JP2005225104A - Method for producing transparent composite substrate - Google Patents

Method for producing transparent composite substrate Download PDF

Info

Publication number
JP2005225104A
JP2005225104A JP2004036636A JP2004036636A JP2005225104A JP 2005225104 A JP2005225104 A JP 2005225104A JP 2004036636 A JP2004036636 A JP 2004036636A JP 2004036636 A JP2004036636 A JP 2004036636A JP 2005225104 A JP2005225104 A JP 2005225104A
Authority
JP
Japan
Prior art keywords
composite substrate
transparent composite
refractive index
resin
fiber cloth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004036636A
Other languages
Japanese (ja)
Other versions
JP4273990B2 (en
Inventor
Kazuyuki Yoshizaki
一幸 吉崎
Hideo Umeda
英雄 楳田
Yoshiyuki Yamamori
義之 山森
Yutaka Matsuda
豊 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2004036636A priority Critical patent/JP4273990B2/en
Publication of JP2005225104A publication Critical patent/JP2005225104A/en
Application granted granted Critical
Publication of JP4273990B2 publication Critical patent/JP4273990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a transparent composite substrate excellent in transparency and surface smoothness and high in productivity. <P>SOLUTION: In the method, peelable resin sheets are laminated on the surface and back of a prepreg obtained by impregnating or coating a fiber cloth with a thermoplastic resin composition and drying, and the sheet is peeled off after the resin is cured to produce the transparent composite substrate at least 70% in light transmittance at 550 nm and 2 μm or below in surface roughness (Ry). The glass transition temperature (Tg) or the thermal decomposition temperature of the sheet is at least 180°C. The sheet preferably contains a plastic material having a thermal expansion coefficient from 150°C-180°C of below 90 ppm and is 0.5 μm or below in surface roughness (Ry) on the side of a transfer surface. The method is especially useful for the production of the transparent composite substrate such as a plastic substrate used in a liquid crystal display. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、透明性・表面平滑性の優れた透明複合基板の製造方法に関する。   The present invention relates to a method for producing a transparent composite substrate having excellent transparency and surface smoothness.

液晶表示素子や有機EL表示素子用の表示素子基板、カラーフィルター基板、太陽電池基板等としては、一般にガラス板が広く用いられている。しかし、割れやすい、曲げられない、比重が大きく軽量化に不向きなどの理由から、近年、その代替として透明プラスチック基板が検討されている。これら表示装置に用いられるプラスチック基板には表面平滑性が求められる。特に表示装置に用いる場合は基板上に直接半導体素子を書き込むこともあり2μm以下レベルでの平滑性が求められているが、従来のプリプレグ使ってプレスする方法ではこのレベルの平滑性を得ることは困難であった。
通常表示装置に用いられるプラスチック基板(積層板)を得るためには半硬化状態の樹脂を含浸したプリプレグの1枚又は複数枚を加熱成形して樹脂層のみの積層板とするか、あるいは、銅箔等の金属板とともに加熱成形することにより、金属層と樹脂層から成る積層板とした後にエッチング処理等により、金属板を剥離して用いる。プリプレグはガラスクロス等の繊維布に樹脂含浸後、スクイズロール等のロールで余分な樹脂を掻き落とし、縦型の乾燥炉で乾燥させるが、このときガラスクロス等繊維布の凹凸を反映した形で乾燥・半硬化するために、表面形状は粗いものとなる。プリプレグ自体の表面粗さが粗いと得られるプラスチック基板の表面粗さも粗くなる。
プリプレグから積層板を得るためには、熱盤間に銅箔等の金属箔、プリプレグ、鏡面板等を1組として、それらを何枚も重ねて加熱成型する多段型のバッチプレスが一般的である。(非特許文献1)この時樹脂もある程度フローするためプリプレグそのものの表面形状が積層板そのものの表面と成る訳ではないが、もとのプリプレグの表面粗さが反映されたものとなる。すなわちプレス初期においては樹脂に流動性がない状態で加圧されることになるが、このとき金属箔が圧力により変形し、プリプレグの表面形状を反映した形状となり流動性のある温度域に達したときは、金属箔あるいは金属板が初期のプリプレグ表面粗さを反映した形状となっているため、平滑なプラスチック基板とはならない。また、金属箔の代わりにガラス板を使用することにより、平滑なプラスチック基板を得ることは可能だが、加圧成形時にガラス板が割れることがあった。
また、多段型のバッチプレスでは、生産性が低いばかりか各段の熱盤内に温度ムラがあり成型時に各積層板にかかる熱履歴が異なるために、板厚精度、成形性、反り、寸法変化率等の品質において差が生じ、品質のバラツキが少ない積層板を製造することは難しかった。更に得られた積層板の金属箔をエッチング除去する方法では、金属箔面自体にも5μm程度の凹凸があり、これが転写されるために液晶表示装置用としては、表面平滑性が不十分であった。
In general, glass plates are widely used as liquid crystal display elements, display element substrates for organic EL display elements, color filter substrates, solar cell substrates, and the like. However, in recent years, transparent plastic substrates have been studied as an alternative because they are easily broken, cannot be bent, have a large specific gravity, and are not suitable for weight reduction. Surface smoothness is required for plastic substrates used in these display devices. In particular, when used in a display device, a semiconductor element may be directly written on a substrate and smoothness at a level of 2 μm or less is required. However, a conventional method of pressing using a prepreg can obtain this level of smoothness. It was difficult.
In order to obtain a plastic substrate (laminate) usually used in a display device, one or a plurality of prepregs impregnated with a semi-cured resin is thermoformed to form a laminate having only a resin layer, or copper By heat forming together with a metal plate such as a foil, a laminated plate composed of a metal layer and a resin layer is formed, and then the metal plate is peeled off by an etching process or the like. The prepreg is made by impregnating a fiber cloth such as glass cloth with resin, scraping off excess resin with a roll such as a squeeze roll, and drying in a vertical drying oven. Since it is dried and semi-cured, the surface shape is rough. If the surface roughness of the prepreg itself is rough, the surface roughness of the plastic substrate obtained is also rough.
In order to obtain a laminated plate from a prepreg, a multistage batch press is generally used in which a metal foil such as a copper foil, a prepreg, a mirror plate, etc. are combined as a set between hot plates and heat-molded by stacking a number of them. is there. (Non-patent document 1) At this time, since the resin also flows to some extent, the surface shape of the prepreg itself does not become the surface of the laminate itself, but the surface roughness of the original prepreg is reflected. That is, in the initial press, the resin is pressed in a state where there is no fluidity, but at this time, the metal foil is deformed by the pressure and becomes a shape reflecting the surface shape of the prepreg and reaches a fluid temperature range. In some cases, the metal foil or the metal plate has a shape reflecting the initial surface roughness of the prepreg, so that it does not become a smooth plastic substrate. Further, by using a glass plate instead of the metal foil, it is possible to obtain a smooth plastic substrate, but the glass plate may be broken during pressure molding.
Multi-stage batch presses are not only low in productivity, but also have uneven temperature in each stage's hot platen, and the heat history applied to each laminate during molding is different, so plate thickness accuracy, formability, warpage, dimensions It has been difficult to produce a laminated board with a small difference in quality due to a difference in quality such as rate of change. Further, in the method of removing the metal foil of the obtained laminate by etching, the metal foil surface itself has irregularities of about 5 μm, and since this is transferred, the surface smoothness is insufficient for a liquid crystal display device. It was.

藤木政気、藤森秀信 偏著「多層プリント配線版キーワード100」工業調査会、1987年10月20日 5版発行 p.43−46Masaki Fujiki, Hidenobu Fujimori, “Multilayer Printed Wiring Version Keyword 100” Industrial Research Committee, published on October 20, 1987, 5th edition p. 43-46

本発明は透明性・表面平滑性に優れ生産性の高い透明複合基板の製造方法を提供するものである。   The present invention provides a method for producing a transparent composite substrate having excellent transparency and surface smoothness and high productivity.

すなわち本発明は、
(1) 繊維布に熱硬化性樹脂組成物を含浸または塗布・乾燥させたプリプレグの表
裏に剥離性樹脂シートを積層し、前記熱硬化性樹脂組成物を硬化させた後に剥離性樹脂シートを剥離する複合基板の製造方法であって、前記複合基板の550nmでの光線透過率が70%以上、表面粗さ(Ry)が2μm以下であることを特徴とする透明複合基板の製造方法。
(2) 前記熱硬化性樹脂の硬化後の屈折率と繊維布の屈折率との差が0.01以下である(1)の透明複合基板の製造方法。
(3) 前記繊維布の屈折率が1.45〜1.56である(1)、(2)の透明複合基板の製造方法。
(4) 前記繊維布がガラスクロスである(1)〜(3)の透明複合基板の製造方法。
(5) 前記繊維布がガラス不織布である(1)〜(3)の透明複合基板の製造方法。
(6) 前記熱硬化性樹脂組成物がエポキシ樹脂を含む(1)〜(5)の透明複合基板の製造方法。
(7) 前記熱硬化性樹脂組成物がエポキシ樹脂及び酸無水物を含む(1)〜(5)の透明複合基板の製造方法。
(8) 前記熱硬化性樹脂組成物に無機充填材を含有する(1)〜(7)の透明複合基板の製造方法。
(9) 前記無機充填材の屈折率と、前記熱硬化性樹脂の硬化後の屈折率及び繊維布の屈折率との差が0.01以下であり、前記無機充填材の平均粒径が2μm以下である(8)の透明複合基板の製造方法。
(10) 前記無機充填材の含有量が、樹脂成分100重量部に対して10〜400重量部である(8)、(9)の複合基板の製造方法。
(11) 前記剥離性樹脂シートのガラス転移温度(Tg)あるいは熱分解温度が180℃以上であり、150℃から180℃の熱線膨張係数が90ppm未満のプラスチックを含み、かつ転写面側の表面粗さ(Ry)が0.5μm以下である(1)〜(10)の透明複合基板の製造方法。
(12) 剥離性樹脂シートの材質にポリエステルフィルムを含む(11)の透明複合基板の製造方法。
(13) 剥離性樹脂シートの材質にポリイミドフィルムを含む(11)の透明複合基板の製造方法。
(14) 前記透明複合基板を連続的に巻き取ることを特徴とする(1)〜(13)の複合基板の製造方法。
(15) 前記透明複合基板が表示素子用基板であることを特徴とする(1)〜(14)の複合基板の製造方法。
である。
That is, the present invention
(1) A peelable resin sheet is laminated on the front and back of a prepreg impregnated or coated and dried with a thermosetting resin composition on a fiber cloth, and after the thermosetting resin composition is cured, the peelable resin sheet is peeled off. A method for producing a transparent composite substrate, wherein the composite substrate has a light transmittance at 550 nm of 70% or more and a surface roughness (Ry) of 2 μm or less.
(2) The method for producing a transparent composite substrate according to (1), wherein a difference between a refractive index after curing of the thermosetting resin and a refractive index of the fiber cloth is 0.01 or less.
(3) The manufacturing method of the transparent composite substrate of (1) and (2) whose refractive index of the said fiber cloth is 1.45-1.56.
(4) The method for producing a transparent composite substrate according to (1) to (3), wherein the fiber cloth is a glass cloth.
(5) The method for producing a transparent composite substrate according to (1) to (3), wherein the fiber cloth is a glass nonwoven fabric.
(6) The manufacturing method of the transparent composite substrate of (1)-(5) in which the said thermosetting resin composition contains an epoxy resin.
(7) The manufacturing method of the transparent composite substrate of (1)-(5) in which the said thermosetting resin composition contains an epoxy resin and an acid anhydride.
(8) The manufacturing method of the transparent composite substrate of (1)-(7) which contains an inorganic filler in the said thermosetting resin composition.
(9) The difference between the refractive index of the inorganic filler, the refractive index after curing of the thermosetting resin, and the refractive index of the fiber cloth is 0.01 or less, and the average particle size of the inorganic filler is 2 μm. (8) The manufacturing method of the transparent composite substrate of the following.
(10) The method for producing a composite substrate according to (8) or (9), wherein the content of the inorganic filler is 10 to 400 parts by weight with respect to 100 parts by weight of the resin component.
(11) A glass transition temperature (Tg) or a thermal decomposition temperature of the peelable resin sheet is 180 ° C. or higher, includes a plastic having a thermal linear expansion coefficient of less than 90 ppm from 150 ° C. to 180 ° C., and has a surface roughness on the transfer surface side. (Ry) is 0.5 micrometer or less, The manufacturing method of the transparent composite substrate of (1)-(10).
(12) The method for producing a transparent composite substrate according to (11), wherein the material of the peelable resin sheet includes a polyester film.
(13) The method for producing a transparent composite substrate according to (11), wherein the material of the peelable resin sheet includes a polyimide film.
(14) The method for producing a composite substrate according to any one of (1) to (13), wherein the transparent composite substrate is continuously wound up.
(15) The method for producing a composite substrate according to any one of (1) to (14), wherein the transparent composite substrate is a display element substrate.
It is.

本発明は、特定の物性を持つ剥離性樹脂シートを、プリプレグの表裏に積層し、樹脂を硬化させた後に剥離性樹脂シートを剥離することにより従来必要であったプレス工程も特に必要とせずに連続的に平滑なプラスチック基板が得られることを見出したものである。
従来用いられてきた剥離性金属箔は、プリプレグの表面形状、圧力によって変形し、また、表面を転写される金属箔自体の表面平滑性が不十分であるのに対して、本発明の剥離性樹脂シートは、金属箔よりも表面が平滑な上、プリプレグの表面に積層後、樹脂のフローに伴い、表面平滑性を回復することができるため、プリプレグ表面をむらなく平坦化、かつ、平滑化できるという利点がある。
本発明は繊維布に熱硬化性樹脂溶液を含浸し、タックフリー(半硬化)状態になるまで乾燥し、プリプレグを形成する。その後、得られたプリプレグの表裏に剥離性樹脂シートを加熱・圧着等により積層し、更に樹脂を加熱等により硬化させた後、樹脂シートを剥離して複合基板とし、必要であればこれを連続的に巻き取ることによりロール状の複合基板
を得るものである。
本発明において、含浸樹脂溶液を乾燥させ、半硬化状態のプリプレグを形成させる条件としては、含浸樹脂や溶剤の種類により異なるが、50〜200℃、0.5〜30分が好ましい。これより温度が低く、乾燥時間が短い場合、流動性が大きいため、繊維布と加熱圧着する際に、端面からのしみ出しが大きく、均一な厚みの複合基板とならないことがある。またこれより温度が高く、乾燥時間が長い場合、剥離性シートと加熱・圧着する際、流動性が小さすぎ、基板表面を十分平滑化できないことがある。
剥離性シートをプリプレグに加熱・圧着により積層する条件としてはプレス形式の場合は70〜200℃、0.1〜10MPa、5〜30分、ロール式ラミネータの場合は70〜200℃、0.1〜100MPa、0.1〜10m/分の条件が好ましい。特に温度としては含浸樹脂の乾燥温度±60℃で実施することが望ましい。加熱温度が低いと樹脂が軟化せず基板表面を十分に平滑化できないことがあり、一方、加熱温度が高すぎると含浸樹脂中の溶剤が揮発発泡したり、フローが大きすぎて樹脂が流れ出てしまうことがある。プレス形式にて剥離性樹脂シートを繊維布に加熱・圧着する場合は効率の面から表裏同時に張り合わせることが望ましいが、ロール式ラミネータを用いる場合は片面毎に張り合わせることもできる。
The present invention does not particularly require a pressing step that is conventionally required by laminating a peelable resin sheet having specific physical properties on the front and back of a prepreg, and curing the resin and then peeling the peelable resin sheet. It has been found that a continuously smooth plastic substrate can be obtained.
The peelable metal foil that has been conventionally used is deformed by the surface shape and pressure of the prepreg, and the surface smoothness of the metal foil itself to which the surface is transferred is insufficient. The surface of the resin sheet is smoother than that of metal foil, and after being laminated on the surface of the prepreg, the surface smoothness can be recovered with the flow of the resin. There is an advantage that you can.
In the present invention, a fiber cloth is impregnated with a thermosetting resin solution and dried until it becomes a tack-free (semi-cured) state to form a prepreg. Thereafter, a peelable resin sheet is laminated on the front and back of the obtained prepreg by heating and pressure bonding, and the resin is further cured by heating, and then the resin sheet is peeled off to form a composite substrate. The roll-shaped composite substrate is obtained by winding it up.
In the present invention, the conditions for drying the impregnated resin solution to form a semi-cured prepreg vary depending on the type of impregnating resin and solvent, but are preferably 50 to 200 ° C. and 0.5 to 30 minutes. When the temperature is lower than this and the drying time is short, the fluidity is high, so that when the heat and pressure bonding is performed with the fiber cloth, the exudation from the end face is large and the composite substrate with a uniform thickness may not be obtained. In addition, when the temperature is higher than this and the drying time is long, the fluidity is too small when heating and press-bonding with the peelable sheet, and the substrate surface may not be sufficiently smoothed.
The conditions for laminating the peelable sheet to the prepreg by heating and pressure bonding are 70 to 200 ° C., 0.1 to 10 MPa, 5 to 30 minutes in the case of a press type, and 70 to 200 ° C. and 0.1 in the case of a roll laminator. The conditions of -100 MPa and 0.1-10 m / min are preferred. In particular, it is desirable that the temperature be a drying temperature of the impregnating resin ± 60 ° C. If the heating temperature is low, the resin may not be softened and the substrate surface may not be sufficiently smoothed.On the other hand, if the heating temperature is too high, the solvent in the impregnating resin may evaporate and foam, or the flow may be too large and the resin may flow out. It may end up. When the peelable resin sheet is heated and pressure-bonded to the fiber cloth in a press form, it is desirable to bond the front and back simultaneously from the viewpoint of efficiency, but when using a roll laminator, it can also be bonded to each side.

本発明の透明複合基板を、表示素子用プラスチック基板に用いる場合は、その波長550nmにおける光線透過率が70%以上であることが好ましく、より好ましくは80%以上、さら好ましくは85%以上である。光線透過率が70%未満であると、光の利用効率が低下し光効率が重要な用途には好ましくない。   When the transparent composite substrate of the present invention is used for a plastic substrate for a display element, the light transmittance at a wavelength of 550 nm is preferably 70% or more, more preferably 80% or more, and still more preferably 85% or more. . When the light transmittance is less than 70%, the light use efficiency is lowered, which is not preferable for applications where light efficiency is important.

本発明で用いられる繊維布は特に限定されるものではなく、種々の無機系または有機系の繊維布を用いることができる。 その具体例としては、 Eガラス(無アルカリガラス)、Sガラス、Dガラス、NEガラス、クォーツ、高誘電率ガラス等のガラスクロス、ポリエステル繊維布、ナイロン繊維布等が挙げられる。 好ましくは屈折率が1.45〜1.
56のガラスクロス及びガラス不織布であり、より好ましくは屈折率1.50〜1.54のガラスクロス及びガラス不織布である。屈折率が1.50〜1.54のガラスクロス及びガラス不織布を用いた場合には、ガラスクロス及びガラス不織布のアッベ数に近い樹脂が比較的容易に選択でき、この樹脂と繊維布とのアッベ数が近いと広い波長領域で屈折率が一致し、広範囲で高い光線透過率が得られる。また、ガラスクロスの場合、織布フィラメントの織り方についても特に限定されるものではなく、平織り、ななこ織り、朱子織り、綾織り等の構造を有する織物でも良く、好ましくは平織りである。 繊維の厚みも特に限定
されるものではないが、30〜300μmであることが好ましい。
The fiber cloth used in the present invention is not particularly limited, and various inorganic or organic fiber cloths can be used. Specific examples thereof include glass cloth such as E glass (non-alkali glass), S glass, D glass, NE glass, quartz, and high dielectric constant glass, polyester fiber cloth, nylon fiber cloth, and the like. Preferably the refractive index is 1.45-1.
56 glass cloth and glass nonwoven fabric, more preferably glass cloth and glass nonwoven fabric having a refractive index of 1.50 to 1.54. When a glass cloth and a glass nonwoven fabric having a refractive index of 1.50 to 1.54 are used, a resin close to the Abbe number of the glass cloth and the glass nonwoven fabric can be selected relatively easily. When the numbers are close, the refractive indexes coincide in a wide wavelength region, and high light transmittance can be obtained in a wide range. In the case of glass cloth, the method of weaving the woven filaments is not particularly limited, and may be a woven fabric having a structure such as plain weave, Nanako weave, satin weave, twill weave, etc., preferably plain weave. The thickness of the fiber is not particularly limited, but is preferably 30 to 300 μm.

本発明に用いられる繊維布は、樹脂成分との濡れ性を改善する目的で各種のシランカップリング剤、ボランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤等の表面処理剤で処理されても良く、これに限定されるものではない。   The fiber fabric used in the present invention is treated with various surface treatment agents such as various silane coupling agents, borane coupling agents, titanate coupling agents, aluminum coupling agents for the purpose of improving the wettability with the resin component. However, the present invention is not limited to this.

本発明で用いられる熱硬化性樹脂組成物は、繊維布と複合化して厚さ200μmのシートにした場合、波長550nmの光線透過率が70%以上であれば特に限定されるものではないが、より好ましくは80%以上、さらに好ましくは85%以上の光線透過率をもつことが望ましい。光線透過率が70%未満であると、光の利用効率が低下し光効率が重要な用途には好ましくない。これら透明性が良い熱硬化性樹脂としてアクリレート樹脂、エポキシ樹脂、ポリイミド樹脂、ポリアミド樹脂などがあげられる。反応性モノマーとしては、熱で架橋させることができるものであれば特に制限されないが、透明性、耐熱性、生産性の面から2つ以上の官能基を有するエポキシ樹脂が好ましい。これら樹脂は、単独で用いても2種以上を併用しても良い。   The thermosetting resin composition used in the present invention is not particularly limited as long as the light transmittance at a wavelength of 550 nm is 70% or more when combined with a fiber cloth to form a sheet having a thickness of 200 μm, More preferably, it has a light transmittance of 80% or more, more preferably 85% or more. When the light transmittance is less than 70%, the light use efficiency is lowered, which is not preferable for applications where light efficiency is important. Examples of these thermosetting resins having good transparency include acrylate resins, epoxy resins, polyimide resins, and polyamide resins. The reactive monomer is not particularly limited as long as it can be crosslinked by heat, but an epoxy resin having two or more functional groups is preferable from the viewpoint of transparency, heat resistance, and productivity. These resins may be used alone or in combination of two or more.

本発明で用いられる熱硬化性樹脂の硬化後のガラス転移温度は、表示素子プラスチック
基板に用いられる場合、150℃以上であることが好ましく、より好ましくは200℃以上である。樹脂のガラス転移温度が150℃未満であるとTFT素子形成工程等で変形が生じる事がある。
The glass transition temperature after curing of the thermosetting resin used in the present invention is preferably 150 ° C. or higher, more preferably 200 ° C. or higher when used for a display element plastic substrate. If the glass transition temperature of the resin is lower than 150 ° C., deformation may occur in the TFT element forming process or the like.

かかる透明複合基板において、波長550nmの光線透過率を向上させる方法としては、(1)熱硬化性樹脂と繊維布との屈折率を合わせる、(2)光の波長以下の微細な繊維の繊維布を用いる、などがあげられるが、材料入手の容易さから屈折率を一致させるのが好ましい。   In such a transparent composite substrate, the method of improving the light transmittance at a wavelength of 550 nm includes (1) matching the refractive indexes of the thermosetting resin and the fiber cloth, and (2) a fiber cloth of fine fibers below the wavelength of light. However, it is preferable to match the refractive index because of the availability of materials.

熱硬化性樹脂の硬化後の屈折率とガラス繊維布の屈折率との差は、優れた透明性を維持するため0.01以下であることが好ましく、0.005以下がより好ましい。屈折率差が0.01より大きい場合には、得られるプラスチック基板の透明性が劣る傾向がある。   The difference between the refractive index after curing of the thermosetting resin and the refractive index of the glass fiber cloth is preferably 0.01 or less and more preferably 0.005 or less in order to maintain excellent transparency. When the refractive index difference is larger than 0.01, the resulting plastic substrate tends to be inferior in transparency.

熱硬化性樹脂と繊維布との屈折率差を0.01以下にするには、(1)繊維布との屈折率差が0.01以下の樹脂を選択する、(2)繊維布の屈折率を調整して樹脂の屈折率に合わせる、(3)樹脂の屈折率を調整して繊維布の屈折率を合わせる方法などが採用し得る。しかし
ながら表示素子用基板に用いる場合、要求される種々の特性を満足しつつ、樹脂と繊維布との屈折率差が0.01以下の組み合わせを選択することは容易でなく、また、繊維布の
屈折率を調整して樹脂の屈折率に合わせる方法では特殊な繊維を用いることになり、コストの面から好ましくないため、樹脂の屈折率を調整して繊維布の屈折率に合わせる方法が好ましい。
To make the difference in refractive index between the thermosetting resin and the fiber cloth 0.01 or less, (1) Select a resin whose refractive index difference with the fiber cloth is 0.01 or less. (2) Refraction of the fiber cloth A method of adjusting the refractive index to match the refractive index of the resin, (3) a method of adjusting the refractive index of the resin to match the refractive index of the fiber cloth, and the like can be adopted. However, when used for a display element substrate, it is not easy to select a combination in which the refractive index difference between the resin and the fiber cloth is 0.01 or less while satisfying various required characteristics. In the method of adjusting the refractive index to match the refractive index of the resin, special fibers are used, which is not preferable from the viewpoint of cost. Therefore, the method of adjusting the refractive index of the resin to match the refractive index of the fiber cloth is preferable.

繊維布の屈折率に樹脂の屈折率を合わせるには、(1)屈折率の異なる2種以上の樹脂を
組み合わせる方法、(2)樹脂よりも屈折率が大きいか、小さい添加剤を添加して調整する
方法などが挙げられる。なかでも、繊維布よりも屈折率の高い樹脂と繊維布よりも屈折率の低い樹脂を組み合わせて屈折率を調整する方法が好ましい。この方法によれば、樹脂の屈折率をEガラス、Sガラス、NEガラスなどの汎用的な繊維布の屈折率に合わすことが比較的容易である。
To match the refractive index of the resin to the refractive index of the fiber cloth, (1) a method of combining two or more resins having different refractive indexes, (2) adding an additive having a refractive index greater or smaller than that of the resin The method of adjustment etc. are mentioned. In particular, a method of adjusting the refractive index by combining a resin having a higher refractive index than the fiber cloth and a resin having a lower refractive index than the fiber cloth is preferable. According to this method, it is relatively easy to match the refractive index of the resin with that of a general-purpose fiber cloth such as E glass, S glass, or NE glass.

屈折率の異なる樹脂の組み合わせとしては、(1)屈折率の異なる2種以上の樹脂の組み
合わせ、(2)屈折率の異なる2種以上の硬化剤の組み合わせ、(3)樹脂と屈折率の異なる他の樹脂との組み合わせなど、繊維布の屈折率に調整できるものであれば特に限定されないが、樹脂同士の相容牲が高く、かつ広い範囲で屈折率の調整ができることから屈折率の異なる2種以上の樹脂の組み合わせが好ましい。すなわち、繊維布の屈折率に調整可能な好ましい樹脂の組み合わせは、硬化したときの屈折率が繊維布よりも低い1種以上の樹脂と、硬化したときの屈折率が繊維布よりも高い1種以上の樹脂との組み合わせである。
硬化後の樹脂の屈折率は使用した硬化剤によっても異なり、本発明にて用いられる、屈折率の低い樹脂、或いは高い樹脂としては、各々、硬化後の屈折率が、用いられる繊維布の屈折率よりも低く、或いは高くなるものであれば特に限定されない。
The combinations of resins with different refractive indices include (1) a combination of two or more resins having different refractive indexes, (2) a combination of two or more curing agents having different refractive indexes, and (3) a refractive index different from that of the resin. Although it will not specifically limit if it can adjust to the refractive index of fiber cloths, such as a combination with other resin, The difference in refractive index is 2 because the compatibility between resins is high and the refractive index can be adjusted in a wide range. A combination of more than one resin is preferred. That is, a preferable combination of resins that can be adjusted to the refractive index of the fiber cloth is one or more resins having a refractive index lower than that of the fiber cloth when cured, and one type having a higher refractive index than that of the fiber cloth when cured. It is a combination with the above resin.
The refractive index of the resin after curing differs depending on the curing agent used, and the low refractive index resin or the high resin used in the present invention has a refractive index after curing, respectively, of the fiber cloth used. There is no particular limitation as long as it is lower or higher than the rate.

具体的には、繊維布として、EガラスやSガラスなど屈折率が1.52以上のガラス繊
維布を用いる場合、酸無水物を硬化剤とすると、(i)比較的屈折率の低い脂環式エポキシ樹脂(式(3)〜(8)など)、及び屈折率が中程度であるトリグリシジルイソシアヌレート(
式(9))から選ばれた少なくとも1種のエポキシ樹脂と、(ii)比較的屈折率の高いイオウ
含有エポキシ樹脂(式(1))及びフルオレン骨格含有エポキシ樹脂(式(2))から選ばれた少なくとも1種のエポキシ樹脂の組み合わせなどがある。前記成分(i)としては、それらのうち、トリグリシジルイソシアヌレートが耐熱性の点からより好ましい。
Specifically, when a glass fiber cloth having a refractive index of 1.52 or more, such as E glass or S glass, is used as the fiber cloth, when an acid anhydride is used as a curing agent, (i) an alicyclic ring having a relatively low refractive index. Formula epoxy resins (e.g., formulas (3) to (8)) and triglycidyl isocyanurate having a medium refractive index (
At least one epoxy resin selected from formula (9)), and (ii) a sulfur-containing epoxy resin having a relatively high refractive index (formula (1)) and a fluorene skeleton-containing epoxy resin (formula (2)). A combination of at least one epoxy resin. Among them, triglycidyl isocyanurate is more preferable as the component (i) from the viewpoint of heat resistance.

一方、NEガラスなど屈折率が1.52未満のガラス繊維布を用いる場合は酸無水物を
硬化剤として、(i)比較的屈折率の低い脂環式エポキシ樹脂(式(3)〜(8)など)から選ば
れた少なくとも1種のエポキシ樹脂と、(ii)屈折率が中程度であるトリグリシジルイソシアヌレート(式(9))、並びに比較的屈折率の高いイオウ含有エポキシ樹脂(式(1))及びフルオレン骨格含有エポキシ樹脂(式(2))から選ばれた少なくとも1種のエポキシ樹脂の組み合わせなどがある。
On the other hand, when a glass fiber cloth having a refractive index of less than 1.52, such as NE glass, is used, (i) an alicyclic epoxy resin having a relatively low refractive index (formulas (3) to (8)) And (ii) triglycidyl isocyanurate having a medium refractive index (formula (9)), and a sulfur-containing epoxy resin having a relatively high refractive index (formula ( And a combination of at least one epoxy resin selected from 1)) and a fluorene skeleton-containing epoxy resin (formula (2)).

前記の比較的屈折率の低いエポキシ樹脂としては、式(3)〜(8)にて示される脂環式エポキシ樹脂などが挙げられる。

Figure 2005225104
Examples of the epoxy resin having a relatively low refractive index include alicyclic epoxy resins represented by formulas (3) to (8).
Figure 2005225104

Figure 2005225104
Figure 2005225104

Figure 2005225104
Figure 2005225104

Figure 2005225104
Figure 2005225104

Figure 2005225104
Figure 2005225104

Figure 2005225104
Figure 2005225104

また、前記の屈折率が中程度であるトリグリシジルイソシアヌレートは式(9)にて示される。   The triglycidyl isocyanurate having a medium refractive index is represented by the formula (9).

Figure 2005225104
Figure 2005225104

前記の比較的屈折率の高いイオウ含有エポキシ樹脂、及びフルオレン骨格含有エポキシ樹脂は、下記の式(1)及び式(2)にて表される。   The relatively high refractive index sulfur-containing epoxy resin and fluorene skeleton-containing epoxy resin are represented by the following formulas (1) and (2).

イオウ含有エポキシ樹脂
イオウ含有エポキシ樹脂としては、イオウを含有し、2つ以上のエポキシ基を有するエポキシ樹脂であれば特に限定されず、耐熱性や透明性の点から式(1)に示すエポキシ樹脂が好ましい。
Sulfur-containing epoxy resin The sulfur-containing epoxy resin is not particularly limited as long as it contains sulfur and has two or more epoxy groups. From the viewpoint of heat resistance and transparency, the epoxy resin represented by formula (1) Is preferred.

Figure 2005225104
式(1)で示されるエポキシ樹脂の中でも、反応性、耐熱性や取り扱い安さからXがSO、Yが酸素、R〜R10がすべて水素、nが0〜1であるビスフェノールSが最も好ましい。
Figure 2005225104
Among the epoxy resins represented by the formula (1), bisphenol S in which X is SO 2 , Y is oxygen, R 5 to R 10 are all hydrogen, and n is 0 to 1 is the most because of reactivity, heat resistance and handling ease. preferable.

フルオレン骨格含有エポキシ樹脂
フルオレン骨格含有エポキシ樹脂としては、フルオレン骨格を含有し、2つ以上のエポキシ基を有するエポキシ樹脂であれば特に限定されないが、耐熱性や透明性の点から式(
2)で示されるエポキシ樹脂が好ましい。
Fluorene skeleton-containing epoxy resin The fluorene skeleton-containing epoxy resin is not particularly limited as long as it is an epoxy resin containing a fluorene skeleton and having two or more epoxy groups, but from the viewpoint of heat resistance and transparency,
The epoxy resin represented by 2) is preferred.

Figure 2005225104
Figure 2005225104

硬化後の屈折率の異なる熱硬化性樹脂は、目的とする屈折率に応じて適宜の配合割合で混合し硬化することができ、熱硬化性樹脂の屈折率を繊維布の屈折率に調整することができる。   Thermosetting resins having different refractive indexes after curing can be mixed and cured at an appropriate blending ratio according to the target refractive index, and the refractive index of the thermosetting resin is adjusted to the refractive index of the fiber cloth. be able to.

本発明で用いられる熱硬化性樹脂には、柔軟性付与するなどのため、所望の特性を損なうことのない範囲で、単官能の反応性モノマーを併用してもよい。この場合、樹脂全体の屈折率を繊維布の屈折率に合うように配合量を調整する。   In order to impart flexibility to the thermosetting resin used in the present invention, a monofunctional reactive monomer may be used in combination as long as desired properties are not impaired. In this case, the blending amount is adjusted so that the refractive index of the entire resin matches the refractive index of the fiber cloth.

本発明に用いる熱硬化性樹脂は、酸無水物及び必要に応じて重合開始剤の存在下で硬化させて用いてもよい。   The thermosetting resin used in the present invention may be used after being cured in the presence of an acid anhydride and, if necessary, a polymerization initiator.

酸無水物としては、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチル無水ナジック酸、無水ナジック酸、無水グルタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチル水添無水ナジック酸、水添無水ナジック酸などがあげられ、なかでも透明性が優れることからメチルヘキサヒドロ無水フタル酸やメチル水添無水ナジック酸が好ましい。   Acid anhydrides include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, glutaric anhydride, methylhexahydro Examples thereof include phthalic anhydride, methyltetrahydrophthalic anhydride, methyl hydrogenated nadic anhydride, hydrogenated nadic anhydride, etc. Among them, methylhexahydrophthalic anhydride and methyl hydrogenated nadic anhydride are preferred because of excellent transparency. .

また、硬化促進剤を併用することも好ましい。この硬化促進剤としては、1,8−ジア
ザ−ビシクロ(5,4,0)ウンデセン−7、トリエチレンジアミン等の三級アミン類、2−エチル−4−メチルイミダゾール等のイミダゾール類、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート等のリン化合物、四級アンモニウム塩、有機金属塩類、およびこれらの誘導体等があげられ、これらのなかでもリン化合物が好ましい。これら硬化促進剤は、単独で用いてもよく2種以上を併用してもよい。
It is also preferable to use a curing accelerator in combination. Examples of the curing accelerator include 1,8-diaza-bicyclo (5,4,0) undecene-7, tertiary amines such as triethylenediamine, imidazoles such as 2-ethyl-4-methylimidazole, and triphenylphosphine. And phosphorus compounds such as tetraphenylphosphonium tetraphenylborate, quaternary ammonium salts, organometallic salts, and derivatives thereof, among which phosphorus compounds are preferred. These curing accelerators may be used alone or in combination of two or more.

酸無水物の使用量は、エポキシ樹脂中のエポキシ基1当量に対して、酸無水物基を0.
5〜1.5当量に設定することが好ましく、0.7〜1.2当量がより好ましい。
The amount of acid anhydride used is 0. 1 acid anhydride group to 1 equivalent of epoxy group in the epoxy resin.
It is preferable to set to 5-1.5 equivalent, and 0.7-1.2 equivalent is more preferable.

本発明の透明複合基板は、必要に応じて、透明性、耐溶剤性、耐熱性等の特性を損なわない範囲で、熱可塑性又は熱硬化性のオリゴマーやポリマーを併用してよい。この場合、吸水率の低減などのため、脂環式構造やカルド骨格を有するオリゴマーやポリマーを使用することが好ましい。これら熱可塑性または熱硬化性のオリゴマーやポリマーを併用する場合は、全体の屈折率がガラス繊維布の屈折率に合うように組成比を調整する必要がある。   The transparent composite substrate of the present invention may be used in combination with a thermoplastic or thermosetting oligomer or polymer as long as the properties such as transparency, solvent resistance and heat resistance are not impaired. In this case, it is preferable to use an oligomer or polymer having an alicyclic structure or a cardo skeleton in order to reduce water absorption. When these thermoplastic or thermosetting oligomers or polymers are used in combination, it is necessary to adjust the composition ratio so that the overall refractive index matches the refractive index of the glass fiber cloth.

本発明の熱硬化樹脂組成物は、樹脂成分とともに無機充填材を併用しても良い。この無機充填材は透明複合基板の550nmでの光線透過率が70%未満に低下しない範囲では特に限定するものではないが、硬化後の樹脂及び繊維布との屈折率差が0.01以下で、平均粒径2μm以下が好ましく、さらに屈折率差が0.005以下で、平均粒径2μm以下がより好ましい。無機充填材は弾性率を高め、線膨張係数を低下させ、吸水性を低下させる効果がある。無機充填材としては、例えばタルク、アルミナ、ガラス、シリカ、マイカ等が挙げられる。これらの中でも屈折率差をより小さくするために、繊維布と同組成もしくは繊維布を粉砕したものが好ましい。また、平均粒径2μm以下の無機充填材を用いることが充填性を向上させる点で好ましい。平均粒径が2μmを超えるとプリプレグ作製時の繊維布への含浸性低下、樹脂組成物中の無機充填材が沈降する、表面平滑性が低下する等の現象が起こり、望ましくない。また、平均粒径は粘度制御の点で0.2μm以上が好ましい。なお、本発明で平均粒径は株式会社堀場製作所粒度分布測定装置 LA920を用いて、レーザ回折/散乱法で測定を行った。
無機充填材の配合量としては、熱硬化性樹脂等の樹脂成分100重量部に対して、10〜400重量部が好ましく、より好ましくは40〜300重量部である。10重量部より少ないと無機充填材を添加することによる低熱膨張化の効果が少なく、400重量部を超えると樹脂組成物中の無機充填材の割合が大きすぎて、樹脂ワニスのガラス基材への塗布、含浸などの操作が困難となる傾向がある。
The thermosetting resin composition of the present invention may use an inorganic filler together with the resin component. The inorganic filler is not particularly limited as long as the light transmittance at 550 nm of the transparent composite substrate does not decrease to less than 70%, but the difference in refractive index between the cured resin and the fiber cloth is 0.01 or less. The average particle size is preferably 2 μm or less, more preferably the refractive index difference is 0.005 or less, and the average particle size is 2 μm or less. The inorganic filler has the effect of increasing the elastic modulus, decreasing the linear expansion coefficient, and decreasing the water absorption. Examples of the inorganic filler include talc, alumina, glass, silica, mica and the like. Among these, in order to further reduce the difference in refractive index, the same composition as the fiber cloth or a pulverized fiber cloth is preferable. In addition, it is preferable to use an inorganic filler having an average particle size of 2 μm or less from the viewpoint of improving the filling property. When the average particle size exceeds 2 μm, the impregnation property to the fiber cloth at the time of prepreg production, the inorganic filler in the resin composition is settled, and the surface smoothness is lowered, which is not desirable. The average particle size is preferably 0.2 μm or more in terms of viscosity control. In the present invention, the average particle size was measured by a laser diffraction / scattering method using a Horiba particle size distribution measuring device LA920.
As a compounding quantity of an inorganic filler, 10-400 weight part is preferable with respect to 100 weight part of resin components, such as a thermosetting resin, More preferably, it is 40-300 weight part. If the amount is less than 10 parts by weight, the effect of reducing the thermal expansion due to the addition of the inorganic filler is small. If the amount exceeds 400 parts by weight, the proportion of the inorganic filler in the resin composition is too large, and the resin varnish becomes a glass substrate. There is a tendency that operations such as coating and impregnation are difficult.

本発明の熱硬化性樹脂組成物には、カップリング剤を添加することが好ましい。カップリング剤は樹脂と無機充填材の界面の濡れ性を向上させることにより、繊維布に対して樹脂および充填材を均一に定着させ、耐熱性や吸湿性を改良する効果が認められる。カップリング剤としては通常用いられるものなら何でも使用できるが、これらの中でもエポキシシランカップリング剤、チタネート系カップリング剤、アミノシランカップリング剤及びシリコーンオイル型カップリング剤の中から選ばれる1種以上のカップリング剤を使用することが無機充填材界面との濡れ性が高く、耐熱性向上の点で好ましい。本発明でカップリング剤は、無機充填材に対して0.05重量%以上、3重量%以下が望ましい。これより少ないと充填材を十分に被覆できず、またこれより多いと機械特性等が低下するようになるためこの範囲で用いることが望ましい。   It is preferable to add a coupling agent to the thermosetting resin composition of the present invention. By improving the wettability of the interface between the resin and the inorganic filler, the coupling agent has an effect of uniformly fixing the resin and the filler to the fiber cloth and improving heat resistance and moisture absorption. Any coupling agent can be used as long as it is normally used. Among these, at least one selected from an epoxy silane coupling agent, a titanate coupling agent, an aminosilane coupling agent, and a silicone oil type coupling agent. Use of a coupling agent is preferable in terms of high wettability with the interface with the inorganic filler and improvement in heat resistance. In the present invention, the coupling agent is desirably 0.05% by weight or more and 3% by weight or less with respect to the inorganic filler. If it is less than this, the filler cannot be sufficiently covered, and if it is more than this, the mechanical properties and the like are lowered, so it is desirable to use within this range.

また、本発明の熱硬化性樹脂組成物中には、必要に応じて、透明性、耐溶剤性、耐熱性等の特性を損なわない範囲で、少量の酸化防止剤、紫外線吸収剤、染顔料等を含んでいて
も良い。
In addition, in the thermosetting resin composition of the present invention, a small amount of an antioxidant, an ultraviolet absorber, a dye / pigment as long as they do not impair the properties such as transparency, solvent resistance, and heat resistance. Etc. may be included.

本発明の剥離性樹脂シートは転写面側の表面粗さRyが0.5μm以下、より好ましくは0.1μm以下でかつTgあるいは熱分解温度が180℃以上であり150℃から180℃の線膨張係数係数が90ppm未満の樹脂シートが好ましい。転写面側の表面粗さRyは低いほど好ましいが、0.5μm以上のシートを用いるとこの面がプリプレグに転写し表面粗さが粗くなってしまう。プラスチック基板の製造工程に耐えうる耐熱性が必要であると共に、線膨張係数が90ppmを越える様な樹脂シートを用いると、樹脂シートを剥離する前のプリプレグにストレスが内在するためにカールが発生し、後工程を円滑に行うことが難しくなることがある。好ましい樹脂の例としては、ポリエステル樹脂、ポリイミド樹脂、ポリアミド樹脂等を挙げることができる。   The peelable resin sheet of the present invention has a surface roughness Ry on the transfer surface side of 0.5 μm or less, more preferably 0.1 μm or less, and a Tg or thermal decomposition temperature of 180 ° C. or more and a linear expansion of 150 ° C. to 180 ° C. A resin sheet having a coefficient coefficient of less than 90 ppm is preferred. The lower the surface roughness Ry on the transfer surface side, the better. However, when a sheet of 0.5 μm or more is used, this surface is transferred to the prepreg and the surface roughness becomes rough. When using a resin sheet that requires heat resistance that can withstand the plastic substrate manufacturing process and the linear expansion coefficient exceeds 90 ppm, curling occurs because stress is inherent in the prepreg before the resin sheet is peeled off. , It may be difficult to smoothly perform the post-process. Examples of preferable resins include polyester resins, polyimide resins, polyamide resins and the like.

次に本発明について、実施例及び比較例を挙げて詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に制限されるものではない。
(実施例1)
トリグリシジルイソシアヌレート(日産化学工業製TEPIC)72.5重量部、ビスフ
ェノールS型エポキシ樹脂(大日本インキ化学工業製エピクロンEXA1514)27.5
重量部、メチルヘキサヒドロ無水フタル酸(新日本理化製リカシッドMH−700)120重量部、及びテトラフェニルホスホニウムブロマイド(北興化学工業製TPP−PB)1.
4重量部を、高速攪拌機を用いて10分攪拌し樹脂ワニスを得た。調製した樹脂ワニスをロールスクイズ方式の含浸装置でSガラス系ガラスクロス(厚さ100μm、屈折率1.530、ユニチカクロス製、#2117タイプ)に含浸後、180℃で2分乾燥させ総厚8
0μmのプリプレグを得た。ゴム製のロール式ラミネータを用いて、160℃、1MPa、1m/分の条件で、プリプレグと接する面側に離型処理を施した表面粗さRyが0.3
μmのポリエステル(PET)剥離性樹脂シート二枚を、得られたプリプレグの表裏同時に連続的にラミネートし、200℃で10分乾燥させた後に剥離性樹脂シートを剥離することにより複合基板を得た。得られた複合基板は、550nmでの光線透過率は89%で、表面粗さRyが0.8μmの平滑性に優れたものであり、表示基板として使用できるものであった。
EXAMPLES Next, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not restrict | limited to a following example, unless the summary is exceeded.
(Example 1)
72.5 parts by weight of triglycidyl isocyanurate (TEPIC manufactured by Nissan Chemical Industries), bisphenol S type epoxy resin (Epicron EXA1514 manufactured by Dainippon Ink and Chemicals, Inc.) 27.5
Parts by weight, 120 parts by weight of methylhexahydrophthalic anhydride (Rikacide MH-700, manufactured by Nippon Chemical Co., Ltd.), and tetraphenylphosphonium bromide (TPP-PB, manufactured by Hokuko Chemical Co., Ltd.)
4 parts by weight was stirred for 10 minutes using a high-speed stirrer to obtain a resin varnish. The prepared resin varnish was impregnated into an S glass-based glass cloth (thickness 100 μm, refractive index 1.530, manufactured by Unitika cloth, # 2117 type) using a roll squeeze type impregnation apparatus, followed by drying at 180 ° C. for 2 minutes for a total thickness of 8
A 0 μm prepreg was obtained. Using a rubber roll laminator, the surface roughness Ry obtained by performing mold release treatment on the surface side in contact with the prepreg under the conditions of 160 ° C., 1 MPa, 1 m / min is 0.3.
Two μm polyester (PET) peelable resin sheets were continuously laminated simultaneously on the front and back of the obtained prepreg, dried at 200 ° C. for 10 minutes, and then the peelable resin sheet was peeled off to obtain a composite substrate. . The obtained composite substrate had a light transmittance at 550 nm of 89% and a surface roughness Ry of 0.8 μm, which was excellent in smoothness and could be used as a display substrate.

(実施例2)
トリグリシジルイソシアヌレート(日産化学工業製TEPIC)20重量部、ビスフェノールS型エポキシ樹脂(大日本インキ化学工業製エピクロンEXA1514)80重量部、メチル水添無水ナジック酸(新日本理化製リカシッドHMA−100)75重量部、及びテトラフェニルホスホニウムブロマイド(北興化学工業製TPP−PB)1重量部を100℃にて溶融混合、高速攪拌機を用いて10分攪拌し樹脂ワニスを得た。樹脂ワニスをロールスクイズ方式の含浸装置でEガラス系ガラスクロス(100μm、屈折率1.560、ユニチカクロス製#2117タイプ)に含浸後、180℃で2分乾燥させ総厚80μmのプリ
プレグを得た。ゴム製のロール式ラミネータを用いて、160℃、1MPa、1m/分の
条件で、プリプレグと接する面側に離型処理を施した表面粗さRyが0.3μmのポリエステル(PET)剥離性樹脂シート二枚を、得られたプリプレグの表裏同時に連続的にラミネートし、200℃で10分乾燥させた後に剥離性樹脂シートを剥離することにより複合基板を得た。得られた複合基板は、550nmでの光線透過率は87%で、表面粗さRyが0.8μmの平滑性に優れたものであり、表示基板として使用できるものであった。
(Example 2)
20 parts by weight of triglycidyl isocyanurate (TEPIC manufactured by Nissan Chemical Industries), 80 parts by weight of bisphenol S-type epoxy resin (Epiclon EXA1514 manufactured by Dainippon Ink and Chemicals), methyl hydrogenated nadic anhydride (Licacid HMA-100 manufactured by Shin Nippon Chemical Co., Ltd.) 75 parts by weight and 1 part by weight of tetraphenylphosphonium bromide (TPP-PB manufactured by Hokuko Chemical Co., Ltd.) were melt-mixed at 100 ° C. and stirred for 10 minutes using a high-speed stirrer to obtain a resin varnish. The resin varnish was impregnated into E glass-based glass cloth (100 μm, refractive index 1.560, Unitika cloth # 2117 type) using a roll squeeze type impregnation apparatus, and then dried at 180 ° C. for 2 minutes to obtain a prepreg with a total thickness of 80 μm. . Polyester (PET) releasable resin with a surface roughness Ry of 0.3 μm, which has been subjected to mold release treatment on the surface in contact with the prepreg under the conditions of 160 ° C., 1 MPa, 1 m / min using a rubber roll laminator Two sheets were laminated continuously at the same time on the front and back of the obtained prepreg, dried at 200 ° C. for 10 minutes, and then the peelable resin sheet was peeled off to obtain a composite substrate. The obtained composite substrate had a light transmittance at 550 nm of 87%, a surface roughness Ry of 0.8 μm and excellent smoothness, and could be used as a display substrate.

(実施例3)
トリグリシジルイソシアヌレート(日産化学工業製TEPIC)40重量部、脂環式エポキシ樹脂(ダイセル化学工業製セロキサイド2021)60重量部、メチル水添無水ナジック酸(新日本理化製リカシッドHMA−100)139重量部、1−ベンジル−2−フェニ
ルイミダゾール(1B2PZ)1重量部を100℃で溶融混合、高速攪拌機を用いて10分攪拌し樹脂ワニスを得た。樹脂ワニスをロールスクイズ方式の含浸装置でNEガラス系ガラスクロス(厚さ100μm、屈折率1.510、日東紡製)に含浸後、180℃で2分乾
燥させ総厚80μmのプリプレグを得た。ゴム製のロール式ラミネータを用いて、160℃、1MPa、1m/分の条件で、プリプレグと接する面側に離型処理を施した表面粗さ
Ryが0.3μmのポリエステル(PET)剥離性樹脂シート二枚を、得られたプリプレグの表裏同時に連続的にラミネートし、200℃で10分乾燥させた後に剥離性樹脂シートを剥離することにより複合基板を得た。得られた複合基板は、550nmでの光線透過率は88%で、表面粗さRyが0.7μmの平滑性に優れたものであり、表示基板として使用できるものであった。
Example 3
40 parts by weight of triglycidyl isocyanurate (TEPIC manufactured by Nissan Chemical Industries), 60 parts by weight of alicyclic epoxy resin (Celoxide 2021 manufactured by Daicel Chemical Industries), 139 weights of methyl hydrogenated nadic acid (Ricacid HMA-100 manufactured by Shin Nippon Chemical Co., Ltd.) 1 part by weight of 1-benzyl-2-phenylimidazole (1B2PZ) was melt-mixed at 100 ° C. and stirred for 10 minutes using a high-speed stirrer to obtain a resin varnish. The resin varnish was impregnated into NE glass-based glass cloth (thickness: 100 μm, refractive index: 1.510, manufactured by Nittobo) with a roll squeeze type impregnation apparatus and then dried at 180 ° C. for 2 minutes to obtain a prepreg having a total thickness of 80 μm. Polyester (PET) releasable resin with a surface roughness Ry of 0.3 μm, which has been subjected to mold release treatment on the surface in contact with the prepreg under the conditions of 160 ° C., 1 MPa, 1 m / min using a rubber roll laminator Two sheets were laminated continuously at the same time on the front and back of the obtained prepreg, dried at 200 ° C. for 10 minutes, and then the peelable resin sheet was peeled off to obtain a composite substrate. The obtained composite substrate had a light transmittance at 550 nm of 88%, a surface roughness Ry of 0.7 μm and excellent smoothness, and could be used as a display substrate.

(実施例4)
NEガラス系ガラスクロス(厚さ100μm、屈折率1.510、日東紡製)をビーズミ
ルで粉砕し、平均粒径1μmのガラスフィラーを得た。このガラスフィラーを無機充填材
として50重量部、エポキシシランカップリング剤A−187を0.4重量部にした以外は、実施例3と同様に行いプリプレグを得た。得られた複合基板は、550nmでの光線透過率は82%で、表面粗さRyも1.2μmと平滑性の優れたものであり、表示基板として使用できるものであった。
Example 4
NE glass-based glass cloth (thickness: 100 μm, refractive index: 1.510, manufactured by Nittobo) was pulverized by a bead mill to obtain a glass filler having an average particle diameter of 1 μm. A prepreg was obtained in the same manner as in Example 3 except that 50 parts by weight of the glass filler was used as an inorganic filler and 0.4 parts by weight of the epoxy silane coupling agent A-187. The obtained composite substrate had a light transmittance at 550 nm of 82% and a surface roughness Ry of 1.2 μm, which was excellent in smoothness and could be used as a display substrate.

(実施例5)
剥離性樹脂シートとして転写面側の表面粗さRyが0.4μmのポリイミドフィルム(ユーピレックス25S:宇部興産(株)製 150℃から180℃の線膨張係数 12ppm)を用いた以外は、実施例1と同様に行いプリプレグを得た。得られた複合基板は、550nmでの光線透過率は89%で、表面粗さRyも1.0μmと平滑性の優れたものであり、表示基板として使用できるものであった。
(Example 5)
Example 1 except that a polyimide film (Upilex 25S: manufactured by Ube Industries, Ltd., 150 ° C. to 180 ° C. with a linear expansion coefficient of 12 ppm) having a surface roughness Ry of 0.4 μm as the peelable resin sheet was used. In the same manner as above, a prepreg was obtained. The obtained composite substrate had a light transmittance at 550 nm of 89%, a surface roughness Ry of 1.0 μm and excellent smoothness, and could be used as a display substrate.

(比較例1)
実施例1のプリプレグを用い、2枚の電解銅箔(18μm)光沢面(表面粗さRyが5μm)側間に本プリプレグを挿み、鏡面のステンレス板を当て板として、圧力4MPa、温度220℃で1時間加熱加圧成形を行い両面銅張り積層板を得た。更に両側の銅箔をエッチングして全面除去し透明複合基板を得た。得られた複合基板は、550nmでの光線透過率は86%であったが、表面粗さRyが4.3μmと表示基板として使用するには平滑性が不十分なものであった。
(Comparative Example 1)
Using the prepreg of Example 1, this prepreg is inserted between two electrolytic copper foil (18 μm) glossy surfaces (surface roughness Ry is 5 μm), a mirror stainless steel plate is used as a backing plate, pressure 4 MPa, temperature 220 A double-sided copper-clad laminate was obtained by heating and pressing at 1C for 1 hour. Further, the copper foil on both sides was etched to remove the entire surface to obtain a transparent composite substrate. Although the obtained composite substrate had a light transmittance of 86% at 550 nm, the surface roughness Ry was 4.3 μm, and the smoothness was insufficient for use as a display substrate.

(比較例2)
NEガラス系ガラスクロス(厚さ100μm、屈折率1.510、日東紡製)をビーズミ
ルで粉砕し、平均粒径1μmのガラスフィラーを得た。このガラスフィラーを50重量部
、エポキシシランカップリング剤A−187を0.4重量部にした以外は、実施例3と同様に行いプリプレグを得た。得られたプリプレグを用い比較例1と同様の方法で複合基板を得た。得られた透明複合基板は、550nmでの光線透過率は81%であったが、表面粗さRyが4.6μmと表示基板として使用するには平滑性が不十分なものであった。
(Comparative Example 2)
NE glass-based glass cloth (thickness: 100 μm, refractive index: 1.510, manufactured by Nittobo) was pulverized by a bead mill to obtain a glass filler having an average particle diameter of 1 μm. A prepreg was obtained in the same manner as in Example 3 except that 50 parts by weight of the glass filler and 0.4 parts by weight of the epoxy silane coupling agent A-187 were used. A composite substrate was obtained by the same method as in Comparative Example 1 using the obtained prepreg. The obtained transparent composite substrate had a light transmittance of 81% at 550 nm, but the surface roughness Ry was 4.6 μm, and the smoothness was insufficient for use as a display substrate.

本発明は透明性・表面平滑性に優れ、ロール形状での連続生産も可能であり、生産性の高い透明複合基板の製造方法である。特に、液晶表示装置に用いられるプラスチック基板等の透明複合基板の製造方法に有用である。   The present invention is a method for producing a transparent composite substrate that is excellent in transparency and surface smoothness, can be continuously produced in a roll shape, and has high productivity. In particular, it is useful for a method for producing a transparent composite substrate such as a plastic substrate used in a liquid crystal display device.

Claims (15)

繊維布に熱硬化性樹脂組成物を含浸または塗布・乾燥させたプリプレグの表裏に剥離性樹脂シートを積層し、前記熱硬化性樹脂組成物を硬化させた後に剥離性樹脂シートを剥離する複合基板の製造方法であって、前記複合基板の550nmでの光線透過率が70%以上、表面粗さ(Ry)が2μm以下であることを特徴とする透明複合基板の製造方法。 A composite substrate in which a peelable resin sheet is laminated on the front and back of a prepreg impregnated or coated / dried with a thermosetting resin composition on a fiber cloth, and after the thermosetting resin composition is cured, the composite substrate is peeled off. A method for producing a transparent composite substrate, wherein the composite substrate has a light transmittance at 550 nm of 70% or more and a surface roughness (Ry) of 2 μm or less. 前記熱硬化性樹脂の硬化後の屈折率と繊維布の屈折率との差が0.01以下である請求項1記載の透明複合基板の製造方法。 The method for producing a transparent composite substrate according to claim 1, wherein the difference between the refractive index after curing of the thermosetting resin and the refractive index of the fiber cloth is 0.01 or less. 前記繊維布の屈折率が1.45〜1.56である請求項1または2記載の透明複合基板の製造方法。 The method for producing a transparent composite substrate according to claim 1, wherein the refractive index of the fiber cloth is 1.45 to 1.56. 前記繊維布がガラスクロスである請求項1〜3何れか一項記載の透明複合基板の製造方法。 The method for producing a transparent composite substrate according to any one of claims 1 to 3, wherein the fiber cloth is a glass cloth. 前記繊維布がガラス不織布である請求項1〜3何れか一項記載の透明複合基板の製造方法。 The method for producing a transparent composite substrate according to any one of claims 1 to 3, wherein the fiber cloth is a glass nonwoven fabric. 前記熱硬化性樹脂組成物がエポキシ樹脂を含む請求項1〜5何れか一項記載の透明複合基板の製造方法。 The manufacturing method of the transparent composite substrate as described in any one of Claims 1-5 in which the said thermosetting resin composition contains an epoxy resin. 前記熱硬化性樹脂組成物がエポキシ樹脂及び酸無水物を含む請求項1〜5何れか一項記載の透明複合基板の製造方法。 The manufacturing method of the transparent composite substrate as described in any one of Claims 1-5 in which the said thermosetting resin composition contains an epoxy resin and an acid anhydride. 前記熱硬化性樹脂組成物に無機充填材を含有する請求項1〜7何れか一項記載の透明複合基板の製造方法。 The manufacturing method of the transparent composite substrate as described in any one of Claims 1-7 which contains an inorganic filler in the said thermosetting resin composition. 前記無機充填材の屈折率と、前記熱硬化性樹脂の硬化後の屈折率及び繊維布の屈折率との差が0.01以下であり、前記無機充填材の平均粒径が2μm以下である請求項8記載の透明複合基板の製造方法。 The difference between the refractive index of the inorganic filler, the refractive index after curing of the thermosetting resin, and the refractive index of the fiber cloth is 0.01 or less, and the average particle size of the inorganic filler is 2 μm or less. The manufacturing method of the transparent composite substrate of Claim 8. 前記無機充填材の含有量が、樹脂成分100重量部に対して10〜400重量部である請求項8または9記載の複合基板の製造方法。 The method for producing a composite substrate according to claim 8 or 9, wherein the content of the inorganic filler is 10 to 400 parts by weight with respect to 100 parts by weight of the resin component. 前記剥離性樹脂シートのガラス転移温度(Tg)あるいは熱分解温度が180℃以上であり、150℃から180℃の熱線膨張係数が90ppm未満のプラスチックを含み、かつ転写面側の表面粗さ(Ry)が0.5μm以下である請求項1〜10何れか一項記載の透明複合基板の製造方法。 The peelable resin sheet has a glass transition temperature (Tg) or thermal decomposition temperature of 180 ° C. or higher, includes a plastic having a thermal linear expansion coefficient of less than 90 ppm from 150 ° C. to 180 ° C., and has a surface roughness (Ry on the transfer surface side) ) Is 0.5 μm or less. The method for producing a transparent composite substrate according to claim 1. 剥離性樹脂シートの材質にポリエステルフィルムを含む請求項11記載の透明複合基板の製造方法。 The manufacturing method of the transparent composite substrate of Claim 11 which contains a polyester film in the material of a peelable resin sheet. 剥離性樹脂シートの材質にポリイミドフィルムを含む請求項11記載の透明複合基板の製造方法。 The manufacturing method of the transparent composite substrate of Claim 11 which contains a polyimide film in the material of a peelable resin sheet. 前記透明複合基板を連続的に巻き取ることを特徴とする請求項1〜13何れか一項記載の複合基板の製造方法。 The method for producing a composite substrate according to claim 1, wherein the transparent composite substrate is continuously wound up. 前記透明複合基板が表示素子用基板であることを特徴とする請求項1〜14何れか一項記
載の複合基板の製造方法。
The method for manufacturing a composite substrate according to claim 1, wherein the transparent composite substrate is a display element substrate.
JP2004036636A 2004-02-13 2004-02-13 Manufacturing method of transparent composite substrate Expired - Fee Related JP4273990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004036636A JP4273990B2 (en) 2004-02-13 2004-02-13 Manufacturing method of transparent composite substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004036636A JP4273990B2 (en) 2004-02-13 2004-02-13 Manufacturing method of transparent composite substrate

Publications (2)

Publication Number Publication Date
JP2005225104A true JP2005225104A (en) 2005-08-25
JP4273990B2 JP4273990B2 (en) 2009-06-03

Family

ID=35000184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004036636A Expired - Fee Related JP4273990B2 (en) 2004-02-13 2004-02-13 Manufacturing method of transparent composite substrate

Country Status (1)

Country Link
JP (1) JP4273990B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131654A (en) * 2005-11-08 2007-05-31 Nitto Boseki Co Ltd Transparent sheet, method for producing the same and sound insulation method
JP2010221441A (en) * 2009-03-19 2010-10-07 Panasonic Electric Works Co Ltd Transparent substrate/glass plate composite film, method of manufacturing same, flexible organic electroluminescence light, and flexible solar cell
JP2010235933A (en) * 2009-03-09 2010-10-21 Panasonic Electric Works Co Ltd Transparent film
JP2011144214A (en) * 2010-01-12 2011-07-28 Sumitomo Bakelite Co Ltd Resin composition and transparent composite substrate
JP2011148882A (en) * 2010-01-20 2011-08-04 Sumitomo Bakelite Co Ltd Transparent composite sheet and transparent composite substrate using the same
JP2012218400A (en) * 2011-04-13 2012-11-12 Nitta Corp Release material
JPWO2014061590A1 (en) * 2012-10-19 2016-09-05 東レ株式会社 Insulating film formation method
JP2019059050A (en) * 2017-09-25 2019-04-18 東洋紡株式会社 Release film for the production of polyimide film
CN112299862A (en) * 2019-07-26 2021-02-02 航天特种材料及工艺技术研究所 Thermal protection coating on surface of porous thermal insulation material and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131654A (en) * 2005-11-08 2007-05-31 Nitto Boseki Co Ltd Transparent sheet, method for producing the same and sound insulation method
JP2010235933A (en) * 2009-03-09 2010-10-21 Panasonic Electric Works Co Ltd Transparent film
JP2010221441A (en) * 2009-03-19 2010-10-07 Panasonic Electric Works Co Ltd Transparent substrate/glass plate composite film, method of manufacturing same, flexible organic electroluminescence light, and flexible solar cell
JP2011144214A (en) * 2010-01-12 2011-07-28 Sumitomo Bakelite Co Ltd Resin composition and transparent composite substrate
JP2011148882A (en) * 2010-01-20 2011-08-04 Sumitomo Bakelite Co Ltd Transparent composite sheet and transparent composite substrate using the same
JP2012218400A (en) * 2011-04-13 2012-11-12 Nitta Corp Release material
JPWO2014061590A1 (en) * 2012-10-19 2016-09-05 東レ株式会社 Insulating film formation method
JP2019059050A (en) * 2017-09-25 2019-04-18 東洋紡株式会社 Release film for the production of polyimide film
CN112299862A (en) * 2019-07-26 2021-02-02 航天特种材料及工艺技术研究所 Thermal protection coating on surface of porous thermal insulation material and preparation method thereof

Also Published As

Publication number Publication date
JP4273990B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
JP6455744B2 (en) Prepreg and film
JP4650003B2 (en) Transparent composite sheet and display element substrate using the same
JP4569336B2 (en) Transparent barrier sheet
JP4496828B2 (en) Manufacturing method of transparent composite substrate
US5806177A (en) Process for producing multilayer printed circuit board
KR101127253B1 (en) Transparent composite sheet, multilayer sheet and liquid crystal display element
KR20120083875A (en) Transparent composite sheet
JP2005206787A (en) Transparent complex composition
JP4273990B2 (en) Manufacturing method of transparent composite substrate
JP5196705B2 (en) Optical sheet
CN113597371B (en) Resin composition and copper foil with resin
JP2006176586A (en) Transparent composite composition and optical sheet and plastic substrate for display device
JP4424044B2 (en) Transparent composite sheet and display element using the same
JP4090905B2 (en) Manufacturing method of composite substrate
KR20190138688A (en) Transparent composite material film and flexible display devices including same
JP2010012754A (en) Transparent substrate
CN1131955A (en) Allyl-epoxy ipn
JP2006264196A (en) Method for producing transparent composite sheet
JP2011068020A (en) Transparent fiber reinforced resin sheet
JP5397319B2 (en) Optical sheet
JP2004292533A (en) Method for manufacturing composite substrate
JP2023145890A (en) Epoxy film with release film, epoxy film and wound body
JP2023145889A (en) Epoxy film, epoxy film with substrate film, method for producing epoxy film, and application thereof
JP2012051379A (en) Transparent composite sheet
JP2004322350A (en) Manufacturing method for composite substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees