JP2005211844A - Oxide catalyst - Google Patents

Oxide catalyst Download PDF

Info

Publication number
JP2005211844A
JP2005211844A JP2004024577A JP2004024577A JP2005211844A JP 2005211844 A JP2005211844 A JP 2005211844A JP 2004024577 A JP2004024577 A JP 2004024577A JP 2004024577 A JP2004024577 A JP 2004024577A JP 2005211844 A JP2005211844 A JP 2005211844A
Authority
JP
Japan
Prior art keywords
oxide catalyst
molybdenum
catalyst
hydrogen peroxide
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004024577A
Other languages
Japanese (ja)
Other versions
JP4455081B2 (en
Inventor
Hiroyuki Yano
浩之 矢野
Hidenori Hinako
英範 日名子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2004024577A priority Critical patent/JP4455081B2/en
Publication of JP2005211844A publication Critical patent/JP2005211844A/en
Application granted granted Critical
Publication of JP4455081B2 publication Critical patent/JP4455081B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an oxide catalyst for production of unsaturated nitriles and unsaturated carboxylic acids reducing scattering of molybdenum and having a high selectivity, a high yield, a high space time yield and a high catalyst strength. <P>SOLUTION: This catalyst is for ammooxidation or oxidation of propane and isobutane, contains molybdenum, vanadium, antimony and niobium and has an X-ray diffraction peak at a specific position, a low content of molybdenum and a high content of silica serving as a catalyst carrier. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、プロパンまたはイソブタンの気相接触アンモ酸化反応によって不飽和ニトリル製造する際に、または気相接触酸化反応によって不飽和カルボン酸を製造する際に用いられる酸化物触媒に関する。   The present invention relates to an oxide catalyst used for producing an unsaturated nitrile by a gas phase catalytic ammoxidation reaction of propane or isobutane, or for producing an unsaturated carboxylic acid by a gas phase catalytic oxidation reaction.

近年、プロピレンまたはイソブチレンに代わってプロパンまたはイソブタンを原料とし、気相接触アンモ酸化反応や気相接触酸化反応によって不飽和ニトリルや不飽和カルボン酸を製造する技術が着目されており、多数の酸化物触媒が提案されている。
それらの中でも特に注目されている酸化物触媒は、反応温度が低く、また不飽和ニトリルや不飽和カルボン酸の選択率が比較的高いMo−V−Te−NbまたはMo−V−Sb−Nbを含む酸化物触媒であり、これらを含む複合酸化物触媒が開示されている(例えば特許文献1〜14参照)。これらに開示された複合酸化物触媒において、最も多く含まれている金属はモリブデンである。従って、Mo−V−Te−NbまたはMo−V−Sb−Nbを含む酸化物触媒においてモリブデンは、触媒構造形成や触媒性能発現に中心的な役割を担う金属であると考えられる。
In recent years, attention has been focused on technologies for producing unsaturated nitriles and unsaturated carboxylic acids by using gas phase catalytic ammoxidation reaction or gas phase catalytic oxidation reaction using propane or isobutane as a raw material instead of propylene or isobutylene. Catalysts have been proposed.
Among them, oxide catalysts that are particularly attracting attention are Mo-V-Te-Nb or Mo-V-Sb-Nb having a low reaction temperature and a relatively high selectivity for unsaturated nitriles and unsaturated carboxylic acids. A composite oxide catalyst containing these is disclosed (for example, see Patent Documents 1 to 14). In the composite oxide catalysts disclosed therein, molybdenum is the most abundant metal. Therefore, in the oxide catalyst containing Mo-V-Te-Nb or Mo-V-Sb-Nb, molybdenum is considered to be a metal that plays a central role in catalyst structure formation and catalyst performance expression.

一般に、気相接触アンモ酸化反応や気相接触酸化反応では、水が反応副生成物として生成する。モリブデンを含む酸化物触媒を用いた気相接触アンモ酸化反応や気相接触酸化反応においては、モリブデンは、気相接触アンモ酸化反応や気相接触酸化反応で発生した水と化合して蒸気圧を有するモリブデン酸Mo(OH)へと変化し、このモリブデン酸はガス気流に乗って飛散し、この結果、触媒中のモリブデン量は減少していくと考えられる。(非特許文献1参照)。こうした理由から、モリブデンを含む複合酸化物触媒を用いたプロパンまたはイソブタンを原料とする気相接触アンモ酸化反応や気相接触酸化反応では、反応中にモリブデンが経時的に飛散していくために触媒が劣化し、触媒性能と生産性の低下を引き起こすという問題がある。また、飛散したモリブデンは反応器や反応ラインに固着し、汚れや閉塞を引き起こすという恐れもある。このため、モリブデンを含む複合酸化物触媒を用いて不飽和ニトリル、または不飽和カルボン酸を製造するにあたっては、反応中に飛散し失われたモリブデンを追添して、劣化した触媒の再賦活化を行ったり、反応器や反応ラインに固着したモリブデンを定期的に除去しなければならない、などという問題があった。 In general, water is generated as a reaction byproduct in the gas phase catalytic ammoxidation reaction or the gas phase catalytic oxidation reaction. In a gas phase ammoxidation reaction or gas phase catalytic oxidation reaction using an oxide catalyst containing molybdenum, molybdenum combines with water generated in the gas phase ammoxidation reaction or gas phase contact oxidation reaction to reduce the vapor pressure. It is considered that the molybdic acid Mo 2 (OH) 2 has , and this molybdic acid scatters on the gas stream, and as a result, the amount of molybdenum in the catalyst decreases. (Refer nonpatent literature 1). For this reason, in the gas phase catalytic ammoxidation reaction or gas phase catalytic oxidation reaction using propane or isobutane as a raw material using a composite oxide catalyst containing molybdenum, molybdenum is scattered over time during the reaction. There is a problem that the catalyst deteriorates and causes a decrease in catalyst performance and productivity. Further, the scattered molybdenum adheres to the reactor and reaction line, and there is a risk of causing dirt and blockage. For this reason, when producing unsaturated nitriles or unsaturated carboxylic acids using a composite oxide catalyst containing molybdenum, the molybdenum lost by scattering during the reaction is added to reactivate the deteriorated catalyst. And molybdenum fixed to the reactor and reaction line must be removed periodically.

飛散性のモリブデンを含まない触媒として、Sb−Nb/Ta−Vを含む触媒など(特許文献9参照)が、Nb−Bi−Vを含む触媒など(特許文献10参照)が、W−Cr−Biを含む触媒など(特許文献11参照)が、Bi−Vを含む触媒など(特許文献12参照)が開示されている。また、モリブデン含有量が低い触媒として、鉄を主成分とするFe−Sb−Cr−Moを含む触媒など(特許文献13参照)が、Fe−Sb−V−Moを含む触媒など(特許文献14参照)が開示されているが、これらの触媒では500℃前後ないしはそれ以上の極めて高い反応温度を必要とするため、反応器の材質、製造コストなどの面で有利ではなく、目的生成物である不飽和ニトリル、または不飽和カルボン酸の選択率や収率も低い。   Examples of the catalyst that does not contain scattering molybdenum include a catalyst containing Sb—Nb / Ta—V (see Patent Document 9), a catalyst containing Nb—Bi—V, etc. (see Patent Document 10), and W—Cr—. A catalyst containing Bi (see Patent Document 11) and a catalyst containing Bi-V (see Patent Document 12) are disclosed. Further, as a catalyst having a low molybdenum content, a catalyst containing Fe—Sb—Cr—Mo containing iron as a main component (see Patent Document 13), a catalyst containing Fe—Sb—V—Mo, etc. (Patent Document 14). However, these catalysts require an extremely high reaction temperature of about 500 ° C. or higher, which is not advantageous in terms of material of the reactor, production cost, etc., and is a target product. The selectivity and yield of unsaturated nitrile or unsaturated carboxylic acid are also low.

また、非特許文献2にはSbMoなる触媒が、非特許文献3にはアルミナに担持されたSbMoなる触媒が開示されている。これらの触媒はモリブデン含有量が低い触媒であるが、目的生成物であるアクリロニトリルの選択率が10%程度、またその収率は10%以下と低い。従って、モリブデン含有率を下げた複合酸化物触媒では、目的生成物である不飽和ニトリル、不飽和カルボン酸の選択率や収率などの反応成績が大きく低下するため、モリブデン含有率を下げた複合酸化物触媒は気相接触アンモ酸化反応や気相接触酸化反応には適さないという問題があった。 Non-Patent Document 2 discloses a catalyst called Sb 5 V 1 Mo 1 and Non-Patent Document 3 discloses a catalyst called Sb 5 V 1 Mo 1 supported on alumina. These catalysts have a low molybdenum content, but the selectivity of the target product acrylonitrile is about 10%, and the yield is as low as 10% or less. Therefore, in the composite oxide catalyst with a reduced molybdenum content, the reaction results such as the selectivity and yield of the target product, unsaturated nitrile and unsaturated carboxylic acid, are greatly reduced. The oxide catalyst has a problem that it is not suitable for a gas phase catalytic ammoxidation reaction or a gas phase catalytic oxidation reaction.

ところで、プロパンまたはイソブタンの気相接触アンモ酸化反応や気相接触酸化反応は発熱反応である。これらの反応の工業的実施にあたっては、反応系内の蓄熱を抑制して反応温度を均一に維持することが生産上、必要である。これらの点を考慮すると、反応方式として有利なものは除熱効率の高い流動床反応である。ところが流動床反応では、触媒流動に伴い、触媒間の衝突や触媒と反応器壁との衝突によって、触媒が磨耗し、この結果、触媒の流動性が低下するという問題がある。従って、流動床反応用触媒には磨耗に耐えうる充分な強度が求められる。そこで触媒強度を高めるため、シリカ、アルミナ、チタニア、シリカ−アルミナ、ジルコニア、珪藻土などが触媒担体として用いられる。これらの内、好ましい担体はシリカである。こうした担体に触媒を担持し、流動床反応には担持触媒として供される。   By the way, the gas phase catalytic ammoxidation reaction or gas phase catalytic oxidation reaction of propane or isobutane is an exothermic reaction. In industrial implementation of these reactions, it is necessary in production to keep the reaction temperature uniform by suppressing heat storage in the reaction system. Considering these points, a fluidized bed reaction having a high heat removal efficiency is advantageous as a reaction system. However, in the fluidized bed reaction, there is a problem that the catalyst wears due to the collision between the catalysts and the collision between the catalyst and the reactor wall, resulting in a decrease in the fluidity of the catalyst. Therefore, the fluidized bed reaction catalyst is required to have sufficient strength to withstand abrasion. In order to increase the catalyst strength, silica, alumina, titania, silica-alumina, zirconia, diatomaceous earth, or the like is used as a catalyst carrier. Of these, the preferred support is silica. A catalyst is supported on such a carrier and is used as a supported catalyst for a fluidized bed reaction.

ところが、特許文献5には「一般的に触媒成分に不活性向き粒子な部分を混合すれば、触媒としての機械的強度は向上しても、一方では触媒としての活性低下が避けられないと考えられる」という記述がある。即ち、流動床反応に必要な触媒強度を賦与するために、触媒を担体に担持すると、担体が加わった分、反応に関わる触媒成分は減少することになり、担体を用いない場合に比べ、性能の低下が避けられないという問題があった。一方、性能の低下を嫌い、担体量を少なくした担持触媒では、触媒の流動性が悪く、また流動床反応に耐え得るだけの触媒強度がないために、流動床反応用触媒として不適であるという問題があった。
こうした理由から、プロパンまたはイソブタンの気相接触アンモ酸化反応や気相接触酸化反応に用いられるモリブデンを含む触媒で、モリブデンの飛散が少なく、かつ触媒担体であるシリカ量を高めた担持触媒であっても、目的生成物である不飽和ニトリル、不飽和カルボン酸の選択率などの反応成績が良好な触媒の開発が切望されていた。
However, Patent Document 5 states that “generally, when a catalyst component is mixed with a portion that is inactive-oriented particles, the mechanical strength as a catalyst is improved, but on the other hand, a decrease in activity as a catalyst is inevitable. Is described. In other words, when a catalyst is supported on a carrier in order to give the catalyst strength necessary for a fluidized bed reaction, the amount of catalyst components involved in the reaction is reduced by the amount of the carrier added. There was a problem that the decline of the inevitable. On the other hand, a supported catalyst that dislikes performance degradation and has a small amount of carrier is not suitable as a fluidized bed reaction catalyst because the fluidity of the catalyst is poor and the catalyst strength is not sufficient to withstand fluidized bed reaction. There was a problem.
For these reasons, it is a catalyst containing molybdenum that is used in the gas phase catalytic ammoxidation reaction or gas phase catalytic oxidation reaction of propane or isobutane, and is a supported catalyst in which the amount of silica that is a catalyst carrier is increased with less scattering of molybdenum. However, the development of a catalyst having good reaction results such as the selectivity of the target product, unsaturated nitrile and unsaturated carboxylic acid, has been desired.

特開平2−257号公報JP-A-2-257 特開平5−148212号公報JP-A-5-148212 特開平6−227819号公報JP-A-6-227819 特開平6−285372号公報JP-A-6-285372 特開平7−144132号公報JP-A-7-144132 特開平8−141401号公報JP-A-8-141401 特開平9−157241号公報Japanese Patent Laid-Open No. 9-157241 特開平10−310539号公報Japanese Patent Laid-Open No. 10-310539 特開平11−246505号JP 11-246505 A 特開2000−117103号JP 2000-117103 A 特開平10−87513号JP-A-10-87513 特開昭63−295545号公報JP 63-295545 A 特開2000−351760号JP 2000-351760 特開平11−2460504号JP 11-2460504 A

ビュッテン(J.Buiten)、Oxidation of propylen by means of SnO2−MoO3 catalysts、「ジャーナル オブ キャタリシス(Journal of catalysis)」(オランダ)、エルセビア(Elsevier)、1968年、188−199頁Buten (J.Buitten), Oxidation of propylen by means of SnO2-MoO3 catalysts, "Journal of catalysis" (Netherlands), Elsevier 88, p. ガブリエル・センチ(Centi, Gabriele)ら、Design of catalysts for propane ammoxidation to acrylonitrile、「キミーチャ エ リンダストリア(Chimica e l’Industria)」(イタリア)、ボローニャ大学、1990年、72巻、617−624Centi, Gabriele et al., Design of catalysts for propammane amoxidation to acrylonitrile, “Chimica e l'Industria, Vol. 6, Italy, Vol. 17, 19”, Vol. 19, Italy, Vol. ガブリエル・センチ(Centi, Gabriele)ら、Synthesis of Acrylonitrile from Propane on V−Sb−based Mixed Oxides、「ニュー・デベロップメント・イン・」セレクティブ・オキシデーション(New Development in Selective Oxidation)」(オランダ)、エルセビア(Elsevier)、1990年、515−525頁Centi, Gabriel et al., Synthesis of Acrylonitrile Propane on V-Sb-based Mixed Oxides ("New Development in" Selective Oxide (New dev) Elsevier), 1990, 515-525.

本発明の目的は、プロパンまたはイソブタンの気相接触アンモ酸化反応によって不飽和ニトリルを、または気相接触酸化反応によって不飽和カルボン酸を製造するにあたり、モリブデン、バナジウム、アンチモン、およびニオブを含有する複合酸化物触媒において、モリブデンの飛散が少なく、触媒担体であるシリカ量を高めた担持触媒であっても、不飽和ニトリルまたは不飽和カルボン酸の選択率が良好な複合酸化物触媒を提供することである。   It is an object of the present invention to provide a composite containing molybdenum, vanadium, antimony, and niobium in the production of an unsaturated nitrile by a gas phase catalytic ammoxidation reaction of propane or isobutane or an unsaturated carboxylic acid by a gas phase catalytic oxidation reaction. By providing a composite oxide catalyst with good selectivity of unsaturated nitrile or unsaturated carboxylic acid, even if the catalyst is a supported catalyst in which the amount of silica that is a catalyst carrier is increased in the oxide catalyst with less scattering of molybdenum. is there.

本発明者らは、上記課題を解決するために鋭意検討した結果、特定組成を有する酸化物触媒は、シリカに担持した状態でも、プロパンまたはイソブタンの気相接触アンモ酸化反応や気相接触酸化反応によって生成する不飽和ニトリルまたは不飽和カルボン酸の選択率が良好であり、それに加えてモリブデンの飛散が少ないことを見いだし、本発明をなすに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that an oxide catalyst having a specific composition is supported by a gas phase catalytic ammoxidation reaction or gas phase catalytic oxidation reaction of propane or isobutane even when supported on silica. It has been found that the selectivity of unsaturated nitrile or unsaturated carboxylic acid produced by is good, and in addition, there is little scattering of molybdenum, and the present invention has been made.

即ち、本発明は、
(1)プロパンまたはイソブタンの気相接触アンモ酸化反応による不飽和ニトリルの製造、または気相接触酸化反応による不飽和カルボン酸を製造に用いられる化学式(I)で示される成分組成を有する酸化物触媒であって、CuKα線をX線源として得られるX線回折図において、回折角(2θ)が22.1±0.3°、28.1±0.3°、36.1±0.3°および45.2±0.3°の位置、または7.8±0.3°、8.9±0.3°、22.1±0.3°、27.1±0.3°、35.2±0.3°および45.2±0.3°の位置、または7.8±0.3°、8.9±0.3°、22.1±0.3°、27.1±0.3°、28.1±0.3°、35.2±0.3°、36.1±0.3°および45.2±0.3°の位置に回折ピークをもつことを特徴とする酸化物触媒。
That is, the present invention
(1) Production of unsaturated nitrile by gas phase catalytic ammoxidation reaction of propane or isobutane, or oxide catalyst having a component composition represented by chemical formula (I) used for production of unsaturated carboxylic acid by gas phase catalytic oxidation reaction In an X-ray diffraction diagram obtained using CuKα rays as an X-ray source, diffraction angles (2θ) are 22.1 ± 0.3 °, 28.1 ± 0.3 °, 36.1 ± 0.3. ° and 45.2 ± 0.3 ° position, or 7.8 ± 0.3 °, 8.9 ± 0.3 °, 22.1 ± 0.3 °, 27.1 ± 0.3 °, Positions of 35.2 ± 0.3 ° and 45.2 ± 0.3 °, or 7.8 ± 0.3 °, 8.9 ± 0.3 °, 22.1 ± 0.3 °, 27. Have diffraction peaks at 1 ± 0.3 °, 28.1 ± 0.3 °, 35.2 ± 0.3 °, 36.1 ± 0.3 ° and 45.2 ± 0.3 °. With features Oxide catalyst.

MoSbNb (I)
(式中、ZはW、Cr、Ti、Al、Ta、Zr、Hf、Mn、Re、Fe、Ru、Co、Rh、Ni、Pd、Pt、Zn、B、Ga、In、Ge、Sn、P、Pb、Bi、Y、希土類元素およびアルカリ土類金属から選ばれる少なくとも1種の元素を表す。a、b、c、dおよびnはMo1原子あたりの原子比を表す。1.0≦(a+b+c)≦2.0であり、a、b、c、dは各々0.01≦a≦1.0、0.01≦b≦1.0、0.01≦c≦1.0、0≦d≦1.0であり、そしてnは構成金属の酸化状態によって決まる原子比である。)
Mo 1 V a Sb b Nb c Z d O n (I)
(Wherein, Z is W, Cr, Ti, Al, Ta, Zr, Hf, Mn, Re, Fe, Ru, Co, Rh, Ni, Pd, Pt, Zn, B, Ga, In, Ge, Sn, It represents at least one element selected from P, Pb, Bi, Y, rare earth elements and alkaline earth metals, a, b, c, d and n represent atomic ratios per Mo atom, 1.0 ≦ ( a + b + c) ≦ 2.0, and a, b, c, and d are 0.01 ≦ a ≦ 1.0, 0.01 ≦ b ≦ 1.0, 0.01 ≦ c ≦ 1.0, and 0 ≦, respectively. d ≦ 1.0, and n is an atomic ratio determined by the oxidation state of the constituent metals.)

(2)シリカ担体を含有する成分組成が化学式(I)で示される酸化物触媒であって、該シリカ担体の含有量が、該酸化物触媒とSiO換算の該シリカ担体との合計重量に対し、20〜60重量%であることを特徴とする(1)に記載の酸化物触媒。
(3)成分組成が化学式(I)で示される酸化物触媒の成分を有する原料調合液から得られる乾燥粉体を実質的に酸素を含まないガス雰囲気下、500〜700℃で焼成されて製造されることを特徴とする(1)又は(2)に記載の酸化物触媒。
(4)成分組成が式(I)で示される酸化物触媒が、ヒドロキシル基含有化合物および/またはジカルボン酸化合物を含む原料調合液を用いて製造されることを特徴とする(1)から(3)のいずれかに記載の酸化物触媒。
(2) A component composition containing a silica carrier is an oxide catalyst represented by the chemical formula (I), and the content of the silica carrier is the total weight of the oxide catalyst and the silica carrier in terms of SiO 2 The oxide catalyst according to (1), which is 20 to 60% by weight.
(3) Manufactured by calcining a dry powder obtained from a raw material preparation liquid having an oxide catalyst component represented by chemical formula (I) at 500 to 700 ° C. in a gas atmosphere substantially free of oxygen. The oxide catalyst according to (1) or (2), wherein
(4) The oxide catalyst having a component composition represented by formula (I) is produced using a raw material preparation liquid containing a hydroxyl group-containing compound and / or a dicarboxylic acid compound (1) to (3 ) The oxide catalyst according to any one of

(5)プロパンまたはイソブタンの気相接触アンモ酸化反応によって不飽和ニトリルを製造する方法において、(1)から(4)のいずれかに記載の酸化物触媒を用いることを特徴とする不飽和ニトリルの製造方法。
(6)プロパンまたはイソブタンの気相接触酸化反応によって不飽和カルボン酸を製造する方法において、(1)から(4)のいずれかに記載の酸化物触媒を用いることを特徴とする不飽和カルボン酸の製造方法、
に関するものである。
(5) A method for producing an unsaturated nitrile by a gas phase catalytic ammoxidation reaction of propane or isobutane, wherein the oxide catalyst according to any one of (1) to (4) is used. Production method.
(6) An unsaturated carboxylic acid characterized by using the oxide catalyst according to any one of (1) to (4) in a method for producing an unsaturated carboxylic acid by a gas phase catalytic oxidation reaction of propane or isobutane Manufacturing method,
It is about.

以下、本発明を詳細に説明する。
本発明の酸化物触媒は、下記化学式(I)で示される成分組成を有する。
MoSbNb (I)
(式中、ZはW、Cr、Ti、Al、Ta、Zr、Hf、Mn、Re、Fe、Ru、Co、Rh、Ni、Pd、Pt、Zn、B、Ga、In、Ge、Sn、P、Pb、Bi、Y、希土類元素およびアルカリ土類金属から選ばれる少なくとも1種の元素を表す。a、b、c、dおよびnはMo1原子あたりの原子比を表す。1.0≦(a+b+c)≦2.0であり、a、b、c、dは各々0.01≦a≦1.0、0.01≦b≦1.0、0.01≦c≦1.0、0≦d≦1.0であり、そしてnは構成金属の酸化状態によって決まる原子比である。)
Hereinafter, the present invention will be described in detail.
The oxide catalyst of the present invention has a component composition represented by the following chemical formula (I).
Mo 1 V a Sb b Nb c Z d O n (I)
(Wherein, Z is W, Cr, Ti, Al, Ta, Zr, Hf, Mn, Re, Fe, Ru, Co, Rh, Ni, Pd, Pt, Zn, B, Ga, In, Ge, Sn, It represents at least one element selected from P, Pb, Bi, Y, rare earth elements and alkaline earth metals, a, b, c, d and n represent atomic ratios per Mo atom, 1.0 ≦ ( a + b + c) ≦ 2.0, and a, b, c, and d are 0.01 ≦ a ≦ 1.0, 0.01 ≦ b ≦ 1.0, 0.01 ≦ c ≦ 1.0, and 0 ≦, respectively. d ≦ 1.0, and n is an atomic ratio determined by the oxidation state of the constituent metals.)

(a+b+c)は1.0≦(a+b+c)≦2.0、好ましくは1.1≦(a+b+c)≦1.5、特に好ましくは1.1≦(a+b+c)≦1.25である。(a+b+c)がこれらの範囲内の場合、触媒の活性またはアクリロニトリルの選択率またはアクリル酸の選択率が高い。
aは0.01≦a≦1.0、好ましくは0.2≦a≦0.8、特に好ましくは0.3≦a≦0.7である。aがこれらの範囲内の場合、触媒の活性またはアクリロニトリルの選択率またはアクリル酸の選択率が高い。
cは0.01≦c≦1.0、好ましくは0.05≦c≦0.6、特に好ましくは0.1≦c≦0.4である。cがこれらの範囲内の場合、触媒の活性またはアクリロニトリルの選択率またはアクリル酸の選択率が高い。
dは0≦d≦1.0、好ましくは0≦d≦0.2、特に好ましくは0≦d≦0.08である。dがこれらの範囲内の場合、触媒の活性またはアクリロニトリルの選択率またはアクリル酸の選択率が高い。
(A + b + c) is 1.0 ≦ (a + b + c) ≦ 2.0, preferably 1.1 ≦ (a + b + c) ≦ 1.5, and particularly preferably 1.1 ≦ (a + b + c) ≦ 1.25. When (a + b + c) is within these ranges, the activity of the catalyst or the selectivity of acrylonitrile or the selectivity of acrylic acid is high.
a is 0.01 ≦ a ≦ 1.0, preferably 0.2 ≦ a ≦ 0.8, and particularly preferably 0.3 ≦ a ≦ 0.7. When a is in these ranges, the activity of the catalyst or the selectivity of acrylonitrile or the selectivity of acrylic acid is high.
c is 0.01 ≦ c ≦ 1.0, preferably 0.05 ≦ c ≦ 0.6, and particularly preferably 0.1 ≦ c ≦ 0.4. When c is within these ranges, the activity of the catalyst or the selectivity of acrylonitrile or the selectivity of acrylic acid is high.
d is 0 ≦ d ≦ 1.0, preferably 0 ≦ d ≦ 0.2, and particularly preferably 0 ≦ d ≦ 0.08. When d is within these ranges, the activity of the catalyst or the selectivity of acrylonitrile or the selectivity of acrylic acid is high.

bについては、(a+b+c)が(1)1.1≦(a+b+c)≦2.0と(2)1.0≦(a+b+c)<1.1の二つの場合で説明する。
(1)1.1≦(a+b+c)≦2.0の場合
bは0.01≦b≦1.0、好ましくは0.10≦b≦0.8、特に好ましくは0.15≦b≦0.4である。bがこれらの範囲内の場合、触媒の活性またはアクリロニトリルの選択率またはアクリル酸の選択率が高い。
bが上記の範囲の場合、(a+b+c)は1.1≦(a+b+c)≦1.9、好ましくは1.1≦(a+b+c)≦1.5、特に好ましくは1.1≦(a+b+c)≦1.25である。(a+b+c)がこれらの範囲内の場合、触媒の活性またはアクリロニトリルの選択率またはアクリル酸の選択率が高い。
Regarding b, (a + b + c) will be described in two cases where (1) 1.1 ≦ (a + b + c) ≦ 2.0 and (2) 1.0 ≦ (a + b + c) <1.1.
(1) When 1.1 ≦ (a + b + c) ≦ 2.0 b is 0.01 ≦ b ≦ 1.0, preferably 0.10 ≦ b ≦ 0.8, particularly preferably 0.15 ≦ b ≦ 0. .4. When b is in these ranges, the activity of the catalyst or the selectivity of acrylonitrile or the selectivity of acrylic acid is high.
When b is in the above range, (a + b + c) is 1.1 ≦ (a + b + c) ≦ 1.9, preferably 1.1 ≦ (a + b + c) ≦ 1.5, particularly preferably 1.1 ≦ (a + b + c) ≦ 1. .25. When (a + b + c) is within these ranges, the activity of the catalyst or the selectivity of acrylonitrile or the selectivity of acrylic acid is high.

また、bが上記の範囲の場合、aは0.01≦a≦1.0、好ましくは0.2≦a≦0.8、特に好ましくは0.4≦a≦0.7である。aがこれらの範囲内の場合、触媒の活性またはアクリロニトリルの選択率またはアクリル酸の選択率が高い。
また、bが上記の範囲の場合、cは0.01≦c≦1.0、好ましくは0.05≦c≦0.6、特に好ましくは0.13≦c≦0.4である。cがこれらの範囲内の場合、触媒の活性またはアクリロニトリルの選択率またはアクリル酸の選択率が高い。
また、bが上記の範囲の場合、dは0≦d≦1.0、好ましくは0≦d≦0.2、特に好ましくは0≦d≦0.08である。dがこれらの範囲内の場合、触媒の活性またはアクリロニトリルの選択率またはアクリル酸の選択率が高い。
When b is in the above range, a is 0.01 ≦ a ≦ 1.0, preferably 0.2 ≦ a ≦ 0.8, and particularly preferably 0.4 ≦ a ≦ 0.7. When a is in these ranges, the activity of the catalyst or the selectivity of acrylonitrile or the selectivity of acrylic acid is high.
When b is in the above range, c is 0.01 ≦ c ≦ 1.0, preferably 0.05 ≦ c ≦ 0.6, particularly preferably 0.13 ≦ c ≦ 0.4. When c is within these ranges, the activity of the catalyst or the selectivity of acrylonitrile or the selectivity of acrylic acid is high.
When b is in the above range, d is 0 ≦ d ≦ 1.0, preferably 0 ≦ d ≦ 0.2, and particularly preferably 0 ≦ d ≦ 0.08. When d is within these ranges, the activity of the catalyst or the selectivity of acrylonitrile or the selectivity of acrylic acid is high.

(2)1.0≦(a+b+c)<1.1の場合
bは0.01≦b<0.22および0.23≦b≦0.5、好ましくは0.05≦b<0.22および0.23≦b≦0.45、特に好ましくは0.10≦b<0.22および0.23≦b≦0.40である。bがこれらの範囲内の場合、触媒の活性またはアクリロニトリルの選択率またはアクリル酸の選択率が高い。
bが上記の範囲の場合、aは0.01≦a≦0.98、好ましくは0.2≦a≦0.8、特に好ましくは0.3≦a≦0.7である。aがこれらの範囲内の場合、触媒の活性またはアクリロニトリルの選択率またはアクリル酸の選択率が高い。
(2) When 1.0 ≦ (a + b + c) <1.1 b is 0.01 ≦ b <0.22 and 0.23 ≦ b ≦ 0.5, preferably 0.05 ≦ b <0.22 and 0.23 ≦ b ≦ 0.45, particularly preferably 0.10 ≦ b <0.22 and 0.23 ≦ b ≦ 0.40. When b is in these ranges, the activity of the catalyst or the selectivity of acrylonitrile or the selectivity of acrylic acid is high.
When b is in the above range, a is 0.01 ≦ a ≦ 0.98, preferably 0.2 ≦ a ≦ 0.8, and particularly preferably 0.3 ≦ a ≦ 0.7. When a is in these ranges, the activity of the catalyst or the selectivity of acrylonitrile or the selectivity of acrylic acid is high.

また、bが上記の範囲の場合、cは0.01≦c≦0.98、好ましくは0.05≦c≦0.6、特に好ましくは0.13≦c≦0.4である。cがこれらの範囲内の場合、触媒の活性またはアクリロニトリルの選択率またはアクリル酸の選択率が高い。
また、bが上記の範囲の場合、dは0≦d≦0.97、好ましくは0≦d≦0.2、特に好ましくは0≦d≦0.08である。dがこれらの範囲内の場合、触媒の活性またはアクリロニトリルの選択率またはアクリル酸の選択率が高い。
Z成分としては、W、Cr、Ti、Al、Ta、Zr、Hf、Mn、Re、Fe、Ru、Co、Rh、Ni、Pd、Pt、Zn、B、Ga、In、Ge、Sn、P、Pb、Bi、Y、希土類元素およびアルカリ土類金属から選ばれる少なくとも1種の元素であり、Zは好ましくはW、Cr、Ti、Al、Ta、Zr、Hf、Re、Fe、Ru、Co、Rh、Ni、Pd、Pt、Zn、In、Ge、Sn、Pb、Y、希土類元素およびアルカリ土類金属から選ばれる少なくとも1種の元素である。
When b is in the above range, c is 0.01 ≦ c ≦ 0.98, preferably 0.05 ≦ c ≦ 0.6, and particularly preferably 0.13 ≦ c ≦ 0.4. When c is within these ranges, the activity of the catalyst or the selectivity of acrylonitrile or the selectivity of acrylic acid is high.
When b is in the above range, d is 0 ≦ d ≦ 0.97, preferably 0 ≦ d ≦ 0.2, and particularly preferably 0 ≦ d ≦ 0.08. When d is within these ranges, the activity of the catalyst or the selectivity of acrylonitrile or the selectivity of acrylic acid is high.
Z component includes W, Cr, Ti, Al, Ta, Zr, Hf, Mn, Re, Fe, Ru, Co, Rh, Ni, Pd, Pt, Zn, B, Ga, In, Ge, Sn, P , Pb, Bi, Y, at least one element selected from rare earth elements and alkaline earth metals, and Z is preferably W, Cr, Ti, Al, Ta, Zr, Hf, Re, Fe, Ru, Co , Rh, Ni, Pd, Pt, Zn, In, Ge, Sn, Pb, Y, at least one element selected from rare earth elements and alkaline earth metals.

本発明の酸化物触媒は、CuKα線をX線源として得られるX線回折図において、回折角(2θ)が22.1±0.3°、28.1±0.3°、36.1±0.3°および45.2±0.3°の位置、または7.8±0.3°、8.9±0.3°、22.1±0.3°、27.1±0.3°、35.2±0.3°および45.2±0.3°の位置、または7.8±0.3°、8.9±0.3°、22.1±0.3°、27.1±0.3°、28.1±0.3°、35.2±0.3°、36.1±0.3°および45.2±0.3°の位置にピークを示すことが好ましい。特に、回折角(2θ)が7.8±0.3°、8.9±0.3°、22.1±0.3°、27.1±0.3°、28.1±0.3°、35.2±0.3°、36.1±0.3°および45.2±0.3°の位置にピークを示すことが好ましい。なお、本発明においては、X線回折は以下の条件下で行う。   The oxide catalyst of the present invention has a diffraction angle (2θ) of 22.1 ± 0.3 °, 28.1 ± 0.3 °, 36.1 in an X-ray diffraction diagram obtained using CuKα rays as an X-ray source. ± 0.3 ° and 45.2 ± 0.3 ° positions, or 7.8 ± 0.3 °, 8.9 ± 0.3 °, 22.1 ± 0.3 °, 27.1 ± 0 .3 °, 35.2 ± 0.3 ° and 45.2 ± 0.3 ° positions, or 7.8 ± 0.3 °, 8.9 ± 0.3 °, 22.1 ± 0.3 Peaks at °, 27.1 ± 0.3 °, 28.1 ± 0.3 °, 35.2 ± 0.3 °, 36.1 ± 0.3 ° and 45.2 ± 0.3 ° It is preferable to show. In particular, the diffraction angle (2θ) is 7.8 ± 0.3 °, 8.9 ± 0.3 °, 22.1 ± 0.3 °, 27.1 ± 0.3 °, 28.1 ± 0. It is preferable to show peaks at positions of 3 °, 35.2 ± 0.3 °, 36.1 ± 0.3 ° and 45.2 ± 0.3 °. In the present invention, X-ray diffraction is performed under the following conditions.

管電圧 :40kV
管電流 :190mA
発散スリット :1°
散乱スリット :1°
受光スリット :0.3mm
スキャン速度 :5°/分
サンプリング幅 :0.02°
Tube voltage: 40 kV
Tube current: 190 mA
Divergent slit: 1 °
Scattering slit: 1 °
Light receiving slit: 0.3 mm
Scanning speed: 5 ° / min Sampling width: 0.02 °

X線回折図において上記のような位置にピークを示す酸化物触媒は、活性および目的物の選択率が高いので特に好ましい。このような酸化物触媒の活性および目的物の選択率が高い理由は明らかではないが、このような酸化物触媒には、CuKα線をX線源として得られるX線回折図において、回折角(2θ)が22.1±0.3°、28.1±0.3°、36.1±0.3°および45.2±0.3°の位置にピークを示す酸化物;および/またはCuKα線をX線源として得られるX線回折図において、回折角(2θ)が7.8±0.3°、8.9±0.3°、22.1±0.3°、27.1±0.3°、35.2±0.3°および45.2±0.3°の位置にピークを示す酸化物が含まれており、これが酸化物触媒の性能向上に寄与しているものと推定される。本発明の酸化物触媒は、触媒としての使用に支障がない限り、CuKα線をX線源として得られるX線回折図において、上記以外の強いピークを示すものであってもよい。   An oxide catalyst having a peak at the position as described above in the X-ray diffraction diagram is particularly preferable because of its high activity and selectivity for the target product. The reason why the activity of such an oxide catalyst and the selectivity of the target product are high is not clear, but such an oxide catalyst has a diffraction angle (in the X-ray diffraction diagram obtained using CuKα rays as an X-ray source). 2θ) oxides having peaks at 22.1 ± 0.3 °, 28.1 ± 0.3 °, 36.1 ± 0.3 ° and 45.2 ± 0.3 °; and / or In an X-ray diffraction diagram obtained using CuKα rays as an X-ray source, diffraction angles (2θ) are 7.8 ± 0.3 °, 8.9 ± 0.3 °, 22.1 ± 0.3 °, 27. Oxides having peaks at positions of 1 ± 0.3 °, 35.2 ± 0.3 °, and 45.2 ± 0.3 ° are included, which contributes to the improvement of the performance of the oxide catalyst. Estimated. The oxide catalyst of the present invention may exhibit a strong peak other than the above in an X-ray diffraction diagram obtained using CuKα rays as an X-ray source, as long as there is no hindrance in use as a catalyst.

以降、CuKα線をX線源として得られるX線回折図において、回折角(2θ)がx±0.3°の位置に観測されるピークをPと称する。例えば、回折角(2θ)が7.8±0.3°の位置に観測されるピークをP7.8と称する。本発明においては、P22.1の強度を100としたとき、P7.8の強度が0.5〜30、P8.9の強度が0.5〜30、P27.1の強度が3〜90、P28.1の強度が10〜300、P35.2の強度が0.5〜30、P36.1の強度が5〜50、P45.2の強度が3〜30の範囲にあることが好ましい。ピークの強度は以下のようにして求めることができる。
例として、P27.1およびP28.1の強度を求める方法につき、図1のX線回折図(実施例1で得られたアンモ酸化触媒のX線回折図)の拡大図である図2を参照しながら説明する。図2には、回折角(2θ)が約25〜30°の範囲が示されている。図2において、A1とA2それぞれ、P27.1およびP28.1の頂点を表わす。B1、B2およびB3はそれぞれ、回折角(2θ)が26.4゜±0.3゜の範囲、27.6゜±0.3゜の範囲および28.8゜±0.3゜の範囲において、X線回折図の曲線が最小の強度値を示す点を表わす。
Hereinafter, in an X-ray diffraction diagram obtained using CuKα rays as an X-ray source, a peak observed at a position where the diffraction angle (2θ) is x ± 0.3 ° is referred to as P x . For example, a peak observed at a position where the diffraction angle (2θ) is 7.8 ± 0.3 ° is referred to as P 7.8 . In the present invention, when the strength of P 22.1 is 100, the strength of P 7.8 is 0.5 to 30, the strength of P 8.9 is 0.5 to 30, and the strength of P 27.1 is 3 to 90, the strength of P 28.1 is 10 to 300, the strength of P 35.2 is 0.5 to 30, the strength of P 36.1 is 5 to 50, and the strength of P 45.2 is 3 to 30 It is preferable to be in the range. The intensity of the peak can be obtained as follows.
As an example, FIG. 2 is an enlarged view of the X-ray diffraction diagram of FIG. 1 (X-ray diffraction diagram of the ammoxidation catalyst obtained in Example 1) for the method of determining the intensity of P 27.1 and P 28.1 . Will be described with reference to FIG. FIG. 2 shows a range where the diffraction angle (2θ) is about 25 to 30 °. In FIG. 2, the vertices of P 27.1 and P 28.1 are respectively represented by A1 and A2. B1, B2 and B3 respectively have diffraction angles (2θ) in the range of 26.4 ° ± 0.3 °, 27.6 ° ± 0.3 ° and 28.8 ° ± 0.3 °. The point of the X-ray diffraction diagram curve represents the minimum intensity value.

これらの回折角(2θ)の範囲は、適切なベースライン(即ち、B1、B2およびB3を結ぶ線)を求めるために選択されたものである。本発明においては通常、X線回折図の曲線が最小の強度値を示す点は、2θ軸および強度軸を軸とする座標においてX線回折図を見たとき、X線回折図の曲線に対する接線の傾きが負から正に変化する点、またはX線回折図の曲線に対する接線の傾きが0に収束する点に相当する。C1は、P27.1の頂点A1から2θ軸に向かって下ろした垂線と、上記点B1とB2とを結ぶ線分の交点であり、C2は、P28.1の頂点A2から2θ軸に向かって下ろした垂線と、上記点B2とB3とを結ぶ線分の交点である。P27.1の強度は、このピークの頂点A1から点C1に至る線分A1C1の長さである。 The range of these diffraction angles (2θ) is selected in order to obtain an appropriate baseline (that is, a line connecting B1, B2, and B3). In the present invention, the point at which the curve of the X-ray diffractogram shows the minimum intensity value is usually a tangent to the curve of the X-ray diffractogram when the X-ray diffractogram is viewed at coordinates with the 2θ axis and the intensity axis as axes. Corresponds to a point where the slope of the curve changes from negative to positive, or a slope of the tangent to the curve of the X-ray diffraction diagram converges to zero. C1 is an intersection of a perpendicular line drawn from the vertex A1 of P 27.1 toward the 2θ axis and a line segment connecting the above points B1 and B2, and C2 extends from the vertex A2 of P 28.1 to the 2θ axis. This is an intersection of a line segment connecting the perpendicular line that is directed downward and the points B2 and B3. The intensity of P 27.1 is the length of the line segment A1C1 from the peak A1 to the point C1 of this peak.

またP28.1の強度は、このピークの頂点A2から点C2に至る線分A2C2の長さである。その他のピークの強度も同様に定義される。P7.8の強度は、回折角(2θ)が7.1゜±0.3゜の範囲において、X線回折図の曲線が最小の強度値を示す点と、回折角(2θ)が9.1゜±0.3゜の範囲において、X線回折図の曲線が最小の強度値を示す点とを結ぶ線分と、P7.8の頂点から2θ軸に向かって下ろした垂線との交点から、P7.8の頂点に至る線分の長さである。P8.9の強度は、回折角(2θ)が7.1゜±0.3゜の範囲において、X線回折図の曲線が最小の強度値を示す点と、回折角(2θ)が9.1゜±0.3゜の範囲において、X線回折図の曲線が最小の強度値を示す点とを結ぶ線分と、P8.9の頂点から2θ軸に向かって下ろした垂線との交点から、P8.9の頂点に至る線分の長さである。 The intensity of P 28.1 is the length of the line segment A2C2 from the peak A2 to the point C2. The intensity of other peaks is defined similarly. The intensity of P 7.8 is that the diffraction angle (2θ) is in the range of 7.1 ° ± 0.3 °, the curve of the X-ray diffraction diagram shows the minimum intensity value, and the diffraction angle (2θ) is 9 In the range of 0.1 ° ± 0.3 °, the line connecting the point where the curve of the X-ray diffraction diagram shows the minimum intensity value, and the perpendicular drawn from the apex of P 7.8 toward the 2θ axis from the intersection, the length of the line segment leading to the apex of the P 7.8. The intensity of P 8.9 is that the curve of the X-ray diffractogram shows the minimum intensity value in the range where the diffraction angle (2θ) is 7.1 ° ± 0.3 °, and the diffraction angle (2θ) is 9 in .1 ° ± 0.3 ° range of the segment curve of X-ray diffraction diagram connecting the point representing the minimum intensity value, a perpendicular line drawn towards the 2θ axis from the vertex of P 8.9 from the intersection, the length of the line segment leading to the apex of the P 8.9.

22.1の強度は、回折角(2θ)が21.1±0.3゜の範囲において、X線回折図の曲線が最小の強度値を示す点と、回折角(2θ)が22.9±0.3゜の範囲において、X線回折図の曲線が最小の強度値を示す点とを結ぶ線分と、P22.1の頂点から2θ軸に向かって下ろした垂線との交点から、P22.1の頂点に至る線分の長さである。P35.2の強度は、回折角(2θ)が34.5±0.3゜の範囲において、X線回折図の曲線が最小の強度値を示す点と、回折角(2θ)が35.7±0.3゜の範囲において、X線回折図の曲線が最小の強度値を示す点とを結ぶ線分と、P35.2の頂点から2θ軸に向かって下ろした垂線との交点から、P35.2の頂点に至る線分の長さである。 The intensity of P 22.1 is that the curve of the X-ray diffraction diagram shows the minimum intensity value in the range where the diffraction angle (2θ) is 21.1 ± 0.3 °, and the diffraction angle (2θ) is 22.2. in 9 ± 0.3 DEG, from the intersection of the line segment curve of X-ray diffraction diagram connecting the point representing the minimum intensity value, a perpendicular line drawn towards the 2θ axis from the vertex of P 22.1 , P 22.1 is the length of the line segment reaching the vertex. The intensity of P 35.2 is that the curve of the X-ray diffraction diagram shows the minimum intensity value in the range where the diffraction angle (2θ) is 34.5 ± 0.3 °, and the diffraction angle (2θ) is 35. In the range of 7 ± 0.3 °, from the intersection of the line segment connecting the point where the curve of the X-ray diffractogram shows the minimum intensity value and the perpendicular drawn from the apex of P 35.2 toward the 2θ axis , P 35.2 is the length of the line segment reaching the vertex.

36.1の強度は、回折角(2θ)が35.7±0.3゜の範囲において、X線回折図の曲線が最小の強度値を示す点と、回折角(2θ)が36.5±0.3゜の範囲において、X線回折図の曲線が最小の強度値を示す点とを結ぶ線分と、P36.1の頂点から2θ軸に向かって下ろした垂線との交点から、P36.1の 頂点に至る線分の長さである。P45.2の強度は、回折角(2θ)が44.5±0.3゜の範囲において、X線回折図の曲線が最小の強度値を示す点と、回折角(2θ)が45.8±0.3゜の範囲において、X線回折図の曲線が最小の強度値をす点とを結ぶ線分と、P45.2の頂点から2θ軸に向かって下ろした垂線との交点から、P45.2の頂点に至る線分の長さである。 The intensity of P 36.1 is that the curve of the X-ray diffraction diagram shows the minimum intensity value in the range where the diffraction angle (2θ) is 35.7 ± 0.3 °, and the diffraction angle (2θ) is 36. In the range of 5 ± 0.3 °, from the intersection of the line segment connecting the point where the curve of the X-ray diffractogram shows the minimum intensity value and the perpendicular drawn from the apex of P 36.1 toward the 2θ axis , P 36.1 is the length of the line segment reaching the vertex. The intensity of P 45.2 is that the curve of the X-ray diffractogram shows the minimum intensity value in the range where the diffraction angle (2θ) is 44.5 ± 0.3 °, and the diffraction angle (2θ) is 45. In the range of 8 ± 0.3 °, from the intersection of the line segment connecting the point where the curve of the X-ray diffractogram shows the minimum intensity value and the perpendicular drawn from the apex of P 45.2 toward the 2θ axis , P 45.2 is the length of the line segment reaching the vertex.

本発明においては、下記式(II)
R=I27.1/(I27.1+I28.1) (II)
〔式中、I27.1はP27.1(回折角(2θ)が27.1±0.3°の位置に観測されるピーク)の強度を表わし、I28.1はP28.1(回折角(2θ)が28.1±0.3°の位置に観測されるピーク)の強度を表わす。〕によって定義される強度比Rが、0.01〜0.90の範囲にあることが好ましく、0.03〜0.80の範囲にあることがより好ましく、0.05〜0.70の範囲にあることが特に好ましい。
In the present invention, the following formula (II)
R = I 27.1 / (I 27.1 + I 28.1 ) (II)
[ Wherein I 27.1 represents the intensity of P 27.1 (a peak observed at a diffraction angle (2θ) of 27.1 ± 0.3 °), and I 28.1 represents P 28.1. It represents the intensity of (a peak observed at a diffraction angle (2θ) of 28.1 ± 0.3 °). Is preferably in the range of 0.01 to 0.90, more preferably in the range of 0.03 to 0.80, and in the range of 0.05 to 0.70. It is particularly preferable that

本発明の触媒を製造するための成分金属の原料は下記の化合物を用いることができる。
モリブデン原料としては、ヘプタモリブデン酸アンモニウム、モリブデン酸化物、モリブデン酸、モリブデンのオキシ塩化物、モリブデンの塩化物、モリブデンのアルコキシド等を用いることができ、好ましくはヘプタモリブデン酸アンモニウムである。
バナジウム原料としては、メタバナジン酸アンモニウム、酸化バナジウム(V)、バナジウムのオキシ塩化物、バナジウムのアルコキシド等を用いることができ、好ましくはメタバナジン酸アンモニウム、酸化バナジウム(V)である。
アンチモン原料としては、酸化アンチモン(III)、酸化アンチモン(IV)、酸化アンチモン(V)、メタアンチモン酸(III)、アンチモン酸(V)、アンチモン酸アンモニウム(V)、塩化アンチモン(III)、塩化酸化アンチモン(III)、硝酸酸化アンチモン(III)、アンチモンのアルコキシド、アンチモンの酒石酸塩等の有機酸塩、金属アンチモン等を用いることができ、好ましくは酸化アンチモン(III)である。
The following compounds can be used as raw materials for the component metals for producing the catalyst of the present invention.
As the molybdenum raw material, ammonium heptamolybdate, molybdenum oxide, molybdic acid, molybdenum oxychloride, molybdenum chloride, molybdenum alkoxide, and the like can be used, and ammonium heptamolybdate is preferable.
As the vanadium raw material, ammonium metavanadate, vanadium oxide (V), vanadium oxychloride, vanadium alkoxide, and the like can be used, and preferably ammonium metavanadate and vanadium oxide (V).
Antimony raw materials include antimony oxide (III), antimony oxide (IV), antimony oxide (V), metaantimonic acid (III), antimonic acid (V), ammonium antimonate (V), antimony chloride (III), chloride Organic acid salts such as antimony (III) oxide, antimony (III) nitrate, alkoxide of antimony, antimony tartrate, metal antimony, and the like can be used, and antimony (III) oxide is preferable.

ニオブ原料としては、ニオブ酸、NbCl、NbCl、Nb(OC、ニオブ酸をジカルボン酸化合物溶液に溶解させて得られるニオブのジカルボン酸化合物水溶液等を例示することができる。好ましくはニオブ酸をジカルボン酸化合物水溶液に溶解させて得られるニオブのジカルボン酸化合物の水溶液である。
Z成分の原料としては、Z成分のシュウ酸塩、水酸化物、酸化物、硝酸塩、酢酸塩、アンモニウム塩、炭酸塩、アルコキシド等を用いることができる。
触媒担体であるシリカの原料としては、シリカゾル、粉体シリカ、シリカ成形体、シリカゲルなどを用いることができる。触媒調製工程の後に担体成分を生成する原料を用いることもできる。シリカの原料としてはアンモニウムイオンで安定化したシリカゾル、粉体シリカが好ましい。シリカゾル、粉体シリカは単独で用いても、シリカゾルと粉体シリカを混合して用いてもよい。
Examples of the niobium raw material include niobic acid, NbCl 5 , NbCl 3 , Nb (OC 2 H 5 ) 5 , niobium dicarboxylic acid compound aqueous solution obtained by dissolving niobic acid in a dicarboxylic acid compound solution, and the like. An aqueous solution of niobium dicarboxylic acid compound obtained by dissolving niobic acid in an aqueous dicarboxylic acid compound solution is preferred.
As a raw material for the Z component, oxalates, hydroxides, oxides, nitrates, acetates, ammonium salts, carbonates, alkoxides, and the like of the Z component can be used.
Silica sol, powder silica, a silica molded body, silica gel and the like can be used as a raw material for silica as a catalyst carrier. The raw material which produces | generates a support | carrier component after a catalyst preparation process can also be used. The silica raw material is preferably silica sol stabilized with ammonium ions or powdered silica. Silica sol and powdered silica may be used alone or in combination with silica sol and powdered silica.

シリカの重量%は、(III)式の酸化物触媒の重量をW1、シリカ(SiO)の重量をW2として、下記の式(III)式で定義される。
シリカの重量%={W2/(W1+W2)}×100 (III)
(但し、W1は仕込み組成と仕込み金属成分の酸化数に基づいて算出された重量であるW2は、仕込み組成に基づいて算出された重量である。)。担持させるシリカ量は、好ましくは10〜60重量%、特に好ましくは20〜55重量%である。シリカ担持量がこれらの範囲よりも低い場合、流動床反応用触媒として触媒強度が充分ではなく、またこれらの範囲よりも高い場合、触媒活性またはアクリロニトリルの選択率またはアクリル酸の選択率が低い。
The weight percent of silica is defined by the following formula (III), where W1 is the weight of the oxide catalyst of formula (III) and W2 is the weight of silica (SiO 2 ).
% By weight of silica = {W2 / (W1 + W2)} × 100 (III)
(W1 is a weight calculated based on the charged composition and the oxidation number of the charged metal component, and W2 is a weight calculated based on the charged composition.) The amount of silica to be supported is preferably 10 to 60% by weight, particularly preferably 20 to 55% by weight. When the silica loading is lower than these ranges, the catalyst strength is not sufficient as a fluidized bed reaction catalyst, and when it is higher than these ranges, the catalytic activity or the selectivity of acrylonitrile or the selectivity of acrylic acid is low.

ジカルボン酸化合物としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸が好ましく、特に好ましいのはシュウ酸である。
ヒドロキシル基含有化合物は、過酸化水素または/およびモノオキシ多価カルボン酸であることが好ましいが、特に好ましくは過酸化水素である。モノオキシ多価カルボン酸としては、特開2002−159853号記載の化合物を例示することができる。
原料調合液の製造に用いるヒドロキシル基含有化合物/成分金属のモル比は好ましくは0.2〜10である。成分金属とは、成分組成が化学式(I)で示される酸化物触媒に含まれる全ての金属元素である。
ヒドロキシル基含有化合物が過酸化水素である場合を詳細に説明する。
過酸化水素/成分金属のモル比は好ましくは0.2〜10であり、より好ましくは0.4〜8であり、特に好ましくは2〜6である。
As the dicarboxylic acid compound, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid and pimelic acid are preferable, and oxalic acid is particularly preferable.
The hydroxyl group-containing compound is preferably hydrogen peroxide or / and a monooxy polyvalent carboxylic acid, particularly preferably hydrogen peroxide. Examples of the monooxy polyvalent carboxylic acid include compounds described in JP-A No. 2002-159853.
The molar ratio of the hydroxyl group-containing compound / component metal used in the production of the raw material preparation liquid is preferably 0.2 to 10. The component metals are all metal elements contained in the oxide catalyst whose component composition is represented by the chemical formula (I).
The case where the hydroxyl group-containing compound is hydrogen peroxide will be described in detail.
The molar ratio of hydrogen peroxide / component metal is preferably 0.2 to 10, more preferably 0.4 to 8, and particularly preferably 2 to 6.

過酸化水素/成分金属のモル比とは、モリブデン、バナジウム、アンチモン、ニオブ、その他の構成元素Zの原料がそれぞれの元素の最高酸化数、すなわちモリブデンであれば6価、バナジウムであれば5価、アンチモンであれば5価、ニオブであれば5価、その他の構成元素ZであればZの最高酸化数の原料を用いていれば、原料調合液中の成分金属のモル数に対して、添加した過酸化水素のモル数の比である。ここでZの最高酸化数とは、Zがタングステンの場合は6価、クロムの場合は6価、チタンの場合は4価、アルミニウムの場合は3価、タンタルの場合は5価、ジルコニウムの場合は4価、ハフニウムの場合は4価、マンガンの場合は7価、レニウムの場合は7価、鉄の場合は3価、ルテニウムの場合は4価、コバルトの場合は3価、ロジウムの場合は4価、ニッケルの場合は3価、パラジウムの場合は4価、白金の場合は4価、亜鉛の場合は2価、ホウ素の場合は3価、ガリウムの場合は3価、インジウムの場合は3価、ゲルマニウムの場合は4価、スズの場合は4価、リンの場合は5価、鉛の場合は4価、ビスマスの場合は5価、イットリウムの場合は3価、セリウムの場合は4価、セリウムを除く希土類の場合は3価である。   The molar ratio of hydrogen peroxide / component metal is the maximum oxidation number of each element of molybdenum, vanadium, antimony, niobium and other constituent elements Z, that is, hexavalent if molybdenum, pentavalent if vanadium. In the case of using a raw material having the highest oxidation number of Z for pentagon, for antimony, pentavalent for niobium, and for other constituent elements Z, with respect to the number of moles of component metals in the raw material mixture, It is the ratio of the number of moles of hydrogen peroxide added. Here, the maximum oxidation number of Z is hexavalent when Z is tungsten, hexavalent when chromium is used, tetravalent when titanium is used, trivalent when aluminum is used, pentavalent when tantalum is used, and zirconium. Is tetravalent, 4 for hafnium, 7 for manganese, 7 for rhenium, 3 for iron, 4 for ruthenium, 3 for cobalt, 3 for rhodium Tetravalent for nickel, trivalent for nickel, tetravalent for palladium, tetravalent for platinum, divalent for zinc, trivalent for boron, trivalent for gallium, 3 for indium Valence, germanium is tetravalent, tin is tetravalent, phosphorus is pentavalent, lead is tetravalent, bismuth is pentavalent, yttrium is trivalent, cerium is tetravalent In the case of rare earth excluding cerium, it is trivalent.

一方、最高酸化数でない元素を用いた場合、添加した過酸化水素のモル数とは、実際に添加した過酸化水素のモル数から、該元素を最高酸化数にするのに必要な過酸化水素のモル数を引いた過酸化水素のモル数である。最高酸化数でない元素が複数あれば、添加した過酸化水素のモル数とは、それぞれの元素を最高酸化数にするのに必要な過酸化水素のモル数を求めその合計を、実際に添加した過酸化水素のモル数から引いた過酸化水素のモル数である。最高酸化数でない元素を最高酸化数にするのに必要な過酸化水素のモル数とは、元素Mの最高酸化数がnである場合に、(n−p)価の元素Mをqモル用いた場合は、(p×q/2)モルである。
本発明の酸化物触媒の製造方法は、原料調合工程、乾燥工程及び焼成工程の3つの工程からなる。以下に原料調合工程、乾燥工程について、具体例を挙げて説明する。原料調合液とは原料調合工程で得られ、次の乾燥工程に供する前の触媒構成元素を全て含む液である。
<原料調合工程>
ヒドロキシル基含有化合物および/またはジカルボン酸は、モリブデン原料、バナジウム原料、アンチモン原料、ニオブ原料それぞれに添加しても、これらの原料混合液に添加してもよい。
ニオブ原料として、ニオブ酸をシュウ酸水溶液に溶解させて得られるニオブ−シュウ酸水溶液を用いる場合と、該ニオブ−シュウ酸水溶液に過酸化水素水を添加したニオブ−シュウ酸−過酸化水素水溶液を用いる場合と、ニオブ−シュウ酸−過酸化水素水溶液に酸化アンチモン(III)を添加したニオブ―アンチモン−シュウ酸−過酸化水素水溶液を用いる場合とで説明する。ニオブ―アンチモン−シュウ酸−過酸化水素水溶液において、ニオブ−シュウ酸−過酸化水素水溶液に添加する酸化アンチモン(III)モル数は、成分組成MoSbNbで示されるニオブのモル数の1/2以下(c/2)とすることが好ましい。
On the other hand, when an element that is not the highest oxidation number is used, the number of moles of hydrogen peroxide added refers to the hydrogen peroxide required to bring the element to the highest oxidation number from the number of moles of hydrogen peroxide actually added. The number of moles of hydrogen peroxide minus the number of moles. If there is more than one element that is not the highest oxidation number, the number of moles of hydrogen peroxide added is the number of moles of hydrogen peroxide required to make each element the highest oxidation number, and the total was actually added. It is the number of moles of hydrogen peroxide subtracted from the number of moles of hydrogen peroxide. The number of moles of hydrogen peroxide required to make an element that is not the highest oxidation number have the highest oxidation number means that when the highest oxidation number of the element M is n, the element M having an (np) valence is used for q moles. If present, it is (p × q / 2) mol.
The method for producing an oxide catalyst of the present invention comprises three steps: a raw material preparation step, a drying step, and a firing step. Hereinafter, the raw material preparation step and the drying step will be described with specific examples. The raw material preparation liquid is a liquid obtained in the raw material preparation step and containing all the catalyst constituent elements before being subjected to the next drying step.
<Raw material preparation process>
The hydroxyl group-containing compound and / or dicarboxylic acid may be added to each of the molybdenum raw material, vanadium raw material, antimony raw material, niobium raw material, or a mixture of these raw materials.
As a niobium raw material, a niobium-oxalic acid aqueous solution obtained by dissolving niobic acid in an oxalic acid aqueous solution, and a niobium-oxalic acid-hydrogen peroxide aqueous solution obtained by adding hydrogen peroxide to the niobium-oxalic acid aqueous solution are used. The case of using a niobium-antimony-oxalic acid-hydrogen peroxide aqueous solution obtained by adding antimony (III) oxide to a niobium-oxalic acid-hydrogen peroxide aqueous solution will be described. Niobium - antimony - In hydrogen peroxide aqueous solution of niobium - - oxalic acid oxalic acid - antimony (III) oxide moles added to aqueous hydrogen peroxide solution, shown in chemical composition Mo 1 V a Sb b Nb c Z d O n The number of moles of niobium is preferably ½ or less (c / 2).

(1)ニオブ−シュウ酸水溶液を用いる場合
ヘプタモリブデン酸アンモニウムを溶解させた水溶液に、酸化アンチモン(III)、メタバナジン酸アンモニウムを添加し、水浴中または油浴中にて80〜140℃で反応させ、モリブデン−アンチモン−バナジウム原料液を得る。ヘプタモリブデン酸アンモニウムを水に溶解させ、モリブデン水溶液を得る。得られたモリブデン−アンチモン−バナジウム原料液、モリブデン水溶液、過酸化水素水、ニオブ−シュウ酸水溶液を混合して原料調合液を製造する。該モリブデン−アンチモン−バナジウム原料液は冷却して用いてもよい。該モリブデン水溶液は用いなくてもよい。
(1) When niobium-oxalic acid aqueous solution is used Antimony (III) oxide and ammonium metavanadate are added to an aqueous solution in which ammonium heptamolybdate is dissolved, and reacted at 80 to 140 ° C. in a water bath or an oil bath. A molybdenum-antimony-vanadium raw material liquid is obtained. Ammonium heptamolybdate is dissolved in water to obtain an aqueous molybdenum solution. The obtained molybdenum-antimony-vanadium raw material solution, molybdenum aqueous solution, hydrogen peroxide solution, and niobium-oxalic acid aqueous solution are mixed to produce a raw material preparation solution. The molybdenum-antimony-vanadium raw material liquid may be cooled before use. The molybdenum aqueous solution may not be used.

または、ヘプタモリブデン酸アンモニウムを溶解させた水溶液に、酸化アンチモン(III)、過酸化水素水を添加し、水浴中または油浴中にて80〜140℃で反応させ、モリブデン−アンチモン−過酸化水素原料液を得る。ヘプタモリブデン酸アンモニウムを水に溶解させ、モリブデン水溶液を得る。メタバナジン酸アンモニウムは過酸化水素水溶液に溶解させ、バナジウム−過酸化水素水溶液を得る。得られたモリブデン−アンチモン−過酸化水素原料液、モリブデン水溶液、バナジウム−過酸化水素水溶液、ニオブ−シュウ酸水溶液を混合して原料調合液を製造する。該モリブデン−アンチモン−過酸化水素原料液は冷却して用いてもよい。該モリブデン水溶液は用いなくてもよい。   Alternatively, antimony (III) oxide and hydrogen peroxide solution are added to an aqueous solution in which ammonium heptamolybdate is dissolved, and the mixture is reacted at 80 to 140 ° C. in a water bath or an oil bath, and molybdenum-antimony-hydrogen peroxide is added. A raw material liquid is obtained. Ammonium heptamolybdate is dissolved in water to obtain an aqueous molybdenum solution. Ammonium metavanadate is dissolved in an aqueous hydrogen peroxide solution to obtain an aqueous vanadium-hydrogen peroxide solution. The obtained molybdenum-antimony-hydrogen peroxide raw material solution, molybdenum aqueous solution, vanadium-hydrogen peroxide aqueous solution and niobium-oxalic acid aqueous solution are mixed to produce a raw material preparation solution. The molybdenum-antimony-hydrogen peroxide raw material liquid may be cooled before use. The molybdenum aqueous solution may not be used.

または、ヘプタモリブデン酸アンモニウムを溶解させた水溶液に、酸化アンチモン(III)、過酸化水素水を添加し、水浴中または油浴中にて80〜140℃で反応させ、モリブデン−アンチモン−過酸化水素原料液を得る。ヘプタモリブデン酸アンモニウムを水に溶解させ、モリブデン水溶液を得る。得られたモリブデン−アンチモン−過酸化水素原料液、モリブデン水溶液、メタバナジン酸アンモニウム、ニオブ−シュウ酸水溶液を混合して原料調合液を製造する。該モリブデン−アンチモン−過酸化水素原料液は冷却して用いてもよい。該モリブデン水溶液は用いなくてもよい。   Alternatively, antimony (III) oxide and hydrogen peroxide solution are added to an aqueous solution in which ammonium heptamolybdate is dissolved, and the mixture is reacted at 80 to 140 ° C. in a water bath or an oil bath, and molybdenum-antimony-hydrogen peroxide is added. A raw material liquid is obtained. Ammonium heptamolybdate is dissolved in water to obtain an aqueous molybdenum solution. The obtained molybdenum-antimony-hydrogen peroxide raw material solution, molybdenum aqueous solution, ammonium metavanadate, and niobium-oxalic acid aqueous solution are mixed to produce a raw material preparation solution. The molybdenum-antimony-hydrogen peroxide raw material liquid may be cooled before use. The molybdenum aqueous solution may not be used.

(2)ニオブ−シュウ酸−過酸化水素水溶液を用いる場合
ヘプタモリブデン酸アンモニウムを溶解させた水溶液に、酸化アンチモン(III)、メタバナジン酸アンモニウムを添加し、水浴中または油浴中にて80〜140℃で反応させ、モリブデン−アンチモン−バナジウム原料液を得る。ヘプタモリブデン酸アンモニウムを水に溶解させ、モリブデン水溶液を得る。得られたモリブデン−アンチモン−バナジウム原料液、モリブデン水溶液、過酸化水素水、ニオブ−シュウ酸−過酸化水素水溶液を混合して原料調合液を製造する。該モリブデン−アンチモン−バナジウム原料液は冷却して用いてもよい。該モリブデン水溶液は用いなくてもよい。
(2) When niobium-oxalic acid-hydrogen peroxide aqueous solution is used Antimony (III) oxide and ammonium metavanadate are added to an aqueous solution in which ammonium heptamolybdate is dissolved, and 80 to 140 in a water bath or an oil bath. Reaction is performed at a temperature of ° C to obtain a molybdenum-antimony-vanadium raw material liquid. Ammonium heptamolybdate is dissolved in water to obtain an aqueous molybdenum solution. The obtained molybdenum-antimony-vanadium raw material solution, molybdenum aqueous solution, hydrogen peroxide solution, niobium-oxalic acid-hydrogen peroxide solution are mixed to produce a raw material preparation solution. The molybdenum-antimony-vanadium raw material liquid may be cooled before use. The molybdenum aqueous solution may not be used.

または、ヘプタモリブデン酸アンモニウムを溶解させた水溶液に、酸化アンチモン(III)、過酸化水素水を添加し、水浴中または油浴中にて80〜140℃で反応させ、モリブデン−アンチモン−過酸化水素原料液を得る。ヘプタモリブデン酸アンモニウムを水に溶解させ、モリブデン水溶液を得る。メタバナジン酸アンモニウムは過酸化水素水溶液に溶解させ、バナジウム−過酸化水素水溶液を得る。得られたモリブデン−アンチモン−過酸化水素原料液、モリブデン水溶液、バナジウム−過酸化水素水溶液、ニオブ−シュウ酸−過酸化水素水溶液を混合して原料調合液を製造する。該モリブデン−アンチモン−過酸化水素原料液は冷却して用いてもよい。該モリブデン水溶液は用いなくてもよい。   Alternatively, antimony (III) oxide and hydrogen peroxide solution are added to an aqueous solution in which ammonium heptamolybdate is dissolved, and the mixture is reacted at 80 to 140 ° C. in a water bath or an oil bath, and molybdenum-antimony-hydrogen peroxide is added. A raw material liquid is obtained. Ammonium heptamolybdate is dissolved in water to obtain an aqueous molybdenum solution. Ammonium metavanadate is dissolved in an aqueous hydrogen peroxide solution to obtain an aqueous vanadium-hydrogen peroxide solution. The obtained molybdenum-antimony-hydrogen peroxide raw material solution, molybdenum aqueous solution, vanadium-hydrogen peroxide aqueous solution, and niobium-oxalic acid-hydrogen peroxide aqueous solution are mixed to produce a raw material preparation solution. The molybdenum-antimony-hydrogen peroxide raw material liquid may be cooled before use. The molybdenum aqueous solution may not be used.

または、ヘプタモリブデン酸アンモニウムを溶解させた水溶液に、酸化アンチモン(III)、過酸化水素水を添加し、水浴中または油浴中にて80〜140℃で反応させ、モリブデン−アンチモン−過酸化水素原料液を得る。ヘプタモリブデン酸アンモニウムを水に溶解させ、モリブデン水溶液を得る。得られたモリブデン−アンチモン−過酸化水素原料液、モリブデン水溶液、メタバナジン酸アンモニウム、ニオブ−シュウ酸−過酸化水素水溶液を混合して原料調合液を製造する。該モリブデン−アンチモン−過酸化水素原料液は冷却して用いてもよい。該モリブデン水溶液は用いなくてもよい。   Alternatively, antimony (III) oxide and hydrogen peroxide solution are added to an aqueous solution in which ammonium heptamolybdate is dissolved, and the mixture is reacted at 80 to 140 ° C. in a water bath or an oil bath, and molybdenum-antimony-hydrogen peroxide is added. A raw material liquid is obtained. Ammonium heptamolybdate is dissolved in water to obtain an aqueous molybdenum solution. The obtained molybdenum-antimony-hydrogen peroxide raw material solution, molybdenum aqueous solution, ammonium metavanadate, niobium-oxalic acid-hydrogen peroxide aqueous solution are mixed to produce a raw material preparation solution. The molybdenum-antimony-hydrogen peroxide raw material liquid may be cooled before use. The molybdenum aqueous solution may not be used.

(3)ニオブ−アンチモン−シュウ酸−過酸化水素水溶液を用いる場合
ヘプタモリブデン酸アンモニウムを溶解させた水溶液に、酸化アンチモン(III)、メタバナジン酸アンモニウムを添加し、水浴中または油浴中にて80〜140℃で反応させ、モリブデン−アンチモン−バナジウム原料液を得る。ヘプタモリブデン酸アンモニウムを水に溶解させ、モリブデン水溶液を得る。得られたモリブデン−アンチモン−バナジウム原料液、モリブデン水溶液、過酸化水素水、ニオブ―アンチモン−シュウ酸−過酸化水素水溶液を混合して原料調合液を製造する。該モリブデン−アンチモン−バナジウム原料液は冷却して用いてもよい。該モリブデン水溶液は用いなくてもよい。
(3) When using an aqueous solution of niobium-antimony-oxalic acid-hydrogen peroxide Antimony (III) oxide and ammonium metavanadate are added to an aqueous solution in which ammonium heptamolybdate is dissolved. Reaction is performed at ˜140 ° C. to obtain a molybdenum-antimony-vanadium raw material liquid. Ammonium heptamolybdate is dissolved in water to obtain an aqueous molybdenum solution. The obtained molybdenum-antimony-vanadium raw material solution, molybdenum aqueous solution, hydrogen peroxide solution, niobium-antimony-oxalic acid-hydrogen peroxide aqueous solution are mixed to produce a raw material preparation solution. The molybdenum-antimony-vanadium raw material liquid may be cooled before use. The molybdenum aqueous solution may not be used.

または、ヘプタモリブデン酸アンモニウムを溶解させた水溶液に、酸化アンチモン(III)、過酸化水素水を添加し、水浴中または油浴中にて80〜140℃で反応させ、モリブデン−アンチモン−過酸化水素原料液を得る。ヘプタモリブデン酸アンモニウムを水に溶解させ、モリブデン水溶液を得る。メタバナジン酸アンモニウムは過酸化水素水溶液に溶解させ、バナジウム−過酸化水素水溶液を得る。得られたモリブデン−アンチモン−過酸化水素原料液、モリブデン水溶液、バナジウム−過酸化水素水溶液、ニオブ―アンチモン−シュウ酸−過酸化水素水溶液を混合して原料調合液を製造する。該モリブデン−アンチモン−過酸化水素原料液は冷却して用いてもよい。該モリブデン水溶液は用いなくてもよい。   Alternatively, antimony (III) oxide and hydrogen peroxide solution are added to an aqueous solution in which ammonium heptamolybdate is dissolved, and the mixture is reacted at 80 to 140 ° C. in a water bath or an oil bath, and molybdenum-antimony-hydrogen peroxide is added. A raw material liquid is obtained. Ammonium heptamolybdate is dissolved in water to obtain an aqueous molybdenum solution. Ammonium metavanadate is dissolved in an aqueous hydrogen peroxide solution to obtain an aqueous vanadium-hydrogen peroxide solution. The obtained molybdenum-antimony-hydrogen peroxide raw material solution, molybdenum aqueous solution, vanadium-hydrogen peroxide aqueous solution, niobium-antimony-oxalic acid-hydrogen peroxide aqueous solution are mixed to produce a raw material preparation solution. The molybdenum-antimony-hydrogen peroxide raw material liquid may be cooled before use. The molybdenum aqueous solution may not be used.

または、ヘプタモリブデン酸アンモニウムを溶解させた水溶液に、酸化アンチモン(III)、過酸化水素水を添加し、水浴中または油浴中にて80〜140℃で反応させ、モリブデン−アンチモン−過酸化水素原料液を得る。ヘプタモリブデン酸アンモニウムを水に溶解させ、モリブデン水溶液を得る。得られたモリブデン−アンチモン−過酸化水素原料液、モリブデン水溶液、メタバナジン酸アンモニウム、ニオブ―アンチモン−シュウ酸−過酸化水素水溶液を混合して原料調合液を製造する。該モリブデン−アンチモン−過酸化水素水原料液は冷却して用いてもよい。該モリブデン水溶液は用いなくてもよい。
シリカ担持酸化物触媒を製造する場合には、上記調合順序のいずれかのステップにおいて、シリカゾル、粉体シリカを添加して原料調合液を得ることができる。シリカゾル、粉体シリカは単独で用いても、シリカゾルと粉体シリカを混合して用いてもよい。
Z成分を含む酸化物触媒を製造する場合には、上記調合順序のいずれかのステップにおいて、Z成分を含む原料を添加して原料調合液を得ることができる。
Alternatively, antimony (III) oxide and hydrogen peroxide solution are added to an aqueous solution in which ammonium heptamolybdate is dissolved, and the mixture is reacted at 80 to 140 ° C. in a water bath or an oil bath, and molybdenum-antimony-hydrogen peroxide is added. A raw material liquid is obtained. Ammonium heptamolybdate is dissolved in water to obtain an aqueous molybdenum solution. The obtained molybdenum-antimony-hydrogen peroxide raw material solution, molybdenum aqueous solution, ammonium metavanadate, niobium-antimony-oxalic acid-hydrogen peroxide aqueous solution are mixed to produce a raw material preparation solution. The molybdenum-antimony-hydrogen peroxide solution raw material solution may be cooled before use. The molybdenum aqueous solution may not be used.
In the case of producing a silica-supported oxide catalyst, a raw material preparation liquid can be obtained by adding silica sol and powder silica in any step of the preparation order. Silica sol and powdered silica may be used alone or in combination with silica sol and powdered silica.
In the case of producing an oxide catalyst containing a Z component, a raw material preparation liquid can be obtained by adding a raw material containing a Z component in any step of the above preparation sequence.

<乾燥工程>
原料調合工程で得られた触媒原料液を噴霧乾燥法または蒸発乾固法によって乾燥させ、乾燥粉体を得る。噴霧乾燥法における噴霧化は、遠心方式、二流体ノズル方式または高圧ノズル方式を採用することができる。乾燥熱源は、スチーム、電気ヒーターなどによって加熱された空気を用いることができる。このとき熱風の乾燥機入口温度は150〜300℃が好ましい。噴霧乾燥は簡便には、100℃〜300℃に加熱された鉄板上へ触媒原料液を噴霧することによって行うこともできる。蒸発乾固は、100℃〜300℃に加熱された試験管、るつぼなど、水分を蒸発させることのできる容器内へ触媒原料液を滴下することによって、簡便に行うこともできる。
<Drying process>
The catalyst raw material liquid obtained in the raw material preparation step is dried by spray drying or evaporation to dryness to obtain a dry powder. The atomization in the spray drying method can employ a centrifugal method, a two-fluid nozzle method, or a high-pressure nozzle method. As the drying heat source, air heated by steam, an electric heater or the like can be used. At this time, the dryer inlet temperature of hot air is preferably 150 to 300 ° C. Spray drying can also be performed simply by spraying the catalyst raw material liquid onto an iron plate heated to 100 ° C to 300 ° C. Evaporation to dryness can also be easily carried out by dropping the catalyst raw material liquid into a vessel capable of evaporating moisture, such as a test tube or crucible heated to 100 ° C to 300 ° C.

<焼成工程>
乾燥工程で得られた乾燥粉体を焼成することによって酸化物触媒を得る。焼成は回転炉、トンネル炉、管状炉、流動焼成炉等を用いる。焼成は、大気雰囲気下、または実質的に酸素を含まない窒素等の不活性ガス雰囲気下または流通下で行われるが、好ましくは実質的に酸素を含まない窒素等の不活性ガス雰囲気下または流通下である。さらに好ましくは不活性ガスを流通させながら500〜700℃、特に好ましくは570〜670℃で実施することができる。焼成時間は0.5〜5時間、好ましくは1〜3時間である。不活性ガス中の酸素濃度は、ガスクロマトグラフィーまたは微量酸素分析計で測定して1000ppm以下、好ましくは100ppm以下である。焼成は反復することができる。この焼成の前に大気雰囲気下または大気流通下で200℃〜420℃、好ましくは250℃〜350℃で10分〜5時間前焼成することができる。また焼成の後に大気雰囲気下で200℃〜400℃、5分〜5時間後焼成することもできる。
<Baking process>
An oxide catalyst is obtained by firing the dry powder obtained in the drying step. For the firing, a rotary furnace, a tunnel furnace, a tubular furnace, a fluidized firing furnace or the like is used. Firing is carried out in an air atmosphere or in an inert gas atmosphere or flow of nitrogen or the like that is substantially free of oxygen, but preferably in an inert gas atmosphere or flow of nitrogen or the like that is substantially free of oxygen. It is below. More preferably, it can be carried out at 500 to 700 ° C., particularly preferably at 570 to 670 ° C. while circulating an inert gas. The firing time is 0.5 to 5 hours, preferably 1 to 3 hours. The oxygen concentration in the inert gas is 1000 ppm or less, preferably 100 ppm or less as measured by gas chromatography or a trace oxygen analyzer. Firing can be repeated. Prior to this firing, pre-baking can be carried out at 200 ° C. to 420 ° C., preferably 250 ° C. to 350 ° C. for 10 minutes to 5 hours in an air atmosphere or under air circulation. Moreover, after baking, it can also bake after 200 degreeC-400 degreeC and 5 minute-5 hours by air | atmosphere atmosphere.

このようにして製造された酸化物触媒は、プロパンまたはイソブタンを気相接触アンモ酸化させて不飽和ニトリルを製造する際の触媒として使用できる。また、プロパンまたはイソブタンを気相接触酸化させて不飽和カルボン酸を製造する際の触媒としても使用できる。好ましくは不飽和ニトリルの製造用の触媒として使用することである。
不飽和ニトリルの製造に用いる、プロパンまたはイソブタンとアンモニアの供給原料は必ずしも高純度である必要はなく、工業グレードのガスを使用することができる。
反応系に供給する酸素源として空気、酸素を富化した空気、または純酸素を用いることができる。更に、水蒸気、ヘリウム、アルゴン、炭酸ガス、窒素などを供給してもよい。
The oxide catalyst thus produced can be used as a catalyst for producing an unsaturated nitrile by subjecting propane or isobutane to gas phase catalytic ammoxidation. It can also be used as a catalyst for producing unsaturated carboxylic acid by vapor-phase catalytic oxidation of propane or isobutane. Preferably it is used as a catalyst for the production of unsaturated nitriles.
The feedstock of propane or isobutane and ammonia used for the production of unsaturated nitriles does not necessarily have to be highly pure, and industrial grade gases can be used.
As the oxygen source supplied to the reaction system, air, air enriched with oxygen, or pure oxygen can be used. Further, steam, helium, argon, carbon dioxide gas, nitrogen, or the like may be supplied.

気相接触アンモ酸化の場合は、反応系に供給されるアンモニアのプロパンまたはイソブタンに対するモル比は0.1〜1.5、好ましくは0.2〜1.2である。反応系に供給される分子状酸素のプロパンまたはイソブタンに対するモル比は、0.2〜6、好ましくは0.4〜4である。
気相接触酸化の場合は、反応系に供給される分子状酸素のプロパンまたはイソブタンに対するモル比は、0.1〜10、好ましくは0.1〜5である。反応系に水蒸気の添加が好ましいが、反応系に供給される水蒸気のプロパンまたはイソブタンに対するモル比は0.1〜70、好ましくは0.5〜40である。
In the case of gas phase catalytic ammoxidation, the molar ratio of ammonia supplied to the reaction system to propane or isobutane is 0.1 to 1.5, preferably 0.2 to 1.2. The molar ratio of molecular oxygen supplied to the reaction system to propane or isobutane is 0.2 to 6, preferably 0.4 to 4.
In the case of gas phase catalytic oxidation, the molar ratio of molecular oxygen supplied to the reaction system to propane or isobutane is 0.1 to 10, preferably 0.1 to 5. Although addition of water vapor to the reaction system is preferred, the molar ratio of water vapor supplied to the reaction system to propane or isobutane is 0.1 to 70, preferably 0.5 to 40.

反応圧力は絶対圧で0.01〜1MPa、好ましくは0.02〜0.3MPaである。
反応温度は300℃〜600℃、好ましくは350℃〜470℃である。
接触時間は0.1〜30(g・s/ml)、好ましくは0.5〜10(g・s/ml)である。
反応は、固定床、流動床、移動床など従来の方式を採用できるが、反応制御の容易さから流動床が好ましい。反応は単流方式でもリサイクル方式でもよい。
The reaction pressure is 0.01 to 1 MPa in absolute pressure, preferably 0.02 to 0.3 MPa.
The reaction temperature is 300 ° C to 600 ° C, preferably 350 ° C to 470 ° C.
The contact time is 0.1 to 30 (g · s / ml), preferably 0.5 to 10 (g · s / ml).
For the reaction, a conventional system such as a fixed bed, a fluidized bed, or a moving bed can be adopted, but a fluidized bed is preferable because of easy reaction control. The reaction may be a single flow method or a recycle method.

本発明方法によれば、比較的低い温度にて、プロパンまたはイソブタンから良好な選択率で不飽和ニトリルや不飽和カルボン酸を製造することができる。その上、モリブデンの飛散を抑制できる。その結果、反応の選択率を維持することができ、不飽和ニトリル、不飽和カルボン酸が効率的に製造されるのみならず、反応中のモリブデンの追添作業や、飛散したモリブデンの除去作業頻度が軽減されるため、反応の運転性が著しく向上される。   According to the method of the present invention, an unsaturated nitrile or an unsaturated carboxylic acid can be produced from propane or isobutane with a good selectivity at a relatively low temperature. In addition, the scattering of molybdenum can be suppressed. As a result, it is possible to maintain the selectivity of the reaction and not only efficiently produce unsaturated nitriles and unsaturated carboxylic acids, but also the frequency of adding molybdenum during the reaction and the frequency of removing the scattered molybdenum. Therefore, the operability of the reaction is remarkably improved.

以下に、本発明をプロパンのアンモ酸化反応、プロパンの酸化反応の実施例で説明する。各例において、プロパン転化率、アクリロニトリル選択率、アクリル酸選択率は、それぞれ次の定義に従う。
プロパン転化率(%)=(反応したプロパンのモル数)/(供給したプロパンのモル数)×100
アクリロニトリル選択率(%)=(生成したアクリロニトリルのモル数)/(反応したプロパンのモル数)×100
アクリル酸選択率(%)=(生成したアクリル酸のモル数)/(反応したプロパンのモル数)×100
酸化物触媒のX線回折(XRD);酸化物触媒を日本国マックサイエンス(株)製MXP−18型X線回折装置を用いるX線回折に付し、X線回折図を得た。試料の調製方法とX線回折の条件は以下の通りである。
Hereinafter, the present invention will be described with reference to examples of propane ammoxidation reaction and propane oxidation reaction. In each example, the propane conversion, acrylonitrile selectivity, and acrylic acid selectivity follow the following definitions.
Propane conversion (%) = (moles of propane reacted) / (moles of propane fed) × 100
Acrylonitrile selectivity (%) = (number of moles of acrylonitrile produced) / (number of moles of reacted propane) × 100
Acrylic acid selectivity (%) = (number of moles of acrylic acid produced) / (number of moles of reacted propane) × 100
X-ray diffraction (XRD) of oxide catalyst: The oxide catalyst was subjected to X-ray diffraction using an MXP-18 type X-ray diffractometer manufactured by Mac Science, Japan to obtain an X-ray diffraction diagram. The sample preparation method and X-ray diffraction conditions are as follows.

(試料の調製)
酸化物触媒約0.5gをメノウ乳鉢にとり、メノウ乳棒を用いて2分間徒手的に粉砕した後に分級し、粒子径53μm以下の触媒粉末を得た。得られた触媒粉末を、XRD測定用の試料台の表面にある窪み(長さ20mm、幅16mmの長方形状、深さ0.2mm)に乗せ、平板状のステンレス製スパチュラを用いて押しつけて、表面を平らにした。
(Sample preparation)
About 0.5 g of the oxide catalyst was placed in an agate mortar, and manually pulverized for 2 minutes using an agate pestle, followed by classification to obtain a catalyst powder having a particle size of 53 μm or less. The obtained catalyst powder was placed in a depression (length 20 mm, width 16 mm rectangular, depth 0.2 mm) on the surface of the XRD measurement sample stage, and pressed using a flat stainless steel spatula, The surface was flattened.

(測定条件)
X線回折図は以下の条件で得た。
X線源 :CuKα1+CuKα2
検出器 :シンチレーションカウンター
分光結晶 :グラファイト
管電圧 :40kV
管電流 :190mA
発散スリット :1°
散乱スリット :1°
受光スリット :0.3mm
スキャン速度 :5°/分
サンプリング幅 :0.02°
スキャン法 :2θ/θ法
(Measurement condition)
X-ray diffraction patterns were obtained under the following conditions.
X-ray source: CuKα1 + CuKα2
Detector: Scintillation counter Spectroscopic crystal: Graphite Tube voltage: 40 kV
Tube current: 190 mA
Divergent slit: 1 °
Scattering slit: 1 °
Light receiving slit: 0.3 mm
Scanning speed: 5 ° / min Sampling width: 0.02 °
Scanning method: 2θ / θ method

回折角(2θ)の補正は、シリコン粉末について得られたX線回折データを用いてキャリブレーションすることで行った。X線回折図のスムージング処理を行ってもよい。
得られたX線回折図に関し、強度比Rを下記式(II)によって定義する。
R=I27.1/(I27.1+I28.1)・・・(II)
(式中、I27.1はP27.1(回折角(2θ)が27.1±0.3°の位置に観測されるピーク)の強度を表わし、I28.1はP28.1(回折角(2θ)が28.1±0.3°の位置に観測されるピーク)の強度を表わす。)
モリブデン飛散実験;モリブデンの飛散は、長期間の反応を行って、適宜、触媒を反応器から抜き出し、触媒中の残存モリブデン量を測定することで評価するが、本発明者らは非特許文献1に示された方法に従い、水蒸気−不活性ガス混合ガスを流通させるモリブデン飛散加速実験を行った。
The diffraction angle (2θ) was corrected by calibrating using the X-ray diffraction data obtained for the silicon powder. X-ray diffractogram smoothing may be performed.
Regarding the obtained X-ray diffraction pattern, the intensity ratio R is defined by the following formula (II).
R = I 27.1 / (I 27.1 + I 28.1 ) (II)
( Wherein I 27.1 represents the intensity of P 27.1 (peak observed at a diffraction angle (2θ) of 27.1 ± 0.3 °), and I 28.1 represents P 28.1. (Represents the intensity of the peak observed at a diffraction angle (2θ) of 28.1 ± 0.3 °).)
Molybdenum scattering experiment: Molybdenum scattering is evaluated by conducting a long-term reaction, appropriately removing the catalyst from the reactor, and measuring the amount of remaining molybdenum in the catalyst. According to the method shown in the above, an experiment for accelerating molybdenum scattering in which a steam-inert gas mixed gas was circulated was performed.

(実験条件)
内径25mmのバイコールガラス流動用型反応管に、触媒50gを充填し、反応温度500℃(内温)と反応圧力6.87MPa(ゲージ圧)の条件下に、ヘリウム:水蒸気のモル比=1:3の混合ガスを、接触時間7.0(=W/F×60×273/(273+T)×((P×0.102+0.101)/0.101))(g・s/ml)となるよう、流量F(ml/min)で流通させた。
(Experimental conditions)
A reaction tube for flow of Vycor glass having an inner diameter of 25 mm is filled with 50 g of catalyst, and under a reaction temperature of 500 ° C. (inner temperature) and a reaction pressure of 6.87 MPa (gauge pressure), a molar ratio of helium: water vapor = 1: 3 is a contact time of 7.0 (= W / F × 60 × 273 / (273 + T) × ((P × 0.102 + 0.101) /0.101)) (g · s / ml). The flow rate was F (ml / min).

(飛散モリブデンの評価)
未反応触媒および48時間連続反応後の触媒をそれぞれ5g、日陶科学(株)製ニット−自動乳鉢ANM1000型を用いて2時間粉砕した後、塩ビ製リング(30mm錠剤成型用:外径38mm、内径31mm、厚さ5mm)を用いて錠剤に成型した(成型圧:245GPa、成型圧加圧時間:65秒)。得られた錠剤をリガク(株)製RIX3000型蛍光X線分析装置(管球:Rh)を用いて、錠剤中のモリブデンの分析を行った。モリブデンの分析は、錠剤の蛍光X線測定を行い、錠剤中のモリブデンの蛍光X線強度(スペクトル:Lα線)をFP法(Fundamental Parameter)によって、触媒中の酸化モリブデン(VI)[MoO]重量濃度として換算することによって行った。FP法による重量濃度換算は、上記リガク(株)製RIX3000型蛍光X線分析装置付属のFPソフトを用いて行った。
(Evaluation of scattered molybdenum)
5 g each of unreacted catalyst and the catalyst after 48 hours of continuous reaction were pulverized for 2 hours using a knit-automatic mortar ANM1000 manufactured by Nisto Kagaku Co., Ltd., and then a vinyl chloride ring (for 30 mm tablet molding: outer diameter 38 mm, It was molded into a tablet using an inner diameter of 31 mm and a thickness of 5 mm (molding pressure: 245 GPa, molding pressure pressing time: 65 seconds). The obtained tablets were analyzed for molybdenum in the tablets using a RIX3000 type fluorescent X-ray analyzer (tube: Rh) manufactured by Rigaku Corporation. Molybdenum analysis is performed by measuring the fluorescent X-rays of the tablet, and determining the fluorescent X-ray intensity (spectrum: Lα ray) of the molybdenum in the tablet by the FP method (Fundamental Parameter) molybdenum (VI) oxide [MoO 3 ] in the catalyst. This was done by converting the weight concentration. The weight concentration conversion by the FP method was performed using FP software attached to the RIX3000 type fluorescent X-ray analyzer manufactured by Rigaku Corporation.

飛散モリブデンの評価は下記式(IV)および(V)によって定義する。
C=C0−48 (IV)
M=(C0−48)/C×100 (V)
(式中、Cは未反応触媒中のモリブデンを酸化モリブデン(VI)に換算した重量濃度、C48は反応48時間後の触媒中のモリブデンを酸化モリブデン(VI)に換算した重量濃度であり、Cは48時間の反応中に飛散したモリブデンを酸化モリブデン(VI)に換算した重量濃度であり、Mは未反応触媒中のモリブデンに対する48時間の反応中に飛散したモリブデンの割合である。)
Evaluation of scattered molybdenum is defined by the following formulas (IV) and (V).
C = C 0- C 48 (IV)
M = (C 0 -C 48 ) / C 0 × 100 (V)
(In the formula, C 0 is a weight concentration obtained by converting molybdenum in the unreacted catalyst into molybdenum (VI), and C 48 is a weight concentration obtained by converting molybdenum in the catalyst 48 hours after the reaction into molybdenum oxide (VI). , C is a weight concentration in which molybdenum scattered during the reaction for 48 hours is converted to molybdenum (VI) oxide, and M is a ratio of molybdenum scattered during the reaction for 48 hours to molybdenum in the unreacted catalyst.)

[実施例1]
<触媒調製>
組成式がMo0.52Sb0.33Nb0.29/SiO(40重量%)で示される酸化物触媒を次のようにして調製した。
水558gにヘプタモリブデン酸アンモニウム[(NHMo24・4HO]19.2g、酸化アンチモン(III)[Sb]9.8g、30重量%過酸化水素水7.6gを添加し、油浴を用いて115℃で1時間、大気下で還流して反応させ、モリブデン−アンチモン−過酸化水素原料液を得た。
[Example 1]
<Catalyst preparation>
Composition formula was prepared by an oxide catalyst represented by Mo 1 V 0.52 Sb 0.33 Nb 0.29 O n / SiO 2 (40 wt%) as follows.
15.8 g of ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O], 9.8 g of antimony (III) oxide [Sb 2 O 3 ], 30 wt% aqueous hydrogen peroxide, 558 g of water 6 g was added and reacted in an oil bath at 115 ° C. for 1 hour under reflux in the atmosphere to obtain a molybdenum-antimony-hydrogen peroxide raw material solution.

水101gにヘプタモリブデン酸アンモニウム16.9gを添加し、モリブデン水溶液液を得た。
水618gにメタバナジン酸アンモニウム[NHVO]12.4g、30重量%過酸化水素水31.1gを添加し、バナジウム−過酸化水素水溶液を得た。
水60.7gにNb換算で76重量%を含有するニオブ酸10.4g、シュウ酸二水和物[H・2HO]19.4gを加え、攪拌下、60℃にて加熱して溶解させた後、30℃にて冷却してニオブ−シュウ酸水溶液を得た。該ニオブ−シュウ酸水溶液に30重量%過酸化水素水13.4gを添加して、ニオブ−シュウ酸−過酸化水素水溶液を得た。
To 101 g of water, 16.9 g of ammonium heptamolybdate was added to obtain a molybdenum aqueous solution.
To 618 g of water, 12.4 g of ammonium metavanadate [NH 4 VO 3 ] and 31.1 g of 30 wt% hydrogen peroxide water were added to obtain a vanadium-hydrogen peroxide aqueous solution.
10.4 g of niobic acid containing 76% by weight in terms of Nb 2 O 5 and 19.4 g of oxalic acid dihydrate [H 2 C 2 O 4 .2H 2 O] were added to 60.7 g of water. After heating and dissolving at 60 ° C., the solution was cooled at 30 ° C. to obtain a niobium-oxalic acid aqueous solution. To the niobium-oxalic acid aqueous solution, 13.4 g of 30% by weight hydrogen peroxide water was added to obtain a niobium-oxalic acid-hydrogen peroxide aqueous solution.

上記モリブデン−アンチモン−過酸化水素原料液に、該モリブデン水溶液、該バナジウム−過酸化水素水溶液、該ニオブ−シュウ酸−過酸化水素水溶液を添加したのち、続けてシリカ含有量30重量%のシリカゾルを126g添加し、空気雰囲気下、30分間撹拌して原料調合液を得た。
得られた原料調合液を遠心式噴霧乾燥器を用い、入口温度230℃と出口温度120℃の条件で乾燥して微小球状の乾燥粉体を得た。得られた乾燥粉体100gを石英容器に充填し、容器を回転させながら600(ml/min)の空気流通下、250℃で1時間前焼成後、容器を回転させながら600(ml/min)の窒素ガス流通下、600℃で2時間焼成して酸化物触媒を得た。用いた窒素ガスの酸素濃度は微量酸素分析計(306WA型、テレダインアナリティカルインスルーメント社製)を用いて測定した結果、1ppmであった。酸化物触媒の組成と主要な製法因子を表1に記載した。
After adding the molybdenum aqueous solution, the vanadium hydrogen peroxide aqueous solution, and the niobium oxalic acid hydrogen peroxide aqueous solution to the molybdenum-antimony-hydrogen peroxide raw material solution, a silica sol having a silica content of 30% by weight is subsequently added. 126 g was added and stirred for 30 minutes in an air atmosphere to obtain a raw material preparation solution.
The obtained raw material mixture was dried using a centrifugal spray dryer under conditions of an inlet temperature of 230 ° C. and an outlet temperature of 120 ° C. to obtain a fine spherical dry powder. 100 g of the obtained dry powder is filled into a quartz container, pre-baked at 250 ° C. for 1 hour under an air flow of 600 (ml / min) while rotating the container, and then 600 (ml / min) while rotating the container. Was then calcined at 600 ° C. for 2 hours under a nitrogen gas flow to obtain an oxide catalyst. The oxygen concentration of the nitrogen gas used was 1 ppm as a result of measurement using a trace oxygen analyzer (306WA type, manufactured by Teledyne Analytical Instruments). Table 1 shows the composition of the oxide catalyst and the main production factors.

得られた酸化物触媒に関し、CuKα線をX線源として得られたX線回折図を図1に示す。得られた酸化物触媒は、X線回折図において、回折角(2θ)が7.8±0.3°、8.9±0.3°、22.1±0.3°、27.1±0.3°、28.1±0.3°、35.2±0.3°、36.1±0.3°および45.2±0.3°の位置にピークを示し、R=0.43であった。   FIG. 1 shows an X-ray diffraction pattern of the obtained oxide catalyst obtained using CuKα rays as an X-ray source. In the X-ray diffraction pattern, the obtained oxide catalyst has diffraction angles (2θ) of 7.8 ± 0.3 °, 8.9 ± 0.3 °, 22.1 ± 0.3 °, 27.1. Peaks are shown at positions of ± 0.3 °, 28.1 ± 0.3 °, 35.2 ± 0.3 °, 36.1 ± 0.3 ° and 45.2 ± 0.3 °, and R = 0.43.

<プロパンのアンモ酸化反応試験>
酸化物触媒W=0.35gを内径4mmの固定床型反応管に充填し、反応温度T=420℃、プロパン:アンモニア:酸素:ヘリウム=1:0.95:2.59:4.39のモル比の混合ガスを流量F=2.0(ml/min)で流した。このとき圧力Pはゲージ圧で0MPaであった。接触時間は4.14(=W/F×60×273/(273+T)×((P+0.101)/0.101))(g・s/ml)である。反応ガスの分析はオンラインガスクロマトグラフィーで行った。得られた結果を表1に示す。
<Propane Ammoxidation Test>
An oxide catalyst W = 0.35 g was packed into a fixed bed type reaction tube having an inner diameter of 4 mm, and the reaction temperature T = 420 ° C., propane: ammonia: oxygen: helium = 1: 0.95: 2.59: 4.39. A mixed gas having a molar ratio was flowed at a flow rate F = 2.0 (ml / min). At this time, the pressure P was 0 MPa as a gauge pressure. The contact time is 4.14 (= W / F × 60 × 273 / (273 + T) × ((P + 0.101) /0.101)) (g · s / ml). Analysis of the reaction gas was performed by on-line gas chromatography. The obtained results are shown in Table 1.

[実施例2]
<触媒調製>
組成式がMo0.61Sb0.36Nb0.17/SiO(40重量%)で示される酸化物触媒を次のようにして調製した。
水587gにヘプタモリブデン酸アンモニウム20.2g、酸化アンチモン(III)9.5g、30重量%過酸化水素水7.3gを添加し、油浴を用いて115℃で1時間、大気下で還流して反応させ、モリブデン−アンチモン−過酸化水素原料液を得た。
水69.8gにヘプタモリブデン酸アンモニウム11.6gを添加し、モリブデン水溶液を得た。
[Example 2]
<Catalyst preparation>
Composition formula was prepared by an oxide catalyst represented by Mo 1 V 0.61 Sb 0.36 Nb 0.17 O n / SiO 2 (40 wt%) as follows.
To 587 g of water, 20.2 g of ammonium heptamolybdate, 9.5 g of antimony (III) oxide, and 7.3 g of 30% by weight hydrogen peroxide water were added, and the mixture was refluxed in the air at 115 ° C. for 1 hour in the air. To obtain a molybdenum-antimony-hydrogen peroxide raw material solution.
11.6 g of ammonium heptamolybdate was added to 69.8 g of water to obtain a molybdenum aqueous solution.

水611gにメタバナジン酸アンモニウム12.9g、30重量%過酸化水素水32.1gを添加し、バナジウム−過酸化水素水溶液を得た。
水32.8gにNb換算で76重量%を含有するニオブ酸5.4g、シュウ酸二水和物10gを加え、攪拌下、60℃にて加熱して溶解させた後、30℃にて冷却してニオブ−シュウ酸水溶液を得た。該ニオブ−シュウ酸水溶液に30重量%過酸化水素水7.0gを添加して、ニオブ−シュウ酸−過酸化水素水溶液を得た。
上記モリブデン−アンチモン−過酸化水素原料液に、該モリブデン水溶液、該バナジウム−過酸化水素水溶液、該ニオブ−シュウ酸−過酸化水素水溶液を添加したのち、続けてシリカ含有量30重量%のシリカゾルを110g添加し、空気雰囲気下、30分間撹拌して原料調合液を得た。
To 611 g of water, 12.9 g of ammonium metavanadate and 32.1 g of 30 wt% hydrogen peroxide water were added to obtain a vanadium-hydrogen peroxide aqueous solution.
5.4 g of niobic acid containing 76% by weight in terms of Nb 2 O 5 and 10 g of oxalic acid dihydrate were added to 32.8 g of water, and the mixture was dissolved by heating at 60 ° C. with stirring. To obtain a niobium-oxalic acid aqueous solution. 7.0 g of 30 wt% aqueous hydrogen peroxide was added to the niobium-oxalic acid aqueous solution to obtain a niobium-oxalic acid-hydrogen peroxide aqueous solution.
After adding the molybdenum aqueous solution, the vanadium hydrogen peroxide aqueous solution, and the niobium oxalic acid hydrogen peroxide aqueous solution to the molybdenum-antimony-hydrogen peroxide raw material solution, a silica sol having a silica content of 30% by weight is subsequently added. 110 g was added and stirred for 30 minutes in an air atmosphere to obtain a raw material preparation solution.

得られた原料調合液を遠心式噴霧乾燥器を用い、入口温度230℃と出口温度120℃の条件で乾燥して微小球状の乾燥粉体を得た。得られた乾燥粉体100gを石英容器に充填し、容器を回転させながら600(ml/min)の空気流通下、250℃で1時間前焼成後、容器を回転させながら600(ml/min)の窒素ガス流通下、600℃で2時間焼成して酸化物触媒を得た。酸化物触媒の組成と主要な製法因子を表1に記載した。
得られた酸化物触媒は、X線回折図において、回折角(2θ)が7.8±0.3°、8.9±0.3°、22.1±0.3°、27.1±0.3°、28.1±0.3°、35.2±0.3°、36.1±0.3°および45.2±0.3°の位置にピークを示し、R=0.44であった。
The obtained raw material mixture was dried using a centrifugal spray dryer under conditions of an inlet temperature of 230 ° C. and an outlet temperature of 120 ° C. to obtain a fine spherical dry powder. 100 g of the obtained dry powder is filled into a quartz container, pre-baked at 250 ° C. for 1 hour under an air flow of 600 (ml / min) while rotating the container, and then 600 (ml / min) while rotating the container. Was then calcined at 600 ° C. for 2 hours under a nitrogen gas flow to obtain an oxide catalyst. Table 1 shows the composition of the oxide catalyst and the main production factors.
In the X-ray diffraction pattern, the obtained oxide catalyst has diffraction angles (2θ) of 7.8 ± 0.3 °, 8.9 ± 0.3 °, 22.1 ± 0.3 °, 27.1. Peaks are shown at positions of ± 0.3 °, 28.1 ± 0.3 °, 35.2 ± 0.3 °, 36.1 ± 0.3 ° and 45.2 ± 0.3 °, and R = It was 0.44.

<プロパンのアンモ酸化反応試験>
得られた酸化物触媒についてプロパンのアンモ酸化反応試験を、酸化物触媒W=0.35g、流量F=2.0(ml/min)にして接触時間を4.14(g・s/ml)とした以外は実施例1と同じ条件下にて行った。得られた結果を表1に示す。
<Propane Ammoxidation Test>
With respect to the obtained oxide catalyst, propane ammoxidation reaction test was performed using an oxide catalyst W = 0.35 g, a flow rate F = 2.0 (ml / min), and a contact time of 4.14 (g · s / ml). The process was performed under the same conditions as in Example 1 except that. The obtained results are shown in Table 1.

[実施例3]
<触媒調製>
組成式がMo0.55Sb0.37Nb0.26/SiO(40重量%)で示される酸化物触媒を次のようにして調製した。
水466gにヘプタモリブデン酸アンモニウム19.2g、酸化アンチモン(III)7.8g、30重量%過酸化水素水6.1gを添加し、油浴を用いて115℃で1時間、大気下で還流して反応させ、モリブデン−アンチモン−過酸化水素原料液を得た。
水38.4gにヘプタモリブデン酸アンモニウム6.4gを添加し、モリブデン水溶液を得た。
[Example 3]
<Catalyst preparation>
Composition formula was prepared by an oxide catalyst represented by Mo 1 V 0.55 Sb 0.37 Nb 0.26 O n / SiO 2 (40 wt%) as follows.
To 466 g of water, 19.2 g of ammonium heptamolybdate, 7.8 g of antimony (III) oxide, and 6.1 g of 30% by weight hydrogen peroxide water were added, and the mixture was refluxed at 115 ° C. for 1 hour in the air using an oil bath. To obtain a molybdenum-antimony-hydrogen peroxide raw material solution.
6.4 g of ammonium heptamolybdate was added to 38.4 g of water to obtain an aqueous molybdenum solution.

水445gにメタバナジン酸アンモニウム9.3g、30重量%過酸化水素水23.3gを添加し、バナジウム−過酸化水素水溶液を得た。
水40.4gにNb換算で76重量%を含有するニオブ酸6.6g、シュウ酸二水和物12.4gを加え、攪拌下、60℃にて加熱して溶解させた後、30℃にて冷却してニオブ−シュウ酸水溶液を得た。該ニオブ−シュウ酸水溶液に30重量%過酸化水素水8.5gを添加して、ニオブ−シュウ酸−過酸化水素水溶液を得た。
上記モリブデン−アンチモン−過酸化水素原料液に、該モリブデン水溶液、該バナジウム−過酸化水素水溶液、該ニオブ−シュウ酸−過酸化水素水溶液を添加したのち、続けてシリカ含有量30重量%のシリカゾルを91g添加し、空気雰囲気下、30分間撹拌して原料調合液を得た。
To 445 g of water, 9.3 g of ammonium metavanadate and 23.3 g of 30 wt% hydrogen peroxide water were added to obtain a vanadium-hydrogen peroxide aqueous solution.
After adding 6.6 g of niobic acid and 12.4 g of oxalic acid dihydrate containing 76% by weight in terms of Nb 2 O 5 to 40.4 g of water, the mixture was heated and dissolved at 60 ° C. with stirring. The mixture was cooled at 30 ° C. to obtain a niobium-oxalic acid aqueous solution. To this niobium-oxalic acid aqueous solution was added 8.5 g of 30% by weight hydrogen peroxide water to obtain a niobium-oxalic acid-hydrogen peroxide aqueous solution.
After adding the molybdenum aqueous solution, the vanadium hydrogen peroxide aqueous solution, and the niobium oxalic acid hydrogen peroxide aqueous solution to the molybdenum-antimony-hydrogen peroxide raw material solution, a silica sol having a silica content of 30% by weight is subsequently added. 91g was added and it stirred for 30 minutes under air atmosphere, and obtained the raw material preparation liquid.

設定温度250℃(実温度248℃)のアルミブロックヒーター(AL−331、ソニックス社製ブロックバス)にセットした試験管の中へ、得られた原料調合液を試験管あたり8ccずつ滴下し(滴下速度4マイクロリットル/秒)、乾燥粉体を得た。
得られた原料調合液を遠心式噴霧乾燥器を用い、入口温度230℃と出口温度120℃の条件で乾燥して微小球状の乾燥粉体を得た。得られた乾燥粉体100gを石英容器に充填し、容器を回転させながら600(ml/min)の空気流通下、250℃で1時間前焼成後、容器を回転させながら600(ml/min)の窒素ガス流通下、600℃で2時間焼成して酸化物触媒を得た。酸化物触媒の組成と主要な製法因子を表1に記載した。
得られた酸化物触媒は、X線回折図において、回折角(2θ)が7.8±0.3°、8.9±0.3°、22.1±0.3°、27.1±0.3°、28.1±0.3°、35.2±0.3°、36.1±0.3°および45.2±0.3°の位置にピークを示し、R=0.66であった。
8 cc of the obtained raw material preparation liquid is dropped per test tube into a test tube set in an aluminum block heater (AL-331, block bath manufactured by Sonics) at a set temperature of 250 ° C. (actual temperature: 248 ° C.) A dry powder was obtained at a rate of 4 microliters / second).
The obtained raw material mixture was dried using a centrifugal spray dryer under conditions of an inlet temperature of 230 ° C. and an outlet temperature of 120 ° C. to obtain a fine spherical dry powder. 100 g of the obtained dry powder is filled into a quartz container, pre-baked at 250 ° C. for 1 hour under an air flow of 600 (ml / min) while rotating the container, and then 600 (ml / min) while rotating the container. Was then calcined at 600 ° C. for 2 hours under a nitrogen gas flow to obtain an oxide catalyst. Table 1 shows the composition of the oxide catalyst and the main production factors.
In the X-ray diffraction pattern, the obtained oxide catalyst has diffraction angles (2θ) of 7.8 ± 0.3 °, 8.9 ± 0.3 °, 22.1 ± 0.3 °, 27.1. Peaks are shown at positions of ± 0.3 °, 28.1 ± 0.3 °, 35.2 ± 0.3 °, 36.1 ± 0.3 ° and 45.2 ± 0.3 °, and R = It was 0.66.

<プロパンのアンモ酸化反応試験>
得られた酸化物触媒についてプロパンのアンモ酸化反応試験を、酸化物触媒W=0.35g、流量F=2.0(ml/min)にして接触時間を4.14(g・s/ml)とした以外は実施例1と同じ条件下にて行った。得られた結果を表1に示す。
<Propane Ammoxidation Test>
With respect to the obtained oxide catalyst, propane ammoxidation reaction test was performed using an oxide catalyst W = 0.35 g, a flow rate F = 2.0 (ml / min), and a contact time of 4.14 (g · s / ml). The process was performed under the same conditions as in Example 1 except that. The obtained results are shown in Table 1.

[実施例4]
<触媒調製>
組成式がMo0.44Sb0.41Nb0.30/SiO(40重量%)で示される酸化物触媒を次のようにして調製した。
水484gにヘプタモリブデン酸アンモニウム20.2g、酸化アンチモン(III)8.7g、30重量%過酸化水素水6.8gを添加し、油浴を用いて115℃で1時間、大気下で還流して反応させ、モリブデン−アンチモン−過酸化水素原料液を得た。
水33.2gにヘプタモリブデン酸アンモニウム5.5gを添加し、モリブデン水溶液を得た。
[Example 4]
<Catalyst preparation>
Composition formula was prepared by an oxide catalyst represented by Mo 1 V 0.44 Sb 0.41 Nb 0.30 O n / SiO 2 (40 wt%) as follows.
Add 20.2 g of ammonium heptamolybdate, 8.7 g of antimony (III) oxide, and 6.8 g of 30% by weight hydrogen peroxide to 484 g of water, and reflux in the atmosphere at 115 ° C. for 1 hour using an oil bath. To obtain a molybdenum-antimony-hydrogen peroxide raw material solution.
To 33.2 g of water, 5.5 g of ammonium heptamolybdate was added to obtain an aqueous molybdenum solution.

水400gにメタバナジン酸アンモニウム7.5g、30重量%過酸化水素水18.8gを添加し、バナジウム−過酸化水素水溶液を得た。
水45.4gにNb換算で76重量%を含有するニオブ酸7.6g、シュウ酸二水和物14.5gを加え、攪拌下、60℃にて加熱して溶解させた後、30℃にて冷却してニオブ−シュウ酸水溶液を得た。該ニオブ−シュウ酸水溶液に30重量%過酸化水素水10gを添加して、ニオブ−シュウ酸−過酸化水素水溶液を得た。
上記モリブデン−アンチモン−過酸化水素原料液に、該モリブデン水溶液、該バナジウム−過酸化水素水溶液、該ニオブ−シュウ酸−過酸化水素水溶液を添加したのち、続けてシリカ含有量30重量%のシリカゾルを92g添加し、空気雰囲気下、30分間撹拌して原料調合液を得た。
To 400 g of water, 7.5 g of ammonium metavanadate and 18.8 g of 30 wt% hydrogen peroxide water were added to obtain a vanadium-hydrogen peroxide aqueous solution.
After adding 7.6 g of niobic acid and 14.5 g of oxalic acid dihydrate containing 76% by weight in terms of Nb 2 O 5 to 45.4 g of water, the mixture was heated and dissolved at 60 ° C. with stirring. The mixture was cooled at 30 ° C. to obtain a niobium-oxalic acid aqueous solution. To the niobium-oxalic acid aqueous solution, 10 g of 30% by weight hydrogen peroxide water was added to obtain a niobium-oxalic acid-hydrogen peroxide aqueous solution.
After adding the molybdenum aqueous solution, the vanadium hydrogen peroxide aqueous solution, and the niobium oxalic acid hydrogen peroxide aqueous solution to the molybdenum-antimony-hydrogen peroxide raw material solution, a silica sol having a silica content of 30% by weight is subsequently added. 92 g was added and stirred for 30 minutes in an air atmosphere to obtain a raw material preparation solution.

得られた原料調合液を遠心式噴霧乾燥器を用い、入口温度230℃と出口温度120℃の条件で乾燥して微小球状の乾燥粉体を得た。得られた乾燥粉体100gを石英容器に充填し、容器を回転させながら600(ml/min)の空気流通下、250℃で1時間前焼成後、容器を回転させながら600(ml/min)の窒素ガス流通下、600℃で2時間焼成して酸化物触媒を得た。酸化物触媒の組成と主要な製法因子を表1に記載した。
得られた酸化物触媒は、X線回折図において、回折角(2θ)が7.8±0.3°、8.9±0.3°、22.1±0.3°、27.1±0.3°、28.1±0.3°、35.2±0.3°、36.1±0.3°および45.2±0.3°の位置にピークを示し、R=0.40であった。
The obtained raw material mixture was dried using a centrifugal spray dryer under conditions of an inlet temperature of 230 ° C. and an outlet temperature of 120 ° C. to obtain a fine spherical dry powder. 100 g of the obtained dry powder is filled into a quartz container, pre-baked at 250 ° C. for 1 hour under an air flow of 600 (ml / min) while rotating the container, and then 600 (ml / min) while rotating the container. Was then calcined at 600 ° C. for 2 hours under a nitrogen gas flow to obtain an oxide catalyst. Table 1 shows the composition of the oxide catalyst and the main production factors.
In the X-ray diffraction pattern, the obtained oxide catalyst has diffraction angles (2θ) of 7.8 ± 0.3 °, 8.9 ± 0.3 °, 22.1 ± 0.3 °, 27.1. Peaks are shown at positions of ± 0.3 °, 28.1 ± 0.3 °, 35.2 ± 0.3 °, 36.1 ± 0.3 ° and 45.2 ± 0.3 °, and R = It was 0.40.

<プロパンのアンモ酸化反応試験>
得られた酸化物触媒についてプロパンのアンモ酸化反応試験を、酸化物触媒W=0.35g、流量F=3.0(ml/min)にして接触時間を2.76(g・s/ml)とした以外は実施例1と同じ条件下にて行った。得られた結果を表1に示す。
<Propane Ammoxidation Test>
With respect to the obtained oxide catalyst, the propane ammoxidation reaction test was performed using an oxide catalyst W = 0.35 g, a flow rate F = 3.0 (ml / min), and a contact time of 2.76 (g · s / ml). The process was performed under the same conditions as in Example 1 except that. The obtained results are shown