufacturing apparatus. Furthermore, in order to increase the concentration of hydrogen contained in the reformed gas and lower carbon monoxide, a shift step may be further interposed, and the molecular hydrogen-containing gas obtained by these steps may be used.

以下、実施例を用いて本発明をより詳細に説明する。各実施例の結果を表1に、比較例の結果を表2に示す。   Hereinafter, the present invention will be described in more detail with reference to examples. The results of each Example are shown in Table 1, and the results of Comparative Examples are shown in Table 2.

(実施例1−1)
3mmφの球状アルミナに白金坦持量が1g/L(担体1リットル当たりの白金の坦持量が1gであることを示す。)である触媒5.0mlを内径30mm、加熱部分500mmの反応石英管に充填し、外部加熱器で触媒層の温度を300℃に保った。標準状態で100%水素ガス72ml/分とヨウ素ガス12ml/分(ヨウ素8.16g/時相当)とをよく混合させて前記触媒層に通した。この際のガス空間速度は1000Hr−1とした。反応を1時間行った。
(Example 1-1)
A reaction quartz tube having an inner diameter of 30 mm and a heated portion of 500 mm with a 3 mmφ spherical alumina and a platinum support amount of 1 g / L (indicating that the support amount of platinum per liter of support is 1 g). The temperature of the catalyst layer was kept at 300 ° C. with an external heater. Under standard conditions, 100% hydrogen gas 72 ml / min and iodine gas 12 ml / min (equivalent to iodine 8.16 g / hr) were mixed well and passed through the catalyst layer. The gas space velocity at this time was set to 1000 Hr −1 . The reaction was carried out for 1 hour.

反応中、反応石英管出口のガスを直径5mmのガラス玉を充填したガラス管に導入し、そこにガスと並列にイオン交換水100g/分の速度で導入してヨウ化水素ガスを吸収させ、ヨウ化水素をヨウ化水素酸として回収した。なお、未反応のヨウ素はヨウ化水素酸に溶解し同時に回収した。   During the reaction, the gas at the outlet of the reaction quartz tube is introduced into a glass tube filled with a glass ball having a diameter of 5 mm, and is introduced into the gas tube at a rate of 100 g / min in parallel with the gas to absorb hydrogen iodide gas. Hydrogen iodide was recovered as hydriodic acid. Unreacted iodine was dissolved in hydroiodic acid and recovered at the same time.

回収液中のヨウ化水素は水酸化ナトリウム溶液で、未反応ヨウ素はチオ硫酸ナトリウム溶液でいずれも滴定法で測定し、反応ヨウ素モル数×100/供給ヨウ素モル数を算出して転化率(%)とし、生成ヨウ化水素モル数×100/供給ヨウ素モル数を算出して収率(%)とした。   Hydrogen iodide in the recovered solution is a sodium hydroxide solution, and unreacted iodine is a sodium thiosulfate solution, both of which are measured by titration method, and the conversion rate (%) is calculated by calculating the reaction iodine mole number × 100 / feed iodine mole number. ) And the number of moles of hydrogen iodide produced × 100 / number of moles of supplied iodine was calculated as the yield (%).

その結果、ヨウ素の転化率は99.5%であり、ヨウ化水素の収率は99.5%であった。(実施例1−2)
反応時間を100時間連続して行う以外は、実施例1−1と同様に操作した。その結果、ヨウ素転化率99.2%、ヨウ化水素収率99.2%であった。100時間の連続使用でも触媒活性の安定性が保たれた。
As a result, the conversion rate of iodine was 99.5%, and the yield of hydrogen iodide was 99.5%. (Example 1-2)
The same operation as in Example 1-1 was performed except that the reaction time was continuously 100 hours. As a result, the iodine conversion was 99.2%, and the hydrogen iodide yield was 99.2%. The stability of the catalytic activity was maintained even after 100 hours of continuous use.

(実施例2)
実施例1−1において触媒量を7.4mlとし、100%水素に代えて水素72ml/分に一酸化炭素40ml/分を加えた混合ガスを124ml/分量で触媒層に供給した以外は実施例1−1と同様に操作した。その結果、ヨウ化水素の収率は99.5%であった。
(Example 2)
In Example 1-1, the catalyst amount was 7.4 ml, and a mixed gas obtained by adding carbon monoxide 40 ml / min to hydrogen 72 ml / min instead of 100% hydrogen was supplied to the catalyst layer at 124 ml / min. The same operation as in 1-1 was performed. As a result, the yield of hydrogen iodide was 99.5%.

(実施例3−1)
実施例1−1において水素ガスとしてメタンを水蒸気と二酸化炭素による改質で得られた改質ガス(組成:水素59.5体積%、二酸化炭素4.6体積%、一酸化炭素33.2体積%、メタン2.7体積%)を使用し、ヨウ素ガス12ml/分(ヨウ素8.16g/時相当)との混合ガスを121ml/分の量で供給し、触媒量を5mlから7.9mlに増やした。反応中、反応石英管出口のガスを直径5mmのガラス玉を充填したガラス管に導入し、そこにガスと並列に最初の吸収用イオン交換水50gを用いて毎分2g/分の割合で循環させながら反応ガス中のヨウ化水素ガスをヨウ化水素酸として回収し、同時に未反応のヨウ素を回収した。それ以外は実施例1−1と同様に操作した。
(Example 3-1)
Reformed gas obtained by reforming methane with steam and carbon dioxide as hydrogen gas in Example 1-1 (composition: hydrogen 59.5% by volume, carbon dioxide 4.6% by volume, carbon monoxide 33.2% by volume) %, 2.7% by volume of methane), and a mixed gas with iodine gas 12 ml / min (equivalent to iodine 8.16 g / hr) is supplied in an amount of 121 ml / min, and the catalyst amount is changed from 5 ml to 7.9 ml. Increased. During the reaction, the gas at the outlet of the reaction quartz tube is introduced into a glass tube filled with a glass ball having a diameter of 5 mm and circulated at a rate of 2 g / min per minute using 50 g of the first ion-exchange water for absorption in parallel with the gas. Then, hydrogen iodide gas in the reaction gas was recovered as hydroiodic acid, and at the same time, unreacted iodine was recovered. Otherwise, the same operation as in Example 1-1 was performed.

反応時間1時間後のヨウ化水素の収率は99.4%であり、回収溶液のヨウ化水素濃度は14.1質量%であった。   The yield of hydrogen iodide after 1 hour of reaction time was 99.4%, and the concentration of hydrogen iodide in the recovered solution was 14.1% by mass.

(実施例3−2)
反応を100時間連続反応させた以外は実施例3−1と同様に操作した。その結果、ヨウ化水素の収率は99.2%であった。原料ガスが一酸化炭素を含む場合であっても、100時間の連続反応による収率の低下はほとんどなかった。
(Example 3-2)
The same operation as in Example 3-1 was performed except that the reaction was allowed to react continuously for 100 hours. As a result, the yield of hydrogen iodide was 99.2%. Even when the raw material gas contained carbon monoxide, there was almost no decrease in yield due to 100 hours of continuous reaction.

(実施例4)
実施例1−1において水素ガスとしてメタンを部分酸化反応で得た改質ガス(組成:水素28体積%、一酸化炭素14体積%、メタン5体積%、二酸化炭素4体積%、窒素49体積%を使用し、ヨウ素ガス12ml/分(ヨウ素8.16g/時相当)との混合ガスを269ml/分で供給し、触媒量を5mlから16mlに増やした以外は実施例1−1と同様に操作した。反応時間1時間後のヨウ化水素の収率は99.4%であった。
Example 4
Reformed gas obtained by partial oxidation reaction of methane as hydrogen gas in Example 1-1 (composition: 28 vol% hydrogen, 14 vol% carbon monoxide, 5 vol% methane, 4 vol% carbon dioxide, 49 vol% nitrogen) Was used in the same manner as in Example 1-1, except that a mixed gas of iodine gas 12 ml / min (equivalent to iodine 8.16 g / hr) was supplied at 269 ml / min and the catalyst amount was increased from 5 ml to 16 ml. The yield of hydrogen iodide after 1 hour of reaction time was 99.4%.

(実施例5)
実施例1−1において水素ガスとしてメタンの部分酸化反応で得た改質ガス(組成:水素61体積%、二酸化炭素3体積%、一酸化炭素35体積%、窒素1体積%)を使用し、ヨウ素ガス12ml/分(ヨウ素8.16g/時相当)との混合ガスを130ml/分で供給し、触媒量を5mlから7.7mlに増やした以外は実施例1−1と同様に操作した。反応時間1時間後のヨウ化水素の収率は99.4%であった。原料ガスが一酸化炭素を含む場合であっても、100時間の連続反応による収率の低下はほとんどなかった。
(Example 5)
In Example 1-1, a reformed gas (composition: 61 vol% hydrogen, 3 vol% carbon dioxide, 35 vol% carbon monoxide, 1 vol% nitrogen) obtained by partial oxidation reaction of methane was used as hydrogen gas, The same operation as in Example 1-1 was performed except that a mixed gas of iodine gas 12 ml / min (equivalent to iodine 8.16 g / hr) was supplied at 130 ml / min and the catalyst amount was increased from 5 ml to 7.7 ml. The yield of hydrogen iodide after 1 hour of reaction time was 99.4%. Even when the raw material gas contained carbon monoxide, there was almost no decrease in yield due to 100 hours of continuous reaction.

(実施例6−1)
実施例1−1において100%水素ガスの代わりにメタンガスを用い、反応温度を500℃とした以外は実施例1−1に従って反応を行った。
(Example 6-1)
In Example 1-1, the reaction was performed according to Example 1-1 except that methane gas was used instead of 100% hydrogen gas and the reaction temperature was 500 ° C.

その結果、反応時間1時間後の分析の結果、ヨウ素の転化率は65%、ヨウ化水素の収率は53.5%、ヨウ化メチルの収率は11.2%であった。   As a result, as a result of analysis after 1 hour of reaction time, the conversion rate of iodine was 65%, the yield of hydrogen iodide was 53.5%, and the yield of methyl iodide was 11.2%.

(実施例6−2)
実施例6−1において反応温度を800℃とした以外は実施例6−1と同様に操作した。その結果、ヨウ素の転化率86%、ヨウ化水素の収率80.5%であった。
(Example 6-2)
The same operation as in Example 6-1 was performed, except that the reaction temperature in Example 6-1 was 800 ° C. As a result, the conversion rate of iodine was 86%, and the yield of hydrogen iodide was 80.5%.

(実施例6−3)
実施例6−1において反応系内の圧力を5気圧とした以外は実施例6−1と同様に操作した。その結果、ヨウ素の転化率は65.3%、ヨウ化水素の収率は50.4%、ヨウ化メチルの収率は14.5%であった。反応系内の圧力を上げると活性はあまり変化はなかったが、ヨウ化メチルの生成比率が向上した。
(Example 6-3)
The same operation as in Example 6-1 was performed except that the pressure in the reaction system was changed to 5 atm in Example 6-1. As a result, the conversion rate of iodine was 65.3%, the yield of hydrogen iodide was 50.4%, and the yield of methyl iodide was 14.5%. When the pressure in the reaction system was increased, the activity did not change much, but the production ratio of methyl iodide was improved.

(実施例6−4)
実施例6−1において触媒を0.5gPt;0.25gPd;0.25gRu/Lアルミナ触媒に代えて反応系内圧力を5気圧に代えた以外は実施例6−1と同様に操作した。その結果ヨウ素の転化率75.0%であり、ヨウ化水素の収率は38.0%、ヨウ化メチルの収率は36.3%であった。
(Example 6-4)
The same operation as in Example 6-1 was conducted, except that in Example 6-1, the catalyst was replaced with 0.5 g Pt; 0.25 g Pd; 0.25 g Ru / L alumina catalyst, and the internal pressure of the reaction system was changed to 5 atm. As a result, the conversion rate of iodine was 75.0%, the yield of hydrogen iodide was 38.0%, and the yield of methyl iodide was 36.3%.

(実施例7)
実施例1−1において水素ガスとしてメタノールの水蒸気改質で得た改質ガス(組成:水素63体積%、二酸化炭素22体積%、窒素4体積%、水蒸気11体積%)を使用し、ヨウ素ガス12ml/分(ヨウ素8.16g/時相当)との混合ガスを126.3ml/分で供給し、触媒量を5mlから7.5mlに増やした以外は実施例1−1と同様に操作した。反応時間1時間後のヨウ化水素の収率は99.4%であった。
(Example 7)
In Example 1-1, reformed gas obtained by steam reforming of methanol (composition: 63% by volume of hydrogen, 22% by volume of carbon dioxide, 4% by volume of nitrogen, 11% by volume of steam) was used as hydrogen gas, and iodine gas was used. The same operation as in Example 1-1 was performed except that a mixed gas of 12 ml / min (equivalent to iodine 8.16 g / hr) was supplied at 126.3 ml / min and the catalyst amount was increased from 5 ml to 7.5 ml. The yield of hydrogen iodide after 1 hour of reaction time was 99.4%.

(実施例8)
実施例1−1において1.0g白金/Lアルミナを1.0gPd/Lアルミナとした以外は実施例1−1に従って反応を行った。その結果ヨウ化水素の収率は98.8%であった。
(Example 8)
The reaction was conducted according to Example 1-1 except that 1.0 g platinum / L alumina was changed to 1.0 g Pd / L alumina in Example 1-1. As a result, the yield of hydrogen iodide was 98.8%.

(実施例9)
実施例3−1において1.0g白金/Lアルミナを1.0gPd/Lアルミナとした以外は実施例3−1に従って反応を行った。その結果ヨウ化水素の収率は98.7%であった。
Example 9
The reaction was conducted according to Example 3-1, except that 1.0 g platinum / L alumina was changed to 1.0 g Pd / L alumina in Example 3-1. As a result, the yield of hydrogen iodide was 98.7%.

(実施例10)
実施例1−1において1.0g白金/Lアルミナを1.0gRu/Lアルミナとした以外は実施例1−1に従って反応を行った。その結果ヨウ化水素の収率は99.5%であった。
(Example 10)
The reaction was conducted according to Example 1-1 except that 1.0 g platinum / L alumina was changed to 1.0 g Ru / L alumina in Example 1-1. As a result, the yield of hydrogen iodide was 99.5%.

(実施例11)
実施例1−1において1.0g白金/Lアルミナを1.0gRh/Lアルミナとした以外は実施例1−1に従って反応を行った。その結果ヨウ化水素の収率は99.1%であった。
(Example 11)
The reaction was conducted according to Example 1-1 except that 1.0 g platinum / L alumina was changed to 1.0 g Rh / L alumina in Example 1-1. As a result, the yield of hydrogen iodide was 99.1%.

(実施例12)
実施例1−1において触媒量を1.4mlに変え、水素の流量を12ml/分に変え水素とヨウ素の比率を下げて、更に反応温度を400℃とした以外は実施例1−1に従って反応を行った。その結果ヨウ化水素の収率は97.0%であった。
(Example 12)
In Example 1-1, the reaction was performed according to Example 1-1, except that the catalyst amount was changed to 1.4 ml, the hydrogen flow rate was changed to 12 ml / min, and the hydrogen / iodine ratio was lowered to 400 ° C. Went. As a result, the yield of hydrogen iodide was 97.0%.

(実施例13)
実施例1−1において1.0g白金/Lアルミナを0.5gPt+0.5gPd/Lアルミナとした以外は実施例1−1に従って反応を行った。その結果ヨウ化水素の収率は99.4%であった。
(Example 13)
The reaction was conducted according to Example 1-1 except that 1.0 g platinum / L alumina was changed to 0.5 g Pt + 0.5 g Pd / L alumina in Example 1-1. As a result, the yield of hydrogen iodide was 99.4%.

