JP2001152362A - Photocatalyst-coated metallic sheet - Google Patents

Photocatalyst-coated metallic sheet

Info

Publication number
JP2001152362A
JP2001152362A JP33893699A JP33893699A JP2001152362A JP 2001152362 A JP2001152362 A JP 2001152362A JP 33893699 A JP33893699 A JP 33893699A JP 33893699 A JP33893699 A JP 33893699A JP 2001152362 A JP2001152362 A JP 2001152362A
Authority
JP
Japan
Prior art keywords
titanium oxide
zeolite
particles
nox
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33893699A
Other languages
Japanese (ja)
Inventor
Hiroshige Nakamura
浩茂 中村
Setsuko Koura
節子 小浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP33893699A priority Critical patent/JP2001152362A/en
Publication of JP2001152362A publication Critical patent/JP2001152362A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a photocatalyst-coated metallic sheet in which the adsorbing function of zeolite and the photocatalytic function of titanium oxide are geometrically utilized, and the effective removal of NOx is possible. SOLUTION: A coating film in which zeolite particles adhered with titanium oxide fine particles are dispersed, and silica is used as a binder is deposited on the surface of this metallic sheet. When used as the wall material in a tunnel, the adsorbing action of zeolite is increased, and the decomposability of NOx by titanium oxide is effectively exhibited. The titanium oxide fine particles can be adhered on the surfaces of the zeolite particles by being previously added to a solvent together with the zeolite particles and stirred. The metallic sheet can be produced by mixing the solvent in which the zeolite particles adhered with the titanium oxide fine particles are dispersed with colloidal silica to prepare a coating material, applying this coating material on the surface of a metallic sheet and making heat treatment to form a photocatalytic layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、NOxを酸化分解除去
する光触媒反応を損なうことなく光触媒を均一に分散さ
せた構造の塗膜が形成された光触媒被覆金属板に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocatalyst-coated metal plate on which a photocatalyst is uniformly dispersed without impairing a photocatalytic reaction for oxidative decomposition and removal of NOx.

【0002】[0002]

【従来の技術】自動車,工場,発電所等から排出される
NOx含有ガスは、環境に重大な悪影響を及ぼす酸性雨
の原因の一つとされている。NOxは、人体に呼吸器障
害を誘発する物質とも考えられている。このようなこと
から、発生源で排ガス中のNOxを除去する種々の方法
が研究開発されているが、一旦排出されたNOxに対し
ては効果的な除去技術が確立されていないのが現状であ
る。
2. Description of the Related Art NOx-containing gas emitted from automobiles, factories, power plants and the like is considered to be one of the causes of acid rain that has a serious adverse effect on the environment. NOx is also considered a substance that induces respiratory disorders in the human body. For this reason, various methods for removing NOx in exhaust gas at the source have been researched and developed. However, at present, no effective removal technology has been established for NOx once discharged. is there.

【0003】ところで、光触媒を用いた光触媒反応によ
ってNOxを硝酸塩に変換して除去する方法が近年提案
されている。光触媒は、バンドギャップ以上のエネルギ
ーをもつ波長の光が照射されると、光励起によって電子
が伝導体に、正孔が価電子帯に生じる。有機物,水,有
害ガス等は,正孔の強い酸化力で分解される。このよう
な光触媒作用を呈する物質としてTiO2,ZnO,Z
rO2,WO3,Fe2 3,FeTiO3,SrTiO3
が知られているが、アナターゼ型酸化チタン粉末を光触
媒として利用した例が最も多く報告されている。光触媒
粉末は、実用的な使用に際し、流出や飛散を防ぐため金
属等に被覆し固定される。被覆法としては、たとえば特
開平3−8448号公報で紹介されている直接被覆法,
金属板上に塗布した光触媒粒子を400℃以上の温度で
焼結する方法,加熱分解で光触媒となる前躯体を400
℃程度の温度に加熱した基板上に吹き付ける方法等が知
られている。
[0003] By the way, a photocatalytic reaction using a photocatalyst is performed.
Has recently proposed a method of converting NOx to nitrate and removing it.
Have been. The photocatalyst has an energy above the band gap.
When light of a wavelength with
Are generated in the conductor and holes are generated in the valence band. Organic matter, water, yes
The harmful gas is decomposed by the strong oxidizing power of the holes. like this
TiO as a substance exhibiting a novel photocatalytic actionTwo, ZnO, Z
rOTwo, WOThree, FeTwoO Three, FeTiOThree, SrTiOThreeetc
It is known that anatase type titanium oxide powder
The most frequently used examples are as media. photocatalyst
The powder should be made of gold to prevent spills and
The genus is covered and fixed. As a coating method, for example,
The direct coating method introduced in JP-A-3-8448,
Photocatalyst particles coated on a metal plate at a temperature of 400 ° C or more
Sintering method, 400 mg of precursor that becomes photocatalyst by thermal decomposition
The method of spraying on the substrate heated to about ℃ is known.
Have been.

【0004】[0004]

【発明が解決しようとする課題】光触媒として酸化チタ
ンを金属板に塗布して光触媒作用を付与するとき、金属
板を酸化チタンで均一に被覆した場合にあっても、酸化
チタンの被覆量は実用上限られているためNOxの酸化
分解能には限界がある。また、光触媒被覆金属板を用い
た光触媒反応では、NOはNO2に、更にNO2はNO3 -
に酸化分解されるが、中間生成物であるNO2の大半は
NO3 -に酸化分解される前に大気中に放出されてしま
う。そのため、十分なNOx分解作用が発現されないこ
とがある。
When titanium oxide is applied to a metal plate as a photocatalyst to give a photocatalytic effect, even if the metal plate is uniformly coated with titanium oxide, the amount of titanium oxide coated is practical. Because of the upper limit, the oxidation resolution of NOx is limited. In a photocatalytic reaction using a photocatalyst-coated metal plate, NO becomes NO 2 , and NO 2 becomes NO 3 −.
However, most of the intermediate product NO 2 is released to the atmosphere before being oxidized and decomposed into NO 3 . Therefore, a sufficient NOx decomposition action may not be exhibited.

【0005】中間生成物であるNO2の大気への放出
は、金属板表面に形成した塗膜にNO2を一時的に吸着
させることにより抑制できる(特開平6−315614
号公報)。この方法では、吸着剤としての活性炭と酸化
チタンとの混合物を主成分とする塗膜を形成しているた
め、NO2の大気への放出は一定時間防止できるもの
の、活性炭がNO2で飽和した段階ではNO2が大気に放
出され始める。また、高い光触媒活性の発現には表面積
の大きなnmオーダーの酸化チタン粉末が必要とされる
が、金属板を酸化チタンで被覆する焼結過程で形成され
た酸化チタン皮膜にクラックが入りやすく、皮膜特性が
劣化する傾向がみられる。
The release of the intermediate product NO 2 into the atmosphere can be suppressed by temporarily adsorbing NO 2 on the coating film formed on the surface of the metal plate (JP-A-6-315614).
No.). In this method, since a coating film mainly containing a mixture of activated carbon and titanium oxide as an adsorbent is formed, emission of NO 2 to the atmosphere can be prevented for a certain period of time, but activated carbon is saturated with NO 2 . NO 2 begins to be released into the atmosphere in the stage. In addition, titanium oxide powder having a large surface area on the order of nanometers is required for the expression of high photocatalytic activity, but the titanium oxide film formed in the sintering process of coating a metal plate with titanium oxide is apt to crack, There is a tendency for the characteristics to deteriorate.

【0006】吸着剤としてゼオライトを使用し、酸化チ
タンと複合添加して塗膜を形成することも知られている
(特開平7−171408号公報)。この塗膜では、ゼ
オライトの吸着機能及び酸化チタンの光触媒機能が得ら
れるものの、ゼオライト及び酸化チタンを単に分散させ
ているため、ゼオライトがNOxで飽和するとNOxの
大気放出が始まる。その結果、長期間にわたるNOxの
除去には改良の余地がある。
It is also known to use zeolite as an adsorbent and form a coating film by adding it in combination with titanium oxide (Japanese Patent Application Laid-Open No. 7-171408). In this coating film, the adsorption function of zeolite and the photocatalytic function of titanium oxide are obtained, but since zeolite and titanium oxide are simply dispersed, when the zeolite is saturated with NOx, NOx emission to the atmosphere starts. As a result, there is room for improvement in long term NOx removal.

【0007】[0007]

【課題を解決するための手段】本発明は、このような問
題を解消すべく案出されたものであり、酸化チタンが表
面に付着したゼオライトを塗膜に分散させることによっ
て、ゼオライトの吸着機能及び酸化チタンの光触媒機能
を相乗的に活用し、長期間に渡りNOxの効果的な除去
が可能な光触媒被覆金属板を提供することを目的とす
る。
DISCLOSURE OF THE INVENTION The present invention has been devised in order to solve such a problem, and a zeolite having a titanium oxide adsorbing function is dispersed by dispersing zeolite adhering to the surface into a coating film. Another object of the present invention is to provide a photocatalyst-coated metal plate capable of effectively removing NOx over a long period of time by utilizing the photocatalytic function of titanium oxide synergistically.

【0008】本発明の光触媒被覆金属板は、その目的を
達成するため、酸化チタン微粒子を付着させたゼオライ
ト粒子が分散され、シリカをバインダーとする塗膜が表
面に形成されていることを特徴とする。この光触媒被覆
金属板をトンネル内壁材として使用するとき、ゼオライ
トの吸着作用が高められ、酸化チタンによるNOx分解
能が一層向上する。
In order to achieve the object, the photocatalyst-coated metal plate of the present invention is characterized in that zeolite particles to which titanium oxide fine particles are adhered are dispersed and a coating film using silica as a binder is formed on the surface. I do. When this photocatalyst-coated metal plate is used as a tunnel inner wall material, the adsorption effect of zeolite is enhanced, and the NOx resolution by titanium oxide is further improved.

【0009】この光触媒被覆金属板は、酸化チタン微粒
子を付着させたゼオライト粒子が分散している溶剤をコ
ロイド状シリカと混合して塗料を調製し、該塗料を金属
板表面に塗布し、熱処理を施して光触媒層を形成するこ
とにより製造される。酸化チタン微粒子は、予めゼオラ
イト粒子と共に溶剤に添加して攪拌することによりゼオ
ライト粒子の表面に付着させることができる。
The photocatalyst-coated metal plate is prepared by mixing a solvent in which zeolite particles having titanium oxide fine particles adhered are mixed with colloidal silica to prepare a coating, applying the coating to the surface of the metal plate, and performing a heat treatment. To form a photocatalyst layer. The titanium oxide fine particles can be attached to the surface of the zeolite particles by adding the titanium oxide particles together with the zeolite particles to a solvent in advance and stirring.

【0010】[0010]

【作用】ゼオライトは、分子径に応じた選択吸着性及び
分子極性に起因する選択吸着性が最も優れた吸着剤であ
り、NOxの吸着に適している。なかでも、3〜10Å
の細孔径をもつ合成ゼオライトは、NO,NO2等の分
子径が約4Åであることから、NOx用として最適な吸
着剤である。しかし、ゼオライトを単独で分散させた塗
膜では、前述したようにゼオライトがNOxで飽和する
と、飽和点を超えるNOxを吸着できず、逆にNOxの
大気放出が始まる。
The zeolite is the adsorbent having the best selective adsorptivity according to the molecular diameter and the selective adsorptivity due to the molecular polarity, and is suitable for adsorbing NOx. Above all, 3-10Å
The synthetic zeolite having a pore diameter of about 4 nm is a most suitable adsorbent for NOx, since the molecular diameter of NO, NO 2 and the like is about 4 °. However, in a coating film in which zeolite is dispersed alone, as described above, when the zeolite is saturated with NOx, NOx exceeding the saturation point cannot be adsorbed, and conversely, NOx starts to be released to the atmosphere.

【0011】この点、本発明に従った光触媒被覆金属板
では、塗膜に分散しているゼオライト粒子の表面に光触
媒機能のある酸化チタン微粒子が付着している。酸化チ
タン微粒子は、ゼオライト粒子の表面に付着した形態で
使用されるため、微粒子相互が凝集することなく、光触
媒反応に必要な表面積を大きくとれ、ゼオライトに吸着
されたNOxとの距離も極めて短くなる。そのため、ゼ
オライトに吸着されたNOxは、至近距離にある酸化チ
タン微粒子の光触媒作用で効果的に分解され、硝酸塩と
して気相から除去される。したがって、長期間にわたっ
て効果的な光触媒反応が維持されると共に、ゼオライト
の吸着能も回復する。
In this respect, in the photocatalyst-coated metal plate according to the present invention, titanium oxide fine particles having a photocatalytic function adhere to the surface of zeolite particles dispersed in the coating film. Since the titanium oxide fine particles are used in a form attached to the surface of the zeolite particles, the fine particles do not agglomerate, the surface area required for the photocatalytic reaction can be increased, and the distance from the NOx adsorbed on the zeolite becomes extremely short. . Therefore, the NOx adsorbed on the zeolite is effectively decomposed by the photocatalytic action of the titanium oxide fine particles at a short distance, and is removed from the gas phase as nitrate. Therefore, the effective photocatalytic reaction is maintained over a long period of time, and the adsorption ability of zeolite is restored.

【0012】本発明に従った光触媒被覆金属板は、特に
自動車,電車等が頻繁に通過するトンネルの内壁材とし
て使用するとき、顕著な効果を発揮する。すなわち、ト
ンネル内では、自動車,電車等の通過時に生じる風圧変
動によってゼオライトの吸着・脱着能が高められ、自動
車,電車等のライトが光源となって光触媒としての酸化
チタンを励起する。その結果、酸化チタンの光触媒作用
によりNOxが効果的に除去され、トンネル内の雰囲気
が浄化される。
The photocatalyst-coated metal plate according to the present invention exhibits a remarkable effect particularly when used as an inner wall material of a tunnel through which automobiles, trains and the like frequently pass. That is, in the tunnel, the adsorption / desorption ability of zeolite is enhanced by the wind pressure fluctuation generated when passing through a car, a train, etc., and the light of the car, train, etc. becomes a light source to excite titanium oxide as a photocatalyst. As a result, NOx is effectively removed by the photocatalytic action of titanium oxide, and the atmosphere in the tunnel is purified.

【0013】[0013]

【実施の形態】ゼオライト粒子に酸化チタン微粒子を付
着させる方法としては、たとえば酸化チタン微粒子及び
ゼオライト粒子を有機溶剤に分散させ、ボールミルで攪
拌する方法が採用される。酸化チタン微粒子としては、
光触媒活性の点からアナターゼ型が好ましく、形状に特
段の制約が加わるものではないが、大きな有効表面積を
得るために平均粒径50nm以下の微粒子が好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As a method for adhering titanium oxide fine particles to zeolite particles, for example, a method in which titanium oxide fine particles and zeolite particles are dispersed in an organic solvent and stirred by a ball mill is employed. As titanium oxide fine particles,
The anatase type is preferred from the viewpoint of photocatalytic activity, and there is no particular restriction on the shape, but fine particles having an average particle size of 50 nm or less are preferred in order to obtain a large effective surface area.

【0014】ゼオライト粒子には天然ゼオライト,合成
ゼオライトの何れも使用可能であるが、NOxの選択吸
着性を考慮すると3〜10Åの細孔径をもつ合成ゼオラ
イトが好ましい。合成ゼオライトとしては、陽イオンと
してK,Na,Mg,Cu,Ag等の1種又は2種以上
を含むX型,Y型等の結晶構造をもつものが使用され
る。ゼオライト粒子は、形状に特段の制約が加わるもの
ではないが、均一な塗膜を金属板表面に形成させるため
10μm以下の平均粒径をもつものが好ましい。平均粒
径が10μmを超えると、塗膜の平滑度が低下する傾向
がみられる。
Either a natural zeolite or a synthetic zeolite can be used for the zeolite particles, but a synthetic zeolite having a pore diameter of 3 to 10 ° is preferable in consideration of the selective adsorption of NOx. As the synthetic zeolite, those having an X-type or Y-type crystal structure containing one or more of cations such as K, Na, Mg, Cu, Ag and the like are used. The shape of the zeolite particles is not particularly limited, but preferably has an average particle size of 10 μm or less in order to form a uniform coating film on the surface of the metal plate. When the average particle size exceeds 10 μm, the smoothness of the coating film tends to decrease.

