JP2005254128A - Photocatalyst particle and method of immobilizing it, and photocatalytic member - Google Patents

Photocatalyst particle and method of immobilizing it, and photocatalytic member Download PDF

Info

Publication number
JP2005254128A
JP2005254128A JP2004068673A JP2004068673A JP2005254128A JP 2005254128 A JP2005254128 A JP 2005254128A JP 2004068673 A JP2004068673 A JP 2004068673A JP 2004068673 A JP2004068673 A JP 2004068673A JP 2005254128 A JP2005254128 A JP 2005254128A
Authority
JP
Japan
Prior art keywords
photocatalyst
particles
photocatalyst particles
photocatalytic
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004068673A
Other languages
Japanese (ja)
Inventor
Zhonghua Zhou
忠華 周
Fumio Tokutake
文夫 徳岳
Tatsuya Ishii
辰也 石井
Hien Yo
斐渊 姚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2004068673A priority Critical patent/JP2005254128A/en
Publication of JP2005254128A publication Critical patent/JP2005254128A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide photocatalyst particles which can form a photocatalytic layer having a sufficient thickness on the surface of a base material without exfoliation without using an inorganic binder, a method of immobilizing the particles, and a photocatalytic member. <P>SOLUTION: The photocatalyst particles consisting of titanium dioxide particles containing 50 ppm or more of OH groups and having a photocatalytic activity, and having a particle size of 20 nm to 60 nm, are dispersed in water into slurry state, and the slurry is applied to a base material consisting any ceramic of alumina, alumina-cordierite, silica and mullite and having fine irregularities on the surface to coat it, and it is dried to form the photocatalytic layer on the surface of the base material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、塗料、繊維製品、インテリア、シックハウス解消剤、工業排水・排ガスの無害化処理剤等に用いられ、有害物の分解・除去、消臭、抗菌、防汚、防曇等の作用を奏する光触媒粒子およびその固定化方法ならびに該光触媒粒子が固定化された光触媒性部材に関する。   The present invention is used for paints, textile products, interiors, sick house decontaminants, industrial wastewater / exhaust gas detoxifying agents, etc. The present invention relates to a photocatalyst particle, a method for immobilizing the photocatalyst particle, and a photocatalytic member on which the photocatalyst particle is immobilized.

二酸化チタン等の光触媒粒子は、一般に、紫外光の照射を受けることによって、有害物の分解・除去、消臭、抗菌、防汚、防曇等の作用を奏することが知られており、既に、これらの作用を利用した塗料、繊維製品、インテリア、シックハウス解消剤、工業排水・排ガスの無害化処理剤等の様々な製品が実用化されている。   Photocatalyst particles such as titanium dioxide are generally known to exhibit actions such as decomposition / removal of harmful substances, deodorization, antibacterial, antifouling, antifogging, etc. by being irradiated with ultraviolet light. Various products such as paints, textile products, interiors, sick house elimination agents, industrial wastewater / exhaust gas detoxification treatment agents using these functions have been put into practical use.

上記のように、前記光触媒粒子は、光の照射により、その触媒作用を奏するものであるが、どのような態様で使用されるか、また、どのように基材に固定させるかについては、依然として改善の余地が大きく、種々の検討が行われている。   As described above, the photocatalyst particles exhibit their catalytic action by irradiation with light, but in what form they are used and how they are fixed to the substrate still remain. There is much room for improvement, and various studies have been conducted.

例えば、空気清浄機、エアコン等においては、金属繊維構造体、セラミックス繊維多孔体またはセラミックスフォーム等からなる板状の基材表面に、光触媒粒子を固定化させることにより、空気清浄フィルタとして用いられている(特許文献1、2等参照)。
前記空気清浄フィルタは、空気を流通させ、紫外光を照射することによって、吸着された空気中の有害物質・臭気成分等を、光触媒作用により分解・除去するものである。
For example, in air purifiers, air conditioners, etc., it is used as an air purifying filter by fixing photocatalyst particles on the surface of a plate-like substrate made of metal fiber structure, ceramic fiber porous body, ceramic foam or the like. (See Patent Documents 1 and 2).
The air cleaning filter circulates air and irradiates it with ultraviolet light, thereby decomposing and removing harmful substances, odor components, and the like in the adsorbed air by photocatalysis.

上記のような空気清浄フィルタ等において使用されている基材への光触媒粒子の固定化方法としては、一般に、無機バインダ等による接着固定が用いられている。例えば、光触媒粒子と無機バインダとの混合物を、基材表面に塗布またはコーティング等した後、焼成することにより、光触媒粒子を基材表面に固定することができる。   As a method for immobilizing photocatalyst particles to a substrate used in the above air purification filter or the like, generally, adhesion and fixing with an inorganic binder or the like is used. For example, the photocatalyst particles can be fixed to the substrate surface by applying or coating a mixture of the photocatalyst particles and the inorganic binder on the substrate surface and then baking the mixture.

特開2000−262903号公報JP 2000-262903 A 特開2000−126551号公報JP 2000-126551 A

しかしながら、上記のようにして固定化された光触媒粒子は、バインダ膜の表面に露出している粒子が一部に限られ、場合によっては、すべてバインダ中に埋没してしまい、全く表面に露出していないこともあった。
このような状態では、光触媒粒子が、その光触媒作用により分解・除去等をしようとする有害物質等と十分に接触することができず、光触媒としての機能が十分に発揮されない。
一方、少量の無機バインダで、光触媒粒子を固定しようとすると、光触媒としての有効表面積は増大するが、該光触媒粒子は、剥離・脱落しやすくなる。
However, the photocatalyst particles immobilized as described above are limited to a part of the particles exposed on the surface of the binder film, and in some cases, all of them are buried in the binder, and are completely exposed on the surface. Sometimes it was not.
In such a state, the photocatalyst particles cannot sufficiently come into contact with harmful substances to be decomposed / removed by the photocatalytic action, and the function as a photocatalyst is not sufficiently exhibited.
On the other hand, when an attempt is made to fix the photocatalyst particles with a small amount of an inorganic binder, the effective surface area as a photocatalyst increases, but the photocatalyst particles easily peel and fall off.

