JP2005217353A - Thermoelectric semiconductor element, thermoelectric transformation module, and method of manufacturing the same - Google Patents

Thermoelectric semiconductor element, thermoelectric transformation module, and method of manufacturing the same Download PDF

Info

Publication number
JP2005217353A
JP2005217353A JP2004025335A JP2004025335A JP2005217353A JP 2005217353 A JP2005217353 A JP 2005217353A JP 2004025335 A JP2004025335 A JP 2004025335A JP 2004025335 A JP2004025335 A JP 2004025335A JP 2005217353 A JP2005217353 A JP 2005217353A
Authority
JP
Japan
Prior art keywords
thermoelectric semiconductor
semiconductor element
thermoelectric
conversion module
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004025335A
Other languages
Japanese (ja)
Inventor
Masataka Kondo
正高 近藤
Tadao Endo
忠雄 遠藤
Masayuki Yamazaki
正幸 山崎
Yoichi Koike
陽一 小池
Shigeaki Sato
滋昭 佐藤
Atsushi Sugihara
杉原  淳
Osamu Endo
修 遠藤
Hiroshi Nakamura
博 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOKOHAMA TEIKOKI KK
Kobayashi KK
Original Assignee
YOKOHAMA TEIKOKI KK
Kobayashi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOKOHAMA TEIKOKI KK, Kobayashi KK filed Critical YOKOHAMA TEIKOKI KK
Priority to JP2004025335A priority Critical patent/JP2005217353A/en
Publication of JP2005217353A publication Critical patent/JP2005217353A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric semiconductor element and a thermoelectric transformation module, the mass production of which is easy by a printing technique and the like, and the lamination of which is also easy. <P>SOLUTION: A thermoelectric semiconductor element uses semiconductor which is made to be in a paste state by adding fine powder of thermoelectric semiconductor to an organic substance such as rubber and resin to which conductivity is given. A thermoelectric transformation module is manufactured by filling paste-like thermoelectric semiconductor elements 11 and 12 into the hole of a substrate 10, or applying the elements to the substrate and curing the semiconductor elements. The mass production of the thermoelectric semiconductor element is easy by a printing technique and the like. The lamination of the substrate is also easy. Further, the capacity and shape of the element can be designed freely. Therefore, a high temperature side can be separated away from a low temperature side. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は熱電半導体素子、熱電変換モジュールおよびその製造方法に関し、特に、簡単に製造可能であり、かつ任意の形状に成形可能な熱電半導体素子、熱電変換モジュールおよびその製造方法に関するものである。   The present invention relates to a thermoelectric semiconductor element, a thermoelectric conversion module, and a manufacturing method thereof, and more particularly to a thermoelectric semiconductor element, a thermoelectric conversion module, and a manufacturing method thereof that can be easily manufactured and can be formed into an arbitrary shape.

従来、ペルチェ効果素子やゼーベック効果素子などの熱電半導体素子は、1素子ペア当たりの駆動電圧あるいは発生電圧が小さいので、多数の素子ペアを直列接続する必要があった。そのために、合金形成されたp型とn型の熱電半導体をΠ(パイ)形に立て、上部面同士、下部面同士をそれぞれ電極により交互に接合して全ての素子が直列に接続し、更に上面および下面を絶縁体の板によって挟む構造が主であった。例えば、下記の文献には、従来の熱電半導体素子を用いた熱電変換モジュールが開示されている。
特開平05−063243号公報
Conventionally, thermoelectric semiconductor elements such as Peltier effect elements and Seebeck effect elements have a small driving voltage or generated voltage per element pair, and thus a large number of element pairs have to be connected in series. For this purpose, the p-type and n-type thermoelectric semiconductors formed in an alloy are put in a pie shape, and the upper surfaces and lower surfaces are alternately joined by electrodes to connect all elements in series. The main structure is that the upper and lower surfaces are sandwiched between insulating plates. For example, the following literature discloses a thermoelectric conversion module using a conventional thermoelectric semiconductor element.
JP 05-063243 A

上記した従来の熱電半導体素子および同素子を用いた熱電変換モジュールにおいては、n型およびp型の熱電半導体素子を交互に並べて配置し、隣接するそれぞれの素子の端子同士を接続するために製造に手間がかかり、価格が高くなってしまうという問題点があった。また、素子の形状が限定されるために、任意の形状に成形することが困難であり、フレキシブル性を持たせることも困難であるという問題点もあった。   In the conventional thermoelectric semiconductor element and the thermoelectric conversion module using the element, the n-type and p-type thermoelectric semiconductor elements are alternately arranged and are manufactured to connect the terminals of adjacent elements. There was a problem that it took time and the price was high. In addition, since the shape of the element is limited, it is difficult to form the element into an arbitrary shape, and it is difficult to provide flexibility.

本発明は、上記した課題を解決することを目的とし、このために、本発明の装置は、熱電半導体の微粉末を導電性を付与したゴムや樹脂などの有機物あるいはガラスへ添加し、混練してペースト状にした半導体を用いることを主要な特徴とする。また、基板の孔あるいは窪みにペースト状の熱電半導体素子を充填するか、あるいは基板にペースト状の熱電半導体素子を塗布することによって製造された熱電変換モジュールにも特徴がある。更に、熱電半導体素子が形成された基板が複数個積層されている点にも特徴がある。   The present invention aims to solve the above-described problems, and for this purpose, the apparatus of the present invention adds a thermoelectric semiconductor fine powder to an organic substance such as rubber or resin or glass imparted with conductivity, and kneads. The main feature is to use a paste-like semiconductor. Further, the thermoelectric conversion module manufactured by filling a hole or depression in the substrate with a paste-like thermoelectric semiconductor element or applying a paste-like thermoelectric semiconductor element to the substrate is also characterized. Furthermore, there is a feature in that a plurality of substrates on which thermoelectric semiconductor elements are formed are stacked.

本発明の装置は上記のような特徴によって、熱電半導体素子を印刷技術等によって簡単に大量生産することができ、積層化も容易であるという効果がある。また、熱電半導体素子の大きさや形状を自由に設計でき、高温側と低温側の距離を離すことが可能となる。また、基板や混合する樹脂として熱伝導率の小さいものを採用可能であり、高温側から低温側への熱伝導量を減少させることができるという効果がある。更に、基板にフレキシブル性を持たせることにより熱電変換モジュールを曲面形状に成形するか、あるいは成形後に変形させることができるという効果がある。   Due to the above-described features, the apparatus of the present invention has an effect that thermoelectric semiconductor elements can be easily mass-produced by a printing technique or the like and can be easily laminated. Further, the size and shape of the thermoelectric semiconductor element can be freely designed, and the distance between the high temperature side and the low temperature side can be increased. In addition, it is possible to employ a substrate or a resin having a low thermal conductivity as a resin to be mixed, and there is an effect that the amount of heat conduction from the high temperature side to the low temperature side can be reduced. Furthermore, by giving the substrate flexibility, there is an effect that the thermoelectric conversion module can be formed into a curved surface shape or deformed after the forming.

以下、図面を参照して実施例について説明する。   Embodiments will be described below with reference to the drawings.

図1は、本発明の熱電半導体素子を使用して製造された実施例1の熱電変換モジュールの構成を示す断面図である。基板10に設けられた複数の孔に交互にp型熱電半導体素子11およびn型熱電半導体素子12が形成され、隣接するそれぞれの素子11、12の端部同士が電極(接続回路)13によって直列に接続されている。更に、モジュールの表面全体を絶縁層14が覆っている。   FIG. 1 is a cross-sectional view showing a configuration of a thermoelectric conversion module of Example 1 manufactured using the thermoelectric semiconductor element of the present invention. A p-type thermoelectric semiconductor element 11 and an n-type thermoelectric semiconductor element 12 are alternately formed in a plurality of holes provided in the substrate 10, and ends of adjacent elements 11 and 12 are connected in series by an electrode (connection circuit) 13. It is connected to the. Furthermore, the insulating layer 14 covers the entire surface of the module.

図2は、本発明の実施例1の熱電変換モジュールの製造工程(その1)を示す断面図である。図2(a)においては、まず基板10に熱電半導体素子を形成するための孔15を開ける。基板としては、例えば樹脂などのプラスチック製絶縁材料を素材とした板を採用可能であり、なるべく熱伝導率が小さいものが望ましい。孔開け方法としては、ドリル、プレス、プラスチック成形金型、レーザー、アルカリエッチングなどを採用可能である。   FIG. 2 is a cross-sectional view illustrating a manufacturing process (No. 1) of the thermoelectric conversion module according to the first embodiment of the present invention. In FIG. 2A, first, a hole 15 for forming a thermoelectric semiconductor element is formed in the substrate 10. As the substrate, for example, a plate made of a plastic insulating material such as a resin can be adopted, and a substrate having as low a thermal conductivity as possible is desirable. As a drilling method, a drill, a press, a plastic mold, a laser, alkaline etching, or the like can be employed.

図2(b)においては、p型熱電半導体素子11を形成する孔のみを残し、n型熱電半導体素子12を形成する孔を感光性ドライフィルムラミネート法、常温接着テープによってフィルム16によりマスクする。なお、このようなフィルムおよびマスク方法は公知である。
図2(c)においては、p型熱電半導体素子11を形成する孔15にペースト状のp型熱電半導体素子11を充填する。
In FIG. 2B, only the hole for forming the p-type thermoelectric semiconductor element 11 is left, and the hole for forming the n-type thermoelectric semiconductor element 12 is masked with the film 16 by a photosensitive dry film laminating method and room temperature adhesive tape. Such film and mask methods are well known.
In FIG. 2 (c), the paste-type p-type thermoelectric semiconductor element 11 is filled in the hole 15 for forming the p-type thermoelectric semiconductor element 11.

本発明の熱電半導体素子は、以下の材料を混合し、混練してペースト状にする。(1)n型あるいはp型熱電半導体微粉末、(2)導電性微粉末、(3)熱硬化性樹脂、ガラスあるいはゴム(4)分散剤。
n型あるいはp型熱電半導体としては、例えばビスマステルル(Bi2Te3)などの熱電半導体材料にn型あるいはp型とするための不純物を添加したものなど、公知の任意の熱電半導体材料を使用可能である。
In the thermoelectric semiconductor element of the present invention, the following materials are mixed and kneaded into a paste. (1) n-type or p-type thermoelectric semiconductor fine powder, (2) conductive fine powder, (3) thermosetting resin, glass or rubber (4) dispersant.
As the n-type or p-type thermoelectric semiconductor, for example, any known thermoelectric semiconductor material, such as a thermoelectric semiconductor material such as bismuth tellurium (Bi 2 Te 3 ) added with an impurity for making it n-type or p-type is used. Is possible.

導電性微粉末としては、例えば金属粉末、カーボン粉末等を使用可能である。熱硬化性樹脂としては、溶剤を含む熱硬化性樹脂、あるいは溶剤を含まない熱硬化性樹脂を使用する。例を挙げれば、エポキシ樹脂、フェノール樹脂、シリコーン樹脂等を使用可能である。また、樹脂の代わりにガラスやゴム、エラストマーでもよい。ガラスの場合には、ガラス+溶剤(α-テルピネオール等)でペースト状になる。なお、素材の微粉末として非常に細かいナノ粒子を使用してもよい。分散剤としては、例えばアルキルアセトアセテートアルミニウムジイソプロピレートを使用可能である。   As the conductive fine powder, for example, metal powder, carbon powder or the like can be used. As the thermosetting resin, a thermosetting resin containing a solvent or a thermosetting resin containing no solvent is used. For example, an epoxy resin, a phenol resin, a silicone resin, or the like can be used. Further, glass, rubber, or elastomer may be used instead of resin. In the case of glass, it becomes a paste with glass + solvent (such as α-terpineol). In addition, you may use a very fine nanoparticle as a fine powder of a raw material. As the dispersant, for example, alkyl acetoacetate aluminum diisopropylate can be used.

図2(d)においては、マスク用のフィルム16を除去し、熱風などにより加熱してペースト状の半導体11を硬化させる。図2(e)においては、基板10の面と半導体面を平滑にするためロール型研磨剤あるいは平面研磨、サンドブラストにより平滑研磨する。   In FIG. 2D, the mask film 16 is removed, and the paste-like semiconductor 11 is cured by heating with hot air or the like. In FIG. 2 (e), the surface of the substrate 10 and the semiconductor surface are smoothed by a roll type polishing agent, flat surface polishing, or sand blasting.

図3は、本発明の実施例1の熱電変換モジュールの製造工程(その2)を示す断面図である。図3(f)においては、n型熱電半導体素子12について図2(c)、(d)の処理を繰り返し、n型熱電半導体素子12を形成する。図3(g)においては、基板10の面と半導体面を平滑にするためロール型研磨剤により平滑研磨する。   FIG. 3 is a cross-sectional view illustrating a manufacturing process (No. 2) of the thermoelectric conversion module according to the first embodiment of the present invention. In FIG. 3F, the n-type thermoelectric semiconductor element 12 is formed by repeating the processes of FIGS. 2C and 2D for the n-type thermoelectric semiconductor element 12. In FIG. 3G, the surface of the substrate 10 and the semiconductor surface are smooth polished with a roll type abrasive to smooth the surface.

図3(h)においては、メッキ+エッチング法、導電ペースト印刷法などの公知の回路形成方法によって素子の端部同士を直列に接続する電極13を形成する。図3(i)においては、外部との接続部分の電極を残し、その他の部分の表面を絶縁層14によって覆う。以上のような工程を経て図1に示すよう1層の熱電変換モジュールが完成する。   In FIG. 3H, the electrodes 13 for connecting the end portions of the elements in series are formed by a known circuit forming method such as a plating + etching method or a conductive paste printing method. In FIG. 3 (i), the electrode of the connection portion with the outside is left, and the surface of the other portion is covered with the insulating layer 14. Through the steps described above, a one-layer thermoelectric conversion module is completed as shown in FIG.

なお、ペースト状の半導体の埋め込み方法としては、上記した方法以外にスクリーンマスク、メタルマスクを用い、スキージにより埋め込む印刷法、または、ロールコーター、スプレーコーター、マルチヘッドディスペンサー(吐出装置)により埋め込む方法、超音波によって孔内のエアーを除きディップするディップ(浸漬)法、凹版方式などを採用してもよい。   In addition, as a method for embedding a paste-like semiconductor, in addition to the above-described method, a screen mask or a metal mask is used, a printing method for embedding with a squeegee, or a method for embedding with a roll coater, spray coater, multi-head dispenser (discharge device), You may employ | adopt the dip (immersion) method, the intaglio method, etc. which dip except the air in a hole with an ultrasonic wave.

また、上記した工程の変形例として、まずp型熱電半導体素子11用のみの孔を開け、p型ペーストを充填し、乾燥、平滑研磨した後、n型熱電半導体素子12用のみの孔を開け、n型ペーストを充填し、乾燥、平滑研磨する方法も可能である。   As a modification of the above-described process, first, a hole only for the p-type thermoelectric semiconductor element 11 is formed, filled with p-type paste, dried and smooth polished, and then a hole only for the n-type thermoelectric semiconductor element 12 is formed. Also, a method of filling n-type paste, drying and smooth polishing is possible.

以上のような工程により、常温〜350度程度の熱処理によって素子を形成可能である。また、ナノ粒子を使用することにより、更に低温で素子を形成可能となる。   Through the steps as described above, the element can be formed by a heat treatment at a room temperature to about 350 degrees. Moreover, it becomes possible to form an element at a lower temperature by using nanoparticles.

図5は、本発明の熱電半導体素子を使用して製造された実施例1の熱電変換モジュールの構成を示す平面図である。図5(a)は一方の面の平面図であり、(b)は他方の面の平面図である。電極13は実際にはp型熱電半導体素子11およびn型熱電半導体素子12の頭部全体を覆っている。全ての半導体素子11、12は直列に接続されており、図5(a)の左上部および右下部にある外部接続用電極によって外部と接続される。   FIG. 5 is a plan view showing the configuration of the thermoelectric conversion module of Example 1 manufactured using the thermoelectric semiconductor element of the present invention. FIG. 5A is a plan view of one surface, and FIG. 5B is a plan view of the other surface. The electrode 13 actually covers the entire heads of the p-type thermoelectric semiconductor element 11 and the n-type thermoelectric semiconductor element 12. All the semiconductor elements 11 and 12 are connected in series, and are connected to the outside by the external connection electrodes on the upper left and lower right in FIG.

図6は、p型熱電半導体素子11およびn型熱電半導体素子12の配置例を示す説明図である。図6(a)は図5に示した実施例1の配置である。この場合にはp型熱電半導体素子11およびn型熱電半導体素子12が交互に配置されるので、充填時のマスクの形成等において細かいパターンが必要である。   FIG. 6 is an explanatory view showing an arrangement example of the p-type thermoelectric semiconductor element 11 and the n-type thermoelectric semiconductor element 12. FIG. 6A shows the arrangement of the first embodiment shown in FIG. In this case, since the p-type thermoelectric semiconductor elements 11 and the n-type thermoelectric semiconductor elements 12 are alternately arranged, a fine pattern is required for forming a mask during filling.

図6(b)は(a)のパターンを1行おきに1素子分ずらしたもので、電極の接続パターンを長くすることなく、同じ種類の素子を1列に配置することができる。図6(c)は同じ種類の素子を隣接する複数列に配置したものである。このような配置にすれば充填時のマスクの形成等は容易になるが、全ての素子を交互に直列に接続するための電極の接続パターンが複雑となる。なお、最密充填配置等も可能である。また、孔の数、密度、大きさ、深さ、断面形状は任意である。   In FIG. 6B, the pattern of FIG. 6A is shifted by one element every other row, and the same type of elements can be arranged in one column without lengthening the electrode connection pattern. FIG. 6C shows the same type of elements arranged in a plurality of adjacent rows. With such an arrangement, it becomes easy to form a mask at the time of filling, but the connection pattern of electrodes for alternately connecting all elements in series becomes complicated. A close-packed arrangement or the like is also possible. The number, density, size, depth, and cross-sectional shape of the holes are arbitrary.

図4は、本発明の熱電半導体素子を使用して製造された実施例2の熱電変換モジュールの構成を示す断面図である。実施例2の熱電変換モジュールは、実施例1の熱電変換モジュールを複数枚積層したものである。各層間はスルーホール18によって接続される。このような構造は積層印刷配線板の製造技術を使用して製造可能である。   FIG. 4 is a cross-sectional view showing the configuration of the thermoelectric conversion module of Example 2 manufactured using the thermoelectric semiconductor element of the present invention. The thermoelectric conversion module of Example 2 is obtained by stacking a plurality of thermoelectric conversion modules of Example 1. Each layer is connected by a through hole 18. Such a structure can be manufactured using a technique for manufacturing a laminated printed wiring board.

実施例2の熱電変換モジュールは、1素子当たりの熱移動方向の長さをあまり長くすることなく、全体としては高温側と低温側の距離を長くすることができるので、駆動電流を増やせると共に直列接続する素子数も増やすことができる。   The thermoelectric conversion module according to the second embodiment can increase the driving current as well as the distance between the high temperature side and the low temperature side as a whole without increasing the length of the heat transfer direction per element so much. The number of connected elements can also be increased.

図7は、本発明の熱電半導体素子を使用して製造された実施例3の熱電変換モジュールの部品構成を示す平面図である。第3実施例は堅いあるいはフレキシブルな基板30の表面に熱電半導体素子を形成する例である。図7(a)、(b)は、p型熱電半導体素子31およびn型熱電半導体素子32を接続する電極33が基板30の中央部に配置された部品を示す平面図および断面図である。この場合には中央部(33)と両端部(34、35)の間に温度差が発生する。   FIG. 7 is a plan view showing the component structure of the thermoelectric conversion module of Example 3 manufactured using the thermoelectric semiconductor element of the present invention. The third embodiment is an example in which a thermoelectric semiconductor element is formed on the surface of a rigid or flexible substrate 30. FIGS. 7A and 7B are a plan view and a cross-sectional view showing a component in which an electrode 33 that connects the p-type thermoelectric semiconductor element 31 and the n-type thermoelectric semiconductor element 32 is arranged at the center of the substrate 30. In this case, a temperature difference is generated between the central portion (33) and both end portions (34, 35).

図7(c)、(d)は、p型熱電半導体素子31およびn型熱電半導体素子32を接続する電極33が基板30の端部に配置された部品を示す平面図および断面図である。この場合には図7(c)の上端(33)と下端(34、35)の間に温度差が発生する。   FIGS. 7C and 7D are a plan view and a cross-sectional view showing a component in which an electrode 33 that connects the p-type thermoelectric semiconductor element 31 and the n-type thermoelectric semiconductor element 32 is arranged at the end of the substrate 30. In this case, a temperature difference occurs between the upper end (33) and the lower end (34, 35) in FIG.

p型熱電半導体素子31およびn型熱電半導体素子32は実施例1と同じペースト状の熱電半導体素子を公知の印刷法等によって所望の位置に塗布し、加熱硬化させる。電極33、34、35も実施例1と同様の方法により形成する。   For the p-type thermoelectric semiconductor element 31 and the n-type thermoelectric semiconductor element 32, the same paste-like thermoelectric semiconductor element as in Example 1 is applied to a desired position by a known printing method or the like, and is cured by heating. The electrodes 33, 34, and 35 are also formed by the same method as in the first embodiment.

図8は、図7(c)に示した熱電変換モジュール部品を複数枚積層した実施例3の熱電変換モジュールの構成を示す斜視図および断面図である。図7(c)に示した熱電変換モジュール部品40を積層し、スルーホール43によってそれぞれの層40の電極同士を1つおきに交互に接続する。できたモジュールは例えば上面41が発熱面、下面42が吸熱面となる。   FIG. 8 is a perspective view and a cross-sectional view showing the configuration of the thermoelectric conversion module of Example 3 in which a plurality of thermoelectric conversion module components shown in FIG. The thermoelectric conversion module components 40 shown in FIG. 7C are stacked, and every other electrode of each layer 40 is alternately connected by through holes 43. In the completed module, for example, the upper surface 41 is a heat generating surface and the lower surface 42 is a heat absorbing surface.

図9は、本発明の熱電半導体素子を使用して製造された実施例4の熱電変換モジュールの構成を示す平面図である。実施例3は1基板当たり1ペアの熱電半導体素子が形成されていたが、実施例4は、1枚の基板50上に複数ペアの熱電半導体素子が形成された例である。図9においては、横方向に4ペア、縦(熱移動)方向に4層(ペア)の熱電半導体素子が形成されており、接続回路51によって縦方向の接続が形成されている。なお、横方向および縦(熱移動)方向のペア数は1以上の任意である。なお、図8(b)の断面図に示すように、スルーホールによる層間接続を容易にするために、1層おきにp型熱電半導体素子31およびn型熱電半導体素子32の配置を逆にする。   FIG. 9 is a plan view showing the configuration of the thermoelectric conversion module of Example 4 manufactured using the thermoelectric semiconductor element of the present invention. In Example 3, one pair of thermoelectric semiconductor elements is formed per substrate, but Example 4 is an example in which a plurality of pairs of thermoelectric semiconductor elements are formed on one substrate 50. In FIG. 9, four pairs of thermoelectric semiconductor elements in the horizontal direction and four layers (pairs) in the vertical (heat transfer) direction are formed, and the connection in the vertical direction is formed by the connection circuit 51. The number of pairs in the horizontal direction and the vertical (heat transfer) direction is arbitrarily 1 or more. As shown in the cross-sectional view of FIG. 8B, the arrangement of the p-type thermoelectric semiconductor element 31 and the n-type thermoelectric semiconductor element 32 is reversed every other layer in order to facilitate interlayer connection by through holes. .

実施例4の変形例としては、ポリエステル、ポリイミドなどの長いテープ状のフレキシブル基板上の長手方向に複数のp型熱電半導体素子31およびn型熱電半導体素子32を交互に塗布し、電極で直列接続することによって、テープ状の熱電変換モジュールを作成する。そして、素子や電極同士が接触/導通しないようにフィルムを挿入するなどして、絶縁状態で1ペア毎にあるいは複数ペア毎に折り畳むことにより熱電変換モジュールを作成する。このようにすれば、全ての素子は直列に接続されているので、折り畳むだけでモジュールが完成し、層間の接続を形成する工程が不要となる。   As a modification of the fourth embodiment, a plurality of p-type thermoelectric semiconductor elements 31 and n-type thermoelectric semiconductor elements 32 are alternately applied in the longitudinal direction on a long tape-shaped flexible substrate such as polyester and polyimide, and are connected in series with electrodes. By doing so, a tape-shaped thermoelectric conversion module is created. And a thermoelectric conversion module is created by inserting a film so that elements and electrodes do not come into contact / conducting, or by folding each element or every pair in an insulated state. In this way, since all the elements are connected in series, the module is completed simply by folding, and the step of forming the connection between layers is not necessary.

以上実施例を説明したが、本発明には以下のような変形例も考えられる。実施例においては孔にペースト状の半導体を充填する例を開示したが、底に予め電極を形成した窪みにペースト状の半導体を充填するか塗布するようにすることも可能である。   Although the embodiments have been described above, the following modifications may be considered in the present invention. In the embodiment, an example in which the hole is filled with the paste-like semiconductor has been disclosed. However, it is also possible to fill or apply the paste-like semiconductor to the recess in which the electrode is previously formed on the bottom.

実施例においては熱電半導体素子を使用する例を開示したが、本発明のモジュール製造方法は、粉末状にすることが可能な任意の機能性素子を使用したモジュールの製造に適用可能である。   Although the example using a thermoelectric semiconductor element was disclosed in the Example, the module manufacturing method of this invention is applicable to manufacture of the module using the arbitrary functional elements which can be made into a powder form.

本発明の熱電半導体素子を使用して製造された実施例1の熱電変換モジュールの構成を示す断面図である。It is sectional drawing which shows the structure of the thermoelectric conversion module of Example 1 manufactured using the thermoelectric semiconductor element of this invention. 本発明の実施例1の熱電変換モジュールの製造工程(その1)を示す断面図である。It is sectional drawing which shows the manufacturing process (the 1) of the thermoelectric conversion module of Example 1 of this invention. 本発明の実施例1の熱電変換モジュールの製造工程(その2)を示す断面図である。It is sectional drawing which shows the manufacturing process (the 2) of the thermoelectric conversion module of Example 1 of this invention. 本発明の熱電半導体素子を使用して製造された実施例2の熱電変換モジュールの構成を示す断面図である。It is sectional drawing which shows the structure of the thermoelectric conversion module of Example 2 manufactured using the thermoelectric semiconductor element of this invention. 本発明の熱電半導体素子を使用して製造された実施例1の熱電変換モジュールの構成を示す平面図である。It is a top view which shows the structure of the thermoelectric conversion module of Example 1 manufactured using the thermoelectric semiconductor element of this invention. p型素子11およびn型素子12の配置例を示す説明図である。FIG. 3 is an explanatory diagram showing an arrangement example of a p-type element 11 and an n-type element 12. 本発明の熱電半導体素子を使用して製造された実施例3の熱電変換モジュールの部品構成を示す平面図である。It is a top view which shows the components structure of the thermoelectric conversion module of Example 3 manufactured using the thermoelectric semiconductor element of this invention. 図7(c)に示した熱電変換モジュール部品を複数枚積層した実施例3の熱電変換モジュールの構成を示す斜視図および断面図である。It is the perspective view and sectional drawing which show the structure of the thermoelectric conversion module of Example 3 which laminated | stacked several thermoelectric conversion module components shown in FIG.7 (c). 本発明の熱電半導体素子を使用して製造された実施例4の熱電変換モジュールの構成を示す平面図である。It is a top view which shows the structure of the thermoelectric conversion module of Example 4 manufactured using the thermoelectric semiconductor element of this invention.

符号の説明Explanation of symbols

10 基板
11 p型熱電半導体素子
12 n型熱電半導体素子
13 電極(接続回路)
14 絶縁層
15 孔
10 substrate 11 p-type thermoelectric semiconductor element 12 n-type thermoelectric semiconductor element 13 electrode (connection circuit)
14 Insulating layer 15 hole

Claims (6)

熱電半導体の微粉末と導電性微粉末とが混合されていることを特徴とする熱電半導体素子。   A thermoelectric semiconductor element, wherein a fine powder of a thermoelectric semiconductor and a conductive fine powder are mixed. 前記導電性微粉は金属あるいはカーボンの微粉末であり、
前記熱電半導体の微粉末と導電性微粉末とを有機物あるいはガラスへ添加してペースト状にしたことを特徴とする請求項1に記載の熱電半導体素子。
The conductive fine powder is a fine powder of metal or carbon,
The thermoelectric semiconductor element according to claim 1, wherein the thermoelectric semiconductor fine powder and the conductive fine powder are added to an organic substance or glass to form a paste.
基板の孔あるいは窪みに前記請求項2に記載のペースト状の熱電半導体素子を充填することによって製造された熱電変換モジュール。   The thermoelectric conversion module manufactured by filling the hole or hollow of a board | substrate with the paste-like thermoelectric semiconductor element of the said Claim 2. 基板に前記請求項2に記載のペースト状の熱電半導体素子を塗布することによって製造された熱電変換モジュール。   The thermoelectric conversion module manufactured by apply | coating the paste-like thermoelectric semiconductor element of the said Claim 2 to a board | substrate. 前記基板が複数個積層されていることを特徴とする請求項3あるいは4のいずれかに記載の熱電変換モジュール。   The thermoelectric conversion module according to claim 3, wherein a plurality of the substrates are stacked. 熱電半導体の微粉末と導電性微粉末とが混合されているペースト状の熱電半導体素子を製造する工程、
ペースト状の熱電半導体素子を基板の所望の箇所に塗布あるいは充填する工程、
熱電半導体素子を硬化させる工程、
を含むことを特徴とする熱電変換モジュールの製造方法。
Manufacturing a paste-like thermoelectric semiconductor element in which a fine powder of a thermoelectric semiconductor and a conductive fine powder are mixed,
A step of applying or filling a paste-like thermoelectric semiconductor element into a desired portion of the substrate;
Curing the thermoelectric semiconductor element;
The manufacturing method of the thermoelectric conversion module characterized by including.
JP2004025335A 2004-02-02 2004-02-02 Thermoelectric semiconductor element, thermoelectric transformation module, and method of manufacturing the same Pending JP2005217353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004025335A JP2005217353A (en) 2004-02-02 2004-02-02 Thermoelectric semiconductor element, thermoelectric transformation module, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004025335A JP2005217353A (en) 2004-02-02 2004-02-02 Thermoelectric semiconductor element, thermoelectric transformation module, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2005217353A true JP2005217353A (en) 2005-08-11

Family

ID=34907748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004025335A Pending JP2005217353A (en) 2004-02-02 2004-02-02 Thermoelectric semiconductor element, thermoelectric transformation module, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2005217353A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147323A (en) * 2006-12-08 2008-06-26 Murata Mfg Co Ltd Thermoelectric conversion module and manufacturing method thereof
JP2008270410A (en) * 2007-04-18 2008-11-06 Ishikawa Pref Gov Thermoelectric transducer, thermoelectric transducing module, and method for manufacturing the module
JP2009043783A (en) * 2007-08-06 2009-02-26 Denso Corp Multilayer thermoelectric conversion element, and manufacturing method thereof
KR100889946B1 (en) * 2007-04-17 2009-03-20 한국기계연구원 Manufacturing method of thermoelectric module
JP2009105324A (en) * 2007-10-25 2009-05-14 Ritsumeikan Manufacturing method of electronic device, and electronic device
WO2010007729A1 (en) * 2008-07-15 2010-01-21 パナソニック株式会社 Method of manufacturing a thermoelectric device
JP2010135620A (en) * 2008-12-05 2010-06-17 Sumitomo Metal Mining Co Ltd Thermoelectric conversion module, and generator using the same
WO2013179840A1 (en) * 2012-05-30 2013-12-05 株式会社デンソー Thermoelectric converter manufacturing method, manufacturing method of electronic device provided with thermoelectric converter, and thermoelectric converter
JP2014007408A (en) * 2012-05-30 2014-01-16 Denso Corp Method for manufacturing thermoelectric conversion device and method for manufacturing electronic component having the same
JP2014033114A (en) * 2012-08-03 2014-02-20 Fujitsu Ltd Thermoelectric conversion device and method for manufacturing the same
JP2014042413A (en) * 2012-08-23 2014-03-06 Dainippon Printing Co Ltd Temperature difference power generation unit
WO2014196327A1 (en) * 2013-06-04 2014-12-11 株式会社デンソー Vibration detector
CN104956506A (en) * 2013-01-24 2015-09-30 株式会社电装 Method for manufacturing thermoelectric converter
TWI559582B (en) * 2013-01-24 2016-11-21 Denso Corp Method for manufacturing thermoelectric conversion device, manufacturing method of electronic device with thermoelectric conversion device
EP2966699A4 (en) * 2013-03-05 2017-02-01 Denso Corporation Thermoelectric converter and method for manufacturing same
EP3062358A4 (en) * 2013-10-25 2017-05-31 Denso Corporation Thermoelectric conversion device having thermoelectric conversion element connected thereto via wiring pattern, and method for manufacturing thermoelectric conversion device having thermoelectric conversion element connected thereto via wiring pattern
CN107078204A (en) * 2014-09-30 2017-08-18 株式会社电装 The manufacture method of thermoelectric conversion device
WO2017204275A1 (en) * 2016-05-27 2017-11-30 株式会社デンソー Thermoelectric conversion device and manufacturing method for same
JP2018060971A (en) * 2016-10-07 2018-04-12 株式会社デンソー Method of manufacturing thermoelectric conversion apparatus
JP2019525454A (en) * 2016-06-23 2019-09-05 スリーエム イノベイティブ プロパティズ カンパニー Thermoelectric tape
JP2019525455A (en) * 2016-06-23 2019-09-05 スリーエム イノベイティブ プロパティズ カンパニー Flexible thermoelectric module
KR102130387B1 (en) * 2019-01-30 2020-07-06 경희대학교 산학협력단 Electrical needling and apparatus of treatment including the same
JP7407718B2 (en) 2018-01-23 2024-01-04 エルジー イノテック カンパニー リミテッド thermoelectric module

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370464A (en) * 1986-09-11 1988-03-30 Seiko Instr & Electronics Ltd Manufacture of thermoelement for electronic watch
JPH01179376A (en) * 1988-01-05 1989-07-17 Agency Of Ind Science & Technol Thermoelectric module and manufacture thereof
JPH07111345A (en) * 1993-10-14 1995-04-25 Matsushita Electric Ind Co Ltd Thermoelectric power generating device
JPH11243169A (en) * 1998-02-24 1999-09-07 Nissan Motor Co Ltd Thermoelectric cooling module and manufacture thereof
JP2001060727A (en) * 1999-08-20 2001-03-06 Sanyo Electric Co Ltd Method for manufacturing thermoelectric element
JP2001060728A (en) * 1999-08-20 2001-03-06 Sanyo Electric Co Ltd Method for manufacturing thermoelectric element
JP2002353521A (en) * 2001-05-25 2002-12-06 Atsushi Sugihara Plastic or glass thermoelectric power generating module, and manufacturing method therefor
JP2002353523A (en) * 2001-03-22 2002-12-06 Ricoh Co Ltd Thermoelectric conversion material, element thereof and manufacturing method therefor
JP2002359381A (en) * 2001-05-31 2002-12-13 Canon Inc Photoelectromotive force element and its manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370464A (en) * 1986-09-11 1988-03-30 Seiko Instr & Electronics Ltd Manufacture of thermoelement for electronic watch
JPH01179376A (en) * 1988-01-05 1989-07-17 Agency Of Ind Science & Technol Thermoelectric module and manufacture thereof
JPH07111345A (en) * 1993-10-14 1995-04-25 Matsushita Electric Ind Co Ltd Thermoelectric power generating device
JPH11243169A (en) * 1998-02-24 1999-09-07 Nissan Motor Co Ltd Thermoelectric cooling module and manufacture thereof
JP2001060727A (en) * 1999-08-20 2001-03-06 Sanyo Electric Co Ltd Method for manufacturing thermoelectric element
JP2001060728A (en) * 1999-08-20 2001-03-06 Sanyo Electric Co Ltd Method for manufacturing thermoelectric element
JP2002353523A (en) * 2001-03-22 2002-12-06 Ricoh Co Ltd Thermoelectric conversion material, element thereof and manufacturing method therefor
JP2002353521A (en) * 2001-05-25 2002-12-06 Atsushi Sugihara Plastic or glass thermoelectric power generating module, and manufacturing method therefor
JP2002359381A (en) * 2001-05-31 2002-12-13 Canon Inc Photoelectromotive force element and its manufacturing method

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147323A (en) * 2006-12-08 2008-06-26 Murata Mfg Co Ltd Thermoelectric conversion module and manufacturing method thereof
KR100889946B1 (en) * 2007-04-17 2009-03-20 한국기계연구원 Manufacturing method of thermoelectric module
JP2008270410A (en) * 2007-04-18 2008-11-06 Ishikawa Pref Gov Thermoelectric transducer, thermoelectric transducing module, and method for manufacturing the module
JP4668233B2 (en) * 2007-04-18 2011-04-13 石川県 Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion module
JP2009043783A (en) * 2007-08-06 2009-02-26 Denso Corp Multilayer thermoelectric conversion element, and manufacturing method thereof
JP2009105324A (en) * 2007-10-25 2009-05-14 Ritsumeikan Manufacturing method of electronic device, and electronic device
WO2010007729A1 (en) * 2008-07-15 2010-01-21 パナソニック株式会社 Method of manufacturing a thermoelectric device
JP2010135620A (en) * 2008-12-05 2010-06-17 Sumitomo Metal Mining Co Ltd Thermoelectric conversion module, and generator using the same
US9871181B2 (en) 2012-05-30 2018-01-16 Denso Corporation Production method of thermoelectric converter, production method of electronic device equipped with thermoelectric converter, and thermoelectric converter
US9680079B2 (en) 2012-05-30 2017-06-13 Denso Corporation Production method of thermoelectric converter, production method of electronic device equipped with thermoelectric converter, and thermoelectric converter
JP2014007376A (en) * 2012-05-30 2014-01-16 Denso Corp Thermoelectric conversion device
JP2014007409A (en) * 2012-05-30 2014-01-16 Denso Corp Method for manufacturing thermoelectric conversion device
WO2013179840A1 (en) * 2012-05-30 2013-12-05 株式会社デンソー Thermoelectric converter manufacturing method, manufacturing method of electronic device provided with thermoelectric converter, and thermoelectric converter
CN106876570A (en) * 2012-05-30 2017-06-20 株式会社电装 The manufacture method of thermoelectric conversion arrangement, possess thermoelectric conversion arrangement electronic installation manufacture method, thermoelectric conversion arrangement
JP2014007408A (en) * 2012-05-30 2014-01-16 Denso Corp Method for manufacturing thermoelectric conversion device and method for manufacturing electronic component having the same
KR20150002865A (en) * 2012-05-30 2015-01-07 가부시키가이샤 덴소 Thermoelectric converter manufacturing method, manufacturing method of electronic device provided with thermoelectric converter, and thermoelectric converter
JP2017085179A (en) * 2012-05-30 2017-05-18 株式会社デンソー Method for manufacturing thermoelectric converter, and thermoelectric converter
CN104335374A (en) * 2012-05-30 2015-02-04 株式会社电装 Thermoelectric converter manufacturing method, manufacturing method of electronic device provided with thermoelectric converter, and thermoelectric converter
KR101716559B1 (en) 2012-05-30 2017-03-14 가부시키가이샤 덴소 Thermoelectric converter manufacturing method, manufacturing method of electronic device provided with thermoelectric converter, and thermoelectric converter
JP2014033114A (en) * 2012-08-03 2014-02-20 Fujitsu Ltd Thermoelectric conversion device and method for manufacturing the same
JP2014042413A (en) * 2012-08-23 2014-03-06 Dainippon Printing Co Ltd Temperature difference power generation unit
TWI559582B (en) * 2013-01-24 2016-11-21 Denso Corp Method for manufacturing thermoelectric conversion device, manufacturing method of electronic device with thermoelectric conversion device
CN104956506A (en) * 2013-01-24 2015-09-30 株式会社电装 Method for manufacturing thermoelectric converter
EP2966699A4 (en) * 2013-03-05 2017-02-01 Denso Corporation Thermoelectric converter and method for manufacturing same
CN105308423A (en) * 2013-06-04 2016-02-03 株式会社电装 Vibration detector
JP2015014585A (en) * 2013-06-04 2015-01-22 株式会社デンソー Oscillation detector
WO2014196327A1 (en) * 2013-06-04 2014-12-11 株式会社デンソー Vibration detector
EP3062358A4 (en) * 2013-10-25 2017-05-31 Denso Corporation Thermoelectric conversion device having thermoelectric conversion element connected thereto via wiring pattern, and method for manufacturing thermoelectric conversion device having thermoelectric conversion element connected thereto via wiring pattern
CN107078204A (en) * 2014-09-30 2017-08-18 株式会社电装 The manufacture method of thermoelectric conversion device
JP2017212389A (en) * 2016-05-27 2017-11-30 株式会社デンソー Thermoelectric conversion device and manufacturing method
WO2017204275A1 (en) * 2016-05-27 2017-11-30 株式会社デンソー Thermoelectric conversion device and manufacturing method for same
CN109196670A (en) * 2016-05-27 2019-01-11 株式会社电装 Thermoelectric conversion device and its manufacturing method
CN109196670B (en) * 2016-05-27 2022-11-22 株式会社电装 Thermoelectric conversion device and method for manufacturing same
JP2019525454A (en) * 2016-06-23 2019-09-05 スリーエム イノベイティブ プロパティズ カンパニー Thermoelectric tape
JP2019525455A (en) * 2016-06-23 2019-09-05 スリーエム イノベイティブ プロパティズ カンパニー Flexible thermoelectric module
JP2018060971A (en) * 2016-10-07 2018-04-12 株式会社デンソー Method of manufacturing thermoelectric conversion apparatus
WO2018066271A1 (en) * 2016-10-07 2018-04-12 株式会社デンソー Method for manufacturing thermoelectric conversion device
CN109155355A (en) * 2016-10-07 2019-01-04 株式会社电装 The manufacturing method of thermoelectric conversion device
CN109155355B (en) * 2016-10-07 2022-09-02 株式会社电装 Method for manufacturing thermoelectric conversion device
JP7407718B2 (en) 2018-01-23 2024-01-04 エルジー イノテック カンパニー リミテッド thermoelectric module
KR102130387B1 (en) * 2019-01-30 2020-07-06 경희대학교 산학협력단 Electrical needling and apparatus of treatment including the same

Similar Documents

Publication Publication Date Title
JP2005217353A (en) Thermoelectric semiconductor element, thermoelectric transformation module, and method of manufacturing the same
JP5070270B2 (en) Printed circuit board with built-in electronic element and manufacturing method thereof
US7964955B2 (en) Electronic device package and electronic equipment
JPH1056099A (en) Multilayer circuit board and manufacture thereof
JP2007110117A (en) Wafer level chip scale package of image sensor, and method of manufacturing same
KR20120090594A (en) Method of fabricating polymer electrode and polymer actuator employing the polymer electrode
JP2013074291A (en) Thermoelectric module and method for manufacturing the same
CN110085127B (en) Flexible display mother board and flexible display screen manufacturing method
JPWO2009041159A1 (en) Device mounting substrate and manufacturing method thereof, circuit device and manufacturing method thereof, portable device
US7571993B2 (en) Ink-jet head
JP2004103811A (en) Multiple arrangement wiring board
JP2011166079A (en) Method of manufacturing thermoelectric conversion element
JP2000022224A (en) Manufacture of thermoelectric element and manufacture thereof
CN107211538A (en) The manufacture method and distributing board of distributing board
JP6471241B2 (en) Thermoelectric module
KR20100070029A (en) Thermoelectric element arranging plate and method of manufacturing thermoelectric module using the same
JP3350299B2 (en) Manufacturing method of thermoelectric converter
JP7055113B2 (en) Thermoelectric module and its manufacturing method
JP2005045228A (en) Circuit board with built-in electronic component and its manufacturing method
JP2002270725A (en) Semiconductor device and its manufacturing method
JP2003273410A (en) Thermoelement and method of manufacturing the same
JP2006114622A (en) Thermoelectric conversion module
JP2001257389A (en) Producing method for thermoelectric element
JP2004296960A (en) Thermoelectric element and its manufacturing method
JP2002270726A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100702