JP2005249414A - Cross-sectional observation method for carbon nanotube - Google Patents

Cross-sectional observation method for carbon nanotube Download PDF

Info

Publication number
JP2005249414A
JP2005249414A JP2004056449A JP2004056449A JP2005249414A JP 2005249414 A JP2005249414 A JP 2005249414A JP 2004056449 A JP2004056449 A JP 2004056449A JP 2004056449 A JP2004056449 A JP 2004056449A JP 2005249414 A JP2005249414 A JP 2005249414A
Authority
JP
Japan
Prior art keywords
mesh
cnt
organic solvent
carbon nanotube
tem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004056449A
Other languages
Japanese (ja)
Inventor
Jiro Mizuno
二郎 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004056449A priority Critical patent/JP2005249414A/en
Publication of JP2005249414A publication Critical patent/JP2005249414A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cross-sectional observation method of carbon nanotubes, capable of easily placing CNT microlumps on a mesh for TEM and of easily performing cross-sectional observation of CNT, such as measurement of the tube diameter of CNT or the observation of the bundle structure of CNT. <P>SOLUTION: The cross-sectional observation method of the carbon nanotube has at least a wetting process for wetting the mesh for a transmission electron microscope with a wetting organic solvent; an arranging process for placing carbon nanotube microlumps on the mesh for the transmission electron microscope wetted with the wetting organic solvent; a solvent dripping process for dripping a dripping organic solvent on the carbon nanotube microlumps; a fixing process for drying the dripping organic solvent, to fix the carbon nanotube microlumps to the mesh for the transmission electron microscope; and an observation process for observing the cross sections of the carbon nanotube microlumps, which are fixed to the mesh for the transmission electron microscope by the transmission electron microscope. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、カーボンナノチューブの断面観察方法に関し、特にカーボンナノチューブの断面を観察可能な部位の頻度を向上させることのできるカーボンナノチューブの断面観察方法に関する。   The present invention relates to a method for observing a cross section of a carbon nanotube, and more particularly, to a method for observing a cross section of a carbon nanotube that can improve the frequency of a portion where the cross section of the carbon nanotube can be observed.

近年、ガス吸蔵材としてのカーボンナノチューブ(以下、「カーボンナノチューブ」をCNTと称することがある。)の特性が注目を集めてきている。CNTを高性能ガス吸蔵材として用いる場合、CNTのチューブ径やCNTのバンドル構造を最適化する必要がある。   In recent years, the characteristics of carbon nanotubes (hereinafter, “carbon nanotubes” are sometimes referred to as CNTs) as gas storage materials have attracted attention. When CNT is used as a high-performance gas storage material, it is necessary to optimize the CNT tube diameter and the CNT bundle structure.

透過電子顕微鏡(以下、「透過電子顕微鏡」をTEMと称することがある。)は、CNTのナノ構造を評価するのに欠くことのできない方法である。TEMにより透過電子像を得るためには、試料厚さを薄くしなければならない。このため、CNTをTEM観察する際には、通常アルコール中にCNTを超音波分散して希薄化し、これをCNT用メッシュに滴下、乾燥させて薄膜化した試料をTEM観測用試料に供する。   The transmission electron microscope (hereinafter, “transmission electron microscope” may be referred to as TEM) is an indispensable method for evaluating the nanostructure of CNT. In order to obtain a transmission electron image by TEM, the sample thickness must be reduced. For this reason, when CNTs are observed with a TEM, a sample obtained by ultrasonically dispersing CNTs in alcohol and diluting them, dropping them onto a CNT mesh and drying them to form a thin film is used as a TEM observation sample.

しかし、このようにして調製した試料では、CNTを乾燥させる際に、アルコール中ではランダム配向していたCNTが、アルコールが引けるにつれてTEM用メッシュ面に配向するように寝てしまうため、CNTの断面を観察することが困難であった。   However, in the sample prepared in this way, when the CNTs are dried, the CNTs that are randomly oriented in the alcohol sleep so that they are oriented on the TEM mesh surface as the alcohol is drawn. It was difficult to observe.

この問題を解決するため、CNT微小塊をTEM用メッシュ上に載せ、その上からメタノールを滴下することにより観測用試料を調製し、透過電子像を得る方法が報告されている(例えば、非特許文献1又は2参照。)。
A.G.リンツラー(A.G.Rinzler),外14名,「シングルウォールカーボンナノチューブの大規模精製:プロセス、プロダクト及びキャラクタリぜーション(Large−scale purification of single−wall carbon nanotubes:process,product, and characterization)」 Appl. Phys. A 67. p.29−37. S.L.ファン(S.L. Fang),外5名,「ラマン散乱による合体したシングルウォールカーボンナノチューブの研究(Raman scattering study of coalesced single walled carbon nanotubes)」 J. Mater. Res., Vol.13, No.9. p.2405−2411.
In order to solve this problem, a method for obtaining a transmission electron image by preparing a sample for observation by placing a CNT fine mass on a TEM mesh and dropping methanol on the CNT mesh has been reported (for example, non-patent). Reference 1 or 2).
A. G. Linzler, 14 others, “Large-scale purification of single-wall carbon nanotubes: process, product, terzation, and charcoal” Appl. Phys. A 67. p. 29-37. S. L. S. L. Fang, et al., "Raman scattering study of coalesced single walled carbon nanotubes" Mater. Res. , Vol. 13, no. 9. p. 2405-2411.

TEM観察用試料調製のため、CNT微小塊をTEM用メッシュ上に載せる作業は、通常ピンセットなどを用いて行われる。しかし、CNT微小塊がピンセットに付着してしまい、CNT微小塊をTEM用メッシュ上に載せることが困難であった。   In order to prepare a sample for TEM observation, the operation of placing the CNT micro-lumps on the TEM mesh is usually performed using tweezers or the like. However, the CNT minute lump adheres to the tweezers, and it is difficult to place the CNT minute lump on the TEM mesh.

そこで上記問題に鑑み、本発明は、CNT微小塊をTEM用メッシュ上に容易に載せることができ、CNTのチューブ径の測定やCNTのバンドル構造の観察等の、CNTの断面観察を容易に行うことを可能とするカーボンナノチューブの断面観察方法の提供を目的とする。   Therefore, in view of the above problems, the present invention can easily place a CNT micro-lumps on a TEM mesh, and easily perform cross-sectional observation of the CNT, such as measurement of the CNT tube diameter and observation of the CNT bundle structure. An object of the present invention is to provide a method for observing a cross section of a carbon nanotube that makes it possible.

即ち、本発明は、
<1> 少なくとも、透過電子顕微鏡用メッシュを湿潤用有機溶剤で湿らせる湿潤工程と、前記湿潤用有機溶剤で湿らせた前記透過電子顕微鏡用メッシュにカーボンナノチューブ微小塊を載せる配置工程と、前記カーボンナノチューブ微小塊に滴下用有機溶剤を滴下する溶剤滴下工程と、前記滴下用有機溶剤を乾燥して前記カーボンナノチューブ微小塊を前記透過電子顕微鏡用メッシュに固定する固定化工程と、前記透過電子顕微鏡用メッシュに固定された前記カーボンナノチューブ微小塊の断面を透過電子顕微鏡で観察する観察工程と、を有するカーボンナノチューブの断面観察方法である。
That is, the present invention
<1> At least a wetting step of moistening a transmission electron microscope mesh with a moistening organic solvent, an arrangement step of placing a carbon nanotube fine mass on the transmission electron microscope mesh moistened with the moistening organic solvent, and the carbon A solvent dropping step of dropping a dropping organic solvent on the nanotube micro-lumps, an immobilization step of drying the dropping organic solvent and fixing the carbon nanotube micro-lumps to the transmission electron microscope mesh, and the transmission electron microscope An observation step of observing a cross section of the carbon nanotube fine mass fixed to the mesh with a transmission electron microscope.

本発明によれば、CNT微小塊をTEM用メッシュ上に容易に載せることができるため、CNTの断面観察を容易に行うことができる。   According to the present invention, since the CNT minute lump can be easily placed on the TEM mesh, it is possible to easily observe the cross section of the CNT.

本発明のCNTの断面観察方法は、少なくとも、TEM用メッシュを湿潤用有機溶剤で湿らせる湿潤工程と、前記湿潤用有機溶剤で湿らせた前記TEM用メッシュにCNT微小塊を載せる配置工程と、前記CNT微小塊に滴下用有機溶剤を滴下する溶剤滴下工程と、前記滴下用有機溶剤を乾燥して前記CNT微小塊を前記TEM用メッシュに固定する固定化工程と、前記TEM用メッシュに固定された前記CNT微小塊の断面を透過電子顕微鏡で観察する観察工程とを有する。
以下、各工程について詳細に説明する。
The method for observing a cross section of a CNT of the present invention includes at least a wetting step in which a TEM mesh is moistened with a wetting organic solvent, and an arrangement step in which CNT micro-lumps are placed on the TEM mesh moistened with the wetting organic solvent, Fixed to the TEM mesh, a solvent dropping step of dropping the organic solvent for dropping on the CNT fine mass, an immobilizing step of drying the organic solvent for dropping and fixing the CNT fine mass to the TEM mesh, and the TEM mesh And an observing step of observing a cross section of the CNT minute block with a transmission electron microscope.
Hereinafter, each step will be described in detail.

−湿潤工程−
前記湿潤工程で用いられる湿潤用有機溶剤は特に限定されないが、前記湿潤用有機溶剤としては、前記TEM用メッシュに馴染むある程度の濡れ性を有し、適度に速やかに蒸発する(20℃での蒸気圧が20〜200mmHgが好ましい。)ことが好ましく、その具体例として、例えば、アルコール類、ケトン類、エーテル類及び有機塩素系溶剤等が挙げられる。これらの中でも、マイクログリッドメッシュなどに用いられているコロジョン膜に与えるダメージが少ないことからエチルアルコール、メチルアルコール、トルエン、テトラクロロエチレンが好ましい。
-Wetting process-
The wetting organic solvent used in the wetting step is not particularly limited, but the wetting organic solvent has a certain degree of wettability that is compatible with the TEM mesh and evaporates moderately and quickly (vapor at 20 ° C. The pressure is preferably 20 to 200 mmHg.), And specific examples thereof include alcohols, ketones, ethers and organic chlorine solvents. Among these, ethyl alcohol, methyl alcohol, toluene, and tetrachloroethylene are preferable because they give less damage to the colloid film used in the microgrid mesh.

湿潤用有機溶剤を用いてTEM用メッシュを湿らせる方法は特に限定されるものではないが、TEM用メッシュをろ紙上に置いた状態で湿潤用有機溶剤をTEM用メッシュに滴下することにより、TEM用メッシュ表面を濡らすのに必要な量以外の余分な湿潤用有機溶剤を吸収除去し、作業性を向上させることができるため好ましい。   The method of moistening the TEM mesh using the wetting organic solvent is not particularly limited, but by dropping the wetting organic solvent onto the TEM mesh with the TEM mesh placed on the filter paper, This is preferable because excess wet organic solvent other than the amount necessary for wetting the mesh surface can be absorbed and workability can be improved.

TEM用メッシュをろ紙上に置いた状態で湿潤用有機溶剤を滴下する際の、湿潤用有機溶剤の滴下量は、1mg以上10mg以下が好ましく、1mg以上2mg以下がさらに好ましく、1mg程度が特に好ましい。、湿潤用有機溶剤の滴下量が1mg以上10mg以下であると、湿潤用有機溶剤の滴下後TEM用メッシュに試料を載せるまでの0.5〜1.5分の間、TEM用メッシュ表面を適度な湿潤状態に保つことができるため好ましい。   When the organic solvent for wetting is dropped with the TEM mesh placed on the filter paper, the amount of the organic solvent for wetting added is preferably 1 mg to 10 mg, more preferably 1 mg to 2 mg, and particularly preferably about 1 mg. . When the amount of the organic solvent for wetting is 1 mg or more and 10 mg or less, the surface of the TEM mesh is moderated for 0.5 to 1.5 minutes after the organic solvent for wetting is dropped until the sample is placed on the TEM mesh. It is preferable because it can be kept in a wet state.

本発明に用いることのできるTEM用メッシュの種類としては、例えば、グリッドメッシュ、マイクログリッドメッシュ、プラスチック支持膜メッシュ等が挙げられる。   Examples of the type of TEM mesh that can be used in the present invention include a grid mesh, a microgrid mesh, and a plastic support membrane mesh.

−配置工程−
配置工程で用いられるCNT微小塊は、通常のTEMの測定に用いられる程度の大きさの、目視でかろうじて確認できる程度の微小なCNTの塊である。CNTの塊が大きいと、測定試料をTEMに装填したときに試料が落下する可能性がある。CNT微小塊は、CNTをピンセットなどを用いてよくほぐすことにより調製される。
-Placement process-
The CNT minute lump used in the arranging step is a minute CNT lump of a size that can be barely confirmed visually with a size that can be used for a normal TEM measurement. If the mass of CNT is large, the sample may fall when the measurement sample is loaded on the TEM. The CNT micro-lumps are prepared by loosening CNTs using tweezers or the like.

前記湿潤工程により湿らせたTEM用メッシュが乾ききらないうちに、CNT微小塊をピンセットでつまみ、これを湿らせたTEM用メッシュに接触させて素早くピンセットをTEM用メッシュからはなすことにより、TEM用メッシュにCNT微小塊を載せることができる。このとき、TEM用メッシュ面に残っている湿潤用有機溶剤がCNT微小塊に触れ、湿潤用有機溶剤の表面張力によって接着力が生じCNT微小塊がピンセットから離れるのを容易にする。   Before the TEM mesh moistened by the wetting process is completely dried, the CNT micro-lumps are picked up with tweezers and brought into contact with the moistened TEM mesh to quickly remove the tweezers from the TEM mesh. A CNT minute lump can be placed on the mesh. At this time, the wetting organic solvent remaining on the TEM mesh surface touches the CNT minute mass, and an adhesive force is generated by the surface tension of the wetting organic solvent to facilitate the separation of the CNT minute mass from the tweezers.

TEM用メッシュが完全に乾燥していると、CNT微小塊はピンセットから離れ難く、また、TEM用メッシュが濡れすぎていると湿潤用有機溶剤がCNT微小塊全体に浸透してピンセットとCNT微小塊との接触点にまで到達してしまい、この場合もCNT微小塊がピンセットから離れ難くなることがある。   When the TEM mesh is completely dry, the CNT micro-lumps are difficult to separate from the tweezers. When the TEM mesh is too wet, the wetting organic solvent penetrates the entire CNT micro-lumps and the tweezers and the CNT micro-lumps. The CNT micro-lumps may be difficult to separate from the tweezers.

そのため、前記湿潤工程によりTEM用メッシュを湿らせてから、CNT微小塊をTEM用メッシュに載せるまでの時間(乾燥時間)は、TEM用メッシュに滴下される湿潤用有機溶剤の種類及び量にもよるが、好ましくは0.5〜5分以内、さらに好ましくは0.5〜2分以内、特に好ましくは1〜1.5分以内である。0.5〜5分以内であれば、CNT微小塊をTEM用メッシュに容易に載せることができる。   Therefore, the time (drying time) from the time when the TEM mesh is moistened by the wetting process until the CNT fine mass is placed on the TEM mesh depends on the kind and amount of the wetting organic solvent dripped onto the TEM mesh. However, it is preferably within 0.5 to 5 minutes, more preferably within 0.5 to 2 minutes, and particularly preferably within 1 to 1.5 minutes. If it is within 0.5 to 5 minutes, the CNT minute lump can be easily placed on the TEM mesh.

−溶剤滴下工程−
前記配置工程においてTEM用メッシュに載せられたCNT微小塊に、滴下用有機溶剤を滴下する。滴下用有機溶剤としては、炭素材料(CNT)に馴染むある程度の親油性を有し、適度に速やかに蒸発し(20℃での蒸気圧が20〜200mmHgが好ましい。)滴下用有機溶剤が蒸発する過程で液相が引けるときにCNTを分散する作用を及ぼすだけの凝集力のある(20℃での表面張力が10〜30dyne/cmが好ましい。)ことが好ましく、具体的には、アルコール類、ケトン類、エーテル類及び有機塩素系溶剤等が挙げられる。これらの中でも、マイクログリッドメッシュなどに用いられているコロジョン膜に与えるダメージが少ないことからメチルアルコール、エチルアルコール、トルエン又はテトラクロロエチレンが好ましい。
-Solvent dripping process-
In the arrangement step, the dropping organic solvent is dropped on the CNT minute lump placed on the TEM mesh. The organic solvent for dropping has a certain degree of lipophilicity that is compatible with the carbon material (CNT), and evaporates moderately and quickly (the vapor pressure at 20 ° C. is preferably 20 to 200 mmHg), and the organic solvent for dropping evaporates. It is preferable to have a cohesive force sufficient to disperse CNTs when the liquid phase is drawn in the process (surface tension at 20 ° C. is preferably 10 to 30 dyne / cm), specifically, alcohols, Examples include ketones, ethers, and organic chlorine solvents. Among these, methyl alcohol, ethyl alcohol, toluene, or tetrachloroethylene is preferable because damage to the colloid film used for a microgrid mesh or the like is small.

滴下用有機溶剤の滴下量としては、1mg以上10mg以下が好ましく、1mg以上2mg以下がさらに好ましく、1mg程度が特に好ましい。   The amount of the organic solvent for dripping is preferably 1 mg or more and 10 mg or less, more preferably 1 mg or more and 2 mg or less, and particularly preferably about 1 mg.

CNT微小塊に滴下用有機溶剤を滴下する際、TEM用メッシュをろ紙上に置いた状態で滴下することにより、CNT微小塊の分散に必要な量以外の余分な滴下用有機溶剤を吸収除去し、分散性及び作業性を向上させることができるため好ましい。   When dropping the organic solvent for dripping onto the CNT micro-lumps, by dropping with the TEM mesh placed on the filter paper, the extra organic solvent for dripping other than the amount necessary for the dispersion of the CNT micro-lumps is absorbed and removed. , Because dispersibility and workability can be improved.

滴下された滴下用有機溶剤の大部分は、TEM用メッシュを通過してろ紙に吸い取られ、残った滴下用有機溶剤は蒸発する。これらの過程で、CNT微小塊は、CNTの断面観察を容易に行うことができる程度に分散される。   Most of the dropped organic solvent drops are absorbed by the filter paper through the TEM mesh, and the remaining dropping organic solvent evaporates. In these processes, the CNT micro-lumps are dispersed to such an extent that the cross-sectional observation of the CNT can be easily performed.

なお、前記湿潤用有機溶剤と前記滴下用有機溶剤とは、同じであっても異なっていてもよい。   The wetting organic solvent and the dropping organic solvent may be the same or different.

−固定化工程−
滴下用有機溶剤の滴下されたCNT微小塊を乾燥させることにより、TEM用メッシュのメッシュ面に平行なCNTは、ファンデルワールス力等の物理的な力でメッシュ面に接着され、CNT微小塊は全体としてTEM用メッシュに固定される。TEM用メッシュに固定されたCNT微小塊は、TEM観察に供される。
-Immobilization process-
By drying the dropped CNT fine mass of the dropping organic solvent, the CNT parallel to the mesh surface of the TEM mesh is adhered to the mesh surface by a physical force such as van der Waals force. It is fixed to the TEM mesh as a whole. The CNT minute block fixed to the TEM mesh is used for TEM observation.

上述の工程においては、微小な試料を扱うため、それらが飛散しないように適当な風防を用いることが好ましい。   In the above-mentioned process, since a minute sample is handled, it is preferable to use an appropriate windshield so that they are not scattered.

−観察工程−
上述の工程を経て調製されたCNTのTEM観察用試料を用いて、CNTの断面観察を行う。加速電圧200〜300kVの高分解のTEMを用い、TEM用メッシュ上のCNT微小塊中に存在する断面結像部位を探し、多波格子像による鮮明なコントラストを得ることができる。
-Observation process-
CNT cross-sectional observation is performed using the CNT TEM observation sample prepared through the above-described steps. Using a high-resolution TEM having an acceleration voltage of 200 to 300 kV, a cross-sectional imaging site existing in a CNT micro-lumb on the TEM mesh can be searched for, and a clear contrast by a multiwave lattice image can be obtained.

例えば、25万倍の観察倍率において、CNT微小塊中の濃淡コントラストを見極め濃い部分で焦点調整を行うと、CNTが束になったバンドル断面を高い確率で発見することができる。次に、回折コントラストによって焦点調整を行い、CNT断面の透過電子顕微鏡写真を得ることができる。   For example, at an observation magnification of 250,000 times, if the contrast of the CNT minute mass is determined and focus adjustment is performed at a dark portion, a bundle cross section in which CNTs are bundled can be found with high probability. Next, the focus is adjusted by the diffraction contrast, and a transmission electron micrograph of the CNT cross section can be obtained.

本発明のカーボンナノチューブの断面観察方法は、必要に応じてその他の工程を有していてもよい。   The carbon nanotube cross-sectional observation method of the present invention may have other steps as necessary.

以下、本発明を下記実施例に従いさらに詳細に説明するが、本発明は下記実施例により限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail according to the following Example, this invention is not limited by the following Example.

[実施例1]
工業用エチルアルコールを精密ピンセットですくい、ろ紙上に載せたTEM用メッシュに1滴(約1mg)滴下した。滴下後30秒から1分の間に、乾燥させた精密ピンセットでCNT微小塊をつかみ、これを湿潤したTEM用メッシュに近づけ、CNT微小塊を接触、移着させた。その後、精密ピンセットで工業用エチルアルコールを1〜2滴(1〜10mg程度)滴下し、TEM用メッシュ上でCNT微小塊を分散させた。その後、CNT微小塊を乾燥してTEM用メッシュ上に固定することによりTEM観察用試料を調製した。
[Example 1]
Industrial ethyl alcohol was scooped with precision tweezers, and 1 drop (about 1 mg) was dropped onto a TEM mesh placed on a filter paper. Between 30 seconds and 1 minute after the dropping, the CNT minute mass was grasped with a dry precision tweezers, and this was brought close to a wet TEM mesh to contact and transfer the CNT minute mass. Thereafter, 1 to 2 drops (about 1 to 10 mg) of industrial ethyl alcohol was dropped with precision tweezers to disperse the CNT micro-lumps on the TEM mesh. Then, the sample for TEM observation was prepared by drying and fixing on a TEM mesh the CNT minute lump.

得られたTEM観察用試料を用い、H−9000UHR(日立製、加速電圧300kV、倍率×2,000,000、フォーカス&コントラスト:回折コントラスト(多波格子像コントラスト))によりTEM写真を撮影した。図1にその結果を示す。   Using the obtained TEM observation sample, a TEM photograph was taken with H-9000UHR (manufactured by Hitachi, acceleration voltage 300 kV, magnification x 2,000,000, focus & contrast: diffraction contrast (multiwave lattice image contrast)). The result is shown in FIG.

[比較例1]
TEM用メッシュを湿潤させないで、TEM用メッシュ上にCNT微小塊を載せようとしたが、CNT微小塊を精密ピンセットからTEM用メッシュに移着させることが困難であった。CNT微小塊として、ある程度大きなものを用いれば移着させることは容易であったが、その場合、一旦TEM用メッシュ上に移着させたCNT微小塊が、TEM装置内でTEM用メッシュ表面から剥離、落下して、TEM写真を撮影できない場合があった。
[Comparative Example 1]
An attempt was made to place the CNT fine mass on the TEM mesh without wetting the TEM mesh, but it was difficult to transfer the CNT fine mass from the precision tweezers to the TEM mesh. It was easy to transfer CNT micro-lumps if they were used to some extent, but in that case, the CNT micro-lumps once transferred onto the TEM mesh were peeled off from the surface of the TEM mesh within the TEM device. In some cases, the TEM photograph could not be taken due to falling.

実施例1において観察された透過電子顕微鏡写真である。2 is a transmission electron micrograph observed in Example 1. FIG.

Claims (1)

少なくとも、透過電子顕微鏡用メッシュを湿潤用有機溶剤で湿らせる湿潤工程と、
前記湿潤用有機溶剤で湿らせた前記透過電子顕微鏡用メッシュにカーボンナノチューブ微小塊を載せる配置工程と、
前記カーボンナノチューブ微小塊に滴下用有機溶剤を滴下する溶剤滴下工程と、
前記滴下用有機溶剤を乾燥して前記カーボンナノチューブ微小塊を前記透過電子顕微鏡用メッシュに固定する固定化工程と、
前記透過電子顕微鏡用メッシュに固定された前記カーボンナノチューブ微小塊の断面を透過電子顕微鏡で観察する観察工程と、
を有するカーボンナノチューブの断面観察方法。
At least a wetting step of wetting the transmission electron microscope mesh with a wetting organic solvent;
An arrangement step of placing the carbon nanotube micro-lumps on the transmission electron microscope mesh moistened with the wet organic solvent;
A solvent dropping step of dropping an organic solvent for dropping into the carbon nanotube micro-lumps;
An immobilization step of drying the organic solvent for dripping and fixing the carbon nanotube fine mass to the mesh for transmission electron microscope;
An observation step of observing a cross-section of the carbon nanotube fine mass fixed to the mesh for the transmission electron microscope with a transmission electron microscope;
Sectional observation method of carbon nanotube having
JP2004056449A 2004-03-01 2004-03-01 Cross-sectional observation method for carbon nanotube Pending JP2005249414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004056449A JP2005249414A (en) 2004-03-01 2004-03-01 Cross-sectional observation method for carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004056449A JP2005249414A (en) 2004-03-01 2004-03-01 Cross-sectional observation method for carbon nanotube

Publications (1)

Publication Number Publication Date
JP2005249414A true JP2005249414A (en) 2005-09-15

Family

ID=35030038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004056449A Pending JP2005249414A (en) 2004-03-01 2004-03-01 Cross-sectional observation method for carbon nanotube

Country Status (1)

Country Link
JP (1) JP2005249414A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8253122B2 (en) 2009-09-11 2012-08-28 Tsinghua University Infrared physiotherapeutic apparatus
US8278604B2 (en) 2009-08-14 2012-10-02 Tsinghua University Carbon nanotube heater-equipped electric oven
US8288723B2 (en) * 2007-03-30 2012-10-16 Beijing Funate Innovation Technology Co., Ltd. Transmission electron microscope micro-grid and method for making the same
US8294098B2 (en) 2007-03-30 2012-10-23 Tsinghua University Transmission electron microscope micro-grid
US8357881B2 (en) 2009-08-14 2013-01-22 Tsinghua University Carbon nanotube fabric and heater adopting the same
CN103862064A (en) * 2014-03-05 2014-06-18 东南大学 Method for quickly preparing lithium nanometer structure
US8841588B2 (en) 2009-03-27 2014-09-23 Tsinghua University Heater
JP2016156823A (en) * 2015-02-25 2016-09-01 エフ イー アイ カンパニFei Company Preparation of sample for charged-particle microscopy
CN114689414A (en) * 2022-04-13 2022-07-01 浙江大学 Transmission electron microscope carrier net with special structure and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8288723B2 (en) * 2007-03-30 2012-10-16 Beijing Funate Innovation Technology Co., Ltd. Transmission electron microscope micro-grid and method for making the same
US8294098B2 (en) 2007-03-30 2012-10-23 Tsinghua University Transmission electron microscope micro-grid
US8841588B2 (en) 2009-03-27 2014-09-23 Tsinghua University Heater
US8278604B2 (en) 2009-08-14 2012-10-02 Tsinghua University Carbon nanotube heater-equipped electric oven
US8357881B2 (en) 2009-08-14 2013-01-22 Tsinghua University Carbon nanotube fabric and heater adopting the same
US8253122B2 (en) 2009-09-11 2012-08-28 Tsinghua University Infrared physiotherapeutic apparatus
CN103862064A (en) * 2014-03-05 2014-06-18 东南大学 Method for quickly preparing lithium nanometer structure
JP2016156823A (en) * 2015-02-25 2016-09-01 エフ イー アイ カンパニFei Company Preparation of sample for charged-particle microscopy
CN114689414A (en) * 2022-04-13 2022-07-01 浙江大学 Transmission electron microscope carrier net with special structure and preparation method thereof
CN114689414B (en) * 2022-04-13 2022-11-18 浙江大学 Transmission electron microscope carrier net with special structure and preparation method thereof

Similar Documents

Publication Publication Date Title
CN101276724B (en) Transmission electron microscope micro grid and preparing method thereof
US8623227B2 (en) Transmission electron microscope grid and method for making same
Hart et al. Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin-film catalyst
CN101284662B (en) Preparing process for carbon nano-tube membrane
KR100988577B1 (en) Method of fabrication of graphene nano-sheets from turbostratic structure and graphene nano-sheets
US7854991B2 (en) Single-walled carbon nanotube and aligned single-walled carbon nanotube bulk structure, and their production process, production apparatus and application use
JP4817296B2 (en) Aligned carbon nanotube bulk aggregate and method for producing the same
US8454924B2 (en) Method for making cohesive assemblies of carbon
JP2005249414A (en) Cross-sectional observation method for carbon nanotube
Chikkannanavar et al. Synthesis of peapods using substrate-grown SWNTs and DWNTs: an enabling step toward peapod devices
Sato et al. Purification of MWNTs combining wet grinding, hydrothermal treatment, and oxidation
TWI329095B (en) Transmission electron microscope grid and method for making same
Tian et al. Direct growth of Si nanowires on flexible organic substrates
CN110729162B (en) High-mesh-number micro grid loading net for transmission electron microscope characterization and preparation method thereof
Cook et al. MEMS process compatibility of multiwall carbon nanotubes
Caplovicova et al. An alternative approach to carbon nanotube sample preparation for TEM investigation
Tieu et al. Study to fabricate the large scale buckypaper based on carbon nanotubes
Asghari et al. Enrichment of solution-processable single-walled carbon nanotubes for flexible nanoelectronics
Wang et al. Growth of single-walled carbon nanotubes on porous silicon
CN113880074B (en) Horizontal super-directional carbon nanotube bundle array and soft-locking spinning preparation method thereof
Lee et al. Low temperature growth of single-walled carbon nanotube forest
Namura et al. Characterization of Silver Nanoparticle‐Decorated Single‐Walled Carbon Nanotube Films
JP2017528413A (en) Method for growing vertically aligned single-walled carbon nanotubes having the same electrical characteristics, and method for replicating single-walled carbon nanotubes having the same electrical characteristics
CN106698390A (en) Method for large-scale preparation of large-size self-supporting carbon tubes
Li et al. Ethanol induced formation of graphene fractions suspended in acetonitrile