上記のように、無機バインダを用いて、光触媒粒子を剥落しないように固定化させると、その用いる無機バインダにより、光触媒として有効な表面積が減少することとなり、逆に、有効な表面積を増大させようとすると、使用に耐え得る接着力で固定化させることは困難であった。   As described above, when an inorganic binder is used to immobilize the photocatalyst particles so as not to peel off, the inorganic binder used reduces the effective surface area as a photocatalyst, and conversely increases the effective surface area. Then, it was difficult to fix with an adhesive force that can withstand use.

本発明は、上記技術的課題を解決するためになされたものであり、無機バインダを使用せずに、基材表面に十分な厚さの光触媒層を剥落することなく形成することができる光触媒粒子およびその固定化方法ならびに光触媒性部材を提供することを目的とするものである。   The present invention has been made to solve the above technical problem, and can be formed without peeling off a photocatalyst layer having a sufficient thickness on the surface of a substrate without using an inorganic binder. It is an object of the present invention to provide an immobilization method thereof and a photocatalytic member.

本発明に係る光触媒粒子は、OH基を50ppm以上含有する光触媒活性を有する二酸化チタン粒子からなることを特徴とする。
このような光触媒粒子を用いれば、無機バインダを用いることなく、基材表面に従来よりも厚い光触媒層を形成することができ、また、無機バインダにより粒子表面が被覆されることもなく、光触媒効果を十分に発揮することができる。
The photocatalyst particles according to the present invention are characterized by comprising titanium dioxide particles having photocatalytic activity containing 50 ppm or more of OH groups.
If such photocatalyst particles are used, a photocatalyst layer thicker than before can be formed on the substrate surface without using an inorganic binder, and the photocatalytic effect can be achieved without covering the particle surface with an inorganic binder. Can be fully demonstrated.

前記光触媒粒子は、粒径が20nm以上60nm以下であることが好ましい。
水によるスラリー調製時における粒子同士の凝集の程度、分散性等の観点から、前記粒径は、上記範囲内であることが好ましい。
The photocatalyst particles preferably have a particle size of 20 nm to 60 nm.
From the viewpoint of the degree of aggregation of particles at the time of slurry preparation with water, dispersibility, and the like, the particle size is preferably within the above range.

また、前記二酸化チタン粒子には、700ppm以上10000ppm以下の窒素がドープされていることが好ましい。
上記二酸化チタン粒子によれば、紫外線照射に対する光触媒活性も、従来の二酸化チタン光触媒と同程度以上の性能を示し、しかも、可視光照射による光触媒効果も得ることができる。
The titanium dioxide particles are preferably doped with 700 ppm or more and 10000 ppm or less of nitrogen.
According to the titanium dioxide particles, the photocatalytic activity for ultraviolet irradiation shows the same or higher performance as that of the conventional titanium dioxide photocatalyst, and the photocatalytic effect by visible light irradiation can be obtained.

さらに、前記二酸化チタン粒子には、前記窒素以外に、炭素、硫黄、水素のうちのいずれか1種以上がドープされていることが好ましい。
このように構成された二酸化チタン粒子は、可視光に対する光触媒活性の安定性、持続性がより優れたものとなる。
Furthermore, the titanium dioxide particles are preferably doped with one or more of carbon, sulfur, and hydrogen in addition to the nitrogen.
The titanium dioxide particles thus configured are more excellent in the stability and sustainability of photocatalytic activity with respect to visible light.

また、本発明に係る光触媒粒子の固定化方法は、光触媒粒子を基材表面に固定化させる方法において、上記のような光触媒粒子を水中に分散させたスラリーを基材にコーティングした後、乾燥させることにより、基材表面に光触媒層を形成することを特徴とする。
上記方法によれば、無機バインダを使用せずに、従来品の二酸化チタン粒子からなる光触媒粒子よりも優れた塗布性で、より厚い光触媒層を基材表面に形成することができる。
Further, the method for immobilizing photocatalyst particles according to the present invention is a method of immobilizing photocatalyst particles on a substrate surface, coating the substrate with a slurry in which the photocatalyst particles are dispersed in water as described above, and then drying. Thus, a photocatalyst layer is formed on the substrate surface.
According to the above method, it is possible to form a thicker photocatalyst layer on the surface of the substrate with a coating property superior to that of conventional photocatalyst particles made of titanium dioxide particles without using an inorganic binder.

また、本発明に係る光触媒性部材は、上記した光触媒粒子が、基材表面に固定化されていることを特徴とするものである。
本発明に係る光触媒粒子を基本として基材表面に固定化させることにより、光触媒層を様々な構成とすることが可能であり、粒子の本来の光触媒効果、すなわち、分解、除去、消臭、抗菌、防汚、防曇等の作用が抑制されることなく、繊維製品、建材、自動車等への内装材、家具、家電製品、住宅設備等における様々な基材に対応することができる。
In addition, the photocatalytic member according to the present invention is characterized in that the above-described photocatalytic particles are immobilized on the surface of the substrate.
By fixing the photocatalyst particles according to the present invention on the base material surface, the photocatalyst layer can have various configurations, and the original photocatalytic effect of the particles, that is, decomposition, removal, deodorization, antibacterial effect It is possible to deal with various base materials in textile products, building materials, interior materials for automobiles, furniture, home appliances, housing facilities, and the like, without suppressing actions such as antifouling and antifogging.

前記基材は、表面に微細な凹凸を有するセラミックスからなることが好ましい。
本発明においては、光触媒粒子のより優れた付着性を得る観点からは、上記のような表面形状を有する基材を用いることが好ましい。
The substrate is preferably made of ceramics having fine irregularities on the surface.
In the present invention, from the viewpoint of obtaining better adhesion of the photocatalyst particles, it is preferable to use a substrate having the above surface shape.

特に、前記セラミックスは、アルミナ質、アルミナ−コージライト質、シリカ質、ムライト質のいずれかであることが好ましい。
前記光触媒粒子のOH基との親和性等の観点から、上記のような酸化物系セラミックスが好適に用いられる。
In particular, the ceramic is preferably any of alumina, alumina-cordierite, siliceous, and mullite.
From the viewpoint of affinity with the OH group of the photocatalyst particles, the oxide ceramics as described above are preferably used.

上述のとおり、本発明によれば、二酸化チタンからなる光触媒粒子を、無機バインダを使用することなく、基材表面に固定化させることができ、しかも、従来よりも厚い光触媒層を剥落することなく形成することができる。
したがって、本発明に係る光触媒性部材は、固定化された光触媒粒子が、粒子本来の光触媒効果、すなわち、分解、除去、消臭、抗菌、防汚、防曇等の作用を奏するものであり、繊維製品、建材、自動車等への内装材、家具、家電製品、住宅設備等における様々な基材に対応可能であり、優れた光触媒効果を発揮することができる。
As described above, according to the present invention, photocatalyst particles made of titanium dioxide can be immobilized on the surface of the base material without using an inorganic binder, and the photocatalyst layer that is thicker than before is not peeled off. Can be formed.
Therefore, in the photocatalytic member according to the present invention, the immobilized photocatalytic particles exhibit the original photocatalytic effect, that is, the action of decomposition, removal, deodorization, antibacterial, antifouling, antifogging, etc. It can be applied to various base materials in textile products, building materials, interior materials for automobiles, furniture, home appliances, housing facilities, etc., and can exhibit an excellent photocatalytic effect.

以下、本発明をより詳細に説明する。
本発明に係る光触媒粒子は、光触媒活性を有する二酸化チタン粒子からなるものであり、かつ、OH基を従来の二酸化チタンからなる光触媒よりも多い50ppm以上の濃度で含有することを特徴とするものである。
このため、本発明に係る光触媒粒子は、高濃度のOH基により、触媒を固定化させる基材表面に、無機バインダを用いることなく、従来よりも厚い光触媒層を形成することができる。
しかも、前記光触媒粒子を用いて基材表面に光触媒層を形成することにより、無機バインダを用いた場合のように、粒子表面が被覆されるようなことはなく、露出した状態となるため、光触媒効果が抑制されることなく、その効果を十分に発揮することができる。
Hereinafter, the present invention will be described in more detail.
The photocatalyst particles according to the present invention are composed of titanium dioxide particles having photocatalytic activity, and contain OH groups at a concentration of 50 ppm or more higher than that of a conventional photocatalyst composed of titanium dioxide. is there.
For this reason, the photocatalyst particles according to the present invention can form a photocatalyst layer thicker than before without using an inorganic binder on the surface of the substrate on which the catalyst is immobilized, due to the high concentration of OH groups.
Moreover, by forming a photocatalyst layer on the surface of the substrate using the photocatalyst particles, the surface of the particles is not covered and exposed as in the case of using an inorganic binder. The effect can be sufficiently exhibited without being suppressed.

上記光触媒粒子を基材表面に固定化させる方法としては、該光触媒粒子を水中に分散させて、スラリー状にした後、該スラリーを基材にコーティングして、乾燥させることにより、基材表面に光触媒層を形成することが好ましい。
このように、本発明に係る方法によれば、光触媒粒子を固定化させるために、無機バインダ等の接着剤を使用する必要はない。
As a method of immobilizing the photocatalyst particles on the substrate surface, the photocatalyst particles are dispersed in water to form a slurry, and then the slurry is coated on the substrate and dried to obtain a surface on the substrate surface. It is preferable to form a photocatalyst layer.
Thus, according to the method of the present invention, it is not necessary to use an adhesive such as an inorganic binder in order to immobilize the photocatalyst particles.

従来品の二酸化チタン粒子からなる光触媒粒子を水中に分散させたスラリーは、光触媒粒子による吸着性、紫外光によるアルデヒドガスの分解能力、すなわち、光触媒活性は優れているものの、例えば、アルミナ基材表面に塗布した場合、塗布性に劣り、厚さ0.01〜0.5μm程度でしか光触媒層を形成することができず、しかも、剥落しやすいものであった。
これに対して、本発明に係る光触媒粒子は、水中に分散させてスラリー状にして、基材表面に塗布すると、従来品の光触媒粒子よりも、塗布性に優れ、厚さ十数μm、すなわち、従来品の数倍以上の厚さで光触媒層を形成することができる。
A slurry in which photocatalyst particles made of conventional titanium dioxide particles are dispersed in water is adsorbable by photocatalyst particles and has an excellent ability to decompose aldehyde gas by ultraviolet light, that is, photocatalytic activity is excellent. When applied to the photocatalyst, the coating property was inferior, the photocatalyst layer could be formed only with a thickness of about 0.01 to 0.5 μm, and it was easy to peel off.
On the other hand, when the photocatalyst particles according to the present invention are dispersed in water to form a slurry and applied to the surface of the substrate, the photocatalyst particles are superior to the conventional photocatalyst particles and have a thickness of several tens of μm. The photocatalytic layer can be formed with a thickness several times that of the conventional product.

図1に、本発明に係る光触媒粒子を上記のようにスラリーとして、アルミナ基材上に光触媒層を形成したものの断面の顕微鏡写真を示す。なお、図1に示す写真において、表層部のワックス3は、断面撮影のための切断時に光触媒層を保護するための固定剤として用いたものであり、実際に光触媒性部材として使用する際には不要なものである。
図1の断面写真から分かるように、本発明に係る光触媒粒子は、アルミナ基材1表面に、しっかりと固定化されて厚さ約20μmの光触媒層2を形成している。また、該光触媒層2は、従来よりも厚い層として形成されているだけでなく、無数の微細な凹凸が形成されており、表面積が大きく、このため、光触媒として有効に作用する表面積が大きいという利点を有している。
FIG. 1 shows a photomicrograph of a cross section of a photocatalyst particle according to the present invention formed as a slurry as described above and a photocatalyst layer formed on an alumina substrate. In the photograph shown in FIG. 1, the wax 3 in the surface layer is used as a fixing agent for protecting the photocatalyst layer at the time of cutting for cross-sectional photography, and when actually used as a photocatalytic member. It is unnecessary.
As can be seen from the cross-sectional photograph of FIG. 1, the photocatalyst particles according to the present invention are firmly fixed on the surface of the alumina substrate 1 to form a photocatalyst layer 2 having a thickness of about 20 μm. Further, the photocatalyst layer 2 is not only formed as a thicker layer than before, but also has numerous fine irregularities formed thereon, and has a large surface area. Therefore, the surface area that effectively acts as a photocatalyst is large. Has advantages.

また、図2に、本発明に係る光触媒粒子および従来品の光触媒粒子をそれぞれ水中に分散させたスラリーをガラス板上に滴下して、乾燥させた各試料についてのFT−IRスペクトルを示す。なお、前記ガラス板は、OH基を含まない特殊なシリカガラスである。
図2のFT−IRスペクトルに示したように、本発明に係る光触媒粒子については、従来品とは異なり、波長3700cm-1付近にOH基の吸収ピークが認められた。
また、上記の各ガラス板試料を観察すると、従来品の光触媒粒子は、しっかりと固定化されておらず、剥落したが、本発明に係る光触媒粒子は、剥落することなく、ガラス板上にしっかりと固定化されていた。
このように、本発明に係る光触媒粒子は、従来品の光触媒粒子と比べて、高濃度のOH基を含有していることから、親水性に優れており、このため、基材に付着しやすいと考えられる。
FIG. 2 shows an FT-IR spectrum for each sample obtained by dropping a slurry obtained by dispersing the photocatalyst particles according to the present invention and conventional photocatalyst particles in water onto a glass plate and drying the slurry. The glass plate is special silica glass that does not contain OH groups.
As shown in the FT-IR spectrum of FIG. 2, the photocatalyst particles according to the present invention showed an absorption peak of OH group in the vicinity of a wavelength of 3700 cm −1 unlike the conventional product.
In addition, when the above glass plate samples were observed, the conventional photocatalyst particles were not firmly fixed and peeled off, but the photocatalyst particles according to the present invention did not peel off and were firmly attached on the glass plate. And was fixed.
Thus, since the photocatalyst particles according to the present invention contain a high concentration of OH groups compared to conventional photocatalyst particles, the photocatalyst particles are excellent in hydrophilicity, and thus easily adhere to the substrate. it is conceivable that.

本発明に係る光触媒粒子は、粒径が20nm以上60nm以下であることが好ましい。
前記粒径が20nm未満の場合、水によるスラリー調製時における粒子同士の凝集が著しく、均等に分散させることが困難となり、また、十分な厚さの光触媒層を形成する工程における効率が劣る。
一方、前記粒径が60nmを超える場合も、光触媒粒子のスラリー調製時に、凝集した粒子が沈降し、均等な分散性が得られない。
The photocatalyst particles according to the present invention preferably have a particle size of 20 nm to 60 nm.
When the particle size is less than 20 nm, the particles are agglomerated at the time of slurry preparation with water, making it difficult to uniformly disperse, and the efficiency in the step of forming a photocatalyst layer having a sufficient thickness is poor.
On the other hand, when the particle diameter exceeds 60 nm, the aggregated particles settle when the slurry of the photocatalyst particles is prepared, and uniform dispersibility cannot be obtained.

上記のような粒径の本発明に係る光触媒粒子は、水中で凝集すると、粒径3μm程度になるが、粒子表面のOH基が互いに反発し合うことにより、水中における凝集粒子の沈降速度は抑制され、均等に分散したスラリーを得ることができる。
このため、上記スラリーを基材表面に塗布・コーティング等することにより、従来は、厚さ数μm以下でしか形成することができなかった光触媒層を、厚さ10μm以上で形成することができる。
When the photocatalyst particles according to the present invention having the above particle size are aggregated in water, the particle size becomes about 3 μm. However, the OH groups on the particle surface repel each other, thereby suppressing the sedimentation rate of the aggregated particles in water. And an evenly dispersed slurry can be obtained.
For this reason, the photocatalyst layer which has conventionally been formed only with a thickness of several μm or less can be formed with a thickness of 10 μm or more by applying or coating the slurry to the surface of the substrate.

また、本発明に係る光触媒粒子を構成する二酸化チタン粒子は、可視光活性型光触媒粒子であることが好ましい。
二酸化チタン粒子に、可視光応答型の光触媒活性を発揮させるためには、例えば、遷移金属ドープ、白金ドープ、窒素または他の非金属のドープ等の方法を用いることができる。
これらのうちでも、特に、二酸化チタン粒子に、700ppm以上10000ppm以下の窒素がドープされていることが好ましい。
上記のような窒素ドープ型の二酸化チタンであれば、紫外線照射に対する光触媒活性も、従来の二酸化チタン光触媒と同程度以上の性能を示し、さらに、紫外光に限らず、可視光照射による光触媒効果も得ることができる。例えば、室内における蛍光灯の光等の照射により、特殊な光を使用することなく、有害物質・臭気成分等の光触媒作用による分解・除去が可能である。
The titanium dioxide particles constituting the photocatalyst particles according to the present invention are preferably visible light active photocatalyst particles.
In order to make the titanium dioxide particles exhibit a visible light responsive photocatalytic activity, for example, a transition metal dope, platinum dope, nitrogen or other non-metal dope method can be used.
Among these, it is particularly preferable that the titanium dioxide particles are doped with 700 ppm or more and 10,000 ppm or less of nitrogen.
If the nitrogen-doped titanium dioxide is as described above, the photocatalytic activity for ultraviolet irradiation shows the same or higher performance as that of the conventional titanium dioxide photocatalyst, and not only the ultraviolet light but also the photocatalytic effect by visible light irradiation. Can be obtained. For example, it is possible to decompose and remove harmful substances, odor components and the like by photocatalytic action without using special light by irradiating fluorescent light in the room.

また、可視光に対する光触媒効果のより優れた安定性、持続性の観点から、前記二酸化チタン粒子には、前記窒素以外に、炭素、硫黄、水素のうちのいずれか1種以上がドープされていることが好ましい。
また、本発明に係る光触媒粒子を構成する二酸化チタンは、いずれの結晶型でもよいが、上記と同様に、可視光活性の観点からは、アナターゼ型であることがより好ましい。
In addition, from the viewpoint of more excellent stability and durability of the photocatalytic effect on visible light, the titanium dioxide particles are doped with one or more of carbon, sulfur, and hydrogen in addition to the nitrogen. It is preferable.
Further, the titanium dioxide constituting the photocatalyst particles according to the present invention may be of any crystal type, but as described above, from the viewpoint of visible light activity, it is more preferably an anatase type.