(実施例14)
実施例1−1においてアルミナに変えてハニカム状のコージライトを使用した以外は実施例1−1に従って反応を行った。その結果ヨウ化水素の収率は99.4%であった。
(Example 14)
The reaction was conducted according to Example 1-1 except that honeycomb cordierite was used instead of alumina in Example 1-1. As a result, the yield of hydrogen iodide was 99.4%.

(実施例15)
実施例14において反応を100時間継続して行った。その時点でのヨウ化水素の収率は99.3%であった。100時間の連続反応による収率の低下はほとんどなかった。
(Example 15)
In Example 14, the reaction was continued for 100 hours. The yield of hydrogen iodide at that time was 99.3%. There was almost no decrease in yield due to the continuous reaction for 100 hours.

(実施例16)
実施例14において触媒量を5mlから16mlに増やし、100%水素ガスを水素含有ガス(組成:水素ガス28体積%、一酸化炭素14体積%、二酸化炭素4体積%、メタン5体積%、窒素49体積%)とし、ヨウ素ガス12ml/分(ヨウ素8.16g/時相当)との混合ガスを269ml/分の量に変更した以外は、実施例14と同様に操作した。反応時間1時間後のヨウ化水素の収率は99.4%であった。
(Example 16)
In Example 14, the catalyst amount was increased from 5 ml to 16 ml, and 100% hydrogen gas was replaced with hydrogen-containing gas (composition: hydrogen gas 28% by volume, carbon monoxide 14% by volume, carbon dioxide 4% by volume, methane 5% by volume, nitrogen 49 Volume%), and the mixed gas with iodine gas 12 ml / min (equivalent to iodine 8.16 g / hr) was changed to an amount of 269 ml / min. The yield of hydrogen iodide after 1 hour of reaction time was 99.4%.

(実施例17)
実施例14において100%水素ガスに代えてメタンの水蒸気改質ガス(組成:水素ガス59.5体積%、一酸化炭素33.2体積%、二酸化炭素4.6体積%、メタン2.7体積%)とし、ヨウ素ガス12ml/分(ヨウ素8.16g/時相当)との混合ガスを121ml/分の量に変更した以外は、実施例14と同様に操作した。反応時間1時間後のヨウ化水素の収率は99.5%であった。
(Example 17)
In Example 14, instead of 100% hydrogen gas, steam reformed gas of methane (composition: hydrogen gas 59.5% by volume, carbon monoxide 33.2% by volume, carbon dioxide 4.6% by volume, methane 2.7% by volume) %), And the mixed gas with iodine gas 12 ml / min (equivalent to iodine 8.16 g / hr) was changed to 121 ml / min, and the same operation as in Example 14 was performed. The yield of hydrogen iodide after 1 hour of reaction time was 99.5%.

(実施例18〜21)
実施例3−1におけるアルミナ酸化物担体に代えてジルコニアを使用し(実施例18)、アルミナ酸化物担体に代えてSiOを使用し(実施例19)、アルミナ酸化物担体に代えて酸化マグネシウムを使用し(実施例20)、アルミナ酸化物担体に代えて酸化チタニウムとした(実施例21)以外は実施例3−1に従って反応を行った。
(Examples 18 to 21)
Zirconia is used instead of the alumina oxide support in Example 3-1 (Example 18), SiO 2 is used instead of the alumina oxide support (Example 19), and magnesium oxide is used instead of the alumina oxide support. (Example 20), and the reaction was performed according to Example 3-1 except that titanium oxide was used instead of the alumina oxide support (Example 21).

その結果、ヨウ化水素の収率はそれぞれ実施例18では95%、実施例19では94.6%、実施例20では93.2%であった。なお、実施例20の反応を100時間継続した後のヨウ化水素の収率は93.0%と安定していた。そして実施例21ではヨウ化水素の収率は96.1%であった。   As a result, the yield of hydrogen iodide was 95% in Example 18, 94.6% in Example 19, and 93.2% in Example 20, respectively. The yield of hydrogen iodide after the reaction of Example 20 was continued for 100 hours was stable at 93.0%. In Example 21, the yield of hydrogen iodide was 96.1%.

(実施例22)
実施例3−1において水素ガスに代えて水素含有ガス(組成:水素ガス59.5体積%、一酸化炭素33.2体積%、二酸化炭素4.6体積%、メタン2.7体積%)とし、ヨウ素ガス12ml/分(ヨウ素8.16g/時相当)との混合ガスを484ml/分の量に変更し、ガス空間速度を4,000Hr−1に更に反応温度を400℃とした以外は実施例3−1と同様に操作した。反応時間1時間後のヨウ化水素の収率は94.6%であった。
(Example 22)
Instead of hydrogen gas in Example 3-1, a hydrogen-containing gas (composition: hydrogen gas 59.5% by volume, carbon monoxide 33.2% by volume, carbon dioxide 4.6% by volume, methane 2.7% by volume) was used. , Except that the mixed gas with iodine gas 12ml / min (equivalent to iodine 8.16g / hr) was changed to 484ml / min, the gas space velocity was 4,000Hr- 1 and the reaction temperature was 400 ° C. The same operation as in Example 3-1 was performed. The yield of hydrogen iodide after 1 hour of reaction time was 94.6%.

