JP2005216679A - Separator for fuel cell and its manufacturing method - Google Patents

Separator for fuel cell and its manufacturing method Download PDF

Info

Publication number
JP2005216679A
JP2005216679A JP2004022022A JP2004022022A JP2005216679A JP 2005216679 A JP2005216679 A JP 2005216679A JP 2004022022 A JP2004022022 A JP 2004022022A JP 2004022022 A JP2004022022 A JP 2004022022A JP 2005216679 A JP2005216679 A JP 2005216679A
Authority
JP
Japan
Prior art keywords
fuel cell
molding material
resin
cell separator
conductive filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004022022A
Other languages
Japanese (ja)
Inventor
Takashi Nogami
隆 野上
Nobuhiro Shimane
伸浩 島根
Hiroshi Hasebe
浩 長谷部
Toshihide Sakuta
俊秀 作田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2004022022A priority Critical patent/JP2005216679A/en
Publication of JP2005216679A publication Critical patent/JP2005216679A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator for fuel cell of which conductivity in the thickness direction can be adjusted within an appropriate range with keeping its mechanical properties and a manufacturing method of the same. <P>SOLUTION: A molding material 1 is prepared with a resin 2 and many conductive fillers 3 most of which are intentionally oriented so that their XY faces 4 are approximately perpendicular to the direction of array of a projected and recessed part 12. Since the number of contact between conductive fillers 3 in the resin is reduced by the arrangement that the XY faces 4 almost all conductive fillers 3 are approximately perpendicular to the direction array of a projected and recessed part 12, the conductivity in the thickness direction or volume resistivity can be increased or decreased without increasing charging amount of graphite, enlarging its size nor changing its aspect ratio. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、燃料電池を構成する固体高分子型の燃料電池用セパレータ及びその製造方法に関するものである。   The present invention relates to a polymer electrolyte fuel cell separator constituting a fuel cell and a method for producing the same.

従来の燃料電池用セパレータは、図示しないが、所定の混合材料により板体にプレス成形あるいは射出成形され、表裏両面に、流路を形成する複数の凹凸部が交互に配列されており、複数枚が積層されることにより燃料電池を形成する(特許文献1、2参照)。所定の混合材料は、例えばフェノール樹脂と黒鉛とが混合されることにより調製される。   Although not shown, a conventional fuel cell separator is press-molded or injection-molded into a plate with a predetermined mixed material, and a plurality of concave and convex portions forming flow paths are alternately arranged on both the front and back surfaces. Are stacked to form a fuel cell (see Patent Documents 1 and 2). The predetermined mixed material is prepared, for example, by mixing a phenol resin and graphite.

ところで、燃料電池用セパレータは、一般的に厚さ方向(層方向ともいう)と面方向の導電性が大きく異なる値(例えば、5倍以上の値)になり、厚さ方向の導電性を十分に確保することができない傾向がある。係る点に鑑み、従来においては、混合材料の黒鉛の充填量を増加したり、黒鉛を大きくしたり、あるいは黒鉛のアスペクト比(aspect ratio)を変更等する方法が採用されている(特許文献3、4参照)。
特開平10−334927号公報 特開2003−282086号公報 特開2002−100378号公報 特開2001−143719号公報
By the way, the separator for a fuel cell generally has a value (for example, a value of 5 times or more) in which the conductivity in the thickness direction (also referred to as the layer direction) and the surface direction are greatly different, and the conductivity in the thickness direction is sufficient. There is a tendency that cannot be secured. In view of this point, conventionally, a method of increasing the graphite filling amount of the mixed material, increasing the graphite, or changing the aspect ratio of the graphite has been employed (Patent Document 3). 4).
JP-A-10-334927 JP 2003-282086 A Japanese Patent Laid-Open No. 2002-100308 JP 2001-143719 A

従来の燃料電池用セパレータは、以上のように構成され、厚さ方向の導電性を確保するため、黒鉛の充填量を増加したり、黒鉛を大きくしたり、黒鉛のアスペクト比を変更するようにしている。
しかしながら、係る方法を採用する場合には、厚さ方向の導電性をある程度確保することができるものの、曲げ強度が低下したり、割れる際の歪み量が小さくなる等、機械的特性が低下するという大きな問題が新たに生じることとなる。
Conventional fuel cell separators are configured as described above, and in order to ensure conductivity in the thickness direction, the graphite filling amount is increased, the graphite is increased, and the aspect ratio of the graphite is changed. ing.
However, when such a method is adopted, although the conductivity in the thickness direction can be ensured to some extent, the mechanical properties are deteriorated, such as the bending strength is reduced or the strain amount when cracking is reduced. A big problem will arise.

本発明は、上記に鑑みなされたもので、厚さ方向の導電性を機械的特性を維持しつつ適切な範囲に調整することのできる燃料電池用セパレータ及びその製造方法を提供することを目的としている。   The present invention has been made in view of the above, and it is an object of the present invention to provide a fuel cell separator capable of adjusting the electrical conductivity in the thickness direction to an appropriate range while maintaining mechanical characteristics, and a method for manufacturing the same. Yes.

本発明においては、上記課題を解決するため、成形材料により成形され、表裏面の少なくともいずれか一方に、凹凸部を並べ備えたものであって、
成形材料を、少なくとも樹脂と複数の導電フィラーとから調製し、複数の導電フィラーのうち、少なくとも一部の導電フィラーを凹凸部の配列方向と交わる方向に配向したことを特徴としている。
なお、成形材料の樹脂を硬化性樹脂とするとともに、導電フィラーを黒鉛としてそのXY面を凹凸部の配列方向と交わる方向に配向することが好ましい。
In the present invention, in order to solve the above-mentioned problem, it is molded from a molding material, and is provided with an uneven portion on at least one of the front and back surfaces,
The molding material is prepared from at least a resin and a plurality of conductive fillers, and at least a part of the conductive fillers of the plurality of conductive fillers is oriented in a direction crossing the arrangement direction of the concavo-convex portions.
In addition, while making resin of a molding material into curable resin, it is preferable to orientate the XY surface in the direction which cross | intersects the arrangement direction of an uneven | corrugated | grooved part by making a conductive filler graphite.