上記のような本発明に係る二酸化チタンからなる光触媒粒子は、種々の方法で製造することが可能であるが、例えば、チタンの塩化物、硫酸化物等の化合物の酸素雰囲気での燃焼、または、加水分解により得られた通常の粒径10nm程度の二酸化チタン微粒子を原料として、アンモニアガスおよび炭化水素ガス(混合比20:1)の混合雰囲気中で、500〜600℃で熱処理することにより得ることが好ましい。
この製造方法によれば、例えば、OH基を300ppm、窒素を3000ppm程度含有する粒径30nm程度の本発明に係る光触媒粒子が容易に得られる。
The photocatalyst particles comprising titanium dioxide according to the present invention as described above can be produced by various methods. For example, combustion of a compound such as a chloride or sulfate of titanium in an oxygen atmosphere, or Obtained by heat treatment at 500 to 600 ° C. in a mixed atmosphere of ammonia gas and hydrocarbon gas (mixing ratio 20: 1) using titanium dioxide fine particles with a normal particle size of about 10 nm obtained by hydrolysis as raw materials. Is preferred.
According to this production method, for example, the photocatalyst particles according to the present invention having a particle size of about 30 nm containing about 300 ppm of OH groups and about 3000 ppm of nitrogen can be easily obtained.

本発明に係る光触媒性部材は、上記のような本発明に係る光触媒粒子が、基材表面に固定化されているものであるが、本発明に係る光触媒粒子を用いて基材表面に光触媒層を形成した後、さらに、従来品の光触媒粒子を水中に分散させたスラリーによる光触媒層を重ねて形成することもできる。
このように、本発明に係る光触媒粒子による光触媒層を介在させることにより、無機バインダを使用することなく、従来品の光触媒粒子の塗布性の欠点を補うことができ、かつ、従来品の光触媒粒子の特性を十分に発揮させることも可能である。
The photocatalytic member according to the present invention is such that the photocatalyst particles according to the present invention as described above are immobilized on the surface of the substrate, and the photocatalytic layer is formed on the surface of the substrate using the photocatalytic particles according to the present invention. After forming the photocatalyst, a photocatalyst layer of a slurry in which conventional photocatalyst particles are dispersed in water can be further stacked.
Thus, by interposing the photocatalyst layer of the photocatalyst particles according to the present invention, it is possible to make up for the disadvantage of the coating properties of the conventional photocatalyst particles without using an inorganic binder, and the conventional photocatalyst particles. It is also possible to fully exhibit the characteristics.

また、光触媒層の異なる態様としては、本発明に係る光触媒粒子と従来品の光触媒粒子とを予め混合したものをスラリーとして、塗布・コーティングしてもよい。
さらにまた、二酸化チタンからなる光触媒粒子は、結晶型がアナターゼ型とルチル型のものを組み合わせて用いることにより、光触媒性能が向上することから、ルチル型の二酸化チタンからなる本発明に係る光触媒粒子による光触媒層を基材表面に形成した後、その上に、アナターゼ型の二酸化チタンからなる本発明品または従来品の光触媒粒子による光触媒層を形成する等、光触媒層を複層としてもよい。
As a different mode of the photocatalyst layer, the photocatalyst particles according to the present invention and conventional photocatalyst particles previously mixed may be applied and coated as a slurry.
Furthermore, the photocatalyst particles made of titanium dioxide are improved in photocatalytic performance by using a combination of anatase type and rutile type crystal forms, so that the photocatalyst particles according to the present invention made of rutile type titanium dioxide are used. After the photocatalyst layer is formed on the surface of the substrate, the photocatalyst layer may be formed in multiple layers, for example, by forming a photocatalyst layer of the present product or conventional photocatalyst particles made of anatase type titanium dioxide.

上記のような光触媒性部材は、本発明に係る光触媒粒子を基本として基材表面に固定化させることにより、光触媒層を様々な構成とすることが可能である。
したがって、固定化された光触媒粒子の本来の光触媒効果、すなわち、分解、除去、消臭、抗菌、防汚、防曇等の作用を抑制されることなく、繊維製品、建材、自動車等への内装材、家具、家電製品、住宅設備等における様々な基材に対応可能であり、優れた光触媒効果を発揮することができる。
The photocatalytic member as described above can have various configurations of the photocatalytic layer by fixing the photocatalytic particle according to the present invention on the surface of the base material.
Therefore, the intrinsic photocatalytic effect of the immobilized photocatalyst particles, that is, the interior of textile products, building materials, automobiles, etc., without suppressing the action of decomposition, removal, deodorization, antibacterial, antifouling, antifogging etc. It can be applied to various base materials in materials, furniture, home appliances, housing facilities, etc., and can exhibit an excellent photocatalytic effect.

本発明において光触媒粒子を固定化させる基材は、無機材料、有機材料を問わず、紙、繊維、布等も含め、特に限定されるものではないが、光触媒粒子のより優れた付着性を得る観点からは、所定の形状が維持される材質であることが好ましい。特に、表面に微細な凹凸を有するセラミックスであることが好ましい。
前記セラミックスの中でも、特に、前記光触媒粒子のOH基との親和性等の観点から、アルミナ質、アルミナ−コージライト質、シリカ質、ムライト質等の酸化物系セラミックスが好適に用いられる。
In the present invention, the base material on which the photocatalyst particles are immobilized is not particularly limited, regardless of whether it is an inorganic material or an organic material, and includes paper, fiber, cloth, etc., but more excellent adhesion of the photocatalyst particles is obtained. From the viewpoint, a material that maintains a predetermined shape is preferable. In particular, a ceramic having fine irregularities on the surface is preferable.
Among the ceramics, oxide ceramics such as alumina, alumina-cordierite, siliceous, and mullite are particularly preferably used from the viewpoint of affinity with the OH group of the photocatalyst particles.

以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記の実施例により制限されるものではない。
[実施例1]
50mm×50mm×10mmのアルミナセラミックフォームからなる基材に、OH基300ppm、窒素3000ppmを含有する粒径30nmの二酸化チタン粒子からなる光触媒粒子15gを水100リットルに分散させてスラリー状としたものを塗布した。
これを乾燥させた後、10分間の超音波洗浄および乾燥を5回繰り返し行った。
超音波洗浄および乾燥を1回行う毎に、光触媒粒子の基材表面への付着状態を観察した。
その結果、超音波洗浄および乾燥を1回行った後は、塗布した光触媒粒子の20%が剥落したが、2回目以降は、光触媒粒子は基材表面から剥落せず、変化は見られなかった。
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not restrict | limited by the following Example.
[Example 1]
A slurry made by dispersing 15 g of photocatalyst particles made of titanium dioxide particles having a particle diameter of 30 nm containing 300 ppm of OH groups and 3000 ppm of nitrogen in 100 liters of water on a substrate made of alumina ceramic foam of 50 mm × 50 mm × 10 mm. Applied.
After drying this, ultrasonic cleaning for 10 minutes and drying were repeated 5 times.
Each time ultrasonic cleaning and drying were performed once, the state of adhesion of the photocatalyst particles to the substrate surface was observed.
As a result, after ultrasonic cleaning and drying were performed once, 20% of the applied photocatalyst particles were peeled off, but after the second time, the photocatalyst particles were not peeled off from the substrate surface, and no change was observed. .

[比較例1]
従来品の二酸化チタン粒子からなる光触媒粒子(粒径7nm)を分散させた市販品のスラリーを、実施例1と同様にして、アルミナセラミックフォームからなる基材に塗布して乾燥させた後、超音波洗浄および乾燥を5回繰り返し、光触媒粒子の基材表面への付着状態を観察した。
その結果、超音波洗浄および乾燥を1回行った後は、塗布した光触媒粒子の80%が剥落し、2回行った後も、2%が剥落した。3回目以降は、光触媒粒子は基材表面から剥落せず、変化は見られなかった。
[Comparative Example 1]
A slurry of a commercial product in which photocatalyst particles (particle size: 7 nm) composed of conventional titanium dioxide particles were dispersed was applied to a substrate composed of alumina ceramic foam in the same manner as in Example 1, and then dried. Sonic cleaning and drying were repeated 5 times, and the adhesion state of the photocatalyst particles to the substrate surface was observed.
As a result, after ultrasonic cleaning and drying were performed once, 80% of the applied photocatalyst particles were peeled off, and after 2 times, 2% were peeled off. From the third time onward, the photocatalyst particles did not peel off from the substrate surface, and no change was observed.

[比較例2]
従来品の二酸化チタン粒子からなる粒径7nmの光触媒粒子15gを、水100リットル中に分散させようとしたが、粒子は沈降してしまい、基材表面に塗布するためのスラリーを得ることができなかった。
[Comparative Example 2]
An attempt was made to disperse 15 g of photocatalyst particles having a particle diameter of 7 nm made of conventional titanium dioxide particles in 100 liters of water, but the particles settled, and a slurry for coating on the surface of the substrate could be obtained. There wasn't.

上記実施例1から、本発明に係る光触媒粒子を用いて、基材表面に光触媒層を形成すれば、無機バインダを使用しなくても、良好な付着性を得ることができることが認められた。このため、例えば、空気清浄機等の気流のある環境下でも、従来よりも厚い光触媒層を適用することが可能である。   From Example 1 above, it was recognized that if the photocatalyst layer was formed on the substrate surface using the photocatalyst particles according to the present invention, good adhesion could be obtained without using an inorganic binder. For this reason, for example, it is possible to apply a thicker photocatalyst layer than in the past even in an environment with an air flow such as an air purifier.

[実施例2]
12cm×12cm×1cmのアルミナセラミックスフォームからなる基材に、実施例1と同様にして作製した本発明に係る二酸化チタンからなる光触媒粒子のスラリーを塗布した後、乾燥させて、光触媒層を形成した。
これを3リットルのガラス容器内に配置し、アセトアルデヒドガスを500ppm導入し、ブラックライトにより、光強度1mW/cm2で30分間照射した後、アセトアルデヒド濃度を測定し、光触媒活性の評価を行った。
その結果、アセトアルデヒドガスは検出されなかった。
[Example 2]
A photocatalyst layer was formed by applying a slurry of photocatalyst particles made of titanium dioxide according to the present invention produced in the same manner as in Example 1 to a base material made of 12 cm × 12 cm × 1 cm alumina ceramic foam, and then drying. .
This was placed in a 3 liter glass container, 500 ppm of acetaldehyde gas was introduced and irradiated with a black light at a light intensity of 1 mW / cm 2 for 30 minutes, and then the acetaldehyde concentration was measured to evaluate the photocatalytic activity.
As a result, acetaldehyde gas was not detected.

[実施例3]
二酸化チタンからなる光触媒粒子として、実施例1と同様の本発明に係る光触媒粒子と、従来品の光触媒粒子とを混合したものを用いて、それ以外については、実施例2と同様にして、光触媒活性の評価を行った。
その結果、30分間照射後、アセトアルデヒドガスは検出されなかった。
[Example 3]
As the photocatalyst particles comprising titanium dioxide, the same photocatalyst particles according to the present invention as in Example 1 and the conventional photocatalyst particles were used. The activity was evaluated.
As a result, acetaldehyde gas was not detected after irradiation for 30 minutes.

[比較例3]
12cm×12cm×1cmのアルミナセラミックスフォームからなる基材に、従来品の二酸化チタンからなる光触媒粒子を無機バインダにより固定化させて、光触媒層を形成したものを、3リットルのガラス容器内に配置し、実施例2と同様にして、光触媒活性の評価を行った。
その結果、30分間照射後、アセトアルデヒドガス濃度は50ppmであった。
[Comparative Example 3]
A photocatalyst layer formed by fixing photocatalyst particles made of conventional titanium dioxide to a base material made of alumina ceramic foam of 12 cm × 12 cm × 1 cm with an inorganic binder is placed in a 3 liter glass container. In the same manner as in Example 2, the photocatalytic activity was evaluated.
As a result, after 30 minutes of irradiation, the acetaldehyde gas concentration was 50 ppm.

[比較例4]
12cm×12cm×1cmのアルミナセラミックスフォームからなる基材に、従来品の二酸化チタンからなる光触媒粒子を分散させた市販品のスラリーを塗布した後、乾燥させて光触媒層を形成したものを、3リットルのガラス容器内に配置し、実施例2と同様にして、光触媒活性の評価を行った。
その結果、30分間照射後、アセトアルデヒドガス濃度は10ppmであった。
[Comparative Example 4]
3 liters of a substrate made of alumina ceramic foam of 12 cm × 12 cm × 1 cm was coated with a commercially available slurry in which photocatalyst particles made of conventional titanium dioxide were dispersed and then dried to form a photocatalyst layer. The photocatalytic activity was evaluated in the same manner as in Example 2.
As a result, after 30 minutes of irradiation, the acetaldehyde gas concentration was 10 ppm.

上記実施例2、3および比較例3、4から分かるように、本発明に係る光触媒粒子を用いれば、無機バインダを用いずに固定化することができるだけでなく、その光触媒効果により、優れたアセトアルデヒドガスの分解能力(脱臭効果)が得られることが認められた。   As can be seen from Examples 2 and 3 and Comparative Examples 3 and 4, when the photocatalyst particles according to the present invention are used, not only an inorganic binder can be used but also acetaldehyde is excellent due to the photocatalytic effect. It was confirmed that gas decomposition ability (deodorizing effect) was obtained.

アルミナセラミックスからなる基材表面に形成された本発明に係る光触媒粒子の光触媒層の断面のSEM写真である。It is a SEM photograph of the section of the photocatalyst layer of photocatalyst particles concerning the present invention formed in the substrate surface which consists of alumina ceramics. ガラス板からなる基材表面に光触媒層を形成した場合のFT−IRスペクトルを示したものである。The FT-IR spectrum at the time of forming a photocatalyst layer on the base-material surface which consists of a glass plate is shown.

符号の説明Explanation of symbols

1 基材
2 光触媒層
3 ワックス
1 Base material 2 Photocatalyst layer 3 Wax

Claims (8)

OH基を50ppm以上含有する光触媒活性を有する二酸化チタン粒子からなることを特徴とする光触媒粒子。   Photocatalyst particles comprising titanium dioxide particles having photocatalytic activity containing 50 ppm or more of OH groups. 粒径が20nm以上60nm以下であることを特徴とする請求項1記載の光触媒粒子。   2. The photocatalyst particle according to claim 1, wherein the particle diameter is 20 nm or more and 60 nm or less. 前記二酸化チタン粒子に、700ppm以上10000ppm以下の窒素がドープされていることを特徴とする請求項1または請求項2記載の光触媒粒子。   The photocatalyst particles according to claim 1 or 2, wherein the titanium dioxide particles are doped with 700 ppm or more and 10,000 ppm or less of nitrogen. 前記二酸化チタン粒子に、前記窒素以外に、炭素、硫黄、水素のうちのいずれか1種以上がドープされていることを特徴とする請求項3記載の光触媒粒子。   The photocatalyst particles according to claim 3, wherein the titanium dioxide particles are doped with at least one of carbon, sulfur, and hydrogen in addition to the nitrogen. 光触媒粒子を基材表面に固定化させる方法において、請求項1から請求項4までのいずれかに記載された光触媒粒子を水中に分散させたスラリーを基材にコーティングした後、乾燥させることにより、基材表面に光触媒層を形成することを特徴とする光触媒粒子の固定化方法。   In the method of immobilizing photocatalyst particles on the surface of a substrate, the substrate is coated with a slurry in which the photocatalyst particles described in any one of claims 1 to 4 are dispersed in water, and then dried. A method for immobilizing photocatalyst particles, comprising forming a photocatalyst layer on a substrate surface. 請求項1から請求項4までのいずれかに記載された光触媒粒子が、基材表面に固定化されていることを特徴とする光触媒性部材。   A photocatalytic member, wherein the photocatalytic particles according to any one of claims 1 to 4 are immobilized on a surface of a substrate. 前記基材は、表面に微細な凹凸を有するセラミックスからなることを特徴とする請求項6記載の光触媒性部材。   The photocatalytic member according to claim 6, wherein the base material is made of ceramics having fine irregularities on the surface. 前記セラミックスは、アルミナ質、アルミナ−コージライト質、シリカ質、ムライト質のいずれかであることを特徴とする請求項7記載の光触媒性部材。   8. The photocatalytic member according to claim 7, wherein the ceramic is one of alumina, alumina-cordierite, siliceous, and mullite.
JP2004068673A 2004-03-11 2004-03-11 Photocatalyst particle and method of immobilizing it, and photocatalytic member Pending JP2005254128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004068673A JP2005254128A (en) 2004-03-11 2004-03-11 Photocatalyst particle and method of immobilizing it, and photocatalytic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004068673A JP2005254128A (en) 2004-03-11 2004-03-11 Photocatalyst particle and method of immobilizing it, and photocatalytic member

Publications (1)

Publication Number Publication Date
JP2005254128A true JP2005254128A (en) 2005-09-22

Family

ID=35080388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004068673A Pending JP2005254128A (en) 2004-03-11 2004-03-11 Photocatalyst particle and method of immobilizing it, and photocatalytic member

Country Status (1)

Country Link
JP (1) JP2005254128A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140700A1 (en) * 2009-06-01 2010-12-09 新日本製鐵株式会社 Titanium-based material responsive to visible light and having excellent photocatalytic activity, and process for producing same
WO2011114467A1 (en) * 2010-03-17 2011-09-22 株式会社オー・ティー・エー Method for producing photocatalyst filter, and photocatalyst filter
WO2011114468A1 (en) * 2010-03-17 2011-09-22 株式会社オー・ティー・エー Photocatalyst filter
JP2012115753A (en) * 2010-11-30 2012-06-21 Nippon Steel Corp Titanium oxide-based material which has visible light-responsivity and excellent photocatalytic activity
RU2482912C1 (en) * 2011-09-30 2013-05-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Method of producing filtering-sorbing material with photo catalytic properties
JP2013129585A (en) * 2011-05-24 2013-07-04 Shin-Etsu Chemical Co Ltd Method for manufacturing microparticulate anatase titanium oxide dispersion and component having photocatalytic thin film on surface
JP2013129586A (en) * 2011-05-24 2013-07-04 Shin-Etsu Chemical Co Ltd Method for manufacturing microparticulate rutile titanium oxide dispersion and component having photocatalytic thin film on surface
JP5395253B2 (en) * 2010-03-17 2014-01-22 株式会社オー・ティー・エー Photocatalytic filter
US9463436B2 (en) 2011-05-24 2016-10-11 Shin-Etsu Chemical Co., Ltd. Method for manufacturing microparticulate anatase or rutile titanium oxide dispersion and component having photocatalytic thin film on surface
CN106563430A (en) * 2016-11-08 2017-04-19 上海纳米技术及应用国家工程研究中心有限公司 Honeycomb ceramic monolithic photocatalyst as well as preparation method and application of honeycomb ceramic monolithic photocatalyst
CN113318719A (en) * 2020-02-28 2021-08-31 广东粤能净环保科技有限公司 Photocatalytic unit and application thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5197766B2 (en) * 2009-06-01 2013-05-15 新日鐵住金株式会社 Titanium-based material having visible light responsiveness and excellent photocatalytic activity and method for producing the same
US8865612B2 (en) * 2009-06-01 2014-10-21 Nippon Steel & Sumitomo Metal Corporation Titanium-based material having visible light response and excellent in photocatalytic activity and method of production of same
WO2010140700A1 (en) * 2009-06-01 2010-12-09 新日本製鐵株式会社 Titanium-based material responsive to visible light and having excellent photocatalytic activity, and process for producing same
KR101394595B1 (en) * 2009-06-01 2014-05-14 신닛테츠스미킨 카부시키카이샤 Titanium-based material responsive to visible light and having excellent photocatalytic activity, and process for producing same
EP2438990A4 (en) * 2009-06-01 2013-05-01 Nippon Steel & Sumitomo Metal Corp Titanium-based material responsive to visible light and having excellent photocatalytic activity, and process for producing same
EP2438990A1 (en) * 2009-06-01 2012-04-11 Nippon Steel Corporation Titanium-based material responsive to visible light and having excellent photocatalytic activity, and process for producing same
CN102481565A (en) * 2009-06-01 2012-05-30 新日本制铁株式会社 Titanium-based Material Responsive To Visible Light And Having Excellent Photocatalytic Activity, And Process For Producing Same
US20120135855A1 (en) * 2009-06-01 2012-05-31 Michio Kaneko Titanium-based material having visible light response and excellent in photocatalytic activity and method of production of same
JP5395253B2 (en) * 2010-03-17 2014-01-22 株式会社オー・ティー・エー Photocatalytic filter
WO2011114467A1 (en) * 2010-03-17 2011-09-22 株式会社オー・ティー・エー Method for producing photocatalyst filter, and photocatalyst filter
WO2011114893A1 (en) * 2010-03-17 2011-09-22 株式会社オー・ティー・エー Method for producing photocatalyst filter and photocatalyst filter
WO2011114894A1 (en) * 2010-03-17 2011-09-22 株式会社オー・ティー・エー Photocatalyst filter
WO2011114468A1 (en) * 2010-03-17 2011-09-22 株式会社オー・ティー・エー Photocatalyst filter
JP2012115753A (en) * 2010-11-30 2012-06-21 Nippon Steel Corp Titanium oxide-based material which has visible light-responsivity and excellent photocatalytic activity
JP2013129586A (en) * 2011-05-24 2013-07-04 Shin-Etsu Chemical Co Ltd Method for manufacturing microparticulate rutile titanium oxide dispersion and component having photocatalytic thin film on surface
US9463436B2 (en) 2011-05-24 2016-10-11 Shin-Etsu Chemical Co., Ltd. Method for manufacturing microparticulate anatase or rutile titanium oxide dispersion and component having photocatalytic thin film on surface
JP2013129585A (en) * 2011-05-24 2013-07-04 Shin-Etsu Chemical Co Ltd Method for manufacturing microparticulate anatase titanium oxide dispersion and component having photocatalytic thin film on surface
RU2482912C1 (en) * 2011-09-30 2013-05-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Method of producing filtering-sorbing material with photo catalytic properties
CN106563430A (en) * 2016-11-08 2017-04-19 上海纳米技术及应用国家工程研究中心有限公司 Honeycomb ceramic monolithic photocatalyst as well as preparation method and application of honeycomb ceramic monolithic photocatalyst
CN113318719A (en) * 2020-02-28 2021-08-31 广东粤能净环保科技有限公司 Photocatalytic unit and application thereof
CN113318719B (en) * 2020-02-28 2023-08-01 中科粤能净(山东)新材料有限公司 Photocatalytic unit and application thereof

Similar Documents

Publication Publication Date Title
JP2008229624A (en) Photocatalytic composition
US20070149397A1 (en) Photocatalytic composite material, method for producing the same and application thereof
JPH09225263A (en) Air pollutant removing filter, air pollutant removing fan and ventilator using the fan
JPH09234375A (en) Photo-reactive harmful matter removing material
JPH08196903A (en) Porous photocatalyst and manufacture thereof
JP2001070800A (en) Photocatalyst film composition and photocatalyst body using the same
JP2005254128A (en) Photocatalyst particle and method of immobilizing it, and photocatalytic member
JP3976851B2 (en) Method for producing titanium dioxide fine particles, method for producing photocatalyst powder for NOX purification, method for producing paint, method for producing building material
JP2945926B2 (en) Photocatalyst particles and method for producing the same
JP4635185B2 (en) Photocatalytic coating method for polyester fiber
CN115279487A (en) Method for manufacturing a photocatalytic device, photocatalytic composition and gas decontamination apparatus
JPH11343426A (en) Photocatalytic coating
JP5090787B2 (en) Titanium oxide composite particle aqueous dispersion and production method thereof
EP2352584B1 (en) Photocatalytic device with mixed photocatalyst/silica structure
US8309484B2 (en) Preparation and manufacture of an overlayer for deactivation resistant photocatalysts
JP2000218161A (en) Photo-catalyst body
JP2002085967A (en) Photocatalyst membrane and method of producing the same
JP3978636B2 (en) Coating composition for photocatalyst film formation
JPH11197513A (en) Fine composite photocatalyst particles, their production and molding of organic material
JP2008142636A (en) Method of applying photocatalyst on polyolefin based resin molding
JP2002115176A (en) Porous fiber board supporting photocatalyst and method for producing the same
JPH09239277A (en) Photocatalytic powder, photocatalyst using the powder and environment cleaning method using them
JP2001152362A (en) Photocatalyst-coated metallic sheet
JP2003268945A (en) Interior finish material
JP2005329360A (en) Cleaning material and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090813