JP2005217446A - Group iii nitride semiconductor light emitting element - Google Patents

Group iii nitride semiconductor light emitting element Download PDF

Info

Publication number
JP2005217446A
JP2005217446A JP2005118792A JP2005118792A JP2005217446A JP 2005217446 A JP2005217446 A JP 2005217446A JP 2005118792 A JP2005118792 A JP 2005118792A JP 2005118792 A JP2005118792 A JP 2005118792A JP 2005217446 A JP2005217446 A JP 2005217446A
Authority
JP
Japan
Prior art keywords
layer
light emitting
diode
light
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005118792A
Other languages
Japanese (ja)
Inventor
Michinari Sasa
道成 佐々
Norikatsu Koide
典克 小出
Naoki Shibata
直樹 柴田
Isamu Akasaki
勇 赤崎
Hiroshi Amano
浩 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2005118792A priority Critical patent/JP2005217446A/en
Publication of JP2005217446A publication Critical patent/JP2005217446A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body

Landscapes

  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the dielectric breakdown resistivity against reverse voltage. <P>SOLUTION: A light emitting diode 110, which is formed by the group III nitride semiconductor consisting of an n-conductive type high carrier density n+ layer 3, a light emitting layer 5 and a p-conductive type p-layer 61, and a compensatory diode 320, having the same structure as above, are formed on the same sapphire substrate 1. An n-electrode layer 8 and the p-electrode layer 321 of the second layer 62 of the p-conductive type of the compensating diode 320 are connected. Similarly, a p-electrode 7 and the n-electrode layer 322 of the first layer 3 of an n-conductive type of the compensating diode 320 are connected. At this point, even when a reverse voltage is applied to the light emitting diode 110, i.e., even when the n-electrode 8 becomes higher than the p-electrode layer 7, the reverse voltage is not applied to the light emitting diode 110 because the compensating diode 320 is conductive. As a result, the breakdown by the reverse voltage can be prevented. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は逆方向の静電耐圧を向上させた3族窒化物半導体を用いた発光素子に関する。   The present invention relates to a light emitting device using a group III nitride semiconductor with improved reverse electrostatic withstand voltage.

従来、3族窒化物半導体発光素子として、ZnとSiとを添加したIn1-XGaXNから成る発光層をホール濃度1×1018/cm3以下のp伝導型のAlGaNからなるp層と電子濃度2×1018/cm3のGaNから成るn層とで挟んだダブルヘテロ構造のものが知られている。この発光素子は、420〜520nmの青色の発光が得られている。 Conventionally, as a group 3 nitride semiconductor light-emitting device, a light-emitting layer made of In 1-X Ga X N doped with Zn and Si is made of a p-type AlGaN layer having a hole concentration of 1 × 10 18 / cm 3 or less. And a double hetero structure sandwiched between n layers of GaN having an electron concentration of 2 × 10 18 / cm 3 are known. This light emitting element emits blue light of 420 to 520 nm.

しかし、上記の構成の発光素子は、静電気に対する正、逆方向の耐電圧が低いという問題がある。   However, the light-emitting element having the above-described structure has a problem that the withstand voltage in the forward and reverse directions against static electricity is low.

本発明は上記の課題を解決するために成されたものであり、その目的は、静電気に対する耐絶縁破壊性を向上させることである。   The present invention has been made to solve the above-described problems, and an object thereof is to improve the dielectric breakdown resistance against static electricity.

本発明は、3族窒化物半導体から成るp層、そのp層に接続するp電極層、n層及びそのn層に接続するn電極層とから成る発光部を有した発光素子において、発光部のp電極層に電気的に接続されるn伝導型の第1層と、発光部のn電極層に電気的に接続されるp伝導型の第2層とが接合された逆耐圧補償用の補償ダイオードを設けたことを特徴とする。
請求項2、3の発明は、補償ダイオードと発光部とを別々の基板に形成し、両者の接続をリードで行ったものであり、特に、請求項3の発明は、共通に樹脂で封止したものである。
The present invention relates to a light emitting device having a light emitting portion comprising a p layer made of a group 3 nitride semiconductor, a p electrode layer connected to the p layer, an n layer, and an n electrode layer connected to the n layer. The first layer of n-conduction type electrically connected to the p-electrode layer and the second layer of p-conduction type electrically connected to the n-electrode layer of the light emitting part are joined for reverse withstand voltage compensation A compensation diode is provided.
The inventions of claims 2 and 3 are formed by forming the compensation diode and the light emitting part on separate substrates and connecting them with leads. In particular, the invention of claim 3 is commonly sealed with resin. It is a thing.