また、本発明においては、上記課題を解決するため、請求項1又は2記載の燃料電池用セパレータの製造方法であって、
成形材料を用いて中間体を圧縮成形するとともに、成形材料の少なくとも一部の導電フィラーを圧縮方向と交わる方向に配向する工程と、中間体を複数重ねてブロック体を形成する工程と、ブロック体をその導電フィラーの配向方向と交わる方向に切断して板体を形成し、この板体を成形してその表裏面の少なくともいずれか一方に凹凸部を並べて形成する工程とを含んでなることを特徴としている。
Moreover, in this invention, in order to solve the said subject, It is a manufacturing method of the separator for fuel cells of Claim 1 or 2, Comprising:
A step of compression-molding the intermediate body using the molding material, a step of orienting at least a part of the conductive filler of the molding material in a direction crossing the compression direction, a step of forming a block body by stacking a plurality of intermediate bodies, and a block body Cutting the substrate in a direction intersecting with the orientation direction of the conductive filler, forming a plate, forming the plate, and forming concavo-convex portions on at least one of the front and back surfaces. It is a feature.

また、本発明においては、上記課題を解決するため、請求項1又は2記載の燃料電池用セパレータの製造方法であって、
成形材料を用いて中間体を押出成形するとともに、成形材料の少なくとも一部の導電フィラーを押出方向に配向する工程と、中間体を複数重ねてブロック体を形成する工程と、ブロック体をその導電フィラーの配向方向と交わる方向に切断して板体を形成し、この板体を成形してその表裏面の少なくともいずれか一方に凹凸部を並べて形成する工程とを含んでなることを特徴としている。
Moreover, in this invention, in order to solve the said subject, It is a manufacturing method of the separator for fuel cells of Claim 1 or 2, Comprising:
Extruding the intermediate body using the molding material, orienting at least a part of the conductive filler in the molding material in the extrusion direction, forming a block body by stacking a plurality of intermediate bodies, Forming a plate by cutting in a direction crossing the orientation direction of the filler, forming the plate, and forming the uneven portions on at least one of the front and back surfaces. .

また、本発明においては、上記課題を解決するため、請求項1又は2記載の燃料電池用セパレータの製造方法であって、
金型に成形材料を充填するとともに、圧縮方向と交わる方向から加圧して中間体を成形する工程と、この中間体を成形してその表裏面の少なくともいずれか一方に凹凸部を並べて形成する工程とを含んでなることを特徴としている。
Moreover, in this invention, in order to solve the said subject, It is a manufacturing method of the separator for fuel cells of Claim 1 or 2, Comprising:
A step of filling a mold with a molding material and pressurizing from the direction crossing the compression direction to form an intermediate, and a step of forming the intermediate and forming uneven portions on at least one of the front and back surfaces It is characterized by comprising.

ここで、特許請求の範囲における成形材料は少なくとも樹脂と複数の導電フィラーとから配合されれば良く、この樹脂と複数の導電フィラーとは混練(kneading)されずに混合(blending)されることが好ましい。この成形材料には、フッ素樹脂、フッ素系化合物、カップリング剤、改質剤、充填剤等からなる他の材料が含有されても良い。   Here, the molding material in the claims may be blended at least from a resin and a plurality of conductive fillers, and the resin and the plurality of conductive fillers may be blended without being kneaded. preferable. This molding material may contain other materials including a fluororesin, a fluorine-based compound, a coupling agent, a modifier, a filler, and the like.

樹脂としては、熱可塑性樹脂、硬化性樹脂、天然・合成ゴムのいずれもが含まれ、導電フィラーを被覆するものでも、そうでなくても良い。導電フィラーは、XYZ表示法により表示可能な略片状に形成され、XYのアスペクト比が2〜100の範囲内であるのが好ましい。また、凹凸部は、燃料電池用セパレータの表面に配列されても良いし、裏面に配列されても良く、あるいは燃料電池用セパレータの表裏両面にそれぞれ配列されても良い。   The resin includes any of thermoplastic resins, curable resins, and natural / synthetic rubbers, and may or may not be coated with a conductive filler. The conductive filler is preferably formed in a substantially piece-like shape that can be displayed by the XYZ display method, and the XY aspect ratio is preferably in the range of 2 to 100. Further, the concavo-convex portions may be arranged on the surface of the fuel cell separator, may be arranged on the back surface, or may be arranged on both the front and back surfaces of the fuel cell separator.

複数の導電フィラーは、少なくともその一部が凹凸部の配列方向と交わる方向に指向すれば良く、全部あるいは大部分が指向するものでも良い。一部の導電フィラーは、凹凸部の配列方向と30°以上の角度で交わるよう配向(orientation)されることが好ましい。さらに、本発明に係る燃料電池用セパレータは、平面視で長方形、正方形、多角形等に成形でき、部分的に薄くても良いし、厚くても構わない。   The plurality of conductive fillers only need to be directed in a direction in which at least a part thereof intersects the arrangement direction of the concavo-convex portions, or may be directed to all or most of the conductive fillers. Some of the conductive fillers are preferably oriented so as to intersect with the arrangement direction of the uneven portions at an angle of 30 ° or more. Furthermore, the fuel cell separator according to the present invention can be formed into a rectangular shape, a square shape, a polygonal shape or the like in plan view, and may be partially thin or thick.

本発明によれば、少なくとも一部の導電フィラーを凹凸部の配列方向に向けるのではなく、凹凸部の配列方向と交わる方向に向けるので、厚さ方向の導電路を形成する複数の導電フィラーの数、接触数、部位を減少させることができる。したがって、接触抵抗が少なくなり、厚さ方向の導電性が向上する。   According to the present invention, since at least a part of the conductive filler is not directed in the arrangement direction of the concavo-convex portions, but is directed in a direction intersecting with the arrangement direction of the concavo-convex portions, the plurality of conductive fillers forming the conductive path in the thickness direction The number, the number of contacts, and the site can be reduced. Therefore, the contact resistance is reduced and the conductivity in the thickness direction is improved.

本発明によれば、機械的な特性を維持しながら厚さ方向の導電性を適切な範囲に調整することができるという効果がある。   According to the present invention, there is an effect that the conductivity in the thickness direction can be adjusted to an appropriate range while maintaining the mechanical characteristics.