(実施例23)
粒径200メッシュの粉末状の活性炭に白金5質量%を坦持した白金触媒0.1gを0.7gの石英ウールにまぶせ全体を5mlとした触媒を用いた以外は実施例3−1に従って反応を行った。その結果ヨウ化水素の収率は99.4%であった。
(Example 23)
According to Example 3-1, except that 0.1 g of a platinum catalyst carrying 5% by mass of platinum on powdery activated carbon having a particle size of 200 mesh was coated with 0.7 g of quartz wool to make a total of 5 ml. Reaction was performed. As a result, the yield of hydrogen iodide was 99.4%.

(実施例24)
粒径200メッシュの粉末状の活性炭にルテニウム5質量%を担持したルテニウム触媒0.1gを0.7gの石英ウールにまぶせ、全体が5mlとした触媒を用いた以外は実施例23に従って反応を行った。その結果ヨウ化水素の収率は98.1%であった。
(Example 24)
The reaction was carried out in accordance with Example 23 except that 0.1 g of ruthenium catalyst carrying 5 mass% of ruthenium on powdery activated carbon having a particle size of 200 mesh was coated on 0.7 g of quartz wool and the total catalyst was 5 ml. went. As a result, the yield of hydrogen iodide was 98.1%.

(実施例25)
粒径200メッシュの粉末状の活性炭にロジウム5質量%を担持したロジウム触媒0.1gを0.7gの石英ウールにまぶせ、全体が5mlとした触媒を用いた以外は実施例1に従って反応を行った。その結果ヨウ化水素の収率は97.5%であった。
(Example 25)
The reaction was carried out according to Example 1 except that 0.1 g of rhodium catalyst supporting 5% by mass of rhodium on powdery activated carbon having a particle size of 200 mesh was coated on 0.7 g of quartz wool and the total amount of the catalyst was 5 ml. went. As a result, the yield of hydrogen iodide was 97.5%.

(実施例26)
粉末状の活性炭に代えて粉末状のモレキュラシーブ4Aを使用した以外は実施例23に従って反応を行った。その結果ヨウ化水素の収率は99.0%であった。
(Example 26)
The reaction was carried out according to Example 23 except that powdered molecular sieve 4A was used instead of powdered activated carbon. As a result, the yield of hydrogen iodide was 99.0%.

(実施例27−1)
アルミナ粉末をイオン交換水に分散させ、ハニカム状コージライト100質量部にアルミナ粉末を10質量部担持させた。次いで、乾燥後500℃で3時間熱処理を行ない、コージライトに担持させたアルミナ粉末(以下、コージライト担持アルミナ粉体とも称する。)を得た。別に白金源としてヘキサクロロ白金(IV)酸を塩酸酸性のイオン交換水に溶解させ、前記コージライト担持アルミナ粉体に含浸法により、コージライト担持アルミナ粉体1リットルに白金が1g含まれるよう担持させ、次いで500℃で3時間熱処理し、これを触媒とした。この触媒を用いて実施例1−1と同様に操作した。その結果、ヨウ化水素の収率は99.4%であった。
(Example 27-1)
The alumina powder was dispersed in ion-exchanged water, and 10 parts by mass of the alumina powder was supported on 100 parts by mass of honeycomb cordierite. Then, after drying, heat treatment was performed at 500 ° C. for 3 hours to obtain alumina powder supported on cordierite (hereinafter also referred to as cordierite-supported alumina powder). Separately, hexachloroplatinum (IV) acid as a platinum source is dissolved in hydrochloric acid acidic ion-exchanged water, and the cordierite-carrying alumina powder is supported by impregnation so that 1 liter of cordierite-carrying alumina powder contains 1 g of platinum. Then, heat treatment was performed at 500 ° C. for 3 hours, and this was used as a catalyst. The same operation as in Example 1-1 was performed using this catalyst. As a result, the yield of hydrogen iodide was 99.4%.

(実施例27−2)
反応時間を5000時間連続して行う以外は、実施例27−1と同様に操作した。その結果ヨウ素転化率99.2%、ヨウ化水素の収率99.2%であった。5000時間の連続反応でも触媒活性が極めて安定であることが確認された。
(Example 27-2)
The same operation as in Example 27-1 was performed except that the reaction time was continuously performed for 5000 hours. As a result, the iodine conversion was 99.2% and the yield of hydrogen iodide was 99.2%. It was confirmed that the catalytic activity was very stable even after 5000 hours of continuous reaction.

(実施例28)
ヘキサクロロ白金(IV)酸を塩酸酸性のイオン交換水に溶解させ、アルミナ粉体100質量部に白金1質量部となるように含浸した。次いで、乾燥後500℃で3時間熱処理を行い、白金担持アルミナ担体を得た。この担体をイオン交換水に分散させ、これにハニカム状に形成されたアルミナシリカ支持体を含浸させ、白金が該支持体1リットル当たり1gとなるように担持させて、次いで乾燥後500℃で3時間熱処理し、これを触媒とした。この触媒を用いて実施例1−1と同様に操作した。その結果、ヨウ化水素の収率は99.4%であった。
(Example 28)
Hexachloroplatinum (IV) acid was dissolved in hydrochloric acid acidic ion-exchanged water, and 100 parts by mass of alumina powder was impregnated to 1 part by mass of platinum. Next, after drying, heat treatment was performed at 500 ° C. for 3 hours to obtain a platinum-supported alumina carrier. This carrier is dispersed in ion-exchanged water, impregnated with an alumina silica support formed in a honeycomb shape, and supported so that platinum becomes 1 g per liter of the support. This was heat treated for a time and used as a catalyst. The same operation as in Example 1-1 was performed using this catalyst. As a result, the yield of hydrogen iodide was 99.4%.

(比較例1)
粒径1μmの白金粉末5mg(実施例1−1で使用した触媒に担持された白金量に相当)を0.7gの石英ウールにまぶし、触媒とし全体が5mlとなるように反応管に充填した。それ以外は実施例1−1に従って反応を行った。
(Comparative Example 1)
5 mg of platinum powder having a particle size of 1 μm (corresponding to the amount of platinum supported on the catalyst used in Example 1-1) was applied to 0.7 g of quartz wool, and the reaction tube was filled so that the total amount was 5 ml as a catalyst. . Otherwise, the reaction was carried out according to Example 1-1.

その結果ヨウ化水素の収率は61%であった。なお、反応を2時間継続すると出口配管に未反応ヨウ素が析出し反応の継続は不可能となった。   As a result, the yield of hydrogen iodide was 61%. When the reaction was continued for 2 hours, unreacted iodine was deposited on the outlet pipe, making it impossible to continue the reaction.

(比較例2−1)
実施例1−1において触媒量を20mlとし、ガス空間速度を250Hr−1にした以外は実施例1−1に従って反応を行った。その結果、ヨウ素転化率97.5%、ヨウ化水素収率97.5%であった。
(Comparative Example 2-1)
The reaction was carried out according to Example 1-1 except that the catalyst amount was 20 ml and the gas space velocity was 250 Hr −1 in Example 1-1. As a result, the iodine conversion was 97.5%, and the hydrogen iodide yield was 97.5%.

(比較例2−2)
比較例2−1における反応時間を100時間とした。その結果、ヨウ素転化率90.1%、ヨウ化水素の収率90.1%となった。ガス空間速度が本願発明要件からはずれためにヨウ素転化率は低下した。
(Comparative Example 2-2)
The reaction time in Comparative Example 2-1 was 100 hours. As a result, the iodine conversion was 90.1%, and the yield of hydrogen iodide was 90.1%. Since the gas space velocity deviated from the requirements of the present invention, the iodine conversion rate decreased.

(比較例2−3)
実施例1−1において反応温度145℃とした以外は実施例1−1に従って反応を行った。その結果ヨウ化水素の収率は87.3であった。
(Comparative Example 2-3)
The reaction was conducted according to Example 1-1 except that the reaction temperature was 145 ° C. in Example 1-1. As a result, the yield of hydrogen iodide was 87.3.

(比較例2−4)
比較例2−3における反応時間を100時間とした。その結果、100時間時点でのヨウ化水素の収率は82.3%にまで低下した。
(Comparative Example 2-4)
The reaction time in Comparative Example 2-3 was 100 hours. As a result, the yield of hydrogen iodide at 100 hours decreased to 82.3%.

(比較例3−1)
実施例2−1において触媒量7.4mlから29.6mlに増やしガス空間速度250Hr−1とした以外は実施例2−1に従って反応を行った。その結果、ヨウ化水素の収率は96.3%であった。
(Comparative Example 3-1)
The reaction was carried out according to Example 2-1 except that the catalyst amount was increased from 7.4 ml to 29.6 ml in Example 2-1, and the gas space velocity was 250 Hr- 1 . As a result, the yield of hydrogen iodide was 96.3%.

(比較例3−2)
実施例2−1において反応温度を145℃に代えた以外は実施例2−1に従って反応を行った。その結果ヨウ化水素の収率は85.0%であった。
(Comparative Example 3-2)
The reaction was conducted according to Example 2-1 except that the reaction temperature was changed to 145 ° C. in Example 2-1. As a result, the yield of hydrogen iodide was 85.0%.

(比較例4−1)
実施例3−1において触媒量を31.6mlに増やし、ガス空間速度を250Hr−1にした以外は実施例3−1に従って反応を行った。その結果、ヨウ化水素の収率は96.2%であった。実施例3−1に比べて収率が低下したことは明らかである。
(Comparative Example 4-1)
The reaction was carried out according to Example 3-1, except that the catalyst amount was increased to 31.6 ml and the gas space velocity was 250 Hr −1 in Example 3-1. As a result, the yield of hydrogen iodide was 96.2%. It is clear that the yield decreased compared to Example 3-1.

(比較例4−2)
実施例3−1において反応温度を145℃にした以外は実施例3−1に従って反応を行った。その結果ヨウ化水素の収率は84.8%であった。実施例3−1に比べて更に収率が低下したのは、反応温度が下がったことと共存する一酸化炭素の影響であったと考えられる。
(Comparative Example 4-2)
The reaction was conducted according to Example 3-1 except that the reaction temperature was 145 ° C. in Example 3-1. As a result, the yield of hydrogen iodide was 84.8%. It is considered that the yield was further reduced compared to Example 3-1 due to the influence of carbon monoxide coexisting with the decrease in the reaction temperature.

Figure 2005255514
Figure 2005255514

Figure 2005255514
Figure 2005255514

本発明によれば、収率高くかつヨウ化水素やヨウ化メチルなどのヨウ化物を製造することができ、有用である。   According to the present invention, iodide such as hydrogen iodide and methyl iodide can be produced with high yield, which is useful.