請求項4、5、6の発明は、補償ダイオードと発光部とを同一基板に形成したものである。
特に、請求項5の発明は、補償ダイオードの層構造と発光部の層構造と同一に形成し、発光部と補償ダイオードとの間に絶縁分離の溝を形成し、発光部と補償ダイオードとの電気的接続をリードワイヤにより行ったものである。
又、請求項6の発明は、発光部の上に補償ダイオードを積層したものである。
According to the inventions of claims 4, 5, and 6, the compensation diode and the light emitting portion are formed on the same substrate.
In particular, the invention according to claim 5 is formed in the same manner as the layer structure of the compensation diode and the layer structure of the light-emitting portion, and an insulating separation groove is formed between the light-emitting portion and the compensation diode. Electrical connection is made with lead wires.
According to a sixth aspect of the present invention, a compensation diode is laminated on the light emitting portion.

補償ダイオードの作用により、発光部に逆方向に印加される静電気による破壊を防止することができる。
また、発光層と第1のn層との間に、電子濃度が発光層及び第1のn層よりも低い第2のn層を設けたために、正方向の正電圧による各層及び各層間での電界が小さくなるため、正方向に500Vの静電圧を印加しても絶縁破壊は見られない。
請求項4、5、6の発明は、発光部の層形成工程において補償ダイオードを製造することができる。
特に、請求項5の発明では、発光部の3族窒化物半導体の層形成により補償ダイオードを構成する層を形成されるので、製造が極めて簡単化される。
又、請求項6の発明は、発光部を形成する工程に続いて補償ダイオードを形成できるため、製造が簡単となる。
Due to the action of the compensation diode, breakdown due to static electricity applied in the reverse direction to the light emitting portion can be prevented.
In addition, since the second n layer having an electron concentration lower than that of the light emitting layer and the first n layer is provided between the light emitting layer and the first n layer, the positive voltage in the positive direction causes each layer and each layer to pass between the light emitting layer and the first n layer. Therefore, even if a static voltage of 500 V is applied in the positive direction, no dielectric breakdown is observed.
According to the fourth, fifth and sixth aspects of the invention, a compensation diode can be manufactured in the layer forming process of the light emitting portion.
In particular, in the invention of claim 5, since the layer constituting the compensation diode is formed by the formation of the group 3 nitride semiconductor layer of the light emitting portion, the manufacturing is extremely simplified.
According to the invention of claim 6, since the compensation diode can be formed following the step of forming the light emitting portion, the manufacture is simplified.

実施例を記載する。   Examples will be described.

図1において、本発明の発光部に該当する発光ダイオード100は、サファイア基板1を有しており、そのサファイア基板1上に500ÅのAlNのバッファ層2が形成されている。そのバッファ層2の上には、順に、膜厚約2.0μm、電子濃度2×1018/cm3のシリコンドープGaNから成る高キャリア濃度n+層3、膜厚3000Å、電子濃度1×1017/cm3のシリコンドープのGaNから成るn層4、膜厚約0.05μmのIn0.08Ga0.92Nから成る発光層5、膜厚約1.0μm、ホール濃度5×1017/cm3、濃度1×1020/cm3にマグネシウムがドープされたAl0.08Ga0.92Nから成るp層61、膜厚約0.2μm、ホール濃度7×1017/cm3、マグネシウム濃度2×1020/cm3のマグネシウムドープのGaNから成るコンタクト層62が形成されている。そして、コンタクト層62上にはその層62に接合するNiから成るp電極層7が形成されている。さらに、高キャリア濃度n+層3の表面の一部は露出しており、その露出部上にその層3に接合するNiから成るn電極層8が形成されている。 In FIG. 1, a light emitting diode 100 corresponding to a light emitting unit of the present invention has a sapphire substrate 1, and a 500 Al AlN buffer layer 2 is formed on the sapphire substrate 1. Of On the buffer layer 2, in turn, a film thickness of about 2.0 .mu.m, the electron concentration of 2 × 10 18 / cm high carrier concentration comprising a silicon-doped GaN of 3 n + layer 3, the thickness 3000 Å, electron concentration 1 × 10 17 n-layer 4 made of silicon-doped GaN of / cm 3 , light-emitting layer 5 made of In 0.08 Ga 0.92 N with a film thickness of about 0.05 μm, film thickness of about 1.0 μm, hole concentration 5 × 10 17 / cm 3 , concentration 1 × Magnesium-doped p layer 61 made of Al 0.08 Ga 0.92 N doped with magnesium at 10 20 / cm 3 , film thickness of about 0.2 μm, hole concentration 7 × 10 17 / cm 3 , magnesium concentration 2 × 10 20 / cm 3 A contact layer 62 made of GaN is formed. On the contact layer 62, a p-electrode layer 7 made of Ni bonded to the layer 62 is formed. Further, a part of the surface of the high carrier concentration n + layer 3 is exposed, and an n electrode layer 8 made of Ni bonded to the layer 3 is formed on the exposed portion.