以下、図面を参照して本発明の好ましい実施の形態を説明すると、本実施形態における導電性の燃料電池用セパレータは、図1ないし図3に示すように、成形材料1により導電性の板体10に成形されるが、成形材料1を樹脂2と多数の導電フィラー3とにより調製し、この多数の導電フィラー3のうち、大部分の導電フィラー3のXY面4を凹凸部12の配列方向と略直交する方向に意識的に配向するようにしている。   Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. A conductive fuel cell separator in the present embodiment is formed of a conductive plate body by a molding material 1 as shown in FIGS. 10, the molding material 1 is prepared with a resin 2 and a large number of conductive fillers 3, and among the large number of conductive fillers 3, the XY plane 4 of the majority of the conductive fillers 3 is arranged in the direction in which the concavo-convex portions 12 are arranged. Is intentionally oriented in a direction substantially perpendicular to the direction.

成形材料1は、少なくとも樹脂2と多数の導電フィラー3とから調製され、これらがミキサー等により混合して使用される。成形材料1には、その特性を喪失しない範囲において、炭酸カルシウム、タルク、カオリン、珪藻土、シリカ、ベントナイト、ゼオライト、マイカ、水酸化アルミニウム、酸化チタン、活性炭、木炭、ガラス繊維、アラミド繊維等を適宜添加しても良い。   The molding material 1 is prepared from at least a resin 2 and a large number of conductive fillers 3, and these are used by mixing with a mixer or the like. As the molding material 1, calcium carbonate, talc, kaolin, diatomaceous earth, silica, bentonite, zeolite, mica, aluminum hydroxide, titanium oxide, activated carbon, charcoal, glass fiber, aramid fiber, and the like are appropriately used as long as the characteristics are not lost. It may be added.

樹脂2と多数の導電フィラー3の配合は、樹脂100質量部に対して導電フィラー100〜2,000質量部、好ましくは樹脂100質量部に対して導電フィラー300〜1,500質量部、より好ましくは樹脂100質量部に対して導電フィラー500〜1,500質量部が良い。これは、樹脂100質量部に対して導電フィラー100質量部未満の場合には、燃料電池用セパレータの電気的特性に支障を来たすからである。逆に、導電フィラー2,000質量部を越える場合には、燃料電池用セパレータの気密性(ガス透過率)や機械的特性に難が生じるからである。   The blending of the resin 2 and the many conductive fillers 3 is 100 to 2,000 parts by weight of the conductive filler with respect to 100 parts by weight of the resin, preferably 300 to 1,500 parts by weight of the conductive filler with respect to 100 parts by weight of the resin. Is preferably 500 to 1,500 parts by mass of the conductive filler with respect to 100 parts by mass of the resin. This is because if the amount of the conductive filler is less than 100 parts by mass with respect to 100 parts by mass of the resin, the electrical characteristics of the fuel cell separator are hindered. On the contrary, when the amount exceeds 2,000 parts by mass of the conductive filler, it is difficult for the airtightness (gas permeability) and mechanical characteristics of the fuel cell separator.

樹脂2としては、例えばPPSやPPからなる熱可塑性樹脂、粉末のフェノール樹脂やエポキシ系樹脂からなる硬化性樹脂、EPDMやクロロプレン等からなる合成ゴムが選択的に用いられる。これらの中でも、水との接触角調整の容易化、耐水性、寸法安定性、機械的強度に優れる粉末のフェノール樹脂が好適であり、より好ましくは硬化反応が緩やかな粉末のフェノール・ホルムアルデヒド系樹脂が良い。   As the resin 2, for example, a thermoplastic resin made of PPS or PP, a curable resin made of powdered phenol resin or epoxy resin, or a synthetic rubber made of EPDM, chloroprene, or the like is selectively used. Among these, powder phenolic resin that is easy to adjust the contact angle with water, water resistance, dimensional stability, and mechanical strength is suitable, and more preferably a phenol / formaldehyde resin with a slow curing reaction. Is good.

樹脂2に使用されるフェノール樹脂は、メチロール基が1分子中に10個以下、望ましくは5個以下が良い。これは、メチロール基が1分子中に10個を越える場合には、硬化時に発生する水により、燃料電池用セパレータ中の空隙、フクレ等が発生しやすく、機械的特性や寸法精度に悪影響を及ぼすからである。   The phenol resin used for the resin 2 has 10 or less, preferably 5 or less methylol groups in one molecule. This is because when the number of methylol groups exceeds 10 in one molecule, the water generated during curing tends to cause voids and blisters in the fuel cell separator, which adversely affects mechanical properties and dimensional accuracy. Because.

樹脂2の粒子は、分散させる関係上、細かいほうが好ましい。具体的には、平均粒径1〜35μm、好ましくは3〜20μmの範囲にあるのが良い。また、樹脂2の平均分子量は、3,000〜20,000、好ましくは4,000〜15,000、より好ましくは5,000〜10,000の範囲が良い。これは、樹脂2の平均分子量が3,000未満の場合には、導電フィラー3の高充填化が困難になり、溶融温度の低下に伴い導電フィラー3の表面被覆が大きくなり、しかも、燃料電池用セパレータの電気的特性が低下するからである。   The particles of the resin 2 are preferably finer in view of dispersion. Specifically, the average particle size is 1 to 35 μm, preferably 3 to 20 μm. The average molecular weight of the resin 2 is in the range of 3,000 to 20,000, preferably 4,000 to 15,000, more preferably 5,000 to 10,000. This is because, when the average molecular weight of the resin 2 is less than 3,000, it is difficult to increase the filling of the conductive filler 3, the surface coating of the conductive filler 3 increases as the melting temperature decreases, and the fuel cell This is because the electrical characteristics of the separator for use deteriorate.

多数の導電フィラー3は、例えば黒鉛、金属繊維、カーボン繊維等からなり、その大部分が相互に点接触して厚さ方向に導電路を形成する。これらの中でも、水との接触角を容易に調整したり、相互に接触して抵抗値を低下させたり、機械的強度の低下を防止する観点から鱗片状の黒鉛を使用することが好ましい(図2、図3参照)。これは、例えば球状の黒鉛を使用すれば、黒鉛同士を接触させるために配合量を増やさなければならず、成形品である燃料電池用セパレータの物性が低下するからである。   A large number of conductive fillers 3 are made of, for example, graphite, metal fibers, carbon fibers, and the like, and most of them are in point contact with each other to form a conductive path in the thickness direction. Among these, it is preferable to use scaly graphite from the viewpoint of easily adjusting the contact angle with water, contacting each other to lower the resistance value, or preventing the mechanical strength from being lowered (see FIG. 2, see FIG. This is because, for example, if spherical graphite is used, the blending amount must be increased to bring the graphites into contact with each other, and the physical properties of the fuel cell separator, which is a molded product, are reduced.

導電フィラー3は、図3に示すように、XYZ表示法により表示可能な鱗片状に形成され、XYのアスペクト比が好ましくは2〜100、さらに好ましくは10〜50の範囲に設定されており、XYにより表示されるXY面4が凹凸部12の配列方向と略直交する方向に指向する。アスペクト比が係る範囲なのは、アスペクト比が2未満の場合には、十分な配向効果を得にくいからである。逆に、アスペクト比が100を越える場合には、樹脂2との十分な配合を得にくいからである。   As shown in FIG. 3, the conductive filler 3 is formed in a scale-like shape that can be displayed by the XYZ display method, and the aspect ratio of XY is preferably set in the range of 2 to 100, more preferably in the range of 10 to 50. The XY plane 4 displayed by XY is oriented in a direction substantially orthogonal to the arrangement direction of the concavo-convex portions 12. The reason for the aspect ratio is that when the aspect ratio is less than 2, it is difficult to obtain a sufficient alignment effect. Conversely, when the aspect ratio exceeds 100, it is difficult to obtain a sufficient blend with the resin 2.

導電フィラー3である鱗片状の黒鉛の大きさは、平均粒径5〜150μm、好ましくは10〜100μmの範囲が良い。これは、平均粒径5μm未満の場合、樹脂2との配合時に舞い上がり、作業環境が悪化したり、電気的特性が低下するという理由に基づく。逆に、平均粒径150μmを越える場合、燃料電池用セパレータの機械的特性が低下するという理由に基づく。   The scale-like graphite as the conductive filler 3 has an average particle size of 5 to 150 μm, preferably 10 to 100 μm. This is based on the reason that when the average particle size is less than 5 μm, it rises when blended with the resin 2 and the working environment is deteriorated or the electrical characteristics are deteriorated. Conversely, when the average particle size exceeds 150 μm, it is based on the reason that the mechanical characteristics of the fuel cell separator deteriorate.

鱗片状の黒鉛の嵩密度については、特に限定されるものではないが、0.1〜1.0g/cm3の範囲が好適である。これは、黒鉛の嵩密度が小さすぎる場合、燃料電池用セパレータのシール特性が低下するからである。逆に、黒鉛の嵩密度が大きすぎる場合、燃料電池用セパレータの機械的強度や導電性が低下するからである。 Although it does not specifically limit about the bulk density of scale-like graphite, The range of 0.1-1.0 g / cm < 3 > is suitable. This is because when the bulk density of graphite is too small, the sealing characteristics of the fuel cell separator deteriorate. Conversely, when the bulk density of graphite is too large, the mechanical strength and conductivity of the fuel cell separator are reduced.

板体10は、図1に示すように、その露出面である表裏両面に、ガスや冷却水の流路である複数の凹凸部12がそれぞれ配列され、1.9g/cm3以上の密度(比重)に設定されるとともに、表裏両面の水との接触角が80°〜120°の範囲に調整されており、複数枚が電解質膜、燃料極、空気極等を介し重ねて積層されることにより燃料電池を形成する。 As shown in FIG. 1, the plate body 10 has a plurality of concave and convex portions 12 as gas and cooling water flow paths arranged on both front and back surfaces, which are exposed surfaces, and has a density (1.9 g / cm 3 or more). Specific gravity), and the contact angle with water on both the front and back surfaces is adjusted to a range of 80 ° to 120 °, and a plurality of layers are stacked with the electrolyte membrane, fuel electrode, air electrode, etc. To form a fuel cell.

板体10は、図1に示すように、その大部分を占有するリブ領域11と、このリブ領域11を囲んで作業時の把持部となる平坦領域15とを備えた平面略長方形又は正方形に成形される。リブ領域11の両面には、図1の奥方向に伸びる複数の凹凸部12がそれぞれ交互に配列され、この複数の凹凸部12がリブ領域11の表面と裏面とに同一ピッチ又は異なるピッチで並設される。凹凸部12の凹部13は、水素ガス、酸素ガス、冷却水を流通させる流通孔(図示せず)が穿孔され、隣接する一対の凸部14に区画されて溝を形成する。   As shown in FIG. 1, the plate body 10 has a substantially rectangular or square shape including a rib area 11 that occupies most of the plate body 10 and a flat area 15 that surrounds the rib area 11 and serves as a grip portion during operation. Molded. A plurality of uneven portions 12 extending in the depth direction of FIG. 1 are alternately arranged on both surfaces of the rib region 11, and the plurality of uneven portions 12 are arranged on the front surface and the back surface of the rib region 11 at the same pitch or different pitches. Established. The concave portion 13 of the concave and convex portion 12 is formed with a through hole (not shown) through which hydrogen gas, oxygen gas, and cooling water are circulated, and is partitioned into a pair of adjacent convex portions 14 to form a groove.

平坦領域15は、基本的にはガスや水が漏れないよう平坦に形成され、凹部13の流通孔と連通する複数の連通孔16が厚さ方向に穿孔されており、各連通孔16が他の板体10の連通孔16に連通して長孔を形成するとともに、この長孔が水素ガス、酸素ガス、冷却水を流通させる。平坦領域15の両側部や四隅部には、取り付け固定用の貫通孔(図示せず)が適宜穿孔され、この貫通孔に図示しないボルトが挿入される。   The flat region 15 is basically formed flat so that gas and water do not leak, and a plurality of communication holes 16 communicating with the flow holes of the recess 13 are formed in the thickness direction. The plate body 10 communicates with the communication hole 16 to form a long hole, and this long hole circulates hydrogen gas, oxygen gas, and cooling water. On both sides and four corners of the flat region 15, through holes (not shown) for mounting and fixing are appropriately drilled, and bolts (not shown) are inserted into the through holes.