Claims (8)

ヨウ素と、分子状水素含有ガスおよび/またはメタンとを、白金族元素の一種以上の元素を酸化物および/または活性炭に分散担持させた触媒の存在下に気相反応させることを特徴とするヨウ化物の製造方法。   Iodine and a molecular hydrogen-containing gas and / or methane are vapor-phase reacted in the presence of a catalyst in which one or more elements of a platinum group element are dispersed and supported on an oxide and / or activated carbon. Method for producing chemicals. 前記酸化物が、酸化マグネシウム、酸化チタン、シリカ、アルミナ、コージライト、ジルコニヤ、シリカアルミナおよびゼオライトから選ばれる少なくとも1種である、請求項1記載のヨウ化物の製造方法。   The method for producing iodide according to claim 1, wherein the oxide is at least one selected from magnesium oxide, titanium oxide, silica, alumina, cordierite, zirconia, silica alumina, and zeolite. 白金族元素が、Pt、Pd、RuまたはRhの少なくとも一種以上の元素である、請求項1または2記載のヨウ化物の製造方法。   The method for producing iodide according to claim 1 or 2, wherein the platinum group element is at least one element selected from the group consisting of Pt, Pd, Ru, and Rh. 反応温度が150〜1,000℃、ガス空間速度300〜10,000hr−1で反応させることを特徴とする、請求項1〜3のいずれかに記載のヨウ化物の製造方法。 The process for producing iodide according to any one of claims 1 to 3, wherein the reaction is performed at a reaction temperature of 150 to 1,000 ° C and a gas space velocity of 300 to 10,000 hr- 1 . 前記分子状水素含有ガスが、メタンの水蒸気改質および/または二酸化炭素改質により得られる改質ガスである、請求項1〜4のいずれかに記載のヨウ化物の製造方法。   The method for producing iodide according to any one of claims 1 to 4, wherein the molecular hydrogen-containing gas is a reformed gas obtained by steam reforming and / or carbon dioxide reforming of methane. 前記分子状水素含有ガスが、メタンの部分酸化反応により得られる改質ガスである、請求項1〜4のいずれかに記載のヨウ化物の製造方法。   The method for producing iodide according to any one of claims 1 to 4, wherein the molecular hydrogen-containing gas is a reformed gas obtained by a partial oxidation reaction of methane. 前記分子状水素含有ガスが、メタノールの水蒸気改質または分解反応により得られる改質ガスである、請求項1〜4のいずれかに記載のヨウ化物の製造方法。   The method for producing iodide according to any one of claims 1 to 4, wherein the molecular hydrogen-containing gas is a reformed gas obtained by steam reforming or decomposition reaction of methanol. 前記ヨウ化物が、ヨウ化水素および/またはヨウ化メチルである、請求項1〜7のいずれかに記載のヨウ化物の製造方法。   The method for producing iodide according to any one of claims 1 to 7, wherein the iodide is hydrogen iodide and / or methyl iodide.
JP2005021631A 2004-02-10 2005-01-28 Method for producing iodide Expired - Fee Related JP4713895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005021631A JP4713895B2 (en) 2004-02-10 2005-01-28 Method for producing iodide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004034198 2004-02-10
JP2004034198 2004-02-10
JP2005021631A JP4713895B2 (en) 2004-02-10 2005-01-28 Method for producing iodide

Publications (2)

Publication Number Publication Date
JP2005255514A true JP2005255514A (en) 2005-09-22
JP4713895B2 JP4713895B2 (en) 2011-06-29

Family

ID=35081608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005021631A Expired - Fee Related JP4713895B2 (en) 2004-02-10 2005-01-28 Method for producing iodide

Country Status (1)

Country Link
JP (1) JP4713895B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008523092A (en) * 2004-12-09 2008-07-03 ハネウェル・インターナショナル・インコーポレーテッド Direct one-step synthesis of CF3-I
WO2009096446A1 (en) * 2008-01-31 2009-08-06 Nippoh Chemicals Co., Ltd. Iodine compound production system and production process
WO2009096447A1 (en) * 2008-01-31 2009-08-06 Nippoh Chemicals Co., Ltd. Inorganic iodide, production method thereof, and production system thereof
CN109824015A (en) * 2019-01-10 2019-05-31 南昌大学 A method of catalysis reduction elemental iodine prepares hydroiodic acid
JP2020091166A (en) * 2018-12-05 2020-06-11 株式会社東芝 Oxygen concentration measuring device and nuclear reactor facility
WO2020214766A1 (en) * 2019-04-16 2020-10-22 Honeywell International Inc. An integrated process and catalysts for manufacturing hydrogen iodide from hydrogen and iodine
US11459284B2 (en) 2018-08-24 2022-10-04 Honeywell International Inc. Processes for producing trifluoroiodomethane and trifluoroacetyl iodide
WO2023288200A1 (en) * 2021-07-16 2023-01-19 Honeywell International Inc. Systems and methods for removal of iodine from hydrogen iodide streams

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3848065A (en) * 1972-09-29 1974-11-12 Monsanto Co Method for producing hydrogen iodide
JPS57501781A (en) * 1980-11-21 1982-10-07
JPS58501376A (en) * 1981-09-01 1983-08-18 オラ−,ジヨ−ジ アンドル− Methane to methyl halides and methyl alcohol

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3848065A (en) * 1972-09-29 1974-11-12 Monsanto Co Method for producing hydrogen iodide
JPS57501781A (en) * 1980-11-21 1982-10-07
JPS58501376A (en) * 1981-09-01 1983-08-18 オラ−,ジヨ−ジ アンドル− Methane to methyl halides and methyl alcohol