次に、この構造の発光ダイオード100の製造方法について説明する。
上記発光ダイオード100は、有機金属化合物気相成長法(以下「M0VPE」と記す)による気相成長により製造された。
用いられたガスは、NH3とキャリアガスH2又はN2とトリメチルガリウム(Ga(CH3)3)(以下「TMG」と記す)とトリメチルアルミニウム(Al(CH3)3)(以下「TMA」と記す)とトリメチルインジウム(In(CH3)3)(以下「TMI」と記す)と、シラン(SiH4)とシクロペンタジエニルマグネシウム(Mg(C5H5)2)(以下「CP2Mg」と記す)である。
Next, a method for manufacturing the light emitting diode 100 having this structure will be described.
The light emitting diode 100 was manufactured by vapor phase growth using an organic metal compound vapor phase growth method (hereinafter referred to as “M0VPE”).
The gases used were NH 3 and carrier gas H 2 or N 2 , trimethylgallium (Ga (CH 3 ) 3 ) (hereinafter referred to as “TMG”) and trimethylaluminum (Al (CH 3 ) 3 ) (hereinafter referred to as “TMA”). ), Trimethylindium (In (CH 3 ) 3 ) (hereinafter referred to as “TMI”), silane (SiH 4 ) and cyclopentadienyl magnesium (Mg (C 5 H 5 ) 2 ) (hereinafter referred to as “CP”). 2 Mg ”).

まず、有機洗浄及び熱処理により洗浄したa面を主面とする厚さ100〜400μmの単結晶のサファイア基板1をM0VPE装置の反応室に載置されたサセプタに装着する。次に、常圧でH2を流速2Liter/分で反応室に流しながら温度1100℃でサファイア基板1を気相エッチングした。 First, a single-crystal sapphire substrate 1 having a thickness of 100 to 400 μm whose main surface is cleaned by organic cleaning and heat treatment is mounted on a susceptor mounted in a reaction chamber of an M0VPE apparatus. Next, the sapphire substrate 1 was vapor-phase etched at a temperature of 1100 ° C. while flowing H 2 into the reaction chamber at a flow rate of 2 Liter / min at normal pressure.

次に、温度を400℃まで低下させて、H2を20Liter/分、NH3を10Liter/分、TMAを1.8×10-5モル/分で供給してAlNのバッファ層2が約500Åの厚さに形成された。次に、サファイア基板1の温度を1150℃に保持し、H2を20Liter/分、NH3を10Liter/分、TMGを1.7×10-4モル/分、H2ガスにより0.86ppmに希釈されたシランを20×10-8mol/分で30分供給して、膜厚約2.2μm、電子濃度2×1018/cm3のシリコンドープのGaNから成る高キャリア濃度n+層3を形成した。 Next, the temperature is lowered to 400 ° C., H 2 is supplied at 20 Liters / minute, NH 3 is supplied at 10 Liters / minute, and TMA is supplied at 1.8 × 10 −5 mol / minute, so that the buffer layer 2 of AlN is about 500 mm thick. Formed. Next, the temperature of the sapphire substrate 1 was maintained at 1150 ° C., and H 2 was diluted to 20 Liter / min, NH 3 was 10 Liter / min, TMG was 1.7 × 10 −4 mol / min, and H 2 gas was diluted to 0.86 ppm. Silane was supplied at 20 × 10 −8 mol / min for 30 minutes to form a high carrier concentration n + layer 3 made of silicon-doped GaN having a film thickness of about 2.2 μm and an electron concentration of 2 × 10 18 / cm 3 .

次に、サファイア基板1の温度を1150℃に保持し、N2又はH2を10Liter/分、NH3を10Liter/分、TMGを1.12×10-4モル/分、及び、H2ガスにより0.86ppmに希釈されたシランを1×10-8mol/分で、4分供給して、膜厚約3000Å、濃度1×1017/cm3のシリコンドープのGaNから成るn層4を形成した。 Next, the temperature of the sapphire substrate 1 is maintained at 1150 ° C., N 2 or H 2 is 10 Liter / min, NH 3 is 10 Liter / min, TMG is 1.12 × 10 −4 mol / min, and H 2 gas is 0.86. Silane diluted to ppm was supplied at 1 × 10 −8 mol / min for 4 minutes to form an n layer 4 made of silicon-doped GaN having a thickness of about 3000 mm and a concentration of 1 × 10 17 / cm 3 .

続いて、温度を850℃に保持し、N2又はH2を20Liter/分、NH3を10Liter/分、TMGを1.53×10-4モル/分、及び、TMIを0.02×10-4モル/分で、6分間供給して0.05μmのIn0.08Ga0.92Nから成る発光層5を形成した。 Subsequently, the temperature is maintained at 850 ° C., N 2 or H 2 is 20 Liter / min, NH 3 is 10 Liter / min, TMG is 1.53 × 10 −4 mol / min, and TMI is 0.02 × 10 −4 mol / min. For 6 minutes, the light emitting layer 5 made of 0.05 μm In 0.08 Ga 0.92 N was formed.

続いて、温度を1100℃に保持し、N2又はH2を20Liter/分、NH3を10Liter/分、TMGを1.12×10-4モル/分、TMAを0.47×10-4モル/分、及び、CP2Mgを2×10-4モル/分で60分間導入し、膜厚約1.0μmのマグネシウム(Mg)ドープのAl0.08Ga0.92Nから成るp層61を形成した。p層61のマグネシウムの濃度は1×1020/cm3である。この状態では、p層61は、まだ、抵抗率108Ωcm以上の絶縁体である。 Subsequently, the temperature is maintained at 1100 ° C., N 2 or H 2 is 20 Liter / min, NH 3 is 10 Liter / min, TMG is 1.12 × 10 −4 mol / min, TMA is 0.47 × 10 −4 mol / min, Then, CP 2 Mg was introduced at 2 × 10 −4 mol / min for 60 minutes to form a p layer 61 made of magnesium (Mg) -doped Al 0.08 Ga 0.92 N having a thickness of about 1.0 μm. The concentration of magnesium in the p layer 61 is 1 × 10 20 / cm 3 . In this state, the p layer 61 is still an insulator having a resistivity of 10 8 Ωcm or more.

続いて、温度を1100℃に保持し、N2又はH2を20Liter/分、NH3を10Liter/分、TMGを1.12×10-4モル/分、及び、CP2Mgを4×10-4モル/分の割合で4分間導入し、膜厚約0.2μmのマグネシウム(Mg)ドープのGaNから成るコンタクト層62を形成した。コンタクト層62のマグネシウムの濃度は2×1020/cm3である。この状態では、コンタクト層62は、まだ、抵抗率108Ωcm以上の絶縁体である。 Subsequently, the temperature is maintained at 1100 ° C., N 2 or H 2 is 20 Liter / min, NH 3 is 10 Liter / min, TMG is 1.12 × 10 −4 mol / min, and CP 2 Mg is 4 × 10 −4. A contact layer 62 made of GaN doped with magnesium (Mg) having a thickness of about 0.2 μm was formed by introducing it at a rate of mol / min for 4 minutes. The concentration of magnesium in the contact layer 62 is 2 × 10 20 / cm 3 . In this state, the contact layer 62 is still an insulator having a resistivity of 10 8 Ωcm or more.

このようにして、図2に示す断面構造のウエハが得られた。次に、このウエハを、450℃で45分間、熱処理した。この熱処理により、コンタクト層62、p層61は、それぞれ、ホール濃度7×1017/cm3,5×1017/cm3、抵抗率2Ωcm,0.8Ωcmのp伝導型半導体となった。このようにして、多層構造のウエハが得られた。 In this way, a wafer having a cross-sectional structure shown in FIG. 2 was obtained. Next, this wafer was heat-treated at 450 ° C. for 45 minutes. By this heat treatment, the contact layer 62 and the p layer 61 became p-conduction type semiconductors having a hole concentration of 7 × 10 17 / cm 3 , 5 × 10 17 / cm 3 , and resistivity of 2 Ωcm and 0.8 Ωcm, respectively. In this way, a wafer having a multilayer structure was obtained.

次に、図3に示すように、コンタクト層62の上に、スパッタリングによりSiO2層9を2000Åの厚さに形成し、そのSiO2層9上にフォトレジスト10を塗布した。そして、フォトリソグラフにより、図3に示すように、コンタクト層62上において、高キャリア濃度n+層3に対するn電極層形成部位A'のフォトレジスト10を除去した。次に、図4に示すように、フォトレジスト10によって覆われていないSiO2層9をフッ化水素酸系エッチング液で除去した。 Next, as shown in FIG. 3, a SiO 2 layer 9 having a thickness of 2000 mm was formed on the contact layer 62 by sputtering, and a photoresist 10 was applied on the SiO 2 layer 9. Then, by photolithography, as shown in FIG. 3, the photoresist 10 at the n-electrode layer forming portion A ′ with respect to the high carrier concentration n + layer 3 was removed on the contact layer 62. Next, as shown in FIG. 4, the SiO 2 layer 9 not covered with the photoresist 10 was removed with a hydrofluoric acid etching solution.

次に、フォトレジスト10及びSiO2層9によって覆われていない部位のコンタクト層62、p層61、発光層5、n層4を、真空度0.04Torr、高周波電力0.44W/cm2、BCl3ガスを10ml/分の割合で供給しドライエッチングした後、Arでドライエッチングした。この工程で、図5に示すように、高キャリア濃度n+層3に対するn電極層取出しのための孔Aが形成された。 Next, the contact layer 62, the p layer 61, the light emitting layer 5, and the n layer 4 at portions not covered with the photoresist 10 and the SiO 2 layer 9 are subjected to a degree of vacuum of 0.04 Torr, a high frequency power of 0.44 W / cm 2 , and BCl 3. Gas was supplied at a rate of 10 ml / min for dry etching, followed by dry etching with Ar. In this step, as shown in FIG. 5, a hole A for taking out the n-electrode layer for the high carrier concentration n + layer 3 was formed.

次に、試料の上全面に、一様にNiを蒸着し、フォトレジストの塗布、フォトリソグラフィ工程、エッチング工程を経て、図1に示すように、高キャリア濃度n+層3及びコンタクト層62に対するn電極層8,p電極層7を形成した。その後、上記の如く処理されたウエハを各チップに切断して、発光ダイオードチップを得た。 Next, Ni is uniformly vapor-deposited on the entire upper surface of the sample, and after applying a photoresist, a photolithography process, and an etching process, as shown in FIG. 1, the high carrier concentration n + layer 3 and the contact layer 62 are applied. An n electrode layer 8 and a p electrode layer 7 were formed. Thereafter, the wafer processed as described above was cut into each chip to obtain a light emitting diode chip.

このようにして形成された発光ダイオード100は、図6に示すように、リード201の上部の平坦部203に取り付けられ、n電極層8とリード201がワイヤ204で接続され、p電極層7とリード202がワイヤ205で接続された後、レンズ206を形成するために樹脂成形される。一方、補償ダイオード300のアノード301がリード201に接続され、補償ダイオード300のカソード302がリード202に接続されている。   As shown in FIG. 6, the light emitting diode 100 formed in this way is attached to the flat portion 203 on the top of the lead 201, the n electrode layer 8 and the lead 201 are connected by the wire 204, and the p electrode layer 7 After the lead 202 is connected by the wire 205, resin molding is performed to form the lens 206. On the other hand, the anode 301 of the compensation diode 300 is connected to the lead 201, and the cathode 302 of the compensation diode 300 is connected to the lead 202.

これにより、発光ダイオード100のn電極層8が補償ダイオード300のp伝導型の第2層に接続され、p電極層7がn伝導型の第1層に接続されることになる。よって、発光ダイオード100にとって逆電圧となるリード202に対してリード201が高い電圧が印加される時、補償ダイオード300が導通することになり、発光ダイオード100には逆電圧が印加されないため、絶縁破壊は起こらない。   As a result, the n-electrode layer 8 of the light emitting diode 100 is connected to the p-conduction type second layer of the compensation diode 300, and the p-electrode layer 7 is connected to the n-conduction type first layer. Therefore, when a high voltage is applied to the lead 201 with respect to the lead 202, which is a reverse voltage for the light emitting diode 100, the compensation diode 300 becomes conductive, and no reverse voltage is applied to the light emitting diode 100. Does not happen.

図7に示すように、補償ダイオード310を発光ダイオード100と共に樹脂成形し、レンズ206の中に組み込んでも良い。   As shown in FIG. 7, the compensation diode 310 may be resin-molded together with the light emitting diode 100 and incorporated in the lens 206.

本実施例は、図8に示すように、発光ダイオード110と補償ダイオード320とを同一基板、即ち、サファイア基板1上に形成した例である。
上述したように、バッファ層2からコンタクト層62まで形成する。その後、n電極層8を形成するための層62から層4までのエッチング工程において、補償ダイオード320のn電極層322を形成するための溝410を形成する。次に、補償ダイオード320を発光ダイオード110から絶縁分離するために、コンタクト層62、p層61、発光層5、n層4、高キャリア濃度n+層3、バッファ層2をエッチングして溝400を形成してサファイア基板1を露出させる。
In the present embodiment, as shown in FIG. 8, the light emitting diode 110 and the compensation diode 320 are formed on the same substrate, that is, the sapphire substrate 1.
As described above, the buffer layer 2 to the contact layer 62 are formed. Thereafter, in an etching process from the layer 62 to the layer 4 for forming the n-electrode layer 8, a groove 410 for forming the n-electrode layer 322 of the compensation diode 320 is formed. Next, in order to insulate and isolate the compensation diode 320 from the light emitting diode 110, the contact layer 62, the p layer 61, the light emitting layer 5, the n layer 4, the high carrier concentration n + layer 3, and the buffer layer 2 are etched to form the groove 400. To expose the sapphire substrate 1.

次に、第1実施例と同様に、発光ダイオード110のp電極層7、n電極層8、補償ダイオード320のp電極層321、n電極層322を形成する。このようにして形成された発光素子は図9に示すようにリード201の平坦部203に取り付けられる。そして、発光ダイオード110のp電極層7はリード202にワイヤ210で電気的に接続され、補償ダイオード320のn電極層322(カソード)はワイヤ211によりリード202に電気的に接続される。同様に、発光ダイオード110のn電極層8はリード201にワイヤ212で電気的に接続され、補償ダイオード320のp電極層321はワイヤ213によりリード201に電気的に接続される。   Next, as in the first embodiment, the p electrode layer 7 and the n electrode layer 8 of the light emitting diode 110, the p electrode layer 321 and the n electrode layer 322 of the compensation diode 320 are formed. The light emitting element formed in this manner is attached to the flat portion 203 of the lead 201 as shown in FIG. The p electrode layer 7 of the light emitting diode 110 is electrically connected to the lead 202 with a wire 210, and the n electrode layer 322 (cathode) of the compensation diode 320 is electrically connected to the lead 202 with a wire 211. Similarly, the n-electrode layer 8 of the light-emitting diode 110 is electrically connected to the lead 201 via a wire 212, and the p-electrode layer 321 of the compensation diode 320 is electrically connected to the lead 201 via a wire 213.

これにより、発光ダイオード110のp電極層7は補償ダイオード320のn伝導型である高キャリア濃度n+層3(第1層)に電気的に接続され、発光ダイオード110のn電極層8は補償ダイオード320のp伝導型であるコンタクト層62(第2層)に電気的に接続される。よって、発光ダイオード110にとって逆電圧となるリード202に対してリード201が高い電圧が印加される時、補償ダイオード320が導通することになり、発光ダイオード110には逆電圧が印加されないため、絶縁破壊は起こらない。 As a result, the p-electrode layer 7 of the light-emitting diode 110 is electrically connected to the n-conducting high carrier concentration n + layer 3 (first layer) of the compensation diode 320, and the n-electrode layer 8 of the light-emitting diode 110 is compensated. The diode 320 is electrically connected to the contact layer 62 (second layer) which is p-type. Therefore, when a high voltage is applied to the lead 201 with respect to the lead 202, which is a reverse voltage for the light emitting diode 110, the compensation diode 320 becomes conductive, and the reverse voltage is not applied to the light emitting diode 110. Does not happen.

本実施例は、図10に示すように、発光ダイオード120のコンタクト層62の上に補償ダイオード330を形成した例である。
上述したように、バッファ層2からコンタクト層62まで形成する。その後、補償ダイオード330を形成するために、n型のGaNから成る第1層333とp型のGaNから成る第2層334を形成する。
In this embodiment, as shown in FIG. 10, a compensation diode 330 is formed on the contact layer 62 of the light emitting diode 120.
As described above, the buffer layer 2 to the contact layer 62 are formed. Thereafter, in order to form the compensation diode 330, a first layer 333 made of n-type GaN and a second layer 334 made of p-type GaN are formed.

そして、第1実施例と同様な工程により、エッチングした後、発光ダイオード120のp電極層7、n電極層8、補償ダイオード330のp電極層331、n電極層332を形成する。このようにして形成された発光素子は図10に示すようにリード201の平坦部203に取り付けられる。そして、発光ダイオード120のp電極層7は補償ダイオード330のn電極層332(カソード)にワイヤ220で電気的に接続されると共にワイヤ221によりリード202に電気的に接続される。同様に、発光ダイオード120のn電極層8はリード201にワイヤ222で電気的に接続され、補償ダイオード330のp電極層331はワイヤ223によりリード201に電気的に接続される。   Then, after etching by the same process as in the first embodiment, the p electrode layer 7 and the n electrode layer 8 of the light emitting diode 120, the p electrode layer 331 and the n electrode layer 332 of the compensation diode 330 are formed. The light emitting element formed in this manner is attached to the flat portion 203 of the lead 201 as shown in FIG. The p electrode layer 7 of the light emitting diode 120 is electrically connected to the n electrode layer 332 (cathode) of the compensation diode 330 through a wire 220 and electrically connected to the lead 202 through a wire 221. Similarly, the n-electrode layer 8 of the light emitting diode 120 is electrically connected to the lead 201 via a wire 222, and the p-electrode layer 331 of the compensation diode 330 is electrically connected to the lead 201 via a wire 223.

これにより、発光ダイオード120のp電極層7は補償ダイオード330のn伝導型である第1層333に電気的に接続され、発光ダイオード120のn電極層8は補償ダイオード330のp伝導型である第2層334に電気的に接続される。よって、発光ダイオード120にとって逆電圧となるリード202に対してリード201が高い電圧が印加される時、補償ダイオード330が導通することになり、発光ダイオード120には逆電圧が印加されないため、絶縁破壊は起こらない。   Accordingly, the p-electrode layer 7 of the light-emitting diode 120 is electrically connected to the first layer 333 that is the n-conducting type of the compensation diode 330, and the n-electrode layer 8 of the light-emitting diode 120 is the p-conducting type of the compensating diode 330. It is electrically connected to the second layer 334. Therefore, when a high voltage is applied to the lead 201 with respect to the lead 202 that is a reverse voltage for the light emitting diode 120, the compensation diode 330 is turned on, and the reverse voltage is not applied to the light emitting diode 120. Does not happen.

又、上記の第1〜第4の実施例において、発光ダイオード100、110、120に正方向にも静電圧を印加して、その静電耐圧を測定した。500Vの静電圧を印加しても絶縁破壊は見られなかった。
これは、発光層5とn+層3との間に、電子濃度が発光層やn+層3よりも低いn層を設けたために、正方向の正電圧による各層及び各層間での電界が小さくなるためと思われる。
In the first to fourth embodiments, a static voltage was also applied to the light emitting diodes 100, 110, 120 in the positive direction, and the electrostatic withstand voltage was measured. Dielectric breakdown was not observed even when a static voltage of 500 V was applied.
This is because the n-layer having an electron concentration lower than that of the light-emitting layer or the n + layer 3 is provided between the light-emitting layer 5 and the n + layer 3, so that the electric field between each layer and each layer due to a positive voltage in the positive direction. It seems to be smaller.

上記のいずれの実施例においても、発光層5のバンドギャップが両側に存在するp層61とn層4のバンドギャップよりも小さくなるようなダブルヘテロ接合に形成されている。又、発光層5とp層61の成分比は、GaNの高キャリア濃度n+層の格子定数に一致するように選択されている。
又、上記実施例ではダブルヘテロ接合構造を用いたが、シングルヘテロ接合構造であっても良い。
さらに、上記実施例は、発光ダイオードの例を示したが、レーザダイオードであっても同様に構成可能である。
又、上記の第3、第4実施例において、補償ダイオード320,330は3族窒化物半導体を用いたが他の物質であっても良い。
In any of the above embodiments, the light emitting layer 5 is formed in a double heterojunction so that the band gap of the light emitting layer 5 becomes smaller than the band gap of the p layer 61 and the n layer 4 existing on both sides. The component ratio between the light emitting layer 5 and the p layer 61 is selected to match the lattice constant of the high carrier concentration n + layer of GaN.
In the above embodiment, a double heterojunction structure is used, but a single heterojunction structure may be used.
Furthermore, although the said Example showed the example of the light emitting diode, even if it is a laser diode, it can comprise similarly.
In the third and fourth embodiments, the compensation diodes 320 and 330 are made of a group III nitride semiconductor, but other materials may be used.

本発明の具体的な第1実施例に係る発光ダイオードの構成を示した構成図。The block diagram which showed the structure of the light emitting diode which concerns on the specific 1st Example of this invention. 同実施例の発光ダイオードの製造工程を示した断面図。Sectional drawing which showed the manufacturing process of the light emitting diode of the Example. 同実施例の発光ダイオードの製造工程を示した断面図。Sectional drawing which showed the manufacturing process of the light emitting diode of the Example. 同実施例の発光ダイオードの製造工程を示した断面図。Sectional drawing which showed the manufacturing process of the light emitting diode of the Example. 同実施例の発光ダイオードの製造工程を示した断面図。Sectional drawing which showed the manufacturing process of the light emitting diode of the Example. 第1実施例に係る発光素子の機構を示した構成図。The block diagram which showed the mechanism of the light emitting element which concerns on 1st Example. 第2実施例に係る発光素子の機構を示した構成図。The block diagram which showed the mechanism of the light emitting element which concerns on 2nd Example. 第3実施例に係る発光素子の層構造を示した断面図。Sectional drawing which showed the layer structure of the light emitting element which concerns on 3rd Example. 第3実施例に係る発光素子の機構を示した構成図。The block diagram which showed the mechanism of the light emitting element which concerns on 3rd Example. 第4実施例に係る発光素子の層構造及び機構を示した構成図。The block diagram which showed the layer structure and mechanism of the light emitting element which concern on 4th Example.

符号の説明Explanation of symbols

100,110,120…発光ダイオード
1…サファイア基板
2…バッファ層
3…高キャリア濃度n+
4…n層
5…発光層
61…p層
62…コンタクト層
7…p電極層
8…n電極層
300,310,320,330…補償ダイオード
321,331…p電極層
322,332…n電極層
201,202…リード
210,211,212,213…ワイヤ
220,221,222,223…ワイヤ
DESCRIPTION OF SYMBOLS 100,110,120 ... Light emitting diode 1 ... Sapphire substrate 2 ... Buffer layer 3 ... High carrier concentration n + layer 4 ... n layer 5 ... Light emitting layer 61 ... p layer 62 ... Contact layer 7 ... p electrode layer 8 ... n electrode layer 300, 310, 320, 330 ... compensation diode 321, 331 ... p electrode layer 322, 332 ... n electrode layer 201, 202 ... lead 210, 211, 212, 213 ... wire 220, 221, 222, 223 ... wire

Claims (6)

3族窒化物半導体から成るp層、そのp層に接続するp電極層、n層及びそのn層に接続するn電極層とから成る発光部を有した発光素子において、
前記発光部の前記p電極層に電気的に接続されるn伝導型の第1層と、前記発光部の前記n電極層に電気的に接続されるp伝導型の第2層とが接合された逆耐圧補償用の補償ダイオードを設け、
発光層と第1のn層との間に、電子濃度が発光層及び第1のn層よりも低い第2のn層を設けたことを特徴とする3族窒化物半導体発光素子。
In a light emitting device having a light emitting portion composed of a p layer made of a group III nitride semiconductor, a p electrode layer connected to the p layer, an n layer and an n electrode layer connected to the n layer,
An n-conduction type first layer electrically connected to the p-electrode layer of the light-emitting portion and a p-conduction type second layer electrically connected to the n-electrode layer of the light-emitting portion are joined. Compensation diode for reverse withstand voltage compensation
A group 3 nitride semiconductor light-emitting device, wherein a light emitting layer and a second n layer having a lower electron concentration than the first n layer are provided between the light emitting layer and the first n layer.
前記補償ダイオードは、前記発光部が形成されている基板と別の基板に形成され、前記発光部と前記補償ダイオードとの電気的接続はリードにより行われていることを特徴とする請求項1に記載の3族窒化物半導体発光素子。 The compensation diode is formed on a substrate different from the substrate on which the light emitting unit is formed, and electrical connection between the light emitting unit and the compensation diode is made by a lead. The group III nitride semiconductor light-emitting device described. 前記補償ダイオードは、前記発光部が形成されている基板と別の基板に形成され、前記発光部と前記補償ダイオードとの電気的接続はリードにより行われ、前記発光部と前記補償ダイオードとが同一樹脂で封止されていることを特徴とする請求項2に記載の3族窒化物半導体発光素子。 The compensation diode is formed on a substrate different from the substrate on which the light emitting unit is formed, and the light emitting unit and the compensation diode are electrically connected by leads, and the light emitting unit and the compensation diode are the same. The group 3 nitride semiconductor light-emitting device according to claim 2, which is sealed with a resin. 前記補償ダイオードは、前記発光部が形成されている基板と同一基板に形成されていることを特徴とする請求項1に記載の3族窒化物半導体発光素子。 The group III nitride semiconductor light-emitting device according to claim 1, wherein the compensation diode is formed on the same substrate as the substrate on which the light-emitting portion is formed. 前記補償ダイオードの層構造は、前記発光部の層構造と同一に形成されており、前記発光部と前記補償ダイオードとの間に絶縁分離の溝が形成され、前記発光部と前記補償ダイオードとの電気的接続はリードワイヤにより行われいることを特徴とする請求項4に記載の3族窒化物半導体発光素子。 The layer structure of the compensation diode is formed to be the same as the layer structure of the light emitting unit, and an insulating separation groove is formed between the light emitting unit and the compensation diode, and the light emitting unit and the compensation diode are separated from each other. The group III nitride semiconductor light-emitting device according to claim 4, wherein the electrical connection is made by a lead wire. 前記補償ダイオードは、前記発光部の前記p層の上に積層された前記第1層とその第1層の上に積層された第2層とで構成されていることを特徴とする請求項4に記載の3族窒化物半導体発光素子。 5. The compensation diode is configured by the first layer stacked on the p layer of the light emitting unit and the second layer stacked on the first layer. 3. The group III nitride semiconductor light-emitting device described in 1.
JP2005118792A 2005-04-15 2005-04-15 Group iii nitride semiconductor light emitting element Pending JP2005217446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005118792A JP2005217446A (en) 2005-04-15 2005-04-15 Group iii nitride semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005118792A JP2005217446A (en) 2005-04-15 2005-04-15 Group iii nitride semiconductor light emitting element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP32801195A Division JP3705637B2 (en) 1995-11-21 1995-11-21 Group 3 nitride semiconductor light emitting device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2005217446A true JP2005217446A (en) 2005-08-11

Family

ID=34909857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005118792A Pending JP2005217446A (en) 2005-04-15 2005-04-15 Group iii nitride semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JP2005217446A (en)

Similar Documents

Publication Publication Date Title
JP5136765B2 (en) Nitride-based semiconductor device and manufacturing method thereof
JP3654738B2 (en) Group 3 nitride semiconductor light emitting device
JP2681733B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
JP3795624B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
JP5596222B2 (en) Semiconductor laminate, method for manufacturing the same, and semiconductor element
KR20100079693A (en) Light emitting device having plurality of non-polar light emitting cells and method of fabricating the same
JP3506874B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
JPH07263748A (en) Iii group nitride semiconductor light emitting element and manufacture of it
JP4058595B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP3705637B2 (en) Group 3 nitride semiconductor light emitting device and method of manufacturing the same
JP7447151B2 (en) Light emitting diode precursor including passivation layer
JP2010165983A (en) Light-emitting chip integrated device and method for manufacturing the same
JP2001313421A (en) Semiconductor light-emitting element and its manufacturing method
JP2009076864A (en) Nitride-based light emitting device
JPH0992880A (en) Group iii nitride semiconductor light emitting device
KR101337615B1 (en) GaN-BASED COMPOUND SEMICONDUCTOR AND THE FABRICATION METHOD THEREOF
JP4058592B2 (en) Semiconductor light emitting device and manufacturing method thereof
WO2012137783A1 (en) Semiconductor laminate and process for production thereof, and semiconductor element
JP4058593B2 (en) Semiconductor light emitting device
JP4041906B2 (en) Semiconductor light emitting device
JP2663814B2 (en) Nitrogen-3 element compound semiconductor light emitting device
JP2005217446A (en) Group iii nitride semiconductor light emitting element
JP4058594B2 (en) Semiconductor light emitting device
JP3727091B2 (en) Group 3 nitride semiconductor device
JP3307094B2 (en) Group III nitride semiconductor light emitting device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060808