JP2005236171A - Solid electrolytic capacitor and manufacturing method thereof - Google Patents

Solid electrolytic capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP2005236171A
JP2005236171A JP2004045890A JP2004045890A JP2005236171A JP 2005236171 A JP2005236171 A JP 2005236171A JP 2004045890 A JP2004045890 A JP 2004045890A JP 2004045890 A JP2004045890 A JP 2004045890A JP 2005236171 A JP2005236171 A JP 2005236171A
Authority
JP
Japan
Prior art keywords
anode lead
solid electrolytic
terminal
metal
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004045890A
Other languages
Japanese (ja)
Inventor
Mikio Kobashi
幹生 小橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004045890A priority Critical patent/JP2005236171A/en
Publication of JP2005236171A publication Critical patent/JP2005236171A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chip type solid electrolytic capacitor with a large capacity and with no increase in mounting area, and its manufacturing method. <P>SOLUTION: A flat capacitor element 1 comprises a positive electrode lead-out part 4 and an element 3 where a positive electrode oxide film layer which is a dielectric, a solid electrolyte layer containing a conductive polymer, and a negative electrode conductor layer are sequentially laminated on the surface of a metal electrode body. At least two of them are laminated on both front and rear surfaces of metal element terminal components 8a and 8b and positive electrode lead-out terminal components 9a and 9b abutted for connection with the electrodes. A negative electrode is connected using a conductive adhesive, and the positive electrode lead-out is held by the terminal component 9a and 9b and then electrically connected by laser welding. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、大容量および低等価直列抵抗(以下低ESRと称す)を実現できる固体電解コンデンサおよびその製造方法に関するものである。   The present invention relates to a solid electrolytic capacitor capable of realizing a large capacity and low equivalent series resistance (hereinafter referred to as low ESR), and a method for manufacturing the same.

近年、電子機器の小型化・高周波化が進み、使用されるコンデンサも高周波で低インピーダンスが実現できる導電性高分子を固体電解質に用いた固体電解コンデンサが商品化されてきている。そして、この固体電解コンデンサは高導電率の導電性高分子を固体電解質として使用しているため、従来の駆動用電解液を用いた乾式電解コンデンサや二酸化マンガンを用いた固体電解コンデンサに比べて等価直列抵抗成分が低く、理想に近い大容量でかつ小型の固体電解コンデンサを実現できることから、さまざまな構造や改善がなされ、次第に市場にも受け入れられるようになってきた。   In recent years, electronic devices have become smaller and higher in frequency, and solid electrolytic capacitors using conductive polymers capable of realizing high impedance and low impedance as a solid electrolyte have been commercialized. Since this solid electrolytic capacitor uses a high-conductivity conductive polymer as the solid electrolyte, it is equivalent to conventional dry electrolytic capacitors using driving electrolytes and solid electrolytic capacitors using manganese dioxide. Since it has a low series resistance component and can realize a small-sized solid electrolytic capacitor with a capacity close to the ideal, various structures and improvements have been made, and it has gradually been accepted by the market.

また、コンピュータのCPUの省電力化と高速化に伴い、コンデンサに対して高速過渡応答性が必要とされ、大容量でかつ低ESRであることが必須の要件となってきており、これらの要望に対し、実装時の占有面積をできるだけ抑制したままで大容量化と低ESR化を図るために、複数枚の平板状のコンデンサ素子をリード端子の表裏両面に積層し接続した構造の固体電解コンデンサを構成する技術が開発されている。   In addition, with the power saving and speeding up of computer CPUs, high-speed transient response is required for capacitors, and large capacity and low ESR have become essential requirements. On the other hand, a solid electrolytic capacitor having a structure in which a plurality of flat capacitor elements are stacked and connected on both the front and back surfaces of the lead terminal in order to increase the capacity and reduce the ESR while suppressing the occupied area during mounting as much as possible. Have been developed.

なお、この出願に関する先行技術文献情報としては、例えば、特許文献1が知られている。
特開2000−138138号公報
As prior art document information relating to this application, for example, Patent Document 1 is known.
JP 2000-138138 A

しかしながら上記複数枚の平板状のコンデンサ素子をリード端子の表裏両面に積層し接続した構造のものに関しては、平板状のコンデンサ素子を一枚積層するたびに陽極引き出し部と端子部品を抵抗溶接により接続を行っている。接続状態を確認する方法としては溶接時の電流の管理、定期的な溶接電極の交換等により行っているが、材料の微妙な変化により溶接状態が変化して接続強度が弱くなり接続不良が発生、また積層数を増やすほど管理が難しく積層枚数を多くできないという問題点があった。   However, in the case of a structure in which a plurality of flat capacitor elements are stacked and connected on both the front and back surfaces of the lead terminal, the anode lead part and the terminal component are connected by resistance welding each time one flat capacitor element is stacked. It is carried out. The connection status is checked by managing the current during welding and periodically replacing the welding electrode. However, slight changes in the material change the welding status and weaken the connection strength, resulting in poor connection. In addition, there is a problem that as the number of stacked layers is increased, management is difficult and the number of stacked layers cannot be increased.

本発明はこのような従来の課題を解決しようとするものであり、大容量でしかも低ESRの固体電解コンデンサおよびその製造方法を提供することを目的とするものである。   The present invention is intended to solve such a conventional problem, and an object of the present invention is to provide a solid electrolytic capacitor having a large capacity and low ESR and a method for manufacturing the same.

前記課題を解決するために本発明は以下の構成を有する。   In order to solve the above problems, the present invention has the following configuration.

本発明の請求項1に記載の発明は、特に、金属電極体の表面に誘電体となる陽極酸化皮膜層、導電性高分子を含む固体電解質層、陰極導電体層を順次積層した素子部ならびに陽極引き出し部を有する平板状のコンデンサ素子を、各電極にそれぞれ当接して接続される金属製の端子部品の表裏両面に少なくとも2枚以上の複数枚積層し、陰極を導電性接着剤にて接続、陽極引き出し部は端子部品で保持したあとレーザ溶接により電気的に接続するという構成を有しており、これにより積層する平板状のコンデンサ素子の陽極引き出し部と金属製の端子部品との電気的接続の強度と信頼性を高め、金属製の端子部品の表裏両面に積層する枚数を増やすことができるようになり大容量でかつ低ESRの固体電解コンデンサを提供することができるという作用効果が得られる。   The invention according to claim 1 of the present invention particularly includes an element portion in which an anodized film layer serving as a dielectric, a solid electrolyte layer containing a conductive polymer, and a cathode conductor layer are sequentially laminated on the surface of a metal electrode body; Laminate at least two flat capacitor elements with anode lead-out parts on both front and back surfaces of metal terminal parts that are in contact with each electrode and connect the cathode with a conductive adhesive The anode lead-out portion is configured to be electrically connected by laser welding after being held by the terminal component, whereby the electrical connection between the anode lead-out portion of the laminated plate-like capacitor element and the metal terminal component is achieved. When the strength and reliability of connection can be improved and the number of metal terminal parts stacked on both the front and back sides can be increased, and a large-capacity and low ESR solid electrolytic capacitor can be provided. Cormorants effect can be obtained.

本発明の請求項2に記載の発明は、請求項1に記載の発明において、特に、積層した陽極引き出し部のレーザ溶接に対し、レーザ照射側とは反対側にレーザ溶接による金属の溶融痕が確認できるように、積層した陽極引き出し部を保持する金属製の端子部を表裏で横方向に位相をずらして端子部品を形成するという構成を有している。接続が確実にできていればレーザ照射側とは反対側の端子面に金属の溶融痕が確認でき、接続が不充分の場合は溶融痕が確認できない。これにより積層する平板状のコンデンサ素子の陽極引き出し部と金属製の端子部品との接続の良否を溶融痕の有無で確実に判別できるという作用効果が得られる。   The invention according to the second aspect of the present invention is the invention according to the first aspect, in particular, in the laser welding of the laminated anode lead portion, there is a metal melting mark by laser welding on the side opposite to the laser irradiation side. As can be confirmed, the terminal part is formed by shifting the phase of the metal terminal part holding the laminated anode lead part from the front and back in the lateral direction. If the connection is made securely, a metal melting mark can be confirmed on the terminal surface opposite to the laser irradiation side, and if the connection is insufficient, the melting mark cannot be confirmed. As a result, it is possible to obtain an effect that the quality of the connection between the anode lead portion of the laminated plate-like capacitor element and the metal terminal component can be reliably determined based on the presence or absence of the melt mark.

本発明の請求項3に記載の発明は、請求項1に記載の発明において、特に平板状のコンデンサ素子の各電極にそれぞれ当接して接続される金属製の端子部品をリードフレームにて一体に形成および供給するという構成を有しており、これにより連続搬送など生産工程の自動化が可能になるという作用効果が得られる。   According to a third aspect of the present invention, in the first aspect of the present invention, in particular, a metal terminal component connected in contact with each electrode of a plate-like capacitor element is integrated with a lead frame. It has a configuration of forming and supplying, and this brings about an effect that the production process such as continuous conveyance can be automated.

本発明の請求項4に記載の発明は、特に弁作用を有する金属電極体の表面の少なくとも素子部となる部分全体に陽極酸化により誘電体となる陽極酸化皮膜層を形成し、この陽極酸化皮膜層上に少なくとも導電性高分子を含む固体電解質層および陰極導電体層を準じ形成して素子部を形成すると共に、上記金属電極体もしくは誘電体酸化皮膜層が露出した陽極引き出し部を形成して平板状のコンデンサ素子を作成し、この平板状のコンデンサ素子を対向する端子部品となる端子部を有するリードフレームの表裏に複数枚積層して、上記陰極導電体層は導電性接着剤にて陽極引き出し部はレーザ溶接にて、それぞれ上記端子部に電気的に接続する製造方法としており、陽極引き出し部と端子部品との電気的接続の強度と信頼性を高め、端子部品の両面に積層する枚数を増やすことができ、また、従来の積層型コンデンサの製造工程をそのまま用いて製造することができ、新しい投資を必要としないという作用効果を有する。   According to the fourth aspect of the present invention, an anodized film layer serving as a dielectric is formed by anodic oxidation on at least the entire portion of the surface of the metal electrode body having a valve action. A solid electrolyte layer containing at least a conductive polymer and a cathode conductor layer are formed on the layer in accordance with an element portion, and an anode lead portion with the metal electrode body or dielectric oxide film layer exposed is formed. A plate-shaped capacitor element is prepared, and a plurality of the plate-shaped capacitor elements are laminated on the front and back of a lead frame having terminal portions that are opposed terminal parts, and the cathode conductor layer is anoded with a conductive adhesive. The lead part is a manufacturing method in which the lead part is electrically connected to the terminal part by laser welding, and the strength and reliability of the electrical connection between the anode lead part and the terminal part are increased. Can increase the number of laminating the surface, also fabrication process of the multilayer capacitor can be made to produce directly used, has the effect that does not require new investments.

本発明は、陽極引き出し部を端子部品で保持したあとレーザ溶接により電気的に接続し、端子部品のレーザ照射側の反対側に形成される溶融痕の有無を確認することにより、陽極引き出し部と端子部品の接続の良否を容易に判別することができる構成を備えることにより、積層する平板状のコンデンサ素子の陽極引き出し部と金属製の端子部品との電気的接続の強度と信頼性を高め、金属製の端子部品の表裏両面に積層する枚数を増やすことができるようになり大容量でかつ低ESRの固体電解コンデンサを提供することができるという効果を奏するものである。   In the present invention, the anode lead-out portion is held by the terminal component and then electrically connected by laser welding, and the presence or absence of a melting mark formed on the opposite side of the terminal component to the laser irradiation side is confirmed. By providing a configuration that can easily determine the quality of the connection of the terminal component, the strength and reliability of the electrical connection between the anode lead portion of the laminated plate-like capacitor element and the metal terminal component are increased, This makes it possible to increase the number of metal terminal parts to be laminated on both the front and back surfaces, and to provide a solid electrolytic capacitor having a large capacity and a low ESR.

(実施の形態1)
以下、実施の形態1を用いて、本発明の特に請求項1〜4に記載の発明について説明する。
(Embodiment 1)
Hereinafter, the invention described in the first to fourth aspects of the present invention will be described using the first embodiment.

図1は、本発明の実施の形態1における固体電解コンデンサの平板状のコンデンサ素子を示す一部切欠斜視図、図2は、同固体電解コンデンサの金属製リードフレームに形成した端子部品を示す斜視図、図3は、同固体電解コンデンサの金属製リードフレームに形成した端子部品の片面にコンデンサ素子を積層した状態の構造を示す斜視図、図4は、同固体電解コンデンサの金属製リードフレームに形成した端子部品の両面にコンデンサ素子を積層した状態の構造を示す斜視図、図5は、同固体電解コンデンサの陽極引き出し部の接続を示す工程図、図6は、同固体電解コンデンサの連続フープ形の金属製リードフレームに形成した端子部品の両面にコンデンサ素子を積層した状態の構造を示す斜視図である。   1 is a partially cutaway perspective view showing a flat capacitor element of a solid electrolytic capacitor according to Embodiment 1 of the present invention, and FIG. 2 is a perspective view showing terminal parts formed on a metal lead frame of the solid electrolytic capacitor. FIG. 3 is a perspective view showing a structure in which capacitor elements are laminated on one side of a terminal component formed on the metal lead frame of the solid electrolytic capacitor, and FIG. 4 is a diagram of the metal lead frame of the solid electrolytic capacitor. FIG. 5 is a perspective view showing a structure in which capacitor elements are laminated on both surfaces of the formed terminal component, FIG. 5 is a process diagram showing connection of the anode lead portion of the solid electrolytic capacitor, and FIG. 6 is a continuous hoop of the solid electrolytic capacitor. It is a perspective view which shows the structure of the state which laminated | stacked the capacitor | condenser element on both surfaces of the terminal component formed in the shape metal lead frame.

まず、電極体となる純度99.99%のアルミニウム箔を公知の方法である電解エッチングにより粗面化した後、3%のアジピン酸アンモニウム水溶液中で13Vの電圧を印加して30分間化成し、誘電体となる酸化アルミニウムの化成皮膜を形成する。このようにして作製した電極体を例えば幅3.5mm、長さ6.5mmに切断し、図1に示すように所定の位置にポリイミド粘着テープ2を表裏面の両側から貼り付けて素子部3と陽極引き出し部4とに分け、前記切断により発生した断面部分を、再び3%のアジピン酸アンモニウム水溶液中で13Vの電圧を印加し、断面を30分間化成してから、素子部3に硝酸マンガン水溶液をディップして300℃で熱分解し、導電性のマンガン酸化物層を形成する。さらに、ピロール0.1モルとアルキルナフタレンスルフォン酸塩0.15モルを含有する水溶液中に浸漬し、マンガン酸化物上の一部に作用電極を接触させて2Vの定電圧で30分間電解重合させ、ポリピロールの導電性高分子層5を均一に析出させる。以上のようにして作製した金属電極体であるコンデンサ素子1の素子部3に、カーボンペイント層6および銀ペイント層7を形成して、図1に示すような平板状のコンデンサ素子1を製作した。   First, an aluminum foil having a purity of 99.99% to be an electrode body is roughened by electrolytic etching which is a known method, and then a voltage of 13 V is applied in a 3% ammonium adipate aqueous solution to form for 30 minutes. A chemical conversion film of aluminum oxide serving as a dielectric is formed. The electrode body thus fabricated is cut into, for example, a width of 3.5 mm and a length of 6.5 mm, and a polyimide adhesive tape 2 is attached to a predetermined position from both sides of the front and back as shown in FIG. And the anode lead-out portion 4, and the cross-sectional portion generated by the cutting was again applied with a voltage of 13 V in a 3% ammonium adipate aqueous solution to form a cross-section for 30 minutes. The aqueous solution is dipped and thermally decomposed at 300 ° C. to form a conductive manganese oxide layer. Furthermore, it was immersed in an aqueous solution containing 0.1 mol of pyrrole and 0.15 mol of alkyl naphthalene sulfonate, and a working electrode was brought into contact with a portion of the manganese oxide, and electropolymerized at a constant voltage of 2 V for 30 minutes. The polypyrrole conductive polymer layer 5 is uniformly deposited. A carbon paint layer 6 and a silver paint layer 7 are formed on the element portion 3 of the capacitor element 1 which is a metal electrode body manufactured as described above, and a flat capacitor element 1 as shown in FIG. 1 is manufactured. .

金属製リードフレーム14としては図2に示すように平板状のコンデンサ素子1を表裏両面に積層できるよう、素子部3を載せ表裏で千鳥配列になるガイドを設けた素子部用の端子部品8a,8bと、ガイド状の部分の2次加工により陽極引き出し部4を包み込むように加工できる部分を表裏で横方向に位相をずらした陽極引き出し部用の端子部品9a,9bを形成したものを作製した。   As shown in FIG. 2, the metal lead frame 14 is a terminal component 8a for an element portion provided with guides arranged in a staggered arrangement on the front and back so that the flat capacitor element 1 can be laminated on both sides. 8b and a part that can be processed so as to wrap the anode lead part 4 by secondary processing of the guide-like part, and formed the terminal parts 9a and 9b for the anode lead part with the phases shifted in the horizontal direction on the front and back sides were produced. .

金属製リードフレーム14の表側に上記にして作製した平板状のコンデンサ素子1を図3に示すように、素子部3には導電性接着剤として銀ペイントを塗布した後、素子部用の端子部品8aに接着し、陽極引き出し部4は陽極引き出し部用の端子部品9aのガイド部にはめ込む。これを繰り返し素子部3どうしが重なりあうように積層すると同時に、陽極引き出し部4どうしが重なるように4枚を積層する。陽極引き出し部用の端子部品9aは陽極引き出し部4を包み込むようにガイド部を2次加工した後、端子部品9aの上から積層されたコンデンサ素子1の陽極引き出し部4を貫くような方向にYAGレーザ照射位置11aにYAGレーザを照射して溶接することで4枚のコンデンサ素子1を電気的に接続する。この時、図5に示すように端子部品9aのレーザ照射側の反対側に形成される溶融痕12aの有無を認識カメラ13にて確認することにより、金属製リードフレーム14の表側に積層されたコンデンサ素子の陽極引き出し部4と端子部品9aの接続の良否を確実に判別することができる。   As shown in FIG. 3, the plate-like capacitor element 1 produced as described above on the front side of the metal lead frame 14 is coated with silver paint as a conductive adhesive on the element part 3, and then a terminal component for the element part. Adhering to 8a, the anode lead portion 4 is fitted into the guide portion of the terminal component 9a for the anode lead portion. This is repeated so that the element portions 3 are stacked so as to overlap each other, and at the same time, four layers are stacked so that the anode lead portions 4 overlap each other. The terminal part 9a for the anode lead part is YAG in a direction so as to penetrate the anode lead part 4 of the capacitor element 1 laminated from above the terminal part 9a after secondary processing of the guide part so as to wrap the anode lead part 4 The four capacitor elements 1 are electrically connected by irradiating and welding the YAG laser to the laser irradiation position 11a. At this time, as shown in FIG. 5, the recognition camera 13 was used to confirm the presence or absence of a melting mark 12a formed on the side opposite to the laser irradiation side of the terminal component 9a, so that the metal lead frame 14 was laminated on the front side. The quality of the connection between the anode lead part 4 of the capacitor element and the terminal component 9a can be reliably determined.

次に金属製リードフレーム14を天地逆にひっくり返し、表面と同様に、平板状のコンデンサ素子1を図4に示すように、素子部3には導電性接着剤として銀ペイントを塗布した後、素子部用の端子部品8bに接着し、陽極引き出し部4は陽極引き出し部用の端子部品9bのガイド部にはめ込む。これを繰り返し素子部3どうしが重なりあうように積層すると同時に、陽極引き出し部4どうしが重なるように4枚を積層する。陽極引き出し部用の端子部品9bは陽極引き出し部4を包み込むようにガイド部を2次加工した後、端子部品9bの上から積層されたコンデンサ素子1の陽極引き出し部4を貫くような方向にYAGレーザ照射位置bにYAGレーザを照射して溶接することで4枚のコンデンサ素子1を電気的に接続する。この時、図5に示すように端子部品9bのレーザ照射側の反対側に形成される溶融痕12bの有無を認識カメラ13にて確認することにより、金属製リードフレーム14の表側に積層されたコンデンサ素子の陽極引き出し部4と端子部品9bの接続の良否を確実に判別することができる。   Next, the metal lead frame 14 is turned upside down, and, like the surface, the flat capacitor element 1 is coated with silver paint as a conductive adhesive on the element portion 3 as shown in FIG. Adhering to the terminal part 8b for the element part, the anode lead part 4 is fitted into the guide part of the terminal part 9b for the anode lead part. This is repeated so that the element portions 3 are stacked so as to overlap each other, and at the same time, four layers are stacked so that the anode lead portions 4 overlap each other. The terminal part 9b for the anode lead part is YAG in a direction that penetrates the anode lead part 4 of the capacitor element 1 laminated from above the terminal part 9b after secondary processing of the guide part so as to wrap the anode lead part 4 The four capacitor elements 1 are electrically connected by irradiating and welding the YAG laser to the laser irradiation position b. At this time, as shown in FIG. 5, the recognition camera 13 was used to confirm the presence or absence of a melting mark 12 b formed on the side opposite to the laser irradiation side of the terminal component 9 b, so that the metal lead frame 14 was laminated on the front side. The quality of the connection between the anode lead part 4 of the capacitor element and the terminal component 9b can be reliably determined.

その後さらに外装樹脂によって全体を外装し(図示せず)、エージングした後、金属製リードフレーム14から切り離し外装樹脂に沿ってコム端子10a,10bを曲げ加工して定格6.3V、112μFの固体コンデンサを製作した。   Thereafter, the whole is further packaged with an exterior resin (not shown), aged, and then separated from the metal lead frame 14 and the comb terminals 10a and 10b are bent along the exterior resin to obtain a solid capacitor having a rating of 6.3 V and 112 μF. Was made.

以上のように本実施の形態における固体コンデンサでは、端子部品のレーザ照射側の反対側に形成される溶融痕の有無を確認することにより、陽極引き出し部と端子部品の接続の良否を容易に判別することができるので、コンデンサ素子の積層数を容易に増やすことができるという効果を奏するものである。   As described above, in the solid capacitor according to the present embodiment, it is possible to easily determine whether the anode lead portion and the terminal component are connected or not by checking the presence or absence of a melting mark formed on the side opposite to the laser irradiation side of the terminal component. Therefore, there is an effect that the number of stacked capacitor elements can be easily increased.

図6は金属製リードフレーム14を連続フープ形状にした構成にしてあり、これにより連続搬送の従来の積層形コンデンサ製造工程にそのまま流すことができるという効果を奏するものである。   FIG. 6 shows a configuration in which the metal lead frame 14 is formed into a continuous hoop shape, which has the effect that it can be directly applied to the conventional multilayer capacitor manufacturing process for continuous conveyance.

本発明の固体電解コンデンサ及びその製造方法は、端子部品のレーザ照射側の反対側に形成される溶融痕の有無を確認することにより、陽極引き出し部と端子部品の接続の良否を容易に判別することができ、積層する平板状のコンデンサ素子の陽極引き出し部と金属製の端子部品との電気的接続の強度と信頼性を高め、金属製の端子部品の表裏両面に積層する枚数を増やすことができるという効果を有し、大容量および低ESRを実現する固体電解コンデンサ及びその製造方法などの用途に有用である。   The solid electrolytic capacitor and the manufacturing method thereof according to the present invention can easily determine whether the anode lead portion is connected to the terminal component by checking the presence or absence of a melting mark formed on the side opposite to the laser irradiation side of the terminal component. It is possible to increase the strength and reliability of the electrical connection between the anode lead part of the flat plate capacitor element to be laminated and the metal terminal part, and to increase the number of laminated on both the front and back sides of the metal terminal part. This is useful for applications such as a solid electrolytic capacitor having a large capacity and low ESR and a method for manufacturing the same.

本発明の実施の形態1における平板状のコンデンサ素子を示す一部切欠き斜視図1 is a partially cutaway perspective view showing a flat capacitor element according to Embodiment 1 of the present invention. 本発明の実施の形態1における金属製リードフレームに形成した端子部品を示す斜視図The perspective view which shows the terminal component formed in the metal lead frame in Embodiment 1 of this invention 本発明の実施の形態1における金属製リードフレームに形成した端子部品の片面にコンデンサ素子を積層した状態の構造を示す斜視図The perspective view which shows the structure of the state which laminated | stacked the capacitor element on the single side | surface of the terminal components formed in the metal lead frame in Embodiment 1 of this invention. 本発明の実施の形態1における金属製リードフレームに形成した端子部品の両面にコンデンサ素子を積層した状態の構造を示す斜視図The perspective view which shows the structure of the state which laminated | stacked the capacitor element on both surfaces of the terminal component formed in the metal lead frame in Embodiment 1 of this invention. 本発明の実施の形態1における陽極引き出し部の接続を示す工程図Process drawing which shows the connection of the anode drawer part in Embodiment 1 of this invention 本発明の実施の形態1における連続フープ形状の金属製リードフレームに形成した端子部品の両面にコンデンサ素子を積層した状態の構造を示す斜視図The perspective view which shows the structure of the state which laminated | stacked the capacitor | condenser element on both surfaces of the terminal component formed in the continuous hoop-shaped metal lead frame in Embodiment 1 of this invention.

符号の説明Explanation of symbols

1 コンデンサ素子
2 ポリイミド粘着テープ
3 素子部
4 陽極引き出し部
5 導電性高分子層
6 カーボンペイント層
7 銀ペイント層
8a,8b 素子部端子部品
9a,9b 陽極引き出し部端子部品
10a,10b コム端子
11a,11b YAGレーザ照射位置
12a,12b 溶融痕
13 認識カメラ
14 金属製リードフレーム
DESCRIPTION OF SYMBOLS 1 Capacitor element 2 Polyimide adhesive tape 3 Element part 4 Anode drawer part 5 Conductive polymer layer 6 Carbon paint layer 7 Silver paint layer 8a, 8b Element part terminal component 9a, 9b Anode lead part terminal part 10a, 10b Com terminal 11a, 11b YAG laser irradiation position 12a, 12b Melting mark 13 Recognition camera 14 Metal lead frame

Claims (4)

金属電極体の表面に誘電体となる陽極酸化皮膜層、導電性高分子を含む固体電解質層、陰極導電体層を順次積層した素子部ならびに陽極引き出し部を有する平板状のコンデンサ素子を、各電極にそれぞれ当接して接続される金属製の端子部品の表裏両面に少なくとも2枚以上積層し、陰極を導電性接着剤にて接続し、陽極引き出し部は端子部品で保持したあとレーザ溶接により電気的に接続して構成された固体電解コンデンサ。 A plate-shaped capacitor element having an anode lead portion and an element portion in which an anodized film layer serving as a dielectric on the surface of a metal electrode body, a solid electrolyte layer containing a conductive polymer, a cathode conductor layer are sequentially laminated, Laminate at least two pieces on both front and back surfaces of metal terminal parts that are in contact with each other, connect the cathode with a conductive adhesive, hold the anode lead-out part with the terminal parts, and then perform electrical welding by laser welding. Solid electrolytic capacitor constructed by connecting to. 積層した陽極引き出し部のレーザ溶接に対し、レーザ照射側とは反対側にレーザ溶接による金属の溶融痕が確認できるように、積層した陽極引き出し部を保持する金属製の端子部を表裏で横方向に位相をずらして形成した端子部品により構成された請求項1に記載の固体電解コンデンサ。 For the laser welding of the laminated anode lead-out part, the metal terminal part holding the laminated anode lead-out part in the horizontal direction on the front and back sides so that the metal melt trace by laser welding can be confirmed on the side opposite to the laser irradiation side The solid electrolytic capacitor according to claim 1, wherein the solid electrolytic capacitor is constituted by terminal parts formed with phases shifted from each other. 平板状のコンデンサ素子の各電極にそれぞれ当接して接続される金属製の端子部品は、リードフレームにて一体に形成および供給してなる請求項1に記載の固体電解コンデンサ。 2. The solid electrolytic capacitor according to claim 1, wherein the metal terminal parts connected in contact with the respective electrodes of the flat capacitor element are integrally formed and supplied by a lead frame. 弁作用を有する金属電極体の表面の少なくとも素子部となる部分全体に陽極酸化により誘電体となる陽極酸化皮膜層を形成し、この陽極酸化皮膜層上に少なくとも導電性高分子を含む固体電解質層および陰極導電体層を準じ形成して素子部を形成すると共に、上記金属電極体もしくは誘電体酸化皮膜層が露出した陽極引き出し部を形成して平板状のコンデンサ素子を作成し、この平板状のコンデンサ素子を対向する端子部品となる端子部を有するリードフレームの表裏に複数枚積層して、上記陽極引き出し部はレーザ溶接にて、陰極導電体層は導電性接着剤にて、それぞれ上記端子部に電気的に接続する固体電解コンデンサの製造方法。 A solid electrolyte layer containing at least a conductive polymer is formed on the anodic oxide film layer by forming an anodic oxide film layer as a dielectric material by anodic oxidation on at least the entire portion of the surface of the metal electrode body having a valve action. In addition to forming the element portion by forming the cathode conductor layer according to the present invention, the flat electrode element is formed by forming the anode lead portion where the metal electrode body or the dielectric oxide film layer is exposed. A plurality of capacitor elements are laminated on the front and back of a lead frame having terminal portions that are opposed terminal components, the anode lead-out portion is formed by laser welding, the cathode conductor layer is formed by a conductive adhesive, and the terminal portions are respectively formed. A method of manufacturing a solid electrolytic capacitor that is electrically connected to a capacitor.
JP2004045890A 2004-02-23 2004-02-23 Solid electrolytic capacitor and manufacturing method thereof Pending JP2005236171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004045890A JP2005236171A (en) 2004-02-23 2004-02-23 Solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004045890A JP2005236171A (en) 2004-02-23 2004-02-23 Solid electrolytic capacitor and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2005236171A true JP2005236171A (en) 2005-09-02

Family

ID=35018776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004045890A Pending JP2005236171A (en) 2004-02-23 2004-02-23 Solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2005236171A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131652A (en) * 2008-12-05 2010-06-17 Chiba Inst Of Technology Metallic foil joining method and capacitor
JP2010147342A (en) * 2008-12-19 2010-07-01 Sanyo Electric Co Ltd Method of manufacturing solid electrolytic capacitor
US8624367B2 (en) 2008-10-30 2014-01-07 Denso Corporation Semiconductor device including semiconductor chip mounted on lead frame
CN111048320A (en) * 2018-10-12 2020-04-21 钰冠科技股份有限公司 Stacked solid electrolytic capacitor packaging structure and manufacturing method thereof
WO2023181745A1 (en) * 2022-03-24 2023-09-28 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8624367B2 (en) 2008-10-30 2014-01-07 Denso Corporation Semiconductor device including semiconductor chip mounted on lead frame
US9029993B2 (en) 2008-10-30 2015-05-12 Denso Corporation Semiconductor device including semiconductor chip mounted on lead frame
JP2010131652A (en) * 2008-12-05 2010-06-17 Chiba Inst Of Technology Metallic foil joining method and capacitor
JP2010147342A (en) * 2008-12-19 2010-07-01 Sanyo Electric Co Ltd Method of manufacturing solid electrolytic capacitor
CN111048320A (en) * 2018-10-12 2020-04-21 钰冠科技股份有限公司 Stacked solid electrolytic capacitor packaging structure and manufacturing method thereof
CN111048320B (en) * 2018-10-12 2021-09-28 钰冠科技股份有限公司 Stacked solid electrolytic capacitor packaging structure and manufacturing method thereof
WO2023181745A1 (en) * 2022-03-24 2023-09-28 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
KR100356194B1 (en) Solid electrolytic capacitor and method for maunfacturing the same
TWI221621B (en) Solid electrolytic capacitor and a production method therefor
JP4662368B2 (en) Manufacturing method of solid electrolytic capacitor
JP2007116064A (en) Laminated solid electrolytic capacitor
JP2003133183A (en) Solid electrolytic capacitor and method of manufacturing the same
CN102103934A (en) Solid electrolytic capacitor and method for producing solid electrolytic capacitor
JP2008258602A (en) Solid electrolytic capacitor and manufacturing method therefor
JP4688675B2 (en) Multilayer solid electrolytic capacitor
US7184257B2 (en) Solid electrolytic capacitor
TW200401316A (en) Solid electrolytic capacitor and a production method therefor
JP2008235410A (en) Solid electrolytic capacitor
KR20080002846A (en) Multilayer solid electrolytic capacitor and its manufacturing process
KR20110132199A (en) Lower-face electrode type solid electrolytic multilayer capacitor and mounting member having the same
JP2008078312A (en) Solid electrolytic capacitor
JP4688676B2 (en) Multilayer solid electrolytic capacitor and capacitor module
JP2005191466A (en) Capacitor
JP2005236171A (en) Solid electrolytic capacitor and manufacturing method thereof
JPH08273983A (en) Aluminum solid capacitor
JP2007059854A (en) Solid electrolytic capacitor
JP2004158580A (en) Process for producing laminated aluminum solid electrolytic capacitor and capacitor produced by that method
JP4371945B2 (en) Solid electrolytic capacitor
JP5035999B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2018141191A (en) Energizing method, energizing jig, chemical treatment method, and method of producing solid electrolytic capacitor
KR20080069734A (en) Unit electrode for the stacked type of polymer-condenser and stacking method its
JP5371865B2 (en) 3-terminal capacitor