【0015】酸化チタン微粒子及びゼオライト粒子が分
散される有機溶剤としては、ブチルセルソルブ,エチル
セルソルブ等のエーテル類やイソプロパノール,エタノ
ール等のアルコール類,或いはそれらの混合溶剤が使用
される。たとえば、ブチルセルソルブとイソプロパノー
ルの混合溶剤(1:3)は、分散能が高く、酸化チタン
微粒子及びゼオライト粒子を凝集なく安定した懸濁状態
に維持する。有機溶剤に酸化チタン微粒子及びゼオライ
ト粒子を添加した後、ボールミル等を用いた攪拌により
ゼオライト粒子の表面に酸化チタン微粒子を付着させ
る。攪拌では、酸化チタン微粒子及びゼオライト粒子が
破砕されることなく、酸化チタン微粒子とゼオライト粒
子との間に機械的な付着状態が得られるようにボール重
量,攪拌速度,攪拌時間等の攪拌条件が設定される。
As the organic solvent in which the titanium oxide fine particles and zeolite particles are dispersed, ethers such as butyl cellosolve and ethyl cellosolve, alcohols such as isopropanol and ethanol, or a mixed solvent thereof are used. For example, a mixed solvent (1: 3) of butyl cellosolve and isopropanol has a high dispersibility and maintains the titanium oxide fine particles and zeolite particles in a stable suspension state without aggregation. After adding the titanium oxide fine particles and the zeolite particles to the organic solvent, the titanium oxide fine particles are adhered to the surface of the zeolite particles by stirring using a ball mill or the like. In the stirring, the stirring conditions such as ball weight, stirring speed, and stirring time are set so that the titanium oxide fine particles and the zeolite particles are not crushed and a mechanical adhesion state is obtained between the titanium oxide fine particles and the zeolite particles. Is done.

【0016】攪拌によりゼオライト粒子に酸化チタン微
粒子を付着させた後、ゼオライト粒子及び酸化チタン微
粒子を含む有機溶剤は、コロイド状シリカと混合され
る。コロイド状シリカとしては、たとえば平均粒径5〜
150μmのシリカ粒子を10〜50質量%含む分散液
が使用される。この種のコロイド状シリカ混合分散液と
しては、固形成分を10〜80質量%分散させた分散液
が特許第2584216号明細書で紹介されている。
After the titanium oxide particles are adhered to the zeolite particles by stirring, the organic solvent containing the zeolite particles and the titanium oxide particles is mixed with colloidal silica. As the colloidal silica, for example, an average particle size of 5 to 5
A dispersion containing 10 to 50% by mass of 150 μm silica particles is used. As a colloidal silica mixed dispersion of this type, a dispersion in which a solid component is dispersed in an amount of 10 to 80% by mass is introduced in Japanese Patent No. 2584216.

【0017】ゼオライト粒子及び酸化チタン微粒子を含
む有機溶剤をコロイド状シリカと混合することにより、
光触媒機能を付与した塗膜の形成に必要な塗料が調製さ
れる。この塗料は、好ましくは酸化チタン:20〜40
質量%,ゼオライト:1〜60質量%,シリカ:20質
量%以上の組成に調整される。塗膜の光触媒作用は、2
0質量%以上の酸化チタンで顕著になるが、40質量%
を超える過剰量の酸化チタンが含まれると塗膜にクラッ
クが入りやすくなる。塗膜のNOx吸着能は、1質量%
以上のゼオライトで顕著になるが、60質量%を超える
過剰量のゼオライトが含まれると相対的にシリカの配合
量が低下し、形成された塗膜の金属板表面に対する密着
性が低下する。塗膜の密着性を確保する上から、20質
量%以上のシリカが必要とされる。
By mixing an organic solvent containing zeolite particles and titanium oxide fine particles with colloidal silica,
A paint necessary for forming a coating film having a photocatalytic function is prepared. The paint is preferably titanium oxide: 20-40.
The composition is adjusted to have a composition of 1% to 60% by mass, zeolite: 1 to 60% by mass, and silica: 20% by mass or more. The photocatalytic action of the coating is 2
It becomes remarkable with 0% by mass or more of titanium oxide, but is increased by 40% by mass.
If an excessive amount of titanium oxide is contained, the coating film tends to crack. NOx adsorption capacity of coating film is 1% by mass
The above-mentioned zeolite becomes remarkable, but if the zeolite contains an excessive amount of more than 60% by mass, the amount of silica is relatively reduced, and the adhesion of the formed coating film to the metal plate surface is reduced. In order to ensure the adhesion of the coating film, 20% by mass or more of silica is required.

【0018】光触媒機能が付与された塗膜を金属板表面
に形成するためには、塗膜面に酸化チタン微粒子及びゼ
オライトが露出していることが重要である。このような
塗膜を形成する方法としては、スプレー法,ゾル−ゲル
法,物理蒸着法,粉体塗装法,浸漬法等がある。なかで
も、スプレー法は、樹脂等に混合する必要がなく揮発性
の高い有機溶剤のみで塗装可能なため、酸化チタン微粒
子及びゼオライトを露出させた塗膜の形成が容易で、塗
装コストも安価である。
In order to form a coating film provided with a photocatalytic function on the surface of a metal plate, it is important that titanium oxide fine particles and zeolite are exposed on the coating film surface. As a method of forming such a coating film, there are a spray method, a sol-gel method, a physical vapor deposition method, a powder coating method, an immersion method and the like. Above all, the spray method does not need to be mixed with a resin or the like, and can be coated with only a highly volatile organic solvent, so that it is easy to form a coating film exposing titanium oxide fine particles and zeolite, and the coating cost is low. is there.

【0019】塗膜が形成される金属板は、特に材質が制
限されるものではないが、普通鋼板,ステンレス鋼板,
めっき鋼板,アルミニウム板,銅板等が使用される。塗
装に先立って、塗膜密着性を改善するため脱脂,洗浄,
酸洗,クロメート処理,リン酸塩処理等の前処理が必要
に応じて施される。更には、プライマー層を予め形成し
てもよい。プライマー層は、光触媒層の密着性を向上
し、下地金属板の色調を隠蔽する作用を呈する。この金
属板の表面に、乾燥膜厚で0.5μm以上となる塗布量
で酸化チタン微粒子,ゼオライト粒子を含む塗料が塗布
される。0.5μm未満の膜厚では、十分なNOx分解
等の光触媒作用が発現されない場合がある。
The material of the metal plate on which the coating film is formed is not particularly limited.
Plated steel plates, aluminum plates, copper plates, etc. are used. Prior to painting, degreasing, washing,
Pretreatment such as pickling, chromate treatment, and phosphate treatment is performed as necessary. Further, a primer layer may be formed in advance. The primer layer has the function of improving the adhesion of the photocatalyst layer and hiding the color tone of the underlying metal plate. A coating containing titanium oxide fine particles and zeolite particles is applied to the surface of the metal plate at an application amount of 0.5 μm or more in dry film thickness. If the film thickness is less than 0.5 μm, a sufficient photocatalytic action such as NOx decomposition may not be exhibited.

【0020】金属板表面に塗布された塗料は、熱処理に
よって溶剤が除去される。熱処理温度を150〜400
℃に設定すると、塗膜から溶剤が完全に除去されると共
に、光触媒,ゼオライトとシリカが強固に結合した塗膜
が形成される。低すぎる熱処理温度や短時間の熱処理で
は、酸化チタン微粒子やゼオライト粒子の間に一部の溶
剤が残存し、光触媒反応や吸着作用に悪影響を及ぼす傾
向がみられる。また、コロイド状シリカの縮重合が不十
分で、塗膜の密着性が不足しやすくなる。しかし、40
0℃を超える熱処理温度では、塗膜に割れが発生しやす
くなる。
The solvent is removed from the paint applied to the metal plate surface by heat treatment. Heat treatment temperature 150-400
When the temperature is set to ° C., the solvent is completely removed from the coating film, and a coating film in which the photocatalyst, zeolite and silica are strongly bonded is formed. If the heat treatment temperature is too low or if the heat treatment is performed for a short time, a part of the solvent remains between the titanium oxide fine particles and the zeolite particles, which tends to adversely affect the photocatalytic reaction and the adsorption action. Further, the condensation polymerization of the colloidal silica is insufficient, and the adhesion of the coating film tends to be insufficient. But 40
If the heat treatment temperature exceeds 0 ° C., cracks are likely to occur in the coating film.

【0021】[0021]

【実施例】塗装原板として、板厚1.5mmのSUS3
04ステンレス鋼板を用いた。塗装原板を脱脂,酸洗し
た後、シリカ系プライマー塗料を塗布し、140℃×2
0分で焼き付けた。使用したプライマー塗料は、ブチル
セルソルブ/イソプロパノールの混合溶剤にメチルトリ
シリケートを溶解し,水を添加して加水分解反応を進行
させることによりオルガノシリカゾルを生成させ、得ら
れたオルガノシリカゾルにAl23処理酸化チタン粉末
(白色顔料)を分散させることにより調製した。
[Example] SUS3 with a thickness of 1.5 mm as a coating original plate
A 04 stainless steel plate was used. After degreasing and pickling the coated base plate, apply a silica-based primer coating, and apply 140 ° C x 2
Bake in 0 minutes. Primer coating used can be prepared by dissolving the methyl trisilicate in a mixed solvent of butyl cellosolve / isopropanol, the addition of water to produce a organosilica sol by advancing the hydrolysis reaction, the organosilica sol obtained Al 2 O It was prepared by dispersing 3 treated titanium oxide powder (white pigment).

【0022】プライマー層の上に更にトップ塗料を塗布
し、240℃×20分の熱処理によってアナターゼ型酸
化チタン微粒子,ゼオライト粒子,シリカ粒子を含む混
合酸化物のトップ層(光触媒層)を形成した。使用した
トップ塗料は、平均粒径7nmのアナターゼ型酸化チタ
ン微粒子及び平均粒径2μmの合成ゼオライト粒子をブ
チルセルソルブ/イソプロパノールの混合溶剤(1:
3)に加え、ボールミルで30分間攪拌した後、オルガ
ノシリカゾルと混合することにより調製した。比較のた
め、アナターゼ型酸化チタン微粒子及び合成ゼオライト
を同じ配合量でオルガノシリカゾルに直接混合した塗料
を用い、他は同じ条件下でトップ層を形成した。
A top coating was further applied on the primer layer, and a heat treatment at 240 ° C. for 20 minutes was performed to form a mixed oxide top layer (photocatalytic layer) containing anatase type titanium oxide fine particles, zeolite particles and silica particles. The top paint used was an anatase type titanium oxide fine particle having an average particle diameter of 7 nm and a synthetic zeolite particle having an average particle diameter of 2 μm, and a mixed solvent of butyl cellosolve / isopropanol (1:
In addition to 3), the mixture was stirred by a ball mill for 30 minutes and then mixed with an organosilica sol. For comparison, a top layer was formed under the same conditions except that anatase-type titanium oxide fine particles and a synthetic zeolite were directly mixed in the same amount in an organosilica sol.

【0023】得られた塗装金属板から試験片を切り出
し、NOx分解能試験及び塗膜密着性試験に供した。N
Ox分解能試験では、300mm×210mmの試験片
を石英ガラス製反応容器に入れ、NO:1ppmを含む
精製空気を反応容器に導入すると共に、反応容器の外側
から光化学用ブラックライト(20W,3本)で波長3
00〜400nmの近紫外線を40時間照射した。この
条件下で、反応容器から流出する精製空気に含まれてい
るNO,NO2等のNOx濃度を測定し、試験前後のN
Ox濃度の変化から次式に従ってNOx濃度低下率を算
出した。 NOx濃度低下率(%)=(試験前のNOx濃度−試験後
のNOx濃度)/(試験前のNOx濃度)×100 NO濃度低下率及びNO2濃度低下率が共に95%以上
をNOx分解能が優れているもの(○),NO濃度低下
率が95%以上であるがNO2濃度低下率が95%未満
をNOx分解特性に改善がないもの(△),NO濃度低
下率及びNO2濃度低下率共に95%未満を特性が劣化
したもの(×)として,NOx分解能を評価した。
A test piece was cut out from the obtained coated metal plate and subjected to a NOx resolution test and a coating film adhesion test. N
In the Ox resolution test, a test piece of 300 mm × 210 mm was placed in a reaction vessel made of quartz glass, purified air containing NO: 1 ppm was introduced into the reaction vessel, and a black light for photochemistry (20 W, 3 pieces) was introduced from outside the reaction vessel. Wavelength 3
Irradiation with near-ultraviolet light of 00 to 400 nm was performed for 40 hours. In this condition, NO contained in the purified air flowing out of the reaction vessel, measuring the NOx concentration of such NO 2, before and after the test N
The NOx concentration reduction rate was calculated from the change in the Ox concentration according to the following equation. Concentration of NO x reduction rate (%) = (NO x concentration before test - concentration of NO x after test) / (concentration of NO x before test) × 100 NO concentration reduction rate and NO 2 concentration reduction rate are both 95% When the NOx resolution is excellent (分解 能), when the NO concentration reduction rate is 95% or more but the NO 2 concentration reduction rate is less than 95%, the NOx decomposition characteristics are not improved (△), the NO concentration reduction rate and The NOx resolving power was evaluated when the characteristics were deteriorated (x) when both of the NO 2 concentration reduction rates were less than 95%.

【0024】塗膜密着性試験では、碁盤目状テープ剥離
試験によって塗膜の剥離状況を計測し、全く剥離しなか
った塗膜を密着性良好,少しでも剥離が観察された塗膜
を密着性不良として塗膜密着性を評価した。表1に掲げ
た組成比をもつ塗膜は、本発明例及び比較例共に良好な
塗膜密着性を示した。更に、金属板表面に形成された塗
膜を走査型電子顕微鏡で観察したところ、表1に掲げた
組成比をもつ塗膜では本発明例及び比較例共に割れが検
出されず、緻密な塗膜であることが確認された。
In the coating film adhesion test, the peeling state of the coating film was measured by a cross-cut tape peeling test. The coating film adhesion was evaluated as poor. The coating films having the composition ratios shown in Table 1 exhibited good coating film adhesion in both the present invention examples and comparative examples. Further, when the coating film formed on the surface of the metal plate was observed with a scanning electron microscope, no crack was detected in the coating films having the composition ratios listed in Table 1 in both the present invention example and the comparative example. Was confirmed.

【0025】しかし、NOx分解能についてみると、表
1の調査結果にみられるように、本発明に従った光触媒
被覆金属板は何れも優れたNOx分解能を示したが、比
較例の光触媒被覆金属板では近紫外線40時間照射後の
NOx分解能が劣っていた。このようにNOx分解能に
生じた差は、酸化チタン微粒子及びゼオライトの分散形
態のみで本発明例と比較例とが異なることから、酸化チ
タニア微粒子を付着させたゼオライトを塗膜に分散させ
た有意性を示すものである。
However, as for the NOx resolution, as can be seen from the investigation results in Table 1, the photocatalyst-coated metal plates according to the present invention all exhibited excellent NOx resolution, but the photocatalyst-coated metal plates of Comparative Examples In this case, the NOx resolution after irradiation with near ultraviolet rays for 40 hours was inferior. As described above, the difference in NOx resolution is different only in the dispersion form of the titanium oxide fine particles and the zeolite from the present invention and the comparative example. It shows.

【0026】 [0026]

【0027】[0027]

【発明の効果】以上に説明したように、本発明の光触媒
被覆金属板は、酸化チタン微粒子を予め付着させたゼオ
ライト粒子が分散した塗膜構造をもっているため、ゼオ
ライト粒子に吸着されたNOxが酸化チタン微粒子と至
近距離に確保され、酸化チタン微粒子の光触媒作用が効
果的にNOxの分解除去に使用される。また、光触媒反
応によって吸着されたNOxが分解除去されるため、ゼ
オライト粒子がNOxで飽和することもなく、ゼオライ
ト粒子の吸着能も長期間に渡って維持される。その結
果、NOxの吸着及び光触媒反応による分解除去が効率
よく行われ、環境浄化に役立つ塗装金属板として使用さ
れる。なかでも、トンネル内壁材として使用するとき、
自動車,電車等の通過時に生じる風圧変動によってゼオ
ライトへのNOx吸着が促進され、NOx分解除去機能
が一層向上する。
As described above, since the photocatalyst-coated metal plate of the present invention has a coating structure in which zeolite particles having titanium oxide fine particles adhered in advance are dispersed, NOx adsorbed on the zeolite particles is oxidized. The titanium oxide particles are secured at a close distance to the titanium particles, and the photocatalytic action of the titanium oxide particles is effectively used for decomposing and removing NOx. Further, since the adsorbed NOx is decomposed and removed by the photocatalytic reaction, the zeolite particles do not saturate with NOx, and the adsorption ability of the zeolite particles is maintained for a long time. As a result, NOx is adsorbed and decomposed and removed by a photocatalytic reaction, which is performed efficiently, and is used as a coated metal plate useful for environmental purification. Above all, when used as a tunnel inner wall material,
The adsorption of NOx to zeolite is promoted by the wind pressure fluctuation generated when passing through a car, a train, or the like, and the function of decomposing and removing NOx is further improved.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 18/12 B01D 53/36 J Fターム(参考) 4D048 AA06 AB01 AB03 BA03X BA06X BA07X BA11X BA13X BA41X BA42X BB03 CA06 EA01 4F100 AA20B AA21B AB01A AC04B BA02 BA10A BA10B CC00B DE01B EH462 EJ082 EJ422 GB07 GB90 JL08B 4G069 AA01 AA04 AA08 AA09 AA11 BA01B BA01C BA02A BA02B BA02C BA04A BA04B BA04C BA07A BA07B BA17 BA18 BA48A BA48C BB04A BB04B BB04C BB06A BB06B BB06C CA02 CA03 CA07 CA10 CA13 DA06 EA08 EC22Y FA02 FA03 FA04 FA06 FB23 ZA02A ZA03B 4K022 AA02 AA11 AA41 BA15 BA20 BA22 BA33 CA09 DA06 EA01 4K044 AA03 BA12 BA13 BA14 BA21 BB03 CA24 CA53 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) C23C 18/12 B01D 53/36 J F term (Reference) 4D048 AA06 AB01 AB03 BA03X BA06X BA07X BA11X BA13X BA41X BA42X BB03 CA06 EA01 4F100 AA20B AA21B AB01A AC04B BA02 BA10A BA10B CC00B DE01B EH462 EJ082 EJ422 GB07 GB90 JL08B 4G069 AA01 AA04 AA08 AA09 AA11 BA01B BA01C BA02A BA02B BA02C BA04A BA04B BA04C BA07A BA07B BA17 BA18 BA48A BA48C BB04A BB04B BB04C BB06A BB06B BB06C CA02 CA03 CA07 CA10 CA13 DA06 EA08 EC22Y FA02 FA03 FA04 FA06 FB23 ZA02A ZA03B 4K022 AA02 AA11 AA41 BA15 BA20 BA22 BA33 CA09 DA06 EA01 4K044 AA03 BA12 BA13 BA14 BA21 BB03 CA24 CA53

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酸化チタン微粒子を付着させたゼオライ
ト粒子が分散され、シリカをバインダーとする塗膜が金
属板の表面に直接、又はプライマー層を介して形成され
ていることを特徴とする光触媒被覆金属板。
1. A photocatalytic coating, wherein zeolite particles to which titanium oxide fine particles are adhered are dispersed, and a coating film using silica as a binder is formed directly on the surface of a metal plate or via a primer layer. Metal plate.
【請求項2】 酸化チタン微粒子を付着させたゼオライ
ト粒子が分散している溶剤をコロイド状シリカと混合し
て塗料を調製し、該塗料を金属板表面に直接、又はプラ
イマー層を介して塗布し、熱処理を施して光触媒層を形
成することを特徴とする光触媒被覆金属板の製造方法。
2. A coating material is prepared by mixing a solvent in which zeolite particles having titanium oxide fine particles adhered are dispersed with colloidal silica, and applying the coating material directly to a metal plate surface or via a primer layer. Forming a photocatalyst layer by heat treatment.
【請求項3】 ゼオライト粒子及び酸化チタン微粒子を
溶剤に添加して攪拌することによりゼオライト粒子の表
面に酸化チタン微粒子を付着させる請求項2記載の光触
媒被覆金属板の製造方法。
3. The method for producing a photocatalyst-coated metal plate according to claim 2, wherein the titanium oxide fine particles are adhered to the surface of the zeolite particles by adding the zeolite particles and the titanium oxide fine particles to a solvent and stirring.
JP33893699A 1999-11-30 1999-11-30 Photocatalyst-coated metallic sheet Withdrawn JP2001152362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33893699A JP2001152362A (en) 1999-11-30 1999-11-30 Photocatalyst-coated metallic sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33893699A JP2001152362A (en) 1999-11-30 1999-11-30 Photocatalyst-coated metallic sheet

Publications (1)

Publication Number Publication Date
JP2001152362A true JP2001152362A (en) 2001-06-05

Family

ID=18322729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33893699A Withdrawn JP2001152362A (en) 1999-11-30 1999-11-30 Photocatalyst-coated metallic sheet

Country Status (1)

Country Link
JP (1) JP2001152362A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080034A (en) * 2001-09-10 2003-03-18 Mitsubishi Heavy Ind Ltd Oxidation apparatus and method for maintaining the same
KR100449341B1 (en) * 2002-01-15 2004-09-22 이종황 Photo catalytic powder combined with carrier and water paint using the same
JP2006515388A (en) * 2003-01-03 2006-05-25 セミカ エス アー Viscosity-adjustable photosensitive dispersion for metal deposition on insulating substrates and use thereof
JP2008148726A (en) * 2006-12-14 2008-07-03 Catalysts & Chem Ind Co Ltd Deodorizing and antibacterial composition
EP1990378A1 (en) * 2007-05-10 2008-11-12 SigmaKalon B.V. A primer composition
JP2012005914A (en) * 2010-06-22 2012-01-12 Fujita Corp Photocatalyst-coated material for cleaning of atmosphere, pavement method for cleaning of atmosphere which uses the photocatalyst-coated material, and method for forming atmosphere-cleaning wall surface
JP2012515644A (en) * 2009-01-23 2012-07-12 エフェエメセ フォレト,ソシエダ アノニマ Photocatalytic mixture for the decomposition of nitrogen oxides
RU2482912C1 (en) * 2011-09-30 2013-05-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Method of producing filtering-sorbing material with photo catalytic properties

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080034A (en) * 2001-09-10 2003-03-18 Mitsubishi Heavy Ind Ltd Oxidation apparatus and method for maintaining the same
KR100449341B1 (en) * 2002-01-15 2004-09-22 이종황 Photo catalytic powder combined with carrier and water paint using the same
JP2006515388A (en) * 2003-01-03 2006-05-25 セミカ エス アー Viscosity-adjustable photosensitive dispersion for metal deposition on insulating substrates and use thereof
JP2008148726A (en) * 2006-12-14 2008-07-03 Catalysts & Chem Ind Co Ltd Deodorizing and antibacterial composition
EP1990378A1 (en) * 2007-05-10 2008-11-12 SigmaKalon B.V. A primer composition
WO2008138895A1 (en) * 2007-05-10 2008-11-20 Ppg B.V. A primer composition
CN101679785B (en) * 2007-05-10 2013-08-21 Ppg有限责任公司 A primer composition
US9085701B2 (en) 2007-05-10 2015-07-21 Ppg B.V. Primer composition
JP2012515644A (en) * 2009-01-23 2012-07-12 エフェエメセ フォレト,ソシエダ アノニマ Photocatalytic mixture for the decomposition of nitrogen oxides
JP2012005914A (en) * 2010-06-22 2012-01-12 Fujita Corp Photocatalyst-coated material for cleaning of atmosphere, pavement method for cleaning of atmosphere which uses the photocatalyst-coated material, and method for forming atmosphere-cleaning wall surface
RU2482912C1 (en) * 2011-09-30 2013-05-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Method of producing filtering-sorbing material with photo catalytic properties

Similar Documents

Publication Publication Date Title
JP2918787B2 (en) Photocatalyst and method for producing the same
JP2002510717A (en) Photocatalyst composition
JPWO2007037321A1 (en) Titanium oxide photocatalyst, its production method and use
JP2007144403A (en) Composite type particulate photocatalyst, method for manufacturing the same and coating agent and photocatalytically-active member using the same
JP2001179091A (en) Photocatalyst filter for cleaning air
JP3976851B2 (en) Method for producing titanium dioxide fine particles, method for producing photocatalyst powder for NOX purification, method for producing paint, method for producing building material
JP2001152362A (en) Photocatalyst-coated metallic sheet
JP4635185B2 (en) Photocatalytic coating method for polyester fiber
JP2001303276A (en) Enamel material
JPH11192436A (en) Photocatalyst compound, photocatalyst-containing material, material having photocatalytic function and production thereof
JP3461227B2 (en) Article having a silica film containing titanium dioxide
JP2005254128A (en) Photocatalyst particle and method of immobilizing it, and photocatalytic member
JP2002115176A (en) Porous fiber board supporting photocatalyst and method for producing the same
JP3817603B2 (en) Photocatalyst particle fixing coating agent and photocatalyst particle fixing method
JP3372451B2 (en) Photocatalyst-coated metal plate and method for producing the same
JP3952238B2 (en) Removal method of harmful substances by photocatalyst
WO2003103834A1 (en) Method for producing composite ceramic material
WO2001021716A1 (en) PHOTOCATALYST COATING MATERIAL FOR NOx REMOVAL AND METHOD OF FORMING COATING FILM OF THE SAME
JP2003135972A (en) Porous thin film containing photocatalyst and coating agent
JP2000302422A (en) Coating composition for forming photocatalyst film
JP2001225413A (en) Photocatalyst coated metal panel and method of manufacturing the same
JP4347925B2 (en) Photocatalyst and method for producing the same
JP4629700B2 (en) Set of photocatalyst and coating composition for forming the same
JP3371104B2 (en) Photocatalyst-coated composite member excellent in photocatalytic activity and light resistance and method for producing the same
JP2000015110A (en) Photocatalytic particles

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070206