JP3741012B2 - Electron beam analysis method - Google Patents

Electron beam analysis method Download PDF

Info

Publication number
JP3741012B2
JP3741012B2 JP2001280892A JP2001280892A JP3741012B2 JP 3741012 B2 JP3741012 B2 JP 3741012B2 JP 2001280892 A JP2001280892 A JP 2001280892A JP 2001280892 A JP2001280892 A JP 2001280892A JP 3741012 B2 JP3741012 B2 JP 3741012B2
Authority
JP
Japan
Prior art keywords
electron beam
sample
scanning
primary electron
ray image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001280892A
Other languages
Japanese (ja)
Other versions
JP2002148215A (en
Inventor
久弥 村越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001280892A priority Critical patent/JP3741012B2/en
Publication of JP2002148215A publication Critical patent/JP2002148215A/en
Application granted granted Critical
Publication of JP3741012B2 publication Critical patent/JP3741012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電子線による分析方法および装置に係り、特に試料の元素組成を正確に分析する電子線分析方法および装置に関する。
【0002】
【従来の技術】
試料に電子線を照射して、試料より発生する特性X線やオージェ電子などのエネルギースペクトルを計測することにより、試料の元素組成を分析することができる。分析の位置分解能を向上させるためには、電子線を試料上に極微小プローブにして照射する必要がある。電界放出型電子銃を搭載した電子顕微鏡では、電子線プローブのサイズを1nm以下に絞ることができるので、1nm領域での元素組成も分析できるようになった。しかし、検出される信号が弱いため、高精度分析のためには、測定に多大な時間を要していた。
【0003】
【発明が解決しようとする課題】
そのため、試料台や電子線の安定度不足から、分析中に電子線の試料照射位置が分析開始の位置からずれる恐れがあった。さらに、特性X線やオージェ電子などの分析信号が微弱なので、分析信号自身から分析位置の変化を検出することもほとんど不可能であった。このため、位置分解能の高い正確な分析ができなくなるという問題が生じていた。
【0004】
【課題を解決するための手段】
本発明は特性X線あるいはオージェ電子より検出効率が高い二次電子あるいは透過電子等の検出手段により、短時間で試料変位量を計測して分析位置を補正することを特徴とするものである。
【0005】
【発明の実施の形態】
〈実施例1〉
図1に本発明の一実施例の電子線分析装置を示す。この実施例は電子源として電界放出電子源を用いた走査型透過電子顕微鏡を用いた実施例である。電界放出電子源1から放出された電子線は、静電レンズ2により所望の加速電圧まで加速された後、コンデンサーレンズ3,対物レンズ5で試料7へ照射される。電子線は偏向器4により、試料7上を二次元的に走査される。
【0006】
試料7を透過した透過電子14は検出器15で検出された後、信号増幅器21で増幅される。増幅された映像信号は制御部24を通して表示装置25に供給されて輝度変調信号となる。電子線の偏向走査は制御部24により、偏向信号発生器10から送られる偏向信号で電子線を制御することによって行われる。同時に、表示装置25には電子線走査と同期した偏向信号が供給され、試料走査像が表示装置25に形成される。以上は走査型透過電子顕微鏡の基本構成である。
【0007】
次に、図2を用いて、本発明による分析手順について説明する。まず、制御部24により偏向信号発生器10を通じて偏向器4に供給される偏向信号により、電子線を試料上に定められた倍率で走査することにより、表示装置25には図2(a)に示すような試料走査像が得られる。この走査像を得るための走査時間は1秒以内であり、この像より分析試料を観察する。
【0008】
走査像上には、図2(b)に示すようなクロスマーカが輝度変調信号に重畳されて表示され、クロスマーカを分析位置に合わせることにより分析位置の決定を行う。この走査像は例えば制御部24内の1024画素×1024画素のビデオメモリA(図示せず)に記憶される。
【0009】
次に、分析開始の信号を制御部24に送ると、制御部24はクロスマーカのアドレスに対応した位置、すなわち分析位置に電子線を静止したまま試料照射する(図2(c))。電子線照射による励起により試料より発生した特性X線12はX線検出器13で検出されて、例えば図5のような特性X線スペクトルが得られる。着目する元素に対応する特性X線の強度比より元素分布の情報が得られる。
【0010】
X線検出系のエネルギー分解能を高い条件で計測するためには、通常X線計数率は1000cps 程度にする必要がある。一方、計数率の揺らぎは計数率の平方根で表されるので、例えば、0.3%の精度で分析するためには計数が100,000カウント必要となり、計測時間は少なくとも100秒程度必要になる。試料台のドリフト量を0.02nm/secとすると、0.2nm の位置ずれを補正するためには、10秒間隔で補正しなければならない。
【0011】
そこで10秒ほど電子線を静止して分析した後、X線検出信号の取り込みを停止して、同じ倍率で電子線を試料走査して再び試料走査像を求め、制御部24内の1024画素×1024画素のビデオメモリB(図示せず)に記憶させる(図2(d))。前回の走査像との位置ずれは、例えばビデオメモリAとビデオメモリBに記憶された試料走査像の相互相関をとることによって、試料のドリフト量を計算することができる。
【0012】
次の分析には、計算されたドリフト量に相当する励磁電流を走査コイルに加算して供給することによって、図2(e)に示すように電子線照射位置を補正する。この補正を10秒間の分析毎に行うことによって、位置ずれのない正確な分析を行うことができる。
【0013】
〈実施例2〉
第二実施例はX線の面分析の位置補正に関するものである。図3を用いて、本発明による分析手順について述べる。
【0014】
まず、図3(a)に示すような試料走査像により分析位置を観察し、面分析位置を決定する。この走査像を得るための走査時間は1秒以内である。走査像は例えば1024画素×1024画素のビデオメモリAに記憶される。
【0015】
次に、例えば、64nm×64nmの領域を1nm間隔に電子線を走査して、約40秒でこの領域を分析する。特定元素xの特性X線エネルギーに対応したエネルギー領域E1,E2間の信号量がアドレスと対応づけて64画素×64画素のビデオメモリM1に記憶されるとともに、表示部25には輝度変調されて表示される(図3(b))。
【0016】
ここで分析を停止して、分析位置を確認するための試料走査を行う。この走査像は1024画素×1024画素のビデオメモリBに記憶される(図3(c))。例えばビデオメモリAとBに記憶された試料走査像の相互相関をとることによって、試料のドリフト量dを計算することができる。
【0017】
次の分析には、計算されたドリフト量に相当する励磁電流を走査コイルに加算して供給することによって、図3(d)に示すように電子線照射位置をずらして照射し、分析位置のずれを補正する。この補正を定められた時間間隔毎に行うことによって、位置ずれのない正確な分析を行うことができる(図3(e))。
【0018】
〈実施例3〉
第三実施例はX線の面分析の位置補正に関するものである。図4を用いて、本発明による分析手順について述べる。
【0019】
まず、試料走査像により分析位置を観察し、面分析位置を決定する。次に、電子線を試料に走査して照射する。特定元素zの特性X線エネルギーに対応したエネルギー領域E1,E2間の信号量がアドレスと対応づけて128画素×128画素のビデオメモリM1に記憶されるとともに表示部24には輝度変調されて表示される。また同時に得られる透過走査像も128画素×128画素のビデオメモリA1に格納される(図4(a))。
【0020】
次に、同じように試料走査して再び試料走査像が128画素×128画素のビデオメモリA2に、X線像が128画素×128画素のビデオメモリM2に、それぞれ格納される(図4(b))。このような走査をN回行い、N番目の試料走査像が128画素×128画素のビデオメモリAnに、X線像が128画素×
128画素のビデオメモリMnに、それぞれ格納される(図4(c))。
【0021】
試料のドリフト量はまず透過走査像A1に対し、A2との相互相関をとることによって、A1に対する試料のドリフト量d2を計算する。透過走査像A1に対する相互相関をAnまで行い、A1に対するN番目の透過走査像Anのドリフト量dNまで計算する。次に128画素×128画素のX線像M1の所望の領域例えば、中央の64画素×64画素を選択し、この画像に対しドリフト量d2だけずらして64画素×64画素のX線像M2が重ねられる。この操作をN−1回行い、N番目のX線像MnがX線像M1にドリフト量dnだけずらして重ねられる(図4(d))。
【0022】
上記の操作は、新しい画像を取り込む毎に行うか、あるいは全ての画像を取り込んだ後に行ってもよい。これらの操作により、分析位置ずれのない条件でSNの良いX線像が得られ、高精度な二次元元素分析を行うことができる。
【0023】
なお、本実施例では透過走査像を格納するビデオメモリとX線像を格納するビデオメモリの画素数を等しくしたが、単位画素に検出されるX線カウント数を増加させる目的で、X線像を格納するビデオメモリの画素数を透過走査像を格納するビデオメモリの画素数より少なくしてもよい。
【0024】
以上の実施例では、試料の位置検出手段として試料を透過した透過電子14を透過電子検出器15で検出していたが、試料から発生した二次電子16を二次電子検出器17で検出して得られる二次電子像を用いる走査型電子顕微鏡においても、同様な構成で本発明を実施することができる。
【0025】
また、以上の実施例では、試料の分析手段として試料より発生した特性X線
12をX線検出器13で検出して用いていたが、試料より発生したオージェ電子18をオージェ電子検出器19で検出して得られるスペクトルを用いても、同様な構成で本発明を実施することができる。
【0026】
【発明の効果】
以上説明したように、本発明の電子線分析装置では、特性X線あるいはオージェ電子より検出効率が高い二次電子あるいは透過電子等の情報検出手段により試料変位量を計測して分析位置を補正することにより正確な分析を行うことができる。
【図面の簡単な説明】
【図1】本発明の実施例を示す電子線分析装置のブロック図。
【図2】本発明の第一実施例の分析手順を示す説明図。
【図3】本発明の第二実施例の分析手順を示す説明図。
【図4】本発明の第三実施例の分析手順を示す説明図。
【図5】特性X線スペクトルを示すスペクトル図。
【符号の説明】
1…電界放出電子源、2…静電レンズ、3…コンデンサーレンズ、4…偏向器、5…対物レンズ、6…絞り、7…試料、8…高圧電源、9…コンデンサーレンズ駆動電源、10…偏向信号発生器、11…対物レンズ駆動電源、12…X線、13…X線検出器、14…透過電子、15…透過電子検出器、16…二次電子、17…二次電子検出器、18…オージェ電子、19…オージェ電子検出器、20…増幅器、21…増幅器、22…増幅器、23…増幅器、24…制御部、25…表示部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electron beam analysis method and apparatus, and more particularly to an electron beam analysis method and apparatus for accurately analyzing the elemental composition of a sample.
[0002]
[Prior art]
The elemental composition of the sample can be analyzed by irradiating the sample with an electron beam and measuring an energy spectrum such as characteristic X-rays or Auger electrons generated from the sample. In order to improve the position resolution of the analysis, it is necessary to irradiate the sample with an electron beam as a very small probe. In an electron microscope equipped with a field emission electron gun, the size of the electron beam probe can be reduced to 1 nm or less, so that the elemental composition in the 1 nm region can be analyzed. However, since the detected signal is weak, a long time is required for measurement for high-accuracy analysis.
[0003]
[Problems to be solved by the invention]
For this reason, the sample irradiation position of the electron beam may deviate from the analysis start position during the analysis due to insufficient stability of the sample stage and the electron beam. Furthermore, since analysis signals such as characteristic X-rays and Auger electrons are weak, it is almost impossible to detect a change in analysis position from the analysis signal itself. Therefore, there has been a problem that accurate analysis with high position resolution cannot be performed.
[0004]
[Means for Solving the Problems]
The present invention is characterized in that the analysis position is corrected by measuring the amount of sample displacement in a short time by detection means such as secondary electrons or transmission electrons having higher detection efficiency than characteristic X-rays or Auger electrons.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
<Example 1>
