JP2005226051A - Substitution of polymer terminal group with free radical source - Google Patents

Substitution of polymer terminal group with free radical source Download PDF

Info

Publication number
JP2005226051A
JP2005226051A JP2004038902A JP2004038902A JP2005226051A JP 2005226051 A JP2005226051 A JP 2005226051A JP 2004038902 A JP2004038902 A JP 2004038902A JP 2004038902 A JP2004038902 A JP 2004038902A JP 2005226051 A JP2005226051 A JP 2005226051A
Authority
JP
Japan
Prior art keywords
polymer
free radical
radical source
polymerization
substitution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004038902A
Other languages
Japanese (ja)
Inventor
Toshikatsu Nojiri
敏克 野尻
Reiko Nozaki
麗弘 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Chemical Industry Co Ltd
Original Assignee
Toho Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Chemical Industry Co Ltd filed Critical Toho Chemical Industry Co Ltd
Priority to JP2004038902A priority Critical patent/JP2005226051A/en
Publication of JP2005226051A publication Critical patent/JP2005226051A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for substituting a polymer terminal structure expressed by the following general formula (1) and a method for producing a resist resin having a narrow distribution and also excellent in transmittance. <P>SOLUTION: This polymer having the polymer terminal structure expressed by the general formula (1) [wherein, R<SP>1</SP>is an alkyl, an alkenyl, an aryl, a saturated or an unsaturated hydrocarbon ring or a heterocyclic ring, an alkoxy, or a substituted or an unsubstituted heterocyclic ring bonded through a nitrogen atom] and the narrow distribution is substituted by effecting a free radical source, and as a result, a polymer having an improved ultraviolet light transmittance as compared with that before the substitution is obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高分子末端基の置換に関するものであり、主に微細加工技術に適したレジストの樹脂成分製造方法に関するものである。 The present invention relates to substitution of polymer end groups, and more particularly to a method for producing a resin component of a resist suitable for a fine processing technique.

半導体の微細化に伴い、KrFやArF等のVUV等のエキシマレーザーによるリソグラフィープロセスが注目されている。このリソグラフィープロセスに用いる化学増幅型レジスト樹脂は露光に用いる光源波長領域での吸光度が小さいことが望ましい。 With the miniaturization of semiconductors, a lithography process using an excimer laser such as VUV such as KrF or ArF has attracted attention. The chemically amplified resist resin used in this lithography process desirably has a low absorbance in the light source wavelength region used for exposure.

一方、解像度の観点から、より微細なパターンを形成するためのレジスト樹脂としては、分子量分布の狭いものが有効であると知られている。工業的に有利なラジカル重合によりこのような分子量分布の狭い重合体を製造する方法の一つとして、ジチオエステル構造を持つ重合添加剤を利用するリビングラジカル重合法が報告されている(特許文献1、2)。 On the other hand, from the viewpoint of resolution, it is known that a resist resin having a narrow molecular weight distribution is effective as a resist resin for forming a finer pattern. As one method for producing such a polymer having a narrow molecular weight distribution by radical polymerization which is industrially advantageous, a living radical polymerization method using a polymerization additive having a dithioester structure has been reported (Patent Document 1). 2).

しかし、上記のようなリビングラジカル重合法により得られる重合体はリビングポリマーであるがゆえに、重合末端にドーマント種としての添加剤化合物残基が残る。それが原因となって特定波長領域での紫外線の透過を阻害する場合が多い。言い換えれば、重合体の透過率に悪影響を与える添加剤は、重合の制御に有効であってもレジスト樹脂の高性能化には有効でない場合が多い。
WO98/01478 WO03/020773
However, since the polymer obtained by the living radical polymerization method as described above is a living polymer, an additive compound residue as a dormant species remains at the polymerization terminal. In many cases, this prevents UV light transmission in a specific wavelength region. In other words, an additive that adversely affects the transmittance of the polymer is often not effective for improving the performance of the resist resin even though it is effective for controlling the polymerization.
WO98 / 01478 WO03 / 020773

分子量分布が狭く、尚且つ露光時の波長領域での光透過性に優れた重合体の提供であって、高感度、高解像度を併せ持つレジスト樹脂の開発。特に前記重合法の問題点とも言うべき重合体末端基構造に由来する透過率低下の改善である。 Development of a resist resin that has a narrow molecular weight distribution and excellent light transmission in the wavelength region during exposure, and has both high sensitivity and high resolution. In particular, this is an improvement in the transmittance reduction derived from the polymer end group structure, which can be said to be a problem of the polymerization method.

本発明は、多量のラジカルを添加しドーマント状態にある重合体成長末端を活性化させることで再結合や不均化などを促し、末端構造を変換することをその基礎とするものである。 The present invention is based on converting terminal structures by promoting recombination and disproportionation by adding a large amount of radicals and activating polymer growth terminals in a dormant state.

すなわち、本発明は、下記一般式(1)で表される末端構造を有する重合体に少なくとも一種類の遊離ラジカル源を添加することで、その末端構造を全部または部分的に該遊離ラジカル源に由来する構造に置換する方法である。

Figure 2005226051
(式中Rはアルキル、アルケニル、アリール、飽和または不飽和の炭素環または複素環、アルコキシ基、窒素原子を介して結合する置換もしくは非置換の複素環) That is, the present invention adds at least one kind of free radical source to a polymer having a terminal structure represented by the following general formula (1), so that the terminal structure is entirely or partially converted into the free radical source. This is a method of substituting the derived structure.
Figure 2005226051
(Wherein R 1 is alkyl, alkenyl, aryl, saturated or unsaturated carbocyclic or heterocyclic ring, alkoxy group, substituted or unsubstituted heterocyclic ring bonded via a nitrogen atom)

本発明はまた、少なくとも一種類のエチレン性不飽和モノマー、少なくとも一種類の遊離ラジカル源、下記一般式(2)で表される少なくとも一種類の重合添加剤を含むラジカル重合系に、重合反応開始後に再度遊離ラジカル源(先に使用したものと同一のものであっても異なるものであってもよい)を投入することを特徴とする波長が193nmの紫外線の透過率が再度の遊離ラジカル源を添加する前より高められた重合体の製造方法でもある。

Figure 2005226051
(式中R、Rはそれぞれ独立してアルキル、アルケニル、アリール、飽和または不飽和の炭素環または複素環、アルコキシ基、窒素原子を介して結合する置換もしくは非置換の複素環) The present invention also provides a radical polymerization system including at least one ethylenically unsaturated monomer, at least one free radical source, and at least one polymerization additive represented by the following general formula (2). Later, a free radical source having a wavelength of 193 nm, which is characterized by introducing a free radical source (which may be the same as or different from the one used previously), is used. It is also a method for producing a polymer that is higher than before the addition.
Figure 2005226051
(Wherein R 2 and R 3 are each independently alkyl, alkenyl, aryl, saturated or unsaturated carbocycle or heterocycle, alkoxy group, substituted or unsubstituted heterocycle bonded via a nitrogen atom)

本発明によれば、いわゆるリビングラジカル重合に用いたジチオエステル化合物由来の末端基の置換が可能であり、波長が193nmである紫外線の透過率が置換以前より高められた重合体を提供できる。本発明をArFエキシマレーザーによるリソグラフィープロセス用のレジスト樹脂に適用した場合、末端基に起因する重合体透過率低下を改善することができる。 According to the present invention, it is possible to provide a polymer in which a terminal group derived from a dithioester compound used in so-called living radical polymerization can be substituted, and the transmittance of ultraviolet rays having a wavelength of 193 nm is higher than before the substitution. When the present invention is applied to a resist resin for an lithography process using an ArF excimer laser, it is possible to improve a decrease in polymer transmittance due to terminal groups.

以下、本発明を詳細に説明する。まず本発明に係る重合体であるが、公知の方法により重合開始剤と重合添加剤の存在下で重合反応を行うことによって得ることができる。重合体は単独重合体でも2元以上の共重合体でもよく、更に共重合体の場合はランダムでもブロックでもよい。その原料となるモノマーは、重合可能であれば特に制限はされないが、エチレン性不飽和モノマー、特に(メタ)アクリル酸エステル化合物が好ましい。例えば、アダマンタン、ノルボルネンラクトン、γ−ブチロラクトンおよびこれらの脂環式環上にアルキル基、ヒドロキシル基、カルボキシル基などの置換基を有する誘導体の(メタ)アクリル酸エステルである。本発明に係る重合体の重量平均分子量は特に限定されないが、レジスト材料としての効果を発揮させる点で2000〜300000が好ましい。Mw/Mnで表される分子量分布も特に限定されないが、1.1〜1.6の範囲であれば好ましい。 Hereinafter, the present invention will be described in detail. First, the polymer according to the present invention can be obtained by conducting a polymerization reaction in the presence of a polymerization initiator and a polymerization additive by a known method. The polymer may be a homopolymer or a copolymer of two or more, and in the case of a copolymer, it may be random or block. The monomer used as the raw material is not particularly limited as long as it can be polymerized, but an ethylenically unsaturated monomer, particularly a (meth) acrylic ester compound is preferable. Examples thereof include (meth) acrylic acid esters of adamantane, norbornenelactone, γ-butyrolactone, and derivatives having substituents such as an alkyl group, a hydroxyl group, and a carboxyl group on these alicyclic rings. Although the weight average molecular weight of the polymer which concerns on this invention is not specifically limited, 2000-300000 are preferable at the point which exhibits the effect as a resist material. The molecular weight distribution represented by Mw / Mn is not particularly limited, but is preferably in the range of 1.1 to 1.6.

ラジカル重合開始剤の種類は特に限定されないが、例示するなら2,2´−アゾビスイソブチロニトリル(AIBN)、2,2´−アゾビス(2−メチルブチロニトリル)などの2,2´−アゾビスブチロニトリル類、2,2´−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2´−アゾビス(2,4−ジメチルバレロニトリル)などの2,2´−アゾビスバレロニトリル類、2,2´−アゾビス(2−ヒドロキシメチルプロピオニトリル)などの2,2´−アゾビスプロピオニトリル類、1,1´−アゾビス(シクロヘキサン−1−カルボニトリル)などの1,1´−アゾビス−1−アルカンニトリル類、2,2−アゾビス(イソ酪酸)ジメチルなどのアゾ化合物やジ−t−ブチルパーオキサイド、ジクミルパーオキサイド、t−ブチルクミルパーオキサイド、α、α’−ビス(t−ブチルパーオキシ−m−イソプロピル)ベンゼン、2,5−ジ(t−ブチルパーオキシ)ヘキシン−3などのジアルキルパーオキサイド類、t−ブチルパーオキシベンゾエート、t−ブチルパーオキシアセテート、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサンなどのパーオキシエステル類、シクロヘキサノンパーオキサイド、3,3,5−トリメチルシクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイドなどのケトンパーオキサイド類、2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン、1,1−ビス(t−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、n−ブチル−4,4−ビス(t−ブチルパーオキシ)バレート、などのパーオキシケタール類、クメンヒドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、2,5−ジメチルシクロヘキサン−2,5−ジハイドロパーオキサイドなどのハイドロパーオキサイド類、ベンゾイルパーオキサイド、デカノイルパーオキサイド、ラウロイルパーオキサイド、2,4−ジクロロベンゾイルパーオキサイドなどのジアシルパーオキサイド類、ビス(t−ブチルシクロヘキシル)パーオキシジカーボネートなどのパーオキシジカーボネート類など有機過酸化物のラジカル重合開始剤が使用できる。 The type of radical polymerization initiator is not particularly limited, but for example, 2,2′-azobisisobutyronitrile (AIBN), 2,2′-azobis (2-methylbutyronitrile) and the like are exemplified. -2,2'- such as azobisbutyronitrile, 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile) 2,2′-azobispropionitriles such as azobisvaleronitriles, 2,2′-azobis (2-hydroxymethylpropionitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), etc. 1,1′-azobis-1-alkanenitriles, azo compounds such as 2,2-azobis (isobutyric acid) dimethyl, di-t-butyl peroxide, dicumyl peroxide dialkyl peroxides such as t-butylcumyl peroxide, α, α′-bis (t-butylperoxy-m-isopropyl) benzene, 2,5-di (t-butylperoxy) hexyne-3, t- Peroxyesters such as butylperoxybenzoate, t-butylperoxyacetate, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, cyclohexanone peroxide, 3,3,5-trimethylcyclohexanone peroxide , Ketone peroxides such as methylcyclohexanone peroxide, 2,2-bis (4,4-di-t-butylperoxycyclohexyl) propane, 1,1-bis (t-butylperoxy) 3,3,5 -Trimethylcyclohexane, 1,1-bis (t-butylperoxy) silane Peroxyketals such as rhohexane, n-butyl-4,4-bis (t-butylperoxy) valate, cumene hydroperoxide, diisopropylbenzene hydroperoxide, 2,5-dimethylcyclohexane-2,5-di Hydroperoxides such as hydroperoxide, benzoyl peroxide, decanoyl peroxide, diacyl peroxides such as lauroyl peroxide, 2,4-dichlorobenzoyl peroxide, bis (t-butylcyclohexyl) peroxydicarbonate, etc. Organic peroxide radical polymerization initiators such as peroxydicarbonates can be used.

重合添加剤としては重合を制御できるものであれば特に限定はされないが、(メタ)アクリル酸エステルモノマーの重合の場合、好ましくはピロールジチオカルボニルジスルフィド、ビスエトキシチオカルボニルジスルフィド等である。 The polymerization additive is not particularly limited as long as the polymerization can be controlled, but in the case of polymerization of (meth) acrylic acid ester monomer, pyrrole dithiocarbonyl disulfide, bisethoxythiocarbonyl disulfide and the like are preferable.

本発明に係わる重合体の重合の形態としては、バルク重合、溶液重合、懸濁重合、乳化重合等、特に制限はないが、重合物の取扱いの利便性から生成する共重合物を溶解する溶剤を用いた溶液重合で反応を行うことが好ましい。溶液重合に用いる溶剤を例示するならば、エーテル類、ケトン類などが挙げられ、好ましくは重合温度付近もしくはそれ以上に沸点をもつエーテル類、さらに好ましくは1,4−ジオキサンが挙げられる。重合時のモノマー濃度は10〜60重量%の範囲から選択でき、さらに好ましくは20〜50重量%の範囲から選択できる。重合反応温度は使用するモノマーの種類、開始剤の種類によるが、0℃以上150℃以下の一般的なラジカル重合の温度が望ましい。 The form of polymerization of the polymer according to the present invention is not particularly limited, such as bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization, etc., but a solvent that dissolves the copolymer produced from the convenience of handling the polymer. It is preferable to carry out the reaction by solution polymerization using. Examples of solvents used in solution polymerization include ethers and ketones, preferably ethers having a boiling point near or above the polymerization temperature, and more preferably 1,4-dioxane. The monomer concentration at the time of polymerization can be selected from the range of 10 to 60% by weight, and more preferably from the range of 20 to 50% by weight. The polymerization reaction temperature depends on the type of monomer used and the type of initiator, but a general radical polymerization temperature of 0 ° C. or higher and 150 ° C. or lower is desirable.

高分子末端基置換のために投入する遊離ラジカル源については、ドーマント種を活性化させられるものであれば特に制限はないが、例えば、前記のアゾ化合物もしくは有機過酸化物のようなラジカル重合開始剤が使用できる。その使用量は、反応系の全内容物に対して0.1重量%〜50重量%が有効であるが、重合体の精製工程までを考慮すると0.1重量%〜20重量%が好ましい。遊離ラジカル源の投入時期については重合反応の開始後、できる限り残存モノマーの少ない状態の時期が好ましいが、さらに好ましくは再沈澱等の後処理操作を施し精製した重合体を再び溶媒に溶かした後である。投入時もしくは投入後の反応温度については遊離ラジカル源よりラジカルが発生する温度であればよいが、好ましくは遊離ラジカル源の半減期が8時間以内となる温度、さらに好ましくは4時間以内となる温度である。反応時間については半減期の2倍以上の時間が好ましい。反応後、再沈澱等の後処理操作を施し精製することにより、本発明の重合体を単離することができる。 There is no particular limitation on the free radical source to be used for polymer end group substitution as long as it can activate the dormant species. For example, radical polymerization initiation such as the above-mentioned azo compound or organic peroxide is started. The agent can be used. The amount used is preferably 0.1% by weight to 50% by weight with respect to the entire contents of the reaction system, but is preferably 0.1% by weight to 20% by weight in consideration of the purification step of the polymer. Regarding the timing of charging the free radical source, the time when the residual monomer is as small as possible after the start of the polymerization reaction is preferable, but more preferably after the polymer purified by performing post-treatment such as reprecipitation is dissolved again in the solvent. It is. The reaction temperature at the time of charging or after charging may be any temperature at which radicals are generated from the free radical source, but preferably the temperature at which the half-life of the free radical source is within 8 hours, more preferably within 4 hours. It is. The reaction time is preferably at least twice the half-life. After the reaction, the polymer of the present invention can be isolated by performing a post-treatment operation such as reprecipitation and purifying it.

本発明の効果については、可視・紫外線吸収スペクトル測定において末端基由来ピークの吸光度変化から判断することができる。また、NMR測定から末端に添加剤残基が存在する割合X(%)を次式により算出できる。

Figure 2005226051
(プロトンNMR測定における、末端基に由来するシグナルの積分値をA、末端基以外で重合体に由来するシグナルの積分値をB、添加剤由来の末端残基1つあたりのプロトン数をR、重合体中の計算上のプロトン数(重合度と組成から算出される)をPとする。) The effect of the present invention can be judged from the absorbance change of the terminal group-derived peak in the visible / ultraviolet absorption spectrum measurement. Further, from the NMR measurement, the ratio X (%) of the presence of the additive residue at the terminal can be calculated by the following formula.
Figure 2005226051
(In the proton NMR measurement, the integral value of the signal derived from the terminal group is A, the integral value of the signal derived from the polymer other than the terminal group is B, the number of protons per terminal residue derived from the additive is R, The calculated number of protons in the polymer (calculated from the degree of polymerization and composition) is P)

置換反応後の重合体を繰り返し、置換反応処理することによって更に効果を上げることが可能であるが、通常は1回の反応で置換前の重合体と歴然とした差を有する重合体を得ることができる。 It is possible to increase the effect further by repeating the polymer after the substitution reaction and subjecting it to a substitution reaction, but it is usually possible to obtain a polymer having a distinct difference from the polymer before the substitution in one reaction. it can.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの例によって何ら制限を受けるものではない。なお、実施例および比較例中の物性等は以下の方法により測定した。 EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not restrict | limited at all by these examples. In addition, the physical property etc. in an Example and a comparative example were measured with the following method.

(重量平均分子量)
20mgの共重合体を5mlのテトラヒドロフランに溶解し、0.5μmのメンブランフィルターで濾過した試料溶液をShodex社製ゲル・パーミエイション・クロマトゲラフィーGPC−101を用いて測定した。分離カラムはShodexGPC
KF−G、KF−805、KF−803、KF−802を直列して用い、溶媒はテトラヒドロフラン、流量1.0ml/min、検出器は示差屈折計、測定温度40℃、注入量0.1ml、標準ポリマーとしてスチレンを使用した。
(Weight average molecular weight)
A sample solution obtained by dissolving 20 mg of the copolymer in 5 ml of tetrahydrofuran and filtered through a 0.5 μm membrane filter was measured using a gel permeation chromatography chromatography GPC-101 manufactured by Shodex. Separation column is ShodexGPC
KF-G, KF-805, KF-803, KF-802 are used in series, the solvent is tetrahydrofuran, the flow rate is 1.0 ml / min, the detector is a differential refractometer, the measurement temperature is 40 ° C., the injection amount is 0.1 ml, Styrene was used as the standard polymer.

(重合体末端構造)
H−NMRの測定により求めた。この測定は、日本電子(株)製JNM−AL400型FT−NMRを用いて試料の約15質量%の重クロロホルムを直径5mmのチューブに入れ64回の積算でおこなった。
(Polymer terminal structure)
It was determined by 1 H-NMR measurement. This measurement was carried out 64 times by placing about 15% by mass of deuterated chloroform in a 5 mm diameter tube using JNM-AL400 FT-NMR manufactured by JEOL.

(吸光度測定)
重合体のシクロヘキサノン溶液を厚さ1mmの石英板に回転塗布後90℃で90秒間ベークすることで石英板上に膜厚1μmの重合体膜を作成した。重合体膜サンプルの波長193nmである紫外線吸光度の測定は日本分光製紫外可視分光光度計V−570型を用い、重合体膜の塗布されていない石英板をリファレンスにしておこなった。
(Absorbance measurement)
A polymer cyclohexanone solution was spin-coated on a 1 mm thick quartz plate and baked at 90 ° C. for 90 seconds to form a 1 μm thick polymer film on the quartz plate. The UV absorbance of the polymer film sample having a wavelength of 193 nm was measured using a UV-visible spectrophotometer model V-570 manufactured by JASCO Corporation, with reference to a quartz plate to which no polymer film was applied.

合成例〔末端基に添加剤残基を有する重合体の製造〕
2−メチル−2−アダマンチルメタクリレート4.0g、アゾビスイソブチロニトリル0.22g、ピロール−1−チオカルボニルジスルフィド0.38g、ジオキサン7.4gを反応器に仕込み75℃で12時間重合反応を行った。次に反応液を500gのメタノールに注ぎ、生じた沈澱物をろ別した。回収した沈澱物を減圧乾燥後、ジオキサンに溶解させ、精製を繰り返すことで所望の樹脂2.7gを得た。
Synthesis Example (Production of polymer having additive residue in terminal group)
A reactor was charged with 4.0 g of 2-methyl-2-adamantyl methacrylate, 0.22 g of azobisisobutyronitrile, 0.38 g of pyrrol-1-thiocarbonyl disulfide, and 7.4 g of dioxane, and the polymerization reaction was carried out at 75 ° C. for 12 hours. went. Next, the reaction solution was poured into 500 g of methanol, and the resulting precipitate was filtered off. The recovered precipitate was dried under reduced pressure, dissolved in dioxane, and repeated purification to obtain 2.7 g of the desired resin.

実施例1〔末端基処理〕
前記合成例において合成した重合体1.0g、アゾビスイソブチロニトリル0.3g、ジオキサン1.5gを反応器に仕込み75℃で8時間撹拌を行った。次に反応液を70gのメタノールに注ぎ、生じた沈澱物をろ別した。回収した沈澱物を減圧乾燥後、ジオキサンに溶解させ、精製を繰り返すことで所望の樹脂0.7gを得た。回収したポリマーをGPC分析したところMw(重量平均分子量)が3000、Mw/Mn(分子量分布)は1.2であった。上述のH−NMRの積分比より求めた末端基にピロール構造を有する割合は22%、樹脂の膜厚1μmあたりの吸光度は0.30であった。
Example 1 [Terminal group treatment]
1.0 g of the polymer synthesized in the above synthesis example, 0.3 g of azobisisobutyronitrile, and 1.5 g of dioxane were charged into a reactor and stirred at 75 ° C. for 8 hours. Next, the reaction solution was poured into 70 g of methanol, and the resulting precipitate was filtered off. The recovered precipitate was dried under reduced pressure, dissolved in dioxane, and repeated purification to obtain 0.7 g of a desired resin. When the collected polymer was analyzed by GPC, Mw (weight average molecular weight) was 3000 and Mw / Mn (molecular weight distribution) was 1.2. The proportion having a pyrrole structure in the terminal group determined from the above-mentioned 1 H-NMR integration ratio was 22%, and the absorbance per 1 μm of resin film thickness was 0.30.

比較例1〔末端基の置換処理を行なわない重合体の製造〕
合成例において合成した重合体1.0gをジオキサン1.5gに溶解させ70gのメタノールに注ぎ、生じた沈澱物をろ別した。回収した沈澱物を減圧乾燥後、ジオキサンに溶解させ、精製を繰り返すことで所望の樹脂0.7gを得た。回収した樹脂をGPC(ゲルパーミエションクロマトグラフィー)で分析したところMw(重量平均分子量)が3000、Mw/Mn(分子量分布)は1.2であった。プロトンNMRの積分比より求めた末端基にピロール構造を有する割合は64%、樹脂の膜厚1μmあたりの吸光度は0.49であった。
Comparative Example 1 [Production of polymer without end group substitution treatment]
1.0 g of the polymer synthesized in the synthesis example was dissolved in 1.5 g of dioxane, poured into 70 g of methanol, and the resulting precipitate was filtered off. The recovered precipitate was dried under reduced pressure, dissolved in dioxane, and repeated purification to obtain 0.7 g of a desired resin. When the recovered resin was analyzed by GPC (gel permeation chromatography), Mw (weight average molecular weight) was 3000 and Mw / Mn (molecular weight distribution) was 1.2. The proportion having a pyrrole structure in the terminal group determined from the integral ratio of proton NMR was 64%, and the absorbance per 1 μm of the resin film thickness was 0.49.

実施例2〔重合と連続して末端基処理〕
2−メチル−2−アダマンチルメタクリレート4.0g、アゾビスイソブチロニトリル0.22g、ピロール−1−チオカルボニルジスルフィド0.38g、ジオキサン7.4gを反応器に仕込み75℃で12時間重合反応を行った。続いてアゾビスイソブチロニトリル0.3gを投入し、さらに75℃で8時間反応を行った。
次に反応液を500gのメタノールに注ぎ、生じた沈澱物をろ別した。回収した沈澱物を減圧乾燥後、ジオキサンに溶解させ、精製を繰り返すことで所望の樹脂2.7gを得た。回収した樹脂をGPC分析したところMw(重量平均分子量)が3000、Mw/Mn(分子量分布)は1.2であった。プロトンNMRの積分比より求めた末端基にピロール構造を有する割合は31%、樹脂の膜厚1μmあたりの吸光度は0.36であった。










Example 2 [end group treatment continuously with polymerization]
A reactor was charged with 4.0 g of 2-methyl-2-adamantyl methacrylate, 0.22 g of azobisisobutyronitrile, 0.38 g of pyrrol-1-thiocarbonyl disulfide, and 7.4 g of dioxane, and a polymerization reaction was performed at 75 ° C. for 12 hours. went. Subsequently, 0.3 g of azobisisobutyronitrile was added, and the reaction was further performed at 75 ° C. for 8 hours.
Next, the reaction solution was poured into 500 g of methanol, and the resulting precipitate was filtered off. The collected precipitate was dried under reduced pressure, dissolved in dioxane, and repeated purification to obtain 2.7 g of the desired resin. The recovered resin was subjected to GPC analysis. As a result, Mw (weight average molecular weight) was 3000 and Mw / Mn (molecular weight distribution) was 1.2. The proportion having a pyrrole structure in the terminal group determined from the integral ratio of proton NMR was 31%, and the absorbance per 1 μm of the resin film thickness was 0.36.










Claims (6)

下記一般式(1)で表される末端構造を有する重合体に少なくとも一種類の遊離ラジカル源を添加することで、その末端構造の全部または一部を該遊離ラジカル源に由来する構造に置換する方法。
Figure 2005226051
(式中Rはアルキル、アルケニル、アリール、飽和または不飽和の炭素環または複素環、アルコキシ基、窒素原子を介して結合する置換もしくは非置換の複素環)
By adding at least one kind of free radical source to the polymer having a terminal structure represented by the following general formula (1), all or part of the terminal structure is replaced with a structure derived from the free radical source. Method.
Figure 2005226051
(Wherein R 1 is alkyl, alkenyl, aryl, saturated or unsaturated carbocycle or heterocycle, alkoxy group, substituted or unsubstituted heterocycle bonded via a nitrogen atom)
遊離ラジカル源がアゾ化合物もしくは有機過酸化物である請求項1に記載の方法。 The method according to claim 1, wherein the free radical source is an azo compound or an organic peroxide. 請求項1または2に記載の方法により波長が193nmである紫外線の透過率が置換以前より高められた重合体。 A polymer having an increased transmittance of ultraviolet rays having a wavelength of 193 nm as compared with that before substitution by the method according to claim 1. 分子量分布が1.1以上1.6以下である請求項3に記載の重合体。 The polymer according to claim 3, which has a molecular weight distribution of 1.1 or more and 1.6 or less. 少なくとも一種類のエチレン性不飽和モノマー、少なくとも一種類の遊離ラジカル源、下記一般式(2)で表される少なくとも一種類の重合添加剤を含むラジカル重合反応系に、重合反応開始後に再度遊離ラジカル源(先に使用したものと同一のものであっても異なるものであってもよい)を投入することを特徴とする、波長が193nmの紫外線の透過率が再度の遊離ラジカル源を添加する前より高められた重合体の製造方法。
Figure 2005226051
(式中R、Rはそれぞれ独立してアルキル、アルケニル、アリール、飽和または不飽和の炭素環または複素環、アルコキシ基、窒素原子を介して結合する置換もしくは非置換の複素環)
Free radicals again after the start of the polymerization reaction in a radical polymerization reaction system comprising at least one ethylenically unsaturated monomer, at least one free radical source, and at least one polymerization additive represented by the following general formula (2) Before the addition of a free radical source having a wavelength of 193 nm UV light transmission again, characterized by introducing a source (which may be the same as or different from the one used previously) A method for producing a higher polymer.
Figure 2005226051
(Wherein R 2 and R 3 are each independently alkyl, alkenyl, aryl, saturated or unsaturated carbocycle or heterocycle, alkoxy group, substituted or unsubstituted heterocycle bonded via a nitrogen atom)
エチレン性不飽和モノマーの少なくとも一種類が(メタ)アクリル酸エステル化合物である請求項5に記載の重合体の製造方法。

The method for producing a polymer according to claim 5, wherein at least one of the ethylenically unsaturated monomers is a (meth) acrylic acid ester compound.

JP2004038902A 2004-02-16 2004-02-16 Substitution of polymer terminal group with free radical source Pending JP2005226051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004038902A JP2005226051A (en) 2004-02-16 2004-02-16 Substitution of polymer terminal group with free radical source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004038902A JP2005226051A (en) 2004-02-16 2004-02-16 Substitution of polymer terminal group with free radical source

Publications (1)

Publication Number Publication Date
JP2005226051A true JP2005226051A (en) 2005-08-25

Family

ID=35001011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004038902A Pending JP2005226051A (en) 2004-02-16 2004-02-16 Substitution of polymer terminal group with free radical source

Country Status (1)

Country Link
JP (1) JP2005226051A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029688A1 (en) * 2006-09-01 2008-03-13 Nissan Chemical Industries, Ltd. Hyperbranched polymer and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029688A1 (en) * 2006-09-01 2008-03-13 Nissan Chemical Industries, Ltd. Hyperbranched polymer and method for producing the same
US8338554B2 (en) 2006-09-01 2012-12-25 Nissan Chemical Industries, Ltd. Hyperbranched polymer and method for producing the same
JP2013231194A (en) * 2006-09-01 2013-11-14 Nissan Chem Ind Ltd Method for producing hyperbranched polymer
JP5499477B2 (en) * 2006-09-01 2014-05-21 日産化学工業株式会社 Hyperbranched polymer and method for producing the same

Similar Documents

Publication Publication Date Title
US20060217519A1 (en) Photoresist polymers
US7399806B2 (en) Synthesis of photoresist polymers
JP5576829B2 (en) Compound, polymer containing the same, and chemically amplified resist composition containing the polymer
TW200621811A (en) Fluorinated monomer having cyclic structure, making method, polymer, photoresist composition and patterning process
TWI714734B (en) Copolymer manufacturing method
KR101575943B1 (en) Alcohol compound and method for producing same, method for producing lactone compound, (meth)acrylate ester and method for producing same, polymer and method for producing same, and resist composition and method for producing substrate using same
US6461788B1 (en) Polymerizable compounds having cyclohexanelactone structure and polymers
JP2005226051A (en) Substitution of polymer terminal group with free radical source
US6677419B1 (en) Preparation of copolymers
JP4924795B2 (en) Norbornane lactone (meth) acrylate and polymer thereof
JP2006002096A (en) Conversion of polymer terminal group
JP2009019165A (en) Method for producing vinyl polymer
RU2537002C1 (en) Method of obtaining triblockcopolymers of methacrylic monomers
JP2003221403A (en) Method for manufacturing polymer for photoresist
KR20040026127A (en) Fluorinated polymer
CN115160495B (en) Photoresist film-forming resin containing maleimide structure and preparation method thereof
JP5540757B2 (en) Method for producing polymer
JP2007246588A (en) Chain transfer agent for living radical polymerization and alicyclic hydrocarbon group-containing polymer
JPWO2019181228A1 (en) Resin for photoresist, method for producing resin for photoresist, resin composition for photoresist, and method for forming a pattern
JP2011052164A (en) Composition for radical polymerization and method for producing polymer
JP5469110B2 (en) Photoresin manufacturing method, photoresist resin, photoresist resin composition, and pattern forming method
JP4397710B2 (en) Method for producing polymer having helical structure and polymer
WO2012073968A1 (en) Polymer for lithography, process for manufaturing same, and resist resin for semiconductors
CN115160495A (en) Photoresist film-forming resin containing maleimide structure and preparation method thereof
KR20100080145A (en) (meth)acrylate compound, and photosensitive polymer, and resist composition