板体10、換言すれば、燃料電池用セパレータの密度は、1.9g/cm3以上、好ましくは1.95g/cm3以上に設定される。これは、密度が1.9g/cm3以上であれば、十分なガス不透過性や撥水効果を得ることができるからである。 The density of the plate body 10, in other words, the separator for the fuel cell is set to 1.9 g / cm 3 or more, preferably 1.95 g / cm 3 or more. This is because if the density is 1.9 g / cm 3 or more, sufficient gas impermeability and water repellent effect can be obtained.

さらに、板体10の水との接触角が80°〜120°の範囲なのは、水との接触角が80°未満の場合には、凹部13に水や水滴が介在し易く、安定した流路の確保が困難になるおそれがあるからである。逆に、水との接触角が120°未満の場合には、コストアップを招いたり、製造が困難になるおそれがあるという理由に基づく。   Further, the contact angle of the plate 10 with water is in the range of 80 ° to 120 °. When the contact angle with water is less than 80 °, water and water droplets are likely to intervene in the recess 13 and a stable flow path. This is because it may be difficult to ensure the above. On the contrary, when the contact angle with water is less than 120 °, it is based on the reason that the cost may increase or the production may become difficult.

上記において、燃料電池用セパレータを製造する場合には、先ず、少なくとも樹脂2と多数の導電フィラー3とを混練することなく混合して成形材料1を調製し、この成形材料1を予備成形用の所定の型に充填して中間体であるブロックを圧縮成形する。この際、フェノール樹脂からなる樹脂2が流動して導電フィラー3間の空隙を埋め、鱗片状の黒鉛からなる大部分の導電フィラー3が圧縮成形時の圧縮に伴い、圧縮方向と直交する方向、すなわち圧縮面と略平行に配向される。こうしてブロックを成形したら、他のブロックと積み重ねて加圧一体化し、ブロック体を形成する。   In the above, when a fuel cell separator is manufactured, first, at least the resin 2 and a large number of conductive fillers 3 are mixed without kneading to prepare a molding material 1, and this molding material 1 is used for preforming. A predetermined mold is filled and a block as an intermediate is compression molded. At this time, the resin 2 made of a phenol resin flows to fill the gaps between the conductive fillers 3, and most of the conductive fillers 3 made of scaly graphite are in a direction orthogonal to the compression direction along with compression during compression molding, That is, it is oriented substantially parallel to the compression surface. Once the block is formed in this way, it is stacked with other blocks and integrated with pressure to form a block body.

次いで、未硬化のブロック体をその導電フィラー3の配向方向と直交する方向にワイヤーソー等で切り出し、板体10を形成する。板体10を形成したら、板体10を本成形用の金型にセットして加熱プレス成形し、板体10の表裏両面に凹凸部12を配列して燃料電池用セパレータを製造することができる。   Next, the uncured block body is cut out with a wire saw or the like in a direction orthogonal to the orientation direction of the conductive filler 3 to form the plate body 10. After the plate body 10 is formed, the plate body 10 is set in a mold for main molding and subjected to heat press molding, and the uneven portions 12 are arranged on both the front and back surfaces of the plate body 10 to manufacture a fuel cell separator. .

上記構成によれば、大部分の導電フィラー3のXY面4を凹凸部12の配列方向(面方向)と略直交する方向に自然に向けるのではなく、意識的・強制的に配向して樹脂中における導電フィラー3の厚さ方向の接触回数を減少させるので、黒鉛の充填量を増加したり、黒鉛を大きくしたり、黒鉛のアスペクト比を変更せずとも、厚さ方向の導電性や体積抵抗率を高めたり、低くすることができる。したがって、厚さ方向の導電性や体積抵抗率を所定の範囲に調整することが容易になる。   According to the above configuration, the XY surface 4 of most of the conductive fillers 3 is not oriented naturally in the direction substantially perpendicular to the arrangement direction (surface direction) of the concavo-convex portions 12, but is consciously and forcibly oriented to resin. Since the number of contacts in the thickness direction of the conductive filler 3 is reduced, the conductivity and volume in the thickness direction can be increased without increasing the graphite filling amount, increasing the graphite size, or changing the aspect ratio of the graphite. The resistivity can be increased or decreased. Therefore, it becomes easy to adjust the electrical conductivity and volume resistivity in the thickness direction within a predetermined range.

また、厚さ方向における導電性の向上や体積抵抗率の低下が容易に実現できるので、これを前提に樹脂2と多数の導電フィラー3の配合を実用性を損なわないよう適宜変更すれば、導電性確保の他、曲げ強度や割れる際の歪み量の維持向上を図ることができる。すなわち、導電性と強度とを両立させることが可能になる。   In addition, since it is possible to easily improve the conductivity in the thickness direction and decrease the volume resistivity, the conductivity can be improved by appropriately changing the composition of the resin 2 and the many conductive fillers 3 so as not to impair the practicality. In addition to securing the properties, it is possible to maintain and improve the bending strength and the amount of strain when cracking. That is, it is possible to achieve both conductivity and strength.

なお、燃料電池用セパレータの製造は、上記製造方法に何ら限定されるものではない。例えば、中間体を圧縮成形ではなく、押出成形等するようにしても良い。この場合には、少なくとも樹脂2と多数の導電フィラー3とから成形材料1を調製し、この成形材料1をスクリュー押出機やプランジャー押出機等の押出機に投入して中間体であるブロックを押出成形する。この際、鱗片状の黒鉛からなる大部分の導電フィラー3が押出方向に配向される。こうしてブロックを成形したら、他のブロックと積み重ねて加圧一体化し、ブロック体を形成する。   The production of the fuel cell separator is not limited to the above production method. For example, the intermediate may be extrusion molded instead of compression molded. In this case, a molding material 1 is prepared from at least the resin 2 and a large number of conductive fillers 3, and the molding material 1 is put into an extruder such as a screw extruder or a plunger extruder to form a block which is an intermediate. Extrude. At this time, most of the conductive filler 3 made of scale-like graphite is oriented in the extrusion direction. Once the block is formed in this way, it is stacked with other blocks and integrated with pressure to form a block body.

次いで、未硬化のブロック体をその導電フィラー3の配向方向と直交する方向にワイヤーソー等で切り出し、板体10を形成する。板体10を形成したら、板体10を本成形用の金型にセットして加熱プレス成形し、板体10の表裏両面に凹凸部12を配列して燃料電池用セパレータを安価、かつ大量に製造することもできる。   Next, the uncured block body is cut out with a wire saw or the like in a direction orthogonal to the orientation direction of the conductive filler 3 to form the plate body 10. After the plate body 10 is formed, the plate body 10 is set in a mold for main molding and subjected to heat press molding, and uneven portions 12 are arranged on both the front and back surfaces of the plate body 10 so that a fuel cell separator is inexpensive and a large amount. It can also be manufactured.

また、上記製造方法以外にも、例えば成形材料1を広く大きな金型に充填するとともに、前後又は左右方向から加圧して中間体である板体10を形成し、この板体10を本成形用の金型にセットして加熱プレス成形し、板体10の表裏両面に凹凸部12を配列して燃料電池用セパレータを安価に製造することもできる。この場合、ブロックやブロック体の製造、切断作業を省略することができるので、製造の簡素化や迅速化が大いに期待できる。   In addition to the above manufacturing method, for example, the molding material 1 is filled in a large and large mold and pressed from the front and rear or the left and right directions to form a plate body 10 as an intermediate body. It is also possible to produce a fuel cell separator at low cost by setting it in a metal mold and hot press molding and arranging the uneven portions 12 on both the front and back surfaces of the plate body 10. In this case, manufacturing and cutting operations of blocks and block bodies can be omitted, so that simplification and speeding up of manufacturing can be greatly expected.

また、上記実施形態では多数の導電フィラー3のうち、大部分の導電フィラー3のXY面4を凹凸部12の配列方向と略直交する方向に配向したが、一部の導電フィラー3のXY面4を凹凸部12の配列方向と略直交する方向に配向し、残部の導電フィラー3のXY面4を凹凸部12の配列方向に配向することもできる。例えば図4に示すように、凹凸部12の凸部14を形成する導電フィラー3のXY面4のみを凹凸部12の配列方向と略直交する方向に配向することもできる。   In the above embodiment, the XY surface 4 of most of the conductive fillers 3 among the large number of conductive fillers 3 is oriented in a direction substantially orthogonal to the arrangement direction of the concavo-convex portions 12, but the XY surfaces of some of the conductive fillers 3. 4 may be oriented in a direction substantially orthogonal to the arrangement direction of the uneven portions 12, and the XY plane 4 of the remaining conductive filler 3 may be oriented in the arrangement direction of the uneven portions 12. For example, as shown in FIG. 4, only the XY plane 4 of the conductive filler 3 that forms the convex portions 14 of the concavo-convex portions 12 can be oriented in a direction substantially orthogonal to the arrangement direction of the concavo-convex portions 12.

以下、本発明に係る燃料電池用セパレータ及びその製造方法の実施例を比較例と共に説明する。
実施例1
先ず、黒鉛粒子50に対して粉状のフェノール樹脂10の質量比である成形材料を調製した。黒鉛粒子は、平均粒径が50μm、アスペクト比が20〜30である。また、フェノール樹脂は、特公昭62−30211号公報に記載されたフェノール・ホルムアルデヒド粉末からなり、平均粒径が30μm、溶融温度が100℃で16000Pa・s、120℃で2000Pa・sである。
Embodiments of a fuel cell separator and a method for producing the same according to the present invention will be described below together with comparative examples.
Example 1
First, a molding material having a mass ratio of the powdery phenol resin 10 to the graphite particles 50 was prepared. The graphite particles have an average particle size of 50 μm and an aspect ratio of 20-30. The phenol resin is made of a phenol / formaldehyde powder described in Japanese Examined Patent Publication No. Sho 62-30211, and has an average particle size of 30 μm, a melting temperature of 16000 Pa · s at 100 ° C., and 2000 Pa · s at 120 ° C.

次いで、調整した成形材料900gを型に充填し、120℃、100kg/cm2の条件下で中間体であるブロックを圧縮成形した。型は、150mm×150mm×50mmの大きさとした。成形の際、フェノール樹脂が流動して黒鉛粒子間の空隙を埋め、黒鉛粒子が圧縮成形時の圧縮に伴い、圧縮面と平行に配向された。こうしてブロックを成形したら、他の4個のブロックと積み重ねて加圧一体化し、150mm×150mm×100mmのブロック体を形成した。 Next, 900 g of the adjusted molding material was filled in a mold, and a block as an intermediate was compression molded under the conditions of 120 ° C. and 100 kg / cm 2 . The mold had a size of 150 mm × 150 mm × 50 mm. During molding, the phenol resin flowed to fill the gaps between the graphite particles, and the graphite particles were oriented in parallel with the compression surface as the compression was performed during compression molding. Once the block was formed in this way, it was stacked with the other four blocks and integrated with pressure to form a 150 mm × 150 mm × 100 mm block body.

次いで、未硬化のブロック体をその導電フィラーの配向方向と直交する方向にワイヤーソーでスライスし、厚さ2.1mmの板体を形成した。板体を形成したら、板体を本成形用の金型にセットして190℃、150kg/cm2の条件下において7分間加熱プレス成形し、板体の表裏両面に凹凸部を配列して燃料電池用セパレータを製造した。 Next, the uncured block body was sliced with a wire saw in a direction orthogonal to the orientation direction of the conductive filler to form a plate body having a thickness of 2.1 mm. Once the plate body is formed, the plate body is set in a mold for main molding and subjected to heat press molding at 190 ° C. and 150 kg / cm 2 for 7 minutes. A battery separator was produced.

実施例2
先ず、実施例1と同様の成形材料をスクリュー押出機に充填し、120℃の条件下で中間体であるブロックを押出成形した。ブロックは、幅150mm×厚さ20mmの大きさとした。成形の際、フェノール樹脂が流動して黒鉛粒子間の空隙を埋め、黒鉛粒子が成形方向に配向された。ブロックを成形したら、他の4個のブロックと積み重ねて加圧一体化し、150mm×150mm×100mmのブロック体を形成し、以後、実施例1と同様にして燃料電池用セパレータを製造した。
Example 2
First, the same molding material as in Example 1 was filled in a screw extruder, and an intermediate block was extruded under the condition of 120 ° C. The block was 150 mm wide and 20 mm thick. During molding, the phenol resin flowed to fill the gaps between the graphite particles, and the graphite particles were oriented in the molding direction. Once the block was formed, it was stacked with the other four blocks and integrated with pressure to form a 150 mm × 150 mm × 100 mm block body. Thereafter, a fuel cell separator was produced in the same manner as in Example 1.