FIG. 1 shows an electron beam analyzer according to an embodiment of the present invention. In this embodiment, a scanning transmission electron microscope using a field emission electron source as an electron source is used. The electron beam emitted from the field emission electron source 1 is accelerated to a desired acceleration voltage by the electrostatic lens 2, and then irradiated to the sample 7 by the condenser lens 3 and the objective lens 5. The electron beam is scanned two-dimensionally on the sample 7 by the deflector 4.
[0006]
The transmitted electrons 14 that have passed through the sample 7 are detected by the detector 15 and then amplified by the signal amplifier 21. The amplified video signal is supplied to the display device 25 through the control unit 24 and becomes a luminance modulation signal. Electron beam deflection scanning is performed by the control unit 24 controlling the electron beam with a deflection signal sent from the deflection signal generator 10. At the same time, a deflection signal synchronized with the electron beam scanning is supplied to the display device 25, and a sample scan image is formed on the display device 25. The above is the basic configuration of the scanning transmission electron microscope.
[0007]
Next, the analysis procedure according to the present invention will be described with reference to FIG. First, the scanning device 25 scans the electron beam at a predetermined magnification by the deflection signal supplied to the deflector 4 through the deflection signal generator 10 by the control unit 24, whereby the display device 25 has the configuration shown in FIG. A sample scan image as shown is obtained. The scanning time for obtaining this scanned image is within 1 second, and the analysis sample is observed from this image.
[0008]
On the scanned image, a cross marker as shown in FIG. 2B is displayed superimposed on the luminance modulation signal, and the analysis position is determined by matching the cross marker to the analysis position. This scanned image is stored in a video memory A (not shown) of 1024 pixels × 1024 pixels in the control unit 24, for example.
[0009]
Next, when an analysis start signal is sent to the control unit 24, the control unit 24 irradiates the sample with the electron beam stationary at the position corresponding to the address of the cross marker, that is, the analysis position (FIG. 2 (c)). A characteristic X-ray 12 generated from the sample by excitation by electron beam irradiation is detected by an X-ray detector 13 to obtain a characteristic X-ray spectrum as shown in FIG. 5, for example. Information on element distribution is obtained from the intensity ratio of characteristic X-rays corresponding to the element of interest.
[0010]
In order to measure the energy resolution of the X-ray detection system under high conditions, the X-ray count rate usually needs to be about 1000 cps. On the other hand, the fluctuation of the count rate is expressed by the square root of the count rate. For example, in order to analyze with an accuracy of 0.3%, it is necessary to count 100,000 counts, and the measurement time is required to be at least about 100 seconds. If the drift amount of the sample stage is 0.02 nm / sec, correction must be made at 10-second intervals in order to correct a positional deviation of 0.2 nm.
[0011]
Therefore, after the electron beam is stopped and analyzed for about 10 seconds, the acquisition of the X-ray detection signal is stopped, the sample is scanned with the electron beam at the same magnification, and a sample scan image is obtained again. It is stored in a video memory B (not shown) of 1024 pixels (FIG. 2 (d)). The positional deviation from the previous scanning image can be calculated by taking the cross-correlation between the sample scanning images stored in the video memory A and the video memory B, for example.
[0012]
In the next analysis, an excitation current corresponding to the calculated drift amount is added to the scanning coil and supplied, thereby correcting the electron beam irradiation position as shown in FIG. By performing this correction every 10 seconds of analysis, it is possible to perform accurate analysis without positional deviation.
[0013]
<Example 2>
The second embodiment relates to position correction for X-ray surface analysis. The analysis procedure according to the present invention will be described with reference to FIG.
[0014]
First, an analysis position is observed with a sample scanning image as shown in FIG. The scanning time for obtaining this scanned image is within 1 second. The scanned image is stored in the video memory A of 1024 pixels × 1024 pixels, for example.
[0015]
Next, for example, an area of 64 nm × 64 nm is scanned with an electron beam at 1 nm intervals, and this area is analyzed in about 40 seconds. The amount of signal between the energy regions E1 and E2 corresponding to the characteristic X-ray energy of the specific element x is stored in the video memory M1 of 64 × 64 pixels in association with the address, and the display unit 25 is luminance-modulated. Is displayed (FIG. 3B).
[0016]
Here, the analysis is stopped, and a sample scan for confirming the analysis position is performed. This scanned image is stored in a video memory B of 1024 pixels × 1024 pixels (FIG. 3C). For example, the sample drift amount d can be calculated by taking the cross-correlation of the sample scan images stored in the video memories A and B.
[0017]
In the next analysis, an excitation current corresponding to the calculated drift amount is added to the scanning coil and supplied, so that the electron beam irradiation position is shifted as shown in FIG. Correct the deviation. By performing this correction at predetermined time intervals, accurate analysis without positional deviation can be performed (FIG. 3 (e)).
[0018]
<Example 3>
The third embodiment relates to position correction for X-ray surface analysis. The analysis procedure according to the present invention will be described with reference to FIG.
[0019]
First, the analysis position is observed from the sample scanning image, and the surface analysis position is determined. Next, an electron beam is scanned and irradiated. The amount of signal between the energy regions E1 and E2 corresponding to the characteristic X-ray energy of the specific element z is stored in the video memory M1 of 128 pixels × 128 pixels in association with the address, and the luminance is modulated and displayed on the display unit 24. Is done. The transmission scanning image obtained at the same time is also stored in the 128 × 128 pixel video memory A1 (FIG. 4A).
[0020]
Next, the sample is scanned in the same manner, and the sample scan image is again stored in the video memory A2 of 128 pixels × 128 pixels, and the X-ray image is stored in the video memory M2 of 128 pixels × 128 pixels (FIG. 4B). )). Such scanning is performed N times, and the N-th sample scanning image is stored in the video memory An of 128 pixels × 128 pixels, and the X-ray image is 128 pixels × 128 pixels.
Each is stored in a 128-pixel video memory Mn (FIG. 4C).
[0021]
First, the sample drift amount d2 with respect to A1 is calculated by taking a cross-correlation with A2 with respect to the transmission scanning image A1. The cross-correlation with respect to the transmission scanning image A1 is performed up to An, and the drift amount dN of the Nth transmission scanning image An with respect to A1 is calculated. Next, a desired region of the X-ray image M1 of 128 pixels × 128 pixels, for example, the central 64 pixels × 64 pixels is selected, and an X-ray image M2 of 64 pixels × 64 pixels is shifted from this image by a drift amount d2. Overlaid. This operation is performed N-1 times, and the Nth X-ray image Mn is superimposed on the X-ray image M1 while being shifted by the drift amount dn (FIG. 4D).
[0022]
The above operation may be performed every time a new image is captured, or may be performed after all images are captured. By these operations, an X-ray image having a good SN can be obtained under the condition that there is no deviation in analysis position, and high-precision two-dimensional elemental analysis can be performed.
[0023]
In this embodiment, the number of pixels of the video memory for storing the transmission scanning image and the number of the video memory for storing the X-ray image are made equal, but for the purpose of increasing the number of X-ray counts detected by the unit pixel, May be smaller than the number of pixels of the video memory storing the transmission scan image.
[0024]
In the above embodiment, the transmitted electrons 14 transmitted through the sample are detected by the transmitted electron detector 15 as the sample position detecting means. However, the secondary electrons 16 generated from the sample are detected by the secondary electron detector 17. Even in a scanning electron microscope using a secondary electron image obtained in this manner, the present invention can be implemented with a similar configuration.
[0025]
In the above embodiment, the characteristic X-rays 12 generated from the sample are detected and used by the X-ray detector 13 as the sample analysis means. However, the Auger electrons 18 generated from the sample are detected by the Auger electron detector 19. Even if a spectrum obtained by detection is used, the present invention can be implemented with a similar configuration.
[0026]
【The invention's effect】
As described above, in the electron beam analyzer of the present invention, the analysis position is corrected by measuring the amount of sample displacement by information detection means such as secondary electrons or transmission electrons having higher detection efficiency than characteristic X-rays or Auger electrons. Therefore, an accurate analysis can be performed.
[Brief description of the drawings]
FIG. 1 is a block diagram of an electron beam analyzer showing an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing an analysis procedure of the first embodiment of the present invention.
FIG. 3 is an explanatory diagram showing an analysis procedure of the second embodiment of the present invention.
FIG. 4 is an explanatory diagram showing an analysis procedure of a third embodiment of the present invention.
FIG. 5 is a spectrum diagram showing a characteristic X-ray spectrum.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Field emission electron source, 2 ... Electrostatic lens, 3 ... Condenser lens, 4 ... Deflector, 5 ... Objective lens, 6 ... Aperture, 7 ... Sample, 8 ... High voltage power supply, 9 ... Condenser lens drive power supply, 10 ... Deflection signal generator, 11 ... Objective lens drive power supply, 12 ... X-ray, 13 ... X-ray detector, 14 ... Transmission electron, 15 ... Transmission electron detector, 16 ... Secondary electron, 17 ... Secondary electron detector, 18 ... Auger electrons, 19 ... Auger electron detector, 20 ... amplifier, 21 ... amplifier, 22 ... amplifier, 23 ... amplifier, 24 ... control unit, 25 ... display unit.

Claims (8)

一次電子線を放出する電子源と、
前記一次電子線を試料上に走査する偏向器と、
前記偏向器により偏向された一次電子線を前記試料に照射する対物レンズと、
前記一次電子線の照射により前記試料を透過した透過電子を検出する電子線検出器とを備える電子線分析装置において、
前記一次電子線の照射により前記試料より発生するX線を検出するX線検出器を有し、前記試料の第一の領域に前記一次電子線を走査して得られた第一の透過走査像と、
前記試料の第一の領域に再度一次電子線を走査して得られた第二の透過走査像を記憶する第一の記憶手段と、
前記試料の第一の領域に前記一次電子線を走査して得られた第一のX線像と、
前記試料の第一の領域に再度一次電子線を走査して得られた第二のX線像を記憶する第二の記憶手段と、
前記記憶された第一と第二の透過走査像とを基に位置ずれ量を算出し、前記第一または第二のX線像の位置を前記算出された位置ずれ量に基づいて補正し、前記第一のX線像と前記第二のX線像とを重ねる制御手段を備えることを特徴とする電子線分析装置。
An electron source emitting a primary electron beam;
A deflector that scans the sample with the primary electron beam;
An objective lens that irradiates the sample with a primary electron beam deflected by the deflector;
In an electron beam analyzer comprising an electron beam detector that detects transmitted electrons that have passed through the sample by irradiation with the primary electron beam,
A first transmission scanning image obtained by scanning the primary electron beam on a first region of the sample, the X-ray detector detecting X-rays generated from the sample by irradiation of the primary electron beam; When,
First storage means for storing a second transmission scan image obtained by scanning the first region of the sample again with the primary electron beam;
A first X-ray image obtained by scanning the primary electron beam on a first region of the sample;
Second storage means for storing a second X-ray image obtained by scanning the first region of the sample again with a primary electron beam;
Based on the stored first and second transmission scan images , the amount of displacement is calculated, and the position of the first or second X-ray image is corrected based on the calculated amount of displacement, An electron beam analyzer comprising control means for superimposing the first X-ray image and the second X-ray image.
一次電子線を放出する電子源と、
前記一次電子線を試料上に走査する偏向器と、
前記偏向器により偏向された一次電子線を前記試料に照射する対物レンズと、
前記一次電子線の照射により前記試料を透過した透過電子を検出する電子線検出器とを備える電子線分析装置において、
前記一次電子線の照射により前記試料より発生するX線を検出するX線検出器を有し、
前記試料の第一の領域に所定の時間間隔ごとに前記一次電子線を走査して得られた各々の走査透過像を記憶する第一の記憶手段と、
前記試料の第一の領域に所定の時間間隔ごとに前記一次電子線を走査して得られた各々のX線像を記憶する第二の記憶手段と、
前記記憶された各々の走査透過像を基に前記走査透過像毎の位置ずれ量を算出し、前記算出された位置ずれ量に基づいて、前記記憶された各々のX線像の位置ずれを補正して、該各々のX線像を重ねる制御手段を備えることを特徴とする電子線分析装置。
An electron source emitting a primary electron beam;
A deflector that scans the sample with the primary electron beam;
An objective lens that irradiates the sample with a primary electron beam deflected by the deflector;
In an electron beam analyzer comprising an electron beam detector that detects transmitted electrons that have passed through the sample by irradiation with the primary electron beam,
An X-ray detector for detecting X-rays generated from the sample by irradiation of the primary electron beam;
First storage means for storing each scanned transmission image obtained by scanning the primary electron beam at predetermined time intervals in the first region of the sample;
Second storage means for storing each X-ray image obtained by scanning the primary electron beam at predetermined time intervals in the first region of the sample;
A positional deviation amount for each scanning transmission image is calculated based on each stored scanning transmission image, and a positional deviation of each stored X-ray image is corrected based on the calculated positional deviation amount. An electron beam analyzer comprising a control means for superimposing the respective X-ray images.
一次電子線を放出する電子源と、
前記一次電子線を試料上に走査する偏向器と、
前記偏向器により偏向された一次電子線を前記試料に照射する対物レンズと、
前記一次電子線の照射により前記試料を透過した透過電子を検出する電子線検出器とを備える電子線分析装置において、
前記一次電子線の照射により前記試料より発生するX線を検出するX線検出器を有し、前記試料の第一の領域に所定の時間間隔ごとに前記一次電子線を走査して得られた各々の走査透過像とX線像とを記憶する記憶手段と、
前記記憶手段に所定数の走査透過像が全て記憶された後に、該所定数の走査透過像毎の位置ずれ量を前記走査透過像間の相互相関を基に算出し、前記算出された位置ずれ量に基づいて、前記記憶された各々のX線像の位置ずれを補正して、該各々のX線像を重ねる制御手段を備えることを特徴とする電子線分析装置。
An electron source emitting a primary electron beam;
A deflector that scans the sample with the primary electron beam;
An objective lens that irradiates the sample with a primary electron beam deflected by the deflector;
In an electron beam analyzer comprising an electron beam detector that detects transmitted electrons that have passed through the sample by irradiation with the primary electron beam,
It has an X-ray detector that detects X-rays generated from the sample by irradiation of the primary electron beam, and is obtained by scanning the primary electron beam at a predetermined time interval on a first region of the sample Storage means for storing each scanning transmission image and X-ray image;
After all the predetermined number of scanning transmission images are stored in the storage means, the amount of positional deviation for each predetermined number of scanning transmission images is calculated based on the cross-correlation between the scanning transmission images, and the calculated positional deviation An electron beam analyzer comprising: control means for correcting a positional shift of each stored X-ray image based on the amount and superimposing the X-ray images.
請求項2に記載の電子線分析装置において、
前記位置ずれ量の補正は、所望の数の前記透過走査像を全て記憶した後に行うことを特徴とする電子線分析装置。
The electron beam analyzer according to claim 2,
The electron beam analyzer according to claim 1, wherein the correction of the positional deviation amount is performed after all the desired number of the transmitted scanning images are stored.
請求項1から3のいずれか1項に記載の電子線分析装置において、
前記透過走査像または前記X線像を表示する表示部を備えることを特徴とする電子線分析装置。
In the electron beam analyzer of any one of Claim 1 to 3,
An electron beam analyzer comprising a display unit that displays the transmission scanning image or the X-ray image.
請求項1から3のいずれか1項に記載の電子線分析装置において、
前記制御手段は前記算出した位置ずれ量に基づいて、前記一次電子線の照射位置を制御して位置ずれを補正する手段を含むことを特徴とする電子線分析装置。
In the electron beam analyzer of any one of Claim 1 to 3,
The electron beam analyzer according to claim 1, wherein the control means includes means for controlling the irradiation position of the primary electron beam based on the calculated amount of misalignment to correct the misalignment.
一次電子線を試料上に走査または照射して発生するX線または該試料を透過する透過電子を検出して該試料を分析する電子線分析装置用の制御装置において、
前記試料の第一の領域に所定の時間間隔ごとに前記一次電子線を走査して得られた各々の走査透過像を記憶する第一の記憶手段と、
前記試料の第一の領域に所定の時間間隔ごとに前記一次電子線を走査して得られた各々のX線像を記憶する第二の記憶手段とを有し、前記記憶された各々の走査透過像を基に前記走査透過像毎の位置ずれ量を算出し、前記算出された位置ずれ量に基づいて、前記記憶された各々のX線像の位置ずれを補正して、該各々のX線像を重ねることを特徴とする電子線分析装置用の制御装置。
In a control device for an electron beam analyzer that detects X-rays generated by scanning or irradiating a sample with a primary electron beam or transmitted electrons that pass through the sample to analyze the sample,
First storage means for storing each scanned transmission image obtained by scanning the primary electron beam at predetermined time intervals in the first region of the sample;
Second storage means for storing each X-ray image obtained by scanning the primary electron beam at predetermined time intervals in the first region of the sample, and each of the stored scans Based on the transmission image, a positional deviation amount for each scanning transmission image is calculated, and based on the calculated positional deviation amount, a positional deviation of each stored X-ray image is corrected, and each X-ray image is corrected. A control device for an electron beam analyzer characterized by superimposing line images.
一次電子線を試料上に走査または照射して発生するX線または該試料を透過する透過電子を検出して該試料を分析する電子線分析装置用の制御装置において、
前記試料の第一の領域に前記一次電子線を走査して得られた第一の透過走査像と、
前記試料の第一の領域に再度一次電子線を走査して得られた第二の透過走査像を記憶する第一の記憶手段と、
前記試料の第一の領域に前記一次電子線を走査して得られた第一のX線像と、
前記試料の第一の領域に再度一次電子線を走査して得られた第二のX線像を記憶する第二の記憶手段とを備え、
前記記憶された第一と第二の透過走査像の相互相関から位置ずれ量を算出し、前記第一または第二のX線像の位置を前記算出された位置ずれ量に基づいて補正し、前記第一のX線像と前記第二のX線像とを重ねることを特徴とする電子線分析装置用の制御装置。
In a control device for an electron beam analyzer that detects X-rays generated by scanning or irradiating a sample with a primary electron beam or transmitted electrons that pass through the sample to analyze the sample,
A first transmission scan image obtained by scanning the first region of the sample with the primary electron beam;
First storage means for storing a second transmission scan image obtained by scanning the first region of the sample again with the primary electron beam;
A first X-ray image obtained by scanning the primary electron beam on a first region of the sample;
A second storage means for storing a second X-ray image obtained by scanning the first region of the sample again with a primary electron beam;
Calculating a displacement amount from the cross-correlation between the stored first and second transmission scan images , and correcting the position of the first or second X-ray image based on the calculated displacement amount; A control apparatus for an electron beam analyzer, wherein the first X-ray image and the second X-ray image are superimposed.
JP2001280892A 2001-09-17 2001-09-17 Electron beam analysis method Expired - Fee Related JP3741012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001280892A JP3741012B2 (en) 2001-09-17 2001-09-17 Electron beam analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001280892A JP3741012B2 (en) 2001-09-17 2001-09-17 Electron beam analysis method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP32505996A Division JP3454052B2 (en) 1996-12-05 1996-12-05 Electron beam analyzer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005108144A Division JP3904021B2 (en) 2005-04-05 2005-04-05 Electron beam analysis method

Publications (2)

Publication Number Publication Date
JP2002148215A JP2002148215A (en) 2002-05-22
JP3741012B2 true JP3741012B2 (en) 2006-02-01

Family

ID=19104808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001280892A Expired - Fee Related JP3741012B2 (en) 2001-09-17 2001-09-17 Electron beam analysis method

Country Status (1)

Country Link
JP (1) JP3741012B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250867A (en) * 2008-04-09 2009-10-29 Jeol Ltd X-ray analyzer with energy dispersive x-ray spectrometer
JP5711552B2 (en) * 2011-01-28 2015-05-07 独立行政法人産業技術総合研究所 Energy analyzer alignment method and apparatus

Also Published As

Publication number Publication date
JP2002148215A (en) 2002-05-22

Similar Documents

Publication Publication Date Title
US7375330B2 (en) Charged particle beam equipment
US7435957B2 (en) Charged particle beam equipment and charged particle microscopy
EP1672672A2 (en) Charged particle beam apparatus, method of displaying sample image, and method of measuring image shift sensitivity
JP4504946B2 (en) Charged particle beam equipment
WO2011070704A1 (en) Electron microscope
JP2000106121A (en) Electron microscope or analogous equipment thereof
JP3454052B2 (en) Electron beam analyzer
JP3904021B2 (en) Electron beam analysis method
US6995576B2 (en) Thin film transistor array inspection apparatus
KR100274265B1 (en) Converged ion beam device
JP3726673B2 (en) ENERGY SPECTRUM MEASUREMENT DEVICE, ELECTRONIC ENERGY LOSS SPECTROSCOPE DEVICE, ELECTRON MICROSCOPE EQUIPPED WITH THE SAME, AND ELECTRONIC ENERGY LOSS SPECTRUM MEASUREMENT METHOD
US5128545A (en) Method and apparatus for background correction in analysis of a specimen surface
JP3741012B2 (en) Electron beam analysis method
JP2002286663A (en) Sample analysis and sample observation apparatus
JP3494068B2 (en) Charged particle beam equipment
JP2009002658A (en) Observation method of membrane sample
JP5248759B2 (en) Particle beam analyzer
JP2005026192A (en) Charged particle beam device
JP2002015691A (en) Scanning electron microscope
JPS63116348A (en) View matching device of electron beam device
JPH02145950A (en) X-ray photoelectron analyzer
JPH0696711A (en) Display method for image of scanning electron microscope
JPS60161514A (en) Measurement of length by electron beam scanning
JPH07260716A (en) Electron beam analyzer
JPH0465616A (en) Electron beam length measuring method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees