JP2005214586A - 排気ガス冷却用熱交換器 - Google Patents

排気ガス冷却用熱交換器 Download PDF

Info

Publication number
JP2005214586A
JP2005214586A JP2004025564A JP2004025564A JP2005214586A JP 2005214586 A JP2005214586 A JP 2005214586A JP 2004025564 A JP2004025564 A JP 2004025564A JP 2004025564 A JP2004025564 A JP 2004025564A JP 2005214586 A JP2005214586 A JP 2005214586A
Authority
JP
Japan
Prior art keywords
tube
exhaust gas
heat exchanger
cooling
bellows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004025564A
Other languages
English (en)
Inventor
Takayuki Hayashi
孝幸 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004025564A priority Critical patent/JP2005214586A/ja
Publication of JP2005214586A publication Critical patent/JP2005214586A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

【課題】 燃焼により発生する高温の排気ガスがチューブ内を流れる排気ガス冷却用熱交換器において、熱応力によるチューブ端部支持部の損傷を簡潔な構成にて防止する。
【解決手段】 冷却流体の通路10iを構成するケーシング内に、排気ガスが流れるチューブ10bを配置し、チューブ10bの長手方向両端部10gを支持するコアプレート10cとをケーシングに支持する。そして、チューブ10bのうち長手方向両端部10gの近傍部位に、チューブ10bの熱膨張による変位を吸収するベローズ部10nを一体に形成した。
【選択図】 図3

Description

本発明は、燃焼により発生する排気ガスと冷却流体との間で熱交換を行う排気ガス冷却用熱交換器において、排気ガスが流れるチューブの熱応力を低減する構造に関するもので、一般にEGRガスクーラと称される内燃機関用排気ガス冷却用熱交換器として好適なものである。
従来、チューブに発生する熱応力を低減する熱交換器は例えば、特許文献1にて提案されている。
この従来技術では、コアプレートのチューブ挿入穴部に蛇腹状の伸縮筒を一体形成し、この伸縮筒のうち、伸縮変位する側の端部の内周にチューブ端部を嵌合してろう付けする構成を提案している。また、この従来技術では、別の具体例として、コアプレートのチューブ挿入穴部に別体で形成された伸縮筒の一端部を接合し、この伸縮筒の他端部の内周にチューブ端部を嵌合してろう付けする構成を提案している。
これらの構成により、チューブ端部を蛇腹状の伸縮筒を介してコアプレートに支持することができ、チューブの変位に伴って伸縮筒が伸縮することにより、コアプレートとチューブとの間の熱応力を低減しようとするものである。
実開昭62−166484号公報
しかし、上記従来技術において、コアプレートのチューブ挿入穴部に蛇腹状の伸縮筒を一体形成する構成では、チューブ挿入穴部から一体に打ち出す筒形状の打ち出し長さが加工上、制約があるので、伸縮筒の山部を複数設けることは困難である。そのため、伸縮筒の山部は1山に設定せざるを得ない。これに加え、コアプレートの肉厚は、多数本のチューブ支持のための強度を確保するために、チューブよりも十分大きくしなければならない。
これのことから、コアプレートと一体の伸縮筒はどうしてもばね常数(単位:N/mm)の大きい構成になってしまう。その結果、チューブの熱膨張による熱応力を蛇腹状の伸縮筒にて十分吸収できず、チューブ端部と伸縮筒とのろう付け部に加わる熱応力によって、このろう付け部に割れ等の損傷を発生しやすい。
また、別体の伸縮筒を用いる構成では、伸縮筒単体としての加工工数の発生、別体の伸縮筒の使用に伴う接合箇所の増加等により熱交換器製造コストが増加するという不具合がある。
本発明は、上記点に鑑み、燃焼により発生する高温の排気ガスがチューブ内を流れる排気ガス冷却用熱交換器において、熱応力によるチューブ端部支持部の損傷を簡潔な構成にて防止することを目的とする。
上記目的を達成するため、請求項1に記載の発明では、燃焼により発生する排気ガスと冷却流体との間で熱交換を行う排気ガス冷却用熱交換器において、
前記冷却流体の通路(10i)を構成するケーシング(10a)と、
前記ケーシング(10a)内に配置され、前記排気ガスが流れるチューブ(10b)と、
前記ケーシング(10a)に固定され、かつ、前記チューブ(10b)の長手方向両端部(10g)を支持するコアプレート(10c、10d)とを備え、
前記チューブ(10b)のうち前記長手方向両端部(10g)の近傍部位に、前記チューブ(10b)の熱膨張による変位を吸収するベローズ部(10n)を一体に形成したことを特徴としている。
これによると、ベローズ部(10n)をチューブ(10b)の長手方向両端部(10g)近傍に一体に形成しているから、チューブ(10b)の長手方向寸法が長いこと、およびチューブ(10b)の肉厚がコアプレート(10c、10d)等の他の構成部品の肉厚よりかなり小さいことを有効利用して、ベローズ部(10n)を変形しやすい構成、換言すると、ばね常数の小さい構成とすることが容易である。
従って、チューブ(10b)の熱膨張による熱応力が発生しても、この熱応力をチューブ(10b)自身のベローズ部(10n)の変形によって良好に吸収できる。
また、ベローズ部(10n)をチューブ(10b)に一体形成しているから、熱交換器構成を簡素化できる。
請求項2に記載の発明では、請求項1に記載の排気ガス冷却用熱交換器において、チューブ(10b)は丸パイプにて形成され、ベローズ部(10n)は丸パイプの径外方側へ突出する複数の山部(10p)を有する断面波状の形状になっていることを特徴とする。
このように、ベローズ部(10n)を複数の山部(10p)を有する波形状に形成することにより、ベローズ部(10n)を一層、ばね常数の小さい構成とすることができ、熱応力の吸収効果を増大できる。
また、チューブ(10b)を丸パイプにて形成しているので、ベローズ部(10n)も円形の外周形状を有する形状にすることができ、ベローズ部(10n)の一体形成が容易である。
請求項3に記載の発明のように、請求項2に記載の排気ガス冷却用熱交換器において、山部(10p)を丸パイプの径外方側へ突出するように形成すれば、ベローズ部(10n)の形成によりチューブ内通路断面積が減少しないので、ベローズ部(10n)によるチューブ内流通抵抗の増大が発生しない。
請求項4に記載の発明では、請求項1ないし3のいずれか1つに記載の排気ガス冷却用複数の熱交換器において、チューブ(10b)のうち、長手方向両端部(10g)側に位置する両ベローズ部(10n)間の中間部位に丸パイプの径内方側へ突出する螺旋形状部(10q)を形成したことを特徴とする。
これによると、螺旋形状部(10q)によってチューブ(10b)内の排気ガスの流れを乱流化して、チューブ内壁面における排気側熱伝達率を向上させるとともに、排気ガス中の煤成分がチューブ(10b)内壁面に付着することを抑制できる。
このように、チューブ(10b)と一体化した簡潔な構成にて、螺旋形状部(10q)による熱交換性能の向上効果とベローズ部(10n)による熱応力吸収効果とを併せ奏することができる。
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
以下本発明の一実施形態を図に基づいて説明する。図1は、本実施形態による排気ガス冷却用熱交換器10を用いた内燃機関用EGR装置(排気再循環装置)の全体システム模式図である。
内燃機関11は車両走行用のディーゼル式内燃機関であって、排気再循環管12は内燃機関11の排気側11aから排出される排気ガスの一部を内燃機関11の吸気側11bに還流させるためのものである。EGRバルブ13は排気ガス再循環管12の排気ガス流れ途中に配設されて、内燃機関11の稼働状態に応じて再循環排気ガス量を調節する周知のものである。
排気ガス冷却用熱交換器10は、排気ガス再循環管12のうち、内燃機関11の排気側11aとEGRバルブ13との間に配設される。この排気ガス冷却用熱交換器10は排気ガスと内燃機関11の冷却水との間で熱交換を行って排気ガスを冷却する。このように、EGR用の排気ガスを冷却することにより、内燃機関11の排気側11aから外部へ排出される排気ガスの浄化効果(排気中の窒素酸化物の低減効果)を高めることができる。
次に、排気ガス冷却用熱交換器10の具体的な構造を図2、図3に基づいて述べる。図2は排気ガス冷却用熱交換器10の一部断面正面図であって、図2の天地方向は車両搭載状態での天地方向を示す。図3は図2の要部拡大断面図である。
排気ガス冷却用熱交換器10は、一般にシェルアンドチューブ方式と称される熱交換器構成になっており、水平方向に細長く延びる円筒状のケーシングをなすシェル10aを有している。このシェル10aの内部には、円筒軸方向(図2の左右方向)に延びるチューブ10bが多数本平行に配置されている。このチューブ10bは断面円形の丸パイプにより形成され、その内部に排気ガス通路を構成する。
シェル10aの円筒軸方向両端部にはそれぞれ、チューブ10bの長手方向端部を支持する円板状のコアプレート10c、10dが配置される。シェル10aの円筒軸方向の一端側(図2の左端側)に位置する一方のコアプレート10cの外側には排気ガスの入口タンク10eが配置され、接合される。シェル10aの円筒軸方向の他端側(図2の右端側)に位置する他方のコアプレート10dの外側には排気ガスの出口タンク10fが配置され、接合される。
従って、一方のコアプレート10cはシェル10aの円筒軸方向の一端部と入口タンク10eの端部との間に挟み込まれ、また、他方のコアプレート10dはシェル10aの円筒軸方向の他端部と出口タンク10fとの間に挟み込まれる。この状態にて、シェル10aとコアプレート10c、10dとタンク10e、10fは一体に接合される。
図2の断面図示部および図3に示すように、コアプレート10c、10dには多数本のチューブ10bの長手方向端部10gに対応して挿入穴10hが形成され、この挿入穴10h内にチューブ10bの長手方向端部10gを挿入してコアプレート10c、10dに一体に接合するようになっている。
シェル10aの内部において多数本のチューブ10b相互の空隙は冷却水通路10iを形成する。シェル10aの円筒軸方向の一端部(図2の左端部)の下側に冷却水入口パイプ10jを配置し接合している。そして、シェル10aの円筒軸方向の他端部(図2の右端部)の上側に冷却水出口パイプ10kを配置し接合している。
このように、シェル10aの下側に冷却水入口パイプ10jを配置し、シェル10aの上側に冷却水出口パイプ10kを配置することにより、シェル10a内部の冷却水通路10i中の空気を冷却水出口パイプ10k側へ容易に排出できる。
また、シェル10aの外周面において冷却水入口パイプ10jの上方部に冷却水バイパスパイプ10mを配置し接合している。この冷却水バイパスパイプ10mは、冷却水入口パイプ10jからの冷却水の一部を冷却水入口パイプ10jの上方部すなわち、冷却水バイパスパイプ10mに向かって直接流すためのものである。
なお、上記した各部材10a、10b、10c、10d、10j、10k、10mはいずれも耐食性に優れた金属、具体的にはステンレスで構成され、各部材間の接合はろう付けまたは溶接により行う。
次に、チューブ10bの具体的構成を図3により説明すると、丸パイプからなるチューブ10bの長手方向(シェル10aの円筒軸方向)の端部10gを直管部分で形成し、この端部10gを、コアプレート10cのチューブ挿入穴10hに挿入して接合する。ここで、チューブ挿入穴10hは各チューブ10bの長手方向端部10gに対応して形成された円形穴である。
そして、この端部10gの直管形状に隣接して熱応力吸収用のベローズ部10nをチューブ長手方向の所定範囲にわたって形成している。このベローズ部10nは、具体的にはチューブ10bを構成する丸パイプの外周面から径外方側へ突出する山部10pを複数個(図3では3個)形成した断面波状の形状になっている。
これに加え、チューブ10bの肉厚がシェル10aおよびコアプレート10c、10dの肉厚に比して十分小さい(例えば、1/4程度)ので、ベローズ部10nは、チューブ10bの熱膨張による熱応力により弾性変形しやすい構成、すなわち、ばね常数の小さい構成になっている。
一方、チューブ長手方向の大部分を占めるチューブ中央部分には、螺旋形状部10qが形成してある。この螺旋形状部10qはチューブ10bを構成する丸パイプの径内方側へ螺旋状(スパイラル状)に突出するものである。この径内方への螺旋状の突出形状により、チューブ10b内の排気ガスの流れを乱流化して、チューブ10b内壁面における排気側熱伝達率を向上させるとともに、排気ガス中の煤成分がチューブ10b内壁面に付着することを抑制する。
なお、図3は、チューブ10bのうち排気ガス流入側の端部(左側端部)のみ図示しているが、チューブ10bのうち排気ガス流出側の端部(右側端部)においても、ベローズ部10nが直管形状からなる端部10gと螺旋形状部10qとの間に全く同一構成にて形成されている。
次に、上記構成において本実施形態の作用効果を説明すると、内燃機関11の冷却水は冷却水入口パイプ10jからシェル10a内に流入し、冷却水の大部分はこのシェル10a内部の冷却水通路10iをチューブ10bの長手方向に沿って左側から右側へと流れる。その後に、冷却水は冷却水出口パイプ10kからシェル10a外部へ流出する。
一方、排気ガスは図1の排気再循環管12から入口タンク10e内に流入した後に、多数本のチューブ10bの一端側に分配され、各チューブ10b内を通過する。この間に排気ガスはシェル10a内部の冷却水通路10iの冷却水と熱交換して冷却される。この冷却後の排気ガスは出口タンク10f内部で集合され、再び、排気再循環管12に戻る。
なお、シェル10a内に流入した冷却水の一部は冷却水入口パイプ10jに対向配置された冷却水バイパスパイプ10mに直接向かって流れるバイパス流れを形成する。これにより、シェル10a内部の冷却水通路10iにおいて冷却水入口パイプ10jの上方部に冷却水のよどみ部が発生することを抑制できる。
ところで、排気再循環管12から入口タンク10e内に流入する排気ガスは500〜600℃程度にも及ぶ高温であるので、チューブ10bはこの排気ガスの高温により過熱され、熱膨張する。
これに対し、シェル10aは冷却水のみと接触しているので、チューブ10bに比較して大幅に低い温度になっている。これにより、シェル10aに比較してチューブ10bの熱膨張量がはるかに大きくなるので、チューブ10bの熱膨張による熱応力がチューブ10bの支持部、すなわち、チューブ10bの両端部10gとコアプレート10c、10dの挿入穴10hとの接合部に作用することになる。
しかし、チューブ10bにはベローズ部10nが形成してあるので、ベローズ部10nが弾性的に収縮変形することにより、チューブ10bの熱膨張による熱応力を良好に吸収できる。
この熱応力吸収作用をより具体的に説明すると、チューブ10bは図2から分かるように長手方向(シェル円筒軸方向)の長さを十分長く設定することができるので、ベローズ部10nの山部10pを複数形成することが容易である。しかも、チューブ10bの肉厚はコアプレート10c、10dの肉厚に比較して大幅に小さい(例えば、1/4程度)ので、ベローズ部10nをばね常数の小さい構成、すなわち、熱応力によって弾性的な収縮変形が容易な構成に設計できる。この結果、チューブ10bの熱膨張による熱応力をチューブ10bと一体のベローズ部10nによって良好に吸収できる。
(他の実施形態)
本発明は、上記の一実施形態に限定されることなく、種々変形可能である。例えば、図2に示す熱交換器構成をシェル円筒軸方向に沿って複数、例えば2個平行に配置するとともに、この平行配置された複数の熱交換器構成をねじ等の締結手段により一体に連結し、複数の熱交換器構成の排気ガス通路および冷却水通路に排気ガス、冷却水をそれぞれ平行に流すようにしてもよい。
また、螺旋形状部10qを形成しないチューブ10bに対しても本発明を同様に適用できることはもちろんである。
本発明による排気ガス冷却用熱交換器を適用する内燃機関用EGR装置の全体システム模式図である。 本発明の一実施形態による排気ガス冷却用熱交換器の一部断面正面図である。 図2の要部拡大断面図である。
符号の説明
10a…シェル(ケーシング)、10b…チューブ、10c、10d…コアプレート、
10n…ベローズ部、10p…山部、10q…螺旋形状部。

Claims (4)

  1. 燃焼により発生する排気ガスと冷却流体との間で熱交換を行う排気ガス冷却用熱交換器において、
    前記冷却流体の通路(10i)を構成するケーシング(10a)と、
    前記ケーシング(10a)内に配置され、前記排気ガスが流れるチューブ(10b)と、
    前記ケーシング(10a)に固定され、かつ、前記チューブ(10b)の長手方向両端部(10g)を支持するコアプレート(10c、10d)とを備え、
    前記チューブ(10b)のうち前記長手方向両端部(10g)の近傍部位に、前記チューブ(10b)の熱膨張による変位を吸収するベローズ部(10n)を一体に形成したことを特徴とする排気ガス冷却用熱交換器。
  2. 前記チューブ(10b)は丸パイプにて形成され、前記ベローズ部(10n)は複数の山部(10p)を有する断面波状の形状になっていることを特徴とする請求項1に記載の排気ガス冷却用熱交換器。
  3. 前記山部(10p)を前記丸パイプの径外方側へ突出するように形成したことを特徴とする請求項2に記載の排気ガス冷却用熱交換器。
  4. 前記チューブ(10b)のうち、前記長手方向両端部(10g)側に位置する前記両ベローズ部(10n)間の中間部位に前記丸パイプの径内方側へ突出する螺旋形状部(10q)を形成したことを特徴とする請求項1ないし3のいずれか1つに記載の排気ガス冷却用熱交換器。
JP2004025564A 2004-02-02 2004-02-02 排気ガス冷却用熱交換器 Withdrawn JP2005214586A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004025564A JP2005214586A (ja) 2004-02-02 2004-02-02 排気ガス冷却用熱交換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004025564A JP2005214586A (ja) 2004-02-02 2004-02-02 排気ガス冷却用熱交換器

Publications (1)

Publication Number Publication Date
JP2005214586A true JP2005214586A (ja) 2005-08-11

Family

ID=34907915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004025564A Withdrawn JP2005214586A (ja) 2004-02-02 2004-02-02 排気ガス冷却用熱交換器

Country Status (1)

Country Link
JP (1) JP2005214586A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249472A (ja) * 2009-04-20 2010-11-04 Panasonic Corp 熱交換器およびそれを用いたヒートポンプ給湯機
JP2010255856A (ja) * 2009-04-21 2010-11-11 Panasonic Corp 熱交換器およびそれを用いたヒートポンプ給湯機
JP2010255857A (ja) * 2009-04-21 2010-11-11 Panasonic Corp 熱交換器およびそれを用いたヒートポンプ給湯機
WO2014039538A1 (en) * 2012-09-06 2014-03-13 Senior Ip Gmbh Improved exhaust gas recirculation apparatus and method for forming same
US9863723B2 (en) 2011-08-25 2018-01-09 Silvio Giachetti Integrated pressure compensating heat exchanger and method
KR20180063930A (ko) * 2016-12-02 2018-06-14 주식회사 코렌스 변형 가능한 버링플레이트를 구비하는 이지알 쿨러

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249472A (ja) * 2009-04-20 2010-11-04 Panasonic Corp 熱交換器およびそれを用いたヒートポンプ給湯機
JP2010255856A (ja) * 2009-04-21 2010-11-11 Panasonic Corp 熱交換器およびそれを用いたヒートポンプ給湯機
JP2010255857A (ja) * 2009-04-21 2010-11-11 Panasonic Corp 熱交換器およびそれを用いたヒートポンプ給湯機
US9863723B2 (en) 2011-08-25 2018-01-09 Silvio Giachetti Integrated pressure compensating heat exchanger and method
WO2014039538A1 (en) * 2012-09-06 2014-03-13 Senior Ip Gmbh Improved exhaust gas recirculation apparatus and method for forming same
CN104755740A (zh) * 2012-09-06 2015-07-01 高级知识产权有限公司 改进的废气再循环装置和形成该装置的方法
US9140217B2 (en) 2012-09-06 2015-09-22 Senior Ip Gmbh Exhaust gas recirculation apparatus and method for forming same
JP2015532708A (ja) * 2012-09-06 2015-11-12 シニア アイピー ジーエムビーエイチ 改良型排気ガス再循環装置およびそれを形成するための方法
EP2893181A4 (en) * 2012-09-06 2016-04-20 Senior Ip Gmbh IMPROVED EXHAUST GAS RECYCLING DEVICE AND METHOD FOR THE PRODUCTION THEREOF
KR20180063930A (ko) * 2016-12-02 2018-06-14 주식회사 코렌스 변형 가능한 버링플레이트를 구비하는 이지알 쿨러
KR101931278B1 (ko) * 2016-12-02 2018-12-21 주식회사 코렌스 변형 가능한 버링플레이트를 구비하는 이지알 쿨러

Similar Documents

Publication Publication Date Title
JP3822279B2 (ja) Egrガス冷却装置
US8069905B2 (en) EGR gas cooling device
US9933216B2 (en) Heat exchanger
EP2215346B1 (en) High gas inlet temperature egr system
US11029095B2 (en) Finned coaxial cooler
US20070017661A1 (en) Heat exchanger
EP1996891B1 (en) Heat exchanger for egr-gas
JP3991786B2 (ja) 排気熱交換装置
JPH09310996A (ja) Egrガス冷却装置
WO2010079796A1 (ja) 複合型熱交換器
JP2007285264A (ja) 熱交換器
JP3956097B2 (ja) 排気熱交換装置
JP4345470B2 (ja) エンジンのegrクーラー
US11067040B2 (en) Exhaust gas cooling apparatus
JP2005214586A (ja) 排気ガス冷却用熱交換器
JP2008232142A (ja) クールドegrシステム及び該システム用熱交換器
JP2005273512A (ja) エンジンのegrクーラー
JP5227755B2 (ja) Egrクーラ
JP2007315325A (ja) Egrクーラの熱交換器構造
JP4270661B2 (ja) 多管式のegrガス冷却装置およびその製造方法
JP2000161873A (ja) 熱交換器
JP2006300415A (ja) 熱交換装置
JP2010060196A (ja) ガス冷却装置
JP2009062915A (ja) 排熱回収器
JP6463993B2 (ja) 熱交換器用チューブ

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070403