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008523092A (en) * 2004-12-09 2008-07-03 ハネウェル・インターナショナル・インコーポレーテッド Direct one-step synthesis of CF3-I
WO2009096446A1 (en) * 2008-01-31 2009-08-06 Nippoh Chemicals Co., Ltd. Iodine compound production system and production process
WO2009096447A1 (en) * 2008-01-31 2009-08-06 Nippoh Chemicals Co., Ltd. Inorganic iodide, production method thereof, and production system thereof
US8268284B2 (en) 2008-01-31 2012-09-18 Nippoh Chemicals Co., Ltd. System and method for producing iodine compound
JP5437082B2 (en) * 2008-01-31 2014-03-12 日宝化学株式会社 Iodine compound production system and production method
JP5520610B2 (en) * 2008-01-31 2014-06-11 日宝化学株式会社 Inorganic iodide, its production method and its production system
KR101526030B1 (en) * 2008-01-31 2015-06-04 닛포가가쿠 가부시키가이샤 Inorganic iodide, production method thereof, and production system thereof
KR101531734B1 (en) * 2008-01-31 2015-06-25 닛포가가쿠 가부시키가이샤 Iodine compound production system and production process
US9272922B2 (en) 2008-01-31 2016-03-01 Nippoh Chemicals Co., Ltd. Inorganic iodide, production method thereof, and production system thereof
US11459284B2 (en) 2018-08-24 2022-10-04 Honeywell International Inc. Processes for producing trifluoroiodomethane and trifluoroacetyl iodide
US11884607B2 (en) 2018-08-24 2024-01-30 Honeywell International Inc. Processes for producing trifluoroiodomethane and trifluoroacetyl iodide
JP2020091166A (en) * 2018-12-05 2020-06-11 株式会社東芝 Oxygen concentration measuring device and nuclear reactor facility
JP7021058B2 (en) 2018-12-05 2022-02-16 株式会社東芝 Oxygen concentration measuring device and reactor facility
CN109824015B (en) * 2019-01-10 2022-03-22 南昌大学 Method for preparing hydroiodic acid by catalytic reduction of iodine elementary substance
CN109824015A (en) * 2019-01-10 2019-05-31 南昌大学 A method of catalysis reduction elemental iodine prepares hydroiodic acid
WO2020214766A1 (en) * 2019-04-16 2020-10-22 Honeywell International Inc. An integrated process and catalysts for manufacturing hydrogen iodide from hydrogen and iodine
CN113767064A (en) * 2019-04-16 2021-12-07 霍尼韦尔国际公司 Integrated process and catalyst for the production of hydrogen iodide from hydrogen and iodine
US11554956B2 (en) 2019-04-16 2023-01-17 Honeywell International Inc. Integrated process and catalysts for manufacturing hydrogen iodide from hydrogen and iodine
CN113767064B (en) * 2019-04-16 2024-03-22 霍尼韦尔国际公司 Integrated process and catalyst for the production of hydrogen iodide from hydrogen and iodine
WO2023288200A1 (en) * 2021-07-16 2023-01-19 Honeywell International Inc. Systems and methods for removal of iodine from hydrogen iodide streams

Also Published As

Publication number Publication date
JP4713895B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
JP4713895B2 (en) Method for producing iodide
TW201031632A (en) Integrated process for the production of vinyl acetate from acetic acid via ethyl acetate
JP2013508423A5 (en)
JP5010547B2 (en) Highly active catalyst and method for producing the same
JP2000176287A (en) Catalyst for methanol synthesis and synthetic method of methanol
US4476250A (en) Catalytic process for the production of methanol
KR20130074393A (en) Catalyst for efficient co2 conversion and method for preparing thereof
JP2019526588A (en) Method for producing 1,3-cyclohexanedimethanol
EP1782885B1 (en) Carbon nanotubes supported cobalt catalyst for converting synthesis gas into hydrocarbons
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JPH11179204A (en) Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
JP3885139B2 (en) Ethanol steam reforming catalyst, method for producing the same, and method for producing hydrogen
JP2914206B2 (en) Nickel-supported catalyst for hydrocarbon reforming and method for producing the same
EP4349484A1 (en) Method for producing two-dimensional nickel silicate molecular sieve catalyst for dry reforming of methane and two-dimensional nickel silicate molecular sieve catalyst for dry reforming of methane produced by same method
US4510071A (en) Methanol conversion process
JP4488321B2 (en) Synthesis gas production catalyst and synthesis gas production method
JP7029346B2 (en) Indene manufacturing method
JP6102473B2 (en) Catalyst for producing synthesis gas, method for regenerating the catalyst, and method for producing synthesis gas
JPH0635401B2 (en) Method for producing methanol from carbon dioxide
JPH09262468A (en) Catalyst for producing high calorie gas and its production
JP4168230B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
KR101440193B1 (en) Catalyst for the mixed reforming of natural gas, preparation method thereof and method for mixed reforming of natural gas using the catalyst
JP2002079102A (en) Catalyst for shift reaction and reaction method
JP2005131468A (en) Ethanol/steam reforming catalyst, its manufacturing method and hydrogen manufacturing method
WO2022244797A1 (en) Method for producing isopropyl alcohol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110325

R150 Certificate of patent or registration of utility model

Ref document number: 4713895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees