JP2005254094A - Method for manufacturing substrate with fine particles arranged on its surface, substrate manufactured by the method and article to which its surface structure is transferred - Google Patents

Method for manufacturing substrate with fine particles arranged on its surface, substrate manufactured by the method and article to which its surface structure is transferred Download PDF

Info

Publication number
JP2005254094A
JP2005254094A JP2004067186A JP2004067186A JP2005254094A JP 2005254094 A JP2005254094 A JP 2005254094A JP 2004067186 A JP2004067186 A JP 2004067186A JP 2004067186 A JP2004067186 A JP 2004067186A JP 2005254094 A JP2005254094 A JP 2005254094A
Authority
JP
Japan
Prior art keywords
substrate
fine particles
suspension
fine
transferred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004067186A
Other languages
Japanese (ja)
Inventor
Nobuyuki Moronuki
信行 諸貫
Arata Kaneko
新 金子
Junichi Ogiso
淳一 小木曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Housetec Inc
Original Assignee
Housetec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Housetec Inc filed Critical Housetec Inc
Priority to JP2004067186A priority Critical patent/JP2005254094A/en
Publication of JP2005254094A publication Critical patent/JP2005254094A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a substrate with fine particles arranged on the surface, also a method capable of regularly arranging the fine particles on the substrate and a method for manufacturing a fine particle thin film highly accurately, in a large amount and continuously. <P>SOLUTION: The method for manufacturing the substrate arranging the fine particle on the surface is characterized by immersing the substrate in a suspension containing the fine particles and withdrawing the substrate from the suspension at a predetermined angle, thereby integrating the fine particles on the substrate. The fine particle can be accumulated in a monolayer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、表面に微粒子が配列された基板の製造法、その方法により製造された表面に微粒子が配列された基板及びその基板の表面構造が転写された物品に関する。   The present invention relates to a method for producing a substrate having fine particles arranged on the surface, a substrate having fine particles arranged on the surface produced by the method, and an article to which the surface structure of the substrate is transferred.

従来より、微粒子を基板上に整列させる方法は、干渉膜、反射膜、反射防止膜、2次元マルチレンズ、調光膜等の各種光学材料、電導膜、電磁遮蔽膜、LSI用基板、半導体レーザー固体素子、光記録媒体、磁気記憶媒体等の各種電子材料、高感度感光紙等の写真材料、高機能触媒などの各種分野において有用な微粒子薄膜又は微粒子結晶化膜の大量連続製造方法に利用が期待できる技術である。
微粒子を基板上に整列させる方法としては、エマルジョンやサスペンション等の微粒子分散系から微粒子の薄膜を乾燥固化により得る分散系の方法として、スピンコート法、塗布法、ディピング法などが知られており、実用的にも一般的に用いられている。
Conventionally, methods for aligning fine particles on a substrate include various optical materials such as interference films, reflection films, antireflection films, two-dimensional multi-lenses, and light control films, conductive films, electromagnetic shielding films, LSI substrates, and semiconductor lasers. It can be used in large-scale continuous manufacturing methods of fine particle thin films or fine particle crystallized films useful in various fields such as various electronic materials such as solid elements, optical recording media, magnetic storage media, photographic materials such as high-sensitivity photosensitive paper, and high-performance catalysts. This is a promising technology.
As a method of aligning the fine particles on the substrate, a spin coating method, a coating method, a dipping method, etc. are known as a dispersion method for obtaining a thin film of fine particles by drying and solidifying from a fine particle dispersion system such as an emulsion or a suspension. It is generally used practically.

しかしながら、実情においては、このスピンコート法、塗布法およびディピング法等の微粒子分散系の薄膜作成方法の場合には、微粒子薄膜の厚さ、層数、微粒子密度を精度よく、かつ、同時に制御することは困難であった。
たとえば、スピンコート法は非常に薄い微粒子膜を作成することが可能ではあるが、その微粒子密度は非常に制御しにくいという欠点がある。
また塗布法は微粒子密度を高くすることは可能ではあるが、通常は、10μm以上の非常に厚い膜しか作成することができないという欠点がある。
However, in reality, in the case of the fine particle dispersion type thin film forming method such as the spin coating method, the coating method, and the dipping method, the thickness, the number of layers, and the fine particle density of the fine particle thin film are accurately and simultaneously controlled. It was difficult.
For example, the spin coating method can produce a very thin fine particle film, but has a drawback that the fine particle density is very difficult to control.
In addition, the coating method can increase the fine particle density, but usually has a drawback that only a very thick film of 10 μm or more can be formed.

このような欠点を解決する方法として、微粒子分散系の薄膜形成を制御する方法が提案されている(特許文献1参照)。
特許第2828386号公報
As a method for solving such a drawback, a method of controlling the formation of a fine particle dispersed thin film has been proposed (see Patent Document 1).
Japanese Patent No. 2828386

本発明は、従来の分散薄膜系に薄膜作成方法の問題点を解決するものとして、まったく異なる原理で、表面に微粒子が配列された基板の製造法であって、微粒子を基板上に規則的に配列させることも可能な方法、その方法により製造される特定の表面構造を有する基板及びその表面構造が転写された物品を提供するものである。   The present invention is a method of manufacturing a substrate in which fine particles are arrayed on the surface by a completely different principle as a solution to the problem of the thin film preparation method in the conventional dispersed thin film system, and the fine particles are regularly arranged on the substrate. The present invention provides a method that can be arranged, a substrate having a specific surface structure manufactured by the method, and an article to which the surface structure is transferred.

本発明は、次のものに関する。
1. 微粒子を含む懸濁液に基板を浸し、基板を懸濁液から所定角度で引き抜くことにより微粒子を基板上に集積することを特徴とする表面に微粒子が配列された基板の製造法。
2. 微粒子が単層で集積されることを特徴とする項1記載の表面に微粒子が配列された基板の製造法。
3. 基板が、親水部と疎水部で構成され、親水部のみに微粒子が集積されることを特徴とする項1又は項2記載の表面に微粒子が配列された基板の製造法。
4. 項1〜3のいずれかに記載の方法により製造された表面に微粒子が配列された基板。
5. 項4記載の表面に微粒子が配列された基板の表面微細構造が転写された表面を有する物品。
6. 微粒子を含む懸濁液に基板を浸し、基板を懸濁液から所定角度で引き抜くことにより微粒子を基板上に配列させることを特徴とする微粒子の配列方法。
The present invention relates to the following.
1. A method for producing a substrate in which fine particles are arranged on a surface, wherein the fine particles are accumulated on the substrate by immersing the substrate in a suspension containing the fine particles and pulling the substrate from the suspension at a predetermined angle.
2. Item 2. The method for producing a substrate in which particles are arranged on the surface according to Item 1, wherein the particles are accumulated in a single layer.
3. Item 3. The method for producing a substrate in which particles are arranged on the surface according to Item 1 or 2, wherein the substrate is composed of a hydrophilic portion and a hydrophobic portion, and the particles are accumulated only in the hydrophilic portion.
4). Item 4. A substrate in which fine particles are arranged on the surface produced by the method according to any one of Items 1 to 3.
5). An article having a surface on which a surface microstructure of a substrate in which fine particles are arranged on the surface according to Item 4 is transferred.
6). A method for arranging fine particles, comprising immersing a substrate in a suspension containing fine particles, and arranging the fine particles on the substrate by pulling the substrate out of the suspension at a predetermined angle.

本発明に係る製造法によれば、基板上に微粒子を容易に配列されることができ、特に所望の位置や向きへ規則的に整列させることができ、また、微粒子薄膜を高精度で大量に連続生産することができる。これにより製造された基板は、表面に微粒子が配列されており、種々の機能性基板として有用である。また、この基板の表面構造を転写された物品も機能性表面を有するものとして有用である。たとえば、表面に規則的凹凸を持たせ、光の回折を利用した色材や、親水や超撥水などに機能化された製品に応用することができる。   According to the production method of the present invention, the fine particles can be easily arranged on the substrate, and can be regularly aligned particularly in a desired position and orientation, and the fine particle thin film can be produced in a large amount with high accuracy. Can be produced continuously. The substrate thus produced has fine particles arranged on the surface, and is useful as various functional substrates. Further, an article to which the surface structure of the substrate is transferred is also useful as having a functional surface. For example, it can be applied to a color material that has regular irregularities on the surface and uses light diffraction, or a product that is functionalized to hydrophilicity or super water-repellency.

まず、微粒子の基板上への整列方法を説明する。
図1は、表面に微粒子が配列された基板の製造法の概要を示す図である。図1において、右の図は、左の図の四角で囲った部分の拡大図である。
図1に示すように、微粒子1を含む懸濁液2に基板3を浸し、その後、基板3を懸濁液2から一定の角度θ(図1参照)で引き抜く。このとき、水面付近では毛細管力が働くため、懸濁液2が基板3に引き付けられ、結果として微粒子1が基板3上に集積される。引き付けられた液体の膜厚は次第に薄くなるため、微粒子1は単層で集積化される。角度θはこの集積化の状況に応じて適宜決定されるが、好ましくは30〜75度の範囲から適宜選択される。集積化された微粒子1間の液体を乾燥させる過程において、微粒子1間に働く液架橋力により、微粒子1はさらに高密度に整列する。
First, a method for aligning fine particles on a substrate will be described.
FIG. 1 is a diagram showing an outline of a method for producing a substrate having fine particles arranged on the surface. In FIG. 1, the right figure is an enlarged view of a portion surrounded by a square in the left figure.
As shown in FIG. 1, the substrate 3 is immersed in the suspension 2 containing the fine particles 1, and then the substrate 3 is pulled out of the suspension 2 at a certain angle θ (see FIG. 1). At this time, since the capillary force acts near the water surface, the suspension 2 is attracted to the substrate 3, and as a result, the fine particles 1 are accumulated on the substrate 3. Since the film thickness of the attracted liquid gradually decreases, the fine particles 1 are integrated in a single layer. The angle θ is appropriately determined according to the state of integration, but is preferably selected from the range of 30 to 75 degrees. In the process of drying the liquid between the accumulated fine particles 1, the fine particles 1 are arranged at a higher density by the liquid crosslinking force acting between the fine particles 1.

本発明における微粒子1とは、平均粒径(直径)が0.3〜1.5μmのものが好ましく、より好ましくは平均粒径が0.992〜0.994μmである。材質は樹脂が一般的であり、特に大きさがそろい、水と比重が近いポリスチレン微粒子が好ましい。微粒子としては、ポリスチレン粒子以外に、ポリメチルメタクリレート等の熱可塑性樹脂の粒子等がある。   The fine particles 1 in the present invention preferably have an average particle size (diameter) of 0.3 to 1.5 μm, more preferably an average particle size of 0.992 to 0.994 μm. Resin is generally used as the material, and polystyrene fine particles having a uniform size and a specific gravity close to that of water are preferable. Examples of the fine particles include particles of thermoplastic resin such as polymethyl methacrylate in addition to polystyrene particles.

分散媒体としては、水又は水とアセトニトリル等の水溶性有機溶剤の混合物などの水性媒体が好ましい。しかし、これらに限られず、場合により有機溶媒その他の溶媒を用いてもよい。   The dispersion medium is preferably an aqueous medium such as water or a mixture of water and a water-soluble organic solvent such as acetonitrile. However, the present invention is not limited to these, and an organic solvent or other solvent may be used in some cases.

本発明における懸濁液2は、水中に微粒子1が分散されたものであり、微粒子1が体積で0.1〜10%の濃度で含まれることが好ましく、より好ましくは0.9〜1.1%である。微粒子の分散のために、必要なら、分散剤を添加してもよい。分散剤として、水溶性の高分子コロイド、難溶性リン酸塩、界面活性剤等の水性媒体に溶解又は分散するものが好ましい。水溶性高分子コロイドとしては、ポリビニルアルコール、アクリロニトリル、アルキルセルロース、カルボキシアルキルセルロース等のセルロース誘導体が挙げられる。また、難溶性リン酸塩としては、リン酸三カルシウム、リン酸マグネシウム等が挙げられる。分散剤は、樹脂粒子に対して0.1〜1重量%使用するのが好ましい。界面活性剤は、樹脂粒子に対して0.005〜0.5重量%使用することが好ましい。分散剤として難溶性リン酸塩を使用する場合は、同時に、ドデシルベンゼンスルフォン酸ソーダ等の陰イオン界面活性剤を使用することが好ましい。   The suspension 2 in the present invention is one in which the fine particles 1 are dispersed in water, and the fine particles 1 are preferably contained at a concentration of 0.1 to 10% by volume, more preferably 0.9 to 1. 1%. If necessary, a dispersing agent may be added to disperse the fine particles. The dispersant is preferably one that dissolves or disperses in an aqueous medium such as a water-soluble polymer colloid, a hardly soluble phosphate, or a surfactant. Examples of the water-soluble polymer colloid include cellulose derivatives such as polyvinyl alcohol, acrylonitrile, alkyl cellulose, and carboxyalkyl cellulose. Examples of the poorly soluble phosphate include tricalcium phosphate and magnesium phosphate. The dispersant is preferably used in an amount of 0.1 to 1% by weight based on the resin particles. It is preferable to use the surfactant in an amount of 0.005 to 0.5% by weight based on the resin particles. When using a poorly soluble phosphate as a dispersant, it is preferable to use an anionic surfactant such as sodium dodecylbenzenesulfonate at the same time.

図2は、懸濁液の媒体として、水性媒体を使用した場合、親水部4と疎水部5で構成された基板3の例である。親水部4と疎水部5が隣接して交互に配列されている。このような基板3を前記したように懸濁液2から引き抜くと、懸濁液2が親水部4にトラップされ、親水部4にのみ微粒子1が配列し、疎水部5には微粒子1が並ばない。   FIG. 2 shows an example of the substrate 3 composed of a hydrophilic part 4 and a hydrophobic part 5 when an aqueous medium is used as a suspension medium. The hydrophilic part 4 and the hydrophobic part 5 are adjacently arranged alternately. When such a substrate 3 is pulled out from the suspension 2 as described above, the suspension 2 is trapped in the hydrophilic portion 4, the fine particles 1 are arranged only in the hydrophilic portion 4, and the fine particles 1 are arranged in the hydrophobic portion 5. Absent.

本発明において、基板としては、シリコン(例えば、シリコンウェハー等)、鉄(例えば鉄板等)などの金属その他の材質のものが使用でき、形状としては任意であるが、懸濁液に浸漬しやすい形状が好ましい。
図3は、表面が親水部4と疎水部5で構成された基板3の製法を示す説明図である。シリコン6上に感光性のレジスト7を一様に塗布する。レジスト7にUV光9を選択的に照射するために、ガラスマスク8を疎水部5に相当する箇所がUV光9を通すようにパターン形成し、UV光9をレジスト7に照射し、現像すると、疎水部5に相当する箇所のレジスト7が剥がれた状態になる。さらに、一様に疎水材料10を塗布し、レジスト7を除去し、さらに親水部4に相当する箇所に親水処理して親水性膜11を作製した。
In the present invention, as the substrate, a metal or other material such as silicon (for example, a silicon wafer) or iron (for example, an iron plate) can be used, and the shape is arbitrary, but it is easy to be immersed in the suspension. Shape is preferred.
FIG. 3 is an explanatory view showing a method of manufacturing the substrate 3 whose surface is composed of the hydrophilic portion 4 and the hydrophobic portion 5. A photosensitive resist 7 is uniformly applied on the silicon 6. In order to selectively irradiate the resist 7 with the UV light 9, the glass mask 8 is patterned so that the portion corresponding to the hydrophobic portion 5 passes the UV light 9, and the resist 7 is irradiated with the UV light 9 and developed. Then, the resist 7 corresponding to the hydrophobic portion 5 is peeled off. Furthermore, the hydrophobic material 10 was applied uniformly, the resist 7 was removed, and a hydrophilic treatment was performed on a portion corresponding to the hydrophilic portion 4 to produce a hydrophilic film 11.

本発明における疎水材料10とは、平らな表面に水を静かに滴下したときの接触角が90〜150度である材料であり、特に、ポリ(トテラフルオロエチレン)(PTFE)は104〜105度で好適に用いられる。   The hydrophobic material 10 in the present invention is a material having a contact angle of 90 to 150 degrees when water is gently dropped on a flat surface. In particular, poly (terafluoroethylene) (PTFE) is 104 to 105 degrees. Is preferably used.

本発明における親水性膜11とは、シリコン表面上を酸化させ親水化し、接触角が20度以下にすることである。特にSPM処理と呼ばれる硫酸と水の比を適宜調整した溶液に所定時間浸漬させ、表面をSiO化させる処理が好ましい。 In the present invention, the hydrophilic film 11 means that the silicon surface is oxidized and hydrophilized so that the contact angle is 20 degrees or less. In particular, a treatment called SPM treatment in which a ratio of sulfuric acid and water is appropriately adjusted is immersed for a predetermined time to convert the surface into SiO 2 .

本発明における親水部4と疎水部5は隣接され交互に配列されているが、その形状や配列には特に制約がない。たとえば疎水部5を点在させ、その周囲に連続させて親水部4を配列させることもできる。   In the present invention, the hydrophilic portion 4 and the hydrophobic portion 5 are adjacent and alternately arranged, but there is no particular limitation on the shape and arrangement thereof. For example, the hydrophobic portions 5 can be scattered and the hydrophilic portions 4 can be arranged continuously around the hydrophobic portions 5.

図4は、微粒子1が整列された基板3の表面構造を転写した物品の製造の概略説明図である。基板3上の微粒子1は、基板3と微粒子1の界面や微粒子1のわずかに存在する水分子が大きな付着力として作用するため、微粒子1は基板3をたたいたり振ったりしたぐらいでは落下することはなく、この状態で、放置したり加熱するなど何らかの方法により乾燥固化させることによって、微粒子を定着させることができる。このように、表面に微粒子が配列された基板をマスター品12として使用することができる。   FIG. 4 is a schematic explanatory view of the manufacture of an article to which the surface structure of the substrate 3 on which the fine particles 1 are aligned is transferred. The fine particles 1 on the substrate 3 fall as long as the substrate 3 is struck or shaken because the water molecules present at the interface between the substrate 3 and the fine particles 1 and the water molecules slightly present in the fine particles 1 act as a large adhesion force. In this state, the fine particles can be fixed by drying and solidifying by some method such as leaving or heating. In this way, a substrate having fine particles arranged on the surface can be used as the master product 12.

マスター品12を型として表面状態を転写した物品を製造するには、ニッケルや銅を素材として電鋳法を用いて、マスター品12の表面を忠実に反転した電鋳型13を製作し、さらにこの電鋳型13で樹脂材料14を加熱しながら押し付け成形することで、電鋳型13の表面を樹脂材料14に転写し、マスター品12で得られていた通りの表面形状の製品を製造することができるのである。尚、樹脂材料14としてはポリメチルメタクリレート、ポリカーボネートなどの熱可塑性樹脂や、不飽和ポリエステル樹脂、フェノール樹脂などの熱硬化性樹脂などが用いられる。加熱する温度や加圧力などは製品によってことなる。   In order to manufacture an article in which the surface state is transferred using the master product 12 as a mold, an electroforming method 13 is produced by faithfully inverting the surface of the master product 12 by using an electroforming method using nickel or copper as a raw material. By pressing and molding the resin material 14 with the electroforming mold 13, the surface of the electroforming mold 13 can be transferred to the resin material 14 and a product having the surface shape as obtained with the master product 12 can be manufactured. It is. The resin material 14 may be a thermoplastic resin such as polymethyl methacrylate or polycarbonate, or a thermosetting resin such as an unsaturated polyester resin or a phenol resin. Heating temperature and pressure vary depending on the product.

はじめに、懸濁液2を基板3上に滴下し、親水性4と疎水性5の境界付近における微粒子1の振る舞いを調べた。図5は、その方法と結果を示す。   First, the suspension 2 was dropped on the substrate 3 to examine the behavior of the fine particles 1 near the boundary between the hydrophilicity 4 and the hydrophobicity 5. FIG. 5 shows the method and results.

親水部4と疎水部5に二分された基板3は、シリコンからなる基板にPTFEをアルゴンイオンを用いたスパッタ法により蒸着して塗布することにより疎水部に10nm厚さのPTFE層(厚さは原始間顕微鏡により確認)を形成し、この後、PTFEで被覆されなかった面は、希硫酸で表面処理した。   The substrate 3 divided into the hydrophilic portion 4 and the hydrophobic portion 5 is formed by depositing PTFE on a silicon substrate by sputtering using an argon ion and applying the PTFE layer (thickness is 10 nm) to the hydrophobic portion. After that, the surface not covered with PTFE was surface-treated with dilute sulfuric acid.

親水部4と疎水部5に二分された基板3の境界部に懸濁液2を滴下したところ、懸濁液2は表面張力により疎水部5から親水部4に引き寄せられ、濡れ拡がり、その後、水分を自然乾燥させた(図5(a)参照)。ここでは、平均粒径(直径)が0.993±0.021μmのポリスチレン微粒子を含む懸濁液(濃度1%、Duke Scientific Corporation製粒子径標準ポリスチレン)を用いた。また、気温20℃、湿度50%の環境に保たれたクリーンルームで行った。   When the suspension 2 was dropped onto the boundary portion of the substrate 3 that was divided into the hydrophilic portion 4 and the hydrophobic portion 5, the suspension 2 was attracted from the hydrophobic portion 5 to the hydrophilic portion 4 by surface tension, and spread wet, The water was naturally dried (see FIG. 5 (a)). Here, a suspension (concentration 1%, particle size standard polystyrene manufactured by Duke Scientific Corporation) containing polystyrene fine particles having an average particle diameter (diameter) of 0.993 ± 0.021 μm was used. Moreover, it carried out in the clean room kept at the temperature of 20 degreeC and the humidity of 50%.

その結果、境界に沿って、微粒子1が親水部4側に自己整列していることがわかり、微粒子列がほぼ直線性を有している(図5(b)の電子顕微鏡写真参照)。図5(b)において、右の写真は、左の写真の四角で囲った部分の拡大写真である。したがって、このように親水部4と疎水部5を配列することにより、微粒子1の自己整列位置と向きを制御できることがわかった。   As a result, it can be seen that the microparticles 1 are self-aligned along the boundary toward the hydrophilic portion 4 side, and the microparticle row is substantially linear (see the electron micrograph in FIG. 5B). In FIG.5 (b), the right photograph is an enlarged photograph of the part enclosed with the square of the left photograph. Therefore, it was found that the self-alignment position and orientation of the fine particles 1 can be controlled by arranging the hydrophilic portion 4 and the hydrophobic portion 5 in this way.

図6は、本発明に係る一実施例の基板3上での微粒子1の整列状態を示す電子顕微鏡写真である。図6において、右の写真は、左の写真の四角で囲った部分の拡大写真である。
親水部4と疎水部5の配列は、ピッチ12μm、親水部4の幅4μmとした。引き上げ角度は60度とし、引き上げ速度は3.3μm/sとした。
微粒子1は、広範囲にわたって親水部4と疎水部5の境界線に沿って整列していることがわかる。
さらに、引き上げ角度や引き上げ速度を変化させることで、微粒子の整列を変化させることができるので、角度と速度を調整することで、微粒子の供給量が調整可能になり、整列精度を向上させることができる。
FIG. 6 is an electron micrograph showing the alignment state of the fine particles 1 on the substrate 3 according to one embodiment of the present invention. In FIG. 6, the right photograph is an enlarged photograph of a portion surrounded by a square in the left photograph.
The arrangement of the hydrophilic part 4 and the hydrophobic part 5 was 12 μm in pitch and 4 μm in width of the hydrophilic part 4. The pulling angle was 60 degrees and the pulling speed was 3.3 μm / s.
It can be seen that the fine particles 1 are aligned along the boundary line between the hydrophilic portion 4 and the hydrophobic portion 5 over a wide range.
Furthermore, since the alignment of the fine particles can be changed by changing the pulling angle and the pulling speed, the supply amount of the fine particles can be adjusted by adjusting the angle and the speed, and the alignment accuracy can be improved. it can.

表面に微粒子が配列された基板の製造法の概要を示す断面図。Sectional drawing which shows the outline | summary of the manufacturing method of the board | substrate with which microparticles | fine-particles were arranged on the surface. 親水部と疎水部で構成された基板の例を示す斜視図。The perspective view which shows the example of the board | substrate comprised by the hydrophilic part and the hydrophobic part. 親水部と疎水部で構成された基板の製法を示す説明図。Explanatory drawing which shows the manufacturing method of the board | substrate comprised by the hydrophilic part and the hydrophobic part. 微粒子が整列された基板の表面構造を転写した物品の製造の概略説明図。Schematic explanatory drawing of manufacture of the article which transcribe | transferred the surface structure of the board | substrate with which microparticles | fine-particles were arranged. 懸濁液の滴下による微粒子の整列状態の試験方法及び結果を示す概略図及び電子顕微鏡写真。The schematic diagram and electron micrograph which show the test method and result of the alignment state of microparticles | fine-particles by dripping suspension. 一実施例の基板上での微粒子の整列状態を示す電子顕微鏡写真。The electron micrograph which shows the alignment state of the microparticles | fine-particles on the board | substrate of one Example.

符号の説明Explanation of symbols

1:微粒子
2:懸濁液
3:基板
4:親水部
5:疎水部
6:シリコン
7:レジスト
8:ガラスマスク
9:UV光
10:疎水材料
11:親水性膜
12:マスター品
13:電鋳型
14:樹脂材料

1: Fine particle 2: Suspension 3: Substrate 4: Hydrophilic part 5: Hydrophobic part 6: Silicon 7: Resist 8: Glass mask 9: UV light 10: Hydrophobic material 11: Hydrophilic film 12: Master product 13: Electromold 14: Resin material

Claims (6)

微粒子を含む懸濁液に基板を浸し、基板を懸濁液から所定角度で引き抜くことにより微粒子を基板上に集積することを特徴とする表面に微粒子が配列された基板の製造法。 A method for producing a substrate in which fine particles are arranged on a surface, wherein the fine particles are accumulated on the substrate by immersing the substrate in a suspension containing the fine particles and pulling the substrate from the suspension at a predetermined angle. 微粒子が単層で集積されることを特徴とする請求項1記載の表面に微粒子が配列された基板の製造法。 2. The method for producing a substrate having fine particles arranged on a surface according to claim 1, wherein the fine particles are accumulated in a single layer. 基板が、親水部と疎水部で構成され、親水部のみに微粒子が集積されることを特徴とする請求項1又は請求項2記載の表面に微粒子が配列された基板の製造法。 3. The method for producing a substrate with fine particles arranged on a surface according to claim 1, wherein the substrate comprises a hydrophilic portion and a hydrophobic portion, and the fine particles are accumulated only in the hydrophilic portion. 請求項1〜3のいずれかに記載の方法により製造された表面に微粒子が配列された基板。 A substrate having fine particles arranged on a surface produced by the method according to claim 1. 請求項4記載の表面に微粒子が配列された基板の表面微細構造が転写された表面を有する物品。 5. An article having a surface onto which a surface microstructure of a substrate having fine particles arranged on the surface is transferred. 微粒子を含む懸濁液に基板を浸し、基板を懸濁液から所定角度で引き抜くことにより微粒子を基板上に配列させることを特徴とする微粒子の配列方法。

A method for arranging fine particles, comprising immersing a substrate in a suspension containing fine particles, and arranging the fine particles on the substrate by pulling the substrate out of the suspension at a predetermined angle.

JP2004067186A 2004-03-10 2004-03-10 Method for manufacturing substrate with fine particles arranged on its surface, substrate manufactured by the method and article to which its surface structure is transferred Pending JP2005254094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004067186A JP2005254094A (en) 2004-03-10 2004-03-10 Method for manufacturing substrate with fine particles arranged on its surface, substrate manufactured by the method and article to which its surface structure is transferred

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004067186A JP2005254094A (en) 2004-03-10 2004-03-10 Method for manufacturing substrate with fine particles arranged on its surface, substrate manufactured by the method and article to which its surface structure is transferred

Publications (1)

Publication Number Publication Date
JP2005254094A true JP2005254094A (en) 2005-09-22

Family

ID=35080354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004067186A Pending JP2005254094A (en) 2004-03-10 2004-03-10 Method for manufacturing substrate with fine particles arranged on its surface, substrate manufactured by the method and article to which its surface structure is transferred

Country Status (1)

Country Link
JP (1) JP2005254094A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056571A1 (en) * 2006-11-10 2008-05-15 Panasonic Corporation Particle arranging device and particle arranging method
JP2010029791A (en) * 2008-07-29 2010-02-12 Murata Mfg Co Ltd Method for producing thin film of hyperfine particle
JP2011003579A (en) * 2009-06-16 2011-01-06 Konica Minolta Holdings Inc Method of manufacturing thin-piece element arrayed substrate, and thermoelectric conversion module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116502A (en) * 1993-08-31 1995-05-09 Res Dev Corp Of Japan Production of particulate thin film
JP2002120230A (en) * 2000-10-13 2002-04-23 Canon Inc Microstructure and method for manufacturing it
JP2003002687A (en) * 2001-06-14 2003-01-08 Kanagawa Acad Of Sci & Technol Method for forming inverse opal structure photonics crystal
JP2003181275A (en) * 2001-12-18 2003-07-02 Ricoh Co Ltd Method of forming film having arrayal fine particles
JP2003290648A (en) * 2002-04-01 2003-10-14 Ricoh Co Ltd Fine particle structure formation method
JP2004261910A (en) * 2003-02-28 2004-09-24 Moriroku Co Ltd Transferring die for nano-structure film, and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116502A (en) * 1993-08-31 1995-05-09 Res Dev Corp Of Japan Production of particulate thin film
JP2002120230A (en) * 2000-10-13 2002-04-23 Canon Inc Microstructure and method for manufacturing it
JP2003002687A (en) * 2001-06-14 2003-01-08 Kanagawa Acad Of Sci & Technol Method for forming inverse opal structure photonics crystal
JP2003181275A (en) * 2001-12-18 2003-07-02 Ricoh Co Ltd Method of forming film having arrayal fine particles
JP2003290648A (en) * 2002-04-01 2003-10-14 Ricoh Co Ltd Fine particle structure formation method
JP2004261910A (en) * 2003-02-28 2004-09-24 Moriroku Co Ltd Transferring die for nano-structure film, and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056571A1 (en) * 2006-11-10 2008-05-15 Panasonic Corporation Particle arranging device and particle arranging method
US7635500B2 (en) 2006-11-10 2009-12-22 PanasonicCorporation Particle arrangement apparatus and particle arrangement method
JP2010029791A (en) * 2008-07-29 2010-02-12 Murata Mfg Co Ltd Method for producing thin film of hyperfine particle
JP2011003579A (en) * 2009-06-16 2011-01-06 Konica Minolta Holdings Inc Method of manufacturing thin-piece element arrayed substrate, and thermoelectric conversion module

Similar Documents

Publication Publication Date Title
Yabu Fabrication of honeycomb films by the breath figure technique and their applications
US8557341B2 (en) Patterning structures using deformable substrates
Masuda et al. Self-assembly patterning of silica colloidal crystals
Choi et al. Colloidal lithographic nanopatterning via reactive ion etching
US8349241B2 (en) Method to arrange features on a substrate to replicate features having minimal dimensional variability
JP5380803B2 (en) A method for producing a non-planar single particle film, a method for producing a fine structure using the single particle film etching mask, and a fine structure obtained by the production method.
US6180239B1 (en) Microcontact printing on surfaces and derivative articles
US8445188B2 (en) Process for formation of highly uniform arrays of nano-holes and nano-pillars
US20070111366A1 (en) Mesoscale pyramids, arrays and methods of preparation
US20040065252A1 (en) Method of forming a layer on a substrate to facilitate fabrication of metrology standards
KR100930924B1 (en) Template manufacturing method for nanoimprint in nanosphere form, method for forming single layer nanosphere polymer pattern using the same and application method using the single layer nanosphere pattern
WO1996029629A9 (en) Microcontact printing on surfaces and derivative articles
TW201139286A (en) Nanoparticle film and forming method and application thereof
WO2010099805A1 (en) Highly ordered arrays of nanoholes in metallic films and methods for producing the same
JP2006334693A (en) Nanostructure, porous nanostructure, functional nanostructure, and method of manufacturing same
JP2009158478A (en) Plasmonic crystal plane light emitting body, image display device, and lighting apparatus
Dai et al. High-throughput directed self-assembly of core–shell ferrimagnetic nanoparticle arrays
Ho et al. Versatile pattern generation of periodic, high aspect ratio Si nanostructure arrays with sub-50-nm resolution on a wafer scale
Xia et al. Lithographically directed deposition of silica nanoparticles using spin coating
KR20080061267A (en) Method of fabricating nano structure and method of manufacturing magnetic disc
JP4905634B2 (en) Manufacturing method of nanoimprint mold
JP2005254094A (en) Method for manufacturing substrate with fine particles arranged on its surface, substrate manufactured by the method and article to which its surface structure is transferred
US9132445B2 (en) Highly ordered arrays of nanoholes in metallic films and methods for producing the same
KR102066988B1 (en) The metamaterial structure for tunable plasmonic resonance and its fabrication method
Huang et al. Asymmetric morphology transformation of azo molecular glass microspheres induced by polarized light

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061219

RD03 Notification of appointment of power of attorney

Effective date: 20080407

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A977 Report on retrieval

Effective date: 20090116

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Effective date: 20090327

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100511