実施例3
実施例1と同様の成形材料を150mm×300mm×2.2mmのキャビティを有する金型に90g充填し、120℃まで加温して2.2mmの側から100kg/cm2の条件で加圧するとともに、加圧方向と直交する二方向から加圧して板体を予備成形し、この板体を本成形してその表裏両面に凹凸部を配列し、燃料電池用セパレータを製造した。
Example 3
90 g of a mold material having a cavity of 150 mm × 300 mm × 2.2 mm is filled with the same molding material as in Example 1, heated to 120 ° C., and pressurized from the 2.2 mm side under the condition of 100 kg / cm 2. Then, a plate was preliminarily molded by pressing from two directions orthogonal to the pressurizing direction, this plate was subjected to main molding, and uneven portions were arranged on both the front and back surfaces to produce a fuel cell separator.

比較例
実施例1と同様の成形材料90gを150mm×150mm×12mmの型に充填し、120℃、100kg/cm2の条件下で加圧して厚さ2.1mmの中間体を形成した。以後、実施例1と同様にして燃料電池用セパレータを製造した。
Comparative Example 90 g of the same molding material as in Example 1 was filled in a 150 mm × 150 mm × 12 mm mold and pressed under the conditions of 120 ° C. and 100 kg / cm 2 to form an intermediate body having a thickness of 2.1 mm. Thereafter, a fuel cell separator was produced in the same manner as in Example 1.

燃料電池用セパレータの評価
実施例、比較例で燃料電池用セパレータをそれぞれ製造したら、各燃料電池用セパレータの面方向の導電性を、JIS−K7194に準拠したプローブ付きの抵抗率計〔株式会社ダイアインスルメンツ製ロレスタGP、MCP−T600型,プローブは直列4探針(ASP)〕により測定し、表1にまとめた。
Evaluation of Fuel Cell Separator After manufacturing fuel cell separators in Examples and Comparative Examples, the conductivity in the surface direction of each fuel cell separator was measured with a resistivity meter with a probe in accordance with JIS-K7194 [Dia Corporation. Instruments Loresta GP, MCP-T600 type, probe measured in series with 4 probes (ASP)] and summarized in Table 1.

厚さ方向の導電性については、金メッキした銅版間に試料を挟み、10kg/cm2の条件で加圧して測定した。この際、金メッキした銅版と試料の接触抵抗、及び測定器に対する引き出し線の抵抗をキャンセルするため、試料2枚の測定値から試料1枚の測定値を差し引き、導電性を評価した。
なお、黒鉛粒子とフェノール樹脂の比率を9:1、14:1とした場合についても、同様の工程で試料を作製して評価した。
The conductivity in the thickness direction was measured by sandwiching a sample between gold-plated copper plates and applying pressure under the condition of 10 kg / cm 2 . At this time, in order to cancel the contact resistance between the gold-plated copper plate and the sample and the resistance of the lead wire to the measuring instrument, the measured value of one sample was subtracted from the measured value of two samples, and the conductivity was evaluated.
Even when the ratio between the graphite particles and the phenol resin was 9: 1 and 14: 1, a sample was prepared and evaluated in the same process.

Figure 2005216679
Figure 2005216679

実施例1、2、3の燃料電池用セパレータについては、比較例と異なり、厚さ方向の導電性や体積抵抗率を所定の範囲内に調整することができ、導電性と強度とを両立させることができた。   About the separator for fuel cells of Examples 1, 2, and 3, unlike the comparative example, the conductivity in the thickness direction and the volume resistivity can be adjusted within a predetermined range, and both conductivity and strength are achieved. I was able to.

本発明に係る燃料電池用セパレータの実施形態を示す説明図である。It is explanatory drawing which shows embodiment of the separator for fuel cells which concerns on this invention. 本発明に係る燃料電池用セパレータの実施形態における大部分の導電フィラーを凹凸部の配列方向と略直交する方向に配向した状態を模式的に示す断面説明図である。It is a section explanatory view showing typically the state where most conductive fillers in the embodiment of the separator for fuel cells concerning the present invention were orientated in the direction substantially orthogonal to the direction of arrangement of the uneven parts. 本発明に係る燃料電池用セパレータの実施形態における導電フィラーを模式的に示す斜視図である。It is a perspective view showing typically the conductive filler in the embodiment of the separator for fuel cells concerning the present invention. 本発明に係る燃料電池用セパレータの他の実施形態における一部の導電フィラーを凹凸部の配列方向と略直交する方向に配向した状態を部分的、模式的に示す断面説明図である。It is a section explanatory view showing partially and typically a state where a part of conductive filler in other embodiments of a separator for fuel cells concerning the present invention was orientated in a direction substantially perpendicular to an arrangement direction of an uneven part.

符号の説明Explanation of symbols

1 成形材料
2 樹脂
3 導電フィラー
4 XY面
10 板体(中間体)
12 凹凸部
13 凹部
14 凸部
DESCRIPTION OF SYMBOLS 1 Molding material 2 Resin 3 Conductive filler 4 XY surface 10 Plate body (intermediate body)
12 Concavity and convexity 13 Concavity 14 Convex portion

Claims (5)

成形材料により成形され、表裏面の少なくともいずれか一方に、凹凸部を並べ備えた燃料電池用セパレータであって、
成形材料を、少なくとも樹脂と複数の導電フィラーとから調製し、複数の導電フィラーのうち、少なくとも一部の導電フィラーを凹凸部の配列方向と交わる方向に配向したことを特徴とする燃料電池用セパレータ。
A fuel cell separator that is molded from a molding material and has uneven portions arranged on at least one of the front and back surfaces,
A fuel cell separator characterized in that a molding material is prepared from at least a resin and a plurality of conductive fillers, and at least a part of the plurality of conductive fillers is oriented in a direction crossing the arrangement direction of the concavo-convex portions. .
成形材料の樹脂を硬化性樹脂とするとともに、導電フィラーを黒鉛としてそのXY面を凹凸部の配列方向と交わる方向に配向した請求項1記載の燃料電池用セパレータ。   2. The fuel cell separator according to claim 1, wherein the resin of the molding material is a curable resin, and the conductive filler is graphite and the XY plane is oriented in a direction crossing the arrangement direction of the concavo-convex portions. 請求項1又は2記載の燃料電池用セパレータの製造方法であって、成形材料を用いて中間体を圧縮成形するとともに、成形材料の少なくとも一部の導電フィラーを圧縮方向と交わる方向に配向する工程と、中間体を複数重ねてブロック体を形成する工程と、ブロック体をその導電フィラーの配向方向と交わる方向に切断して板体を形成し、この板体を成形してその表裏面の少なくともいずれか一方に凹凸部を並べて形成する工程とを含んでなることを特徴とする燃料電池用セパレータの製造方法。   The method for producing a fuel cell separator according to claim 1 or 2, wherein the intermediate is compression-molded using a molding material, and at least a part of the conductive filler of the molding material is oriented in a direction crossing the compression direction. And a step of forming a block body by stacking a plurality of intermediate bodies, and cutting the block body in a direction intersecting the orientation direction of the conductive filler to form a plate body, and molding the plate body to form at least the front and back surfaces And a step of forming the concavo-convex portions side by side on either side. 請求項1又は2記載の燃料電池用セパレータの製造方法であって、成形材料を用いて中間体を押出成形するとともに、成形材料の少なくとも一部の導電フィラーを押出方向に配向する工程と、中間体を複数重ねてブロック体を形成する工程と、ブロック体をその導電フィラーの配向方向と交わる方向に切断して板体を形成し、この板体を成形してその表裏面の少なくともいずれか一方に凹凸部を並べて形成する工程とを含んでなることを特徴とする燃料電池用セパレータの製造方法。   A method for producing a fuel cell separator according to claim 1 or 2, wherein the intermediate body is extruded using a molding material, and at least a part of the conductive filler of the molding material is oriented in the extrusion direction, Forming a block body by stacking a plurality of bodies, cutting the block body in a direction intersecting the orientation direction of the conductive filler to form a plate body, molding the plate body, and at least one of the front and back surfaces And a step of forming the concavo-convex portions side by side, and a method for manufacturing a fuel cell separator. 請求項1又は2記載の燃料電池用セパレータの製造方法であって、金型に成形材料を充填するとともに、圧縮方向と交わる方向から加圧して中間体を成形する工程と、この中間体を成形してその表裏面の少なくともいずれか一方に凹凸部を並べて形成する工程とを含んでなることを特徴とする燃料電池用セパレータの製造方法。   A method for producing a fuel cell separator according to claim 1 or 2, wherein a molding material is filled with a molding material, and an intermediate body is molded by pressurizing from a direction crossing the compression direction, and the intermediate body is molded. And a step of forming concavo-convex portions on at least one of the front and back surfaces of the fuel cell separator.
JP2004022022A 2004-01-29 2004-01-29 Separator for fuel cell and its manufacturing method Pending JP2005216679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004022022A JP2005216679A (en) 2004-01-29 2004-01-29 Separator for fuel cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004022022A JP2005216679A (en) 2004-01-29 2004-01-29 Separator for fuel cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005216679A true JP2005216679A (en) 2005-08-11

Family

ID=34905487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004022022A Pending JP2005216679A (en) 2004-01-29 2004-01-29 Separator for fuel cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005216679A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066139A (en) * 2004-08-25 2006-03-09 Matsushita Electric Ind Co Ltd Fuel cell separator and fuel cell using it
KR20180096097A (en) * 2017-02-20 2018-08-29 (주)엘지하우시스 Composite materials separator and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066139A (en) * 2004-08-25 2006-03-09 Matsushita Electric Ind Co Ltd Fuel cell separator and fuel cell using it
JP4561239B2 (en) * 2004-08-25 2010-10-13 パナソニック株式会社 Fuel cell separator and fuel cell using the same
KR20180096097A (en) * 2017-02-20 2018-08-29 (주)엘지하우시스 Composite materials separator and method of manufacturing the same
KR102623897B1 (en) * 2017-02-20 2024-01-10 (주)엘엑스하우시스 Composite materials separator and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP3697223B2 (en) Fuel cell separator plate with adjusted fiber orientation and manufacturing method
EP1246284B1 (en) Fuel cell separator and method for manufacturing the same
EP1315223A1 (en) Conductive composition for solid polymer type fuel cell separator, solid polymer type fuel cell separator, solid polymer type fuel cell and solid polymer type fuel cell system using the separator
Song et al. Thermal conductivity enhancement of alumina/silicone rubber composites through constructing a thermally conductive 3D framework
Lee et al. Effects of hybrid carbon fillers of polymer composite bipolar plates on the performance of direct methanol fuel cells
JP3978429B2 (en) Conductive resin molding
EP3550650B1 (en) Method for producing separator for fuel cells
KR100988915B1 (en) Fuel cell separator and its manufacturing method
JP2006294407A (en) Manufacturing method of separator for fuel cell and separator for fuel cell
EP1521321A2 (en) Separator for fuel cell and process for producing the same
EP2190048B1 (en) Bipolar plate for fuel cell
Wang Conductive thermoplastic composite blends for flow field plates for use in polymer electrolyte membrane fuel cells (PEMFC)
JP2005216679A (en) Separator for fuel cell and its manufacturing method
JP4780257B2 (en) Fuel cell separator and manufacturing method thereof
JP2004315578A (en) Conductive resin composition, and separator for fuel battery and method for producing the same
JP5424637B2 (en) Manufacturing method of fuel cell separator
JP2005235699A (en) Separator for fuel cell
JP4733008B2 (en) Conductive resin molded body and method for producing the same
KR100485285B1 (en) The production procedure for separator of fuel cell
JP2005216678A (en) Separator for fuel cell
EP1463134B1 (en) Process for producing an isotropic separator for fuel cell
JPH10158443A (en) Stampable sheet excellent in conductivity and mechanical strength
WO2020058507A1 (en) Compositions for bipolar plates and methods for preparing same
JP2006059567A (en) Separator for fuel cell
JP6263078B2 (en) Fuel cell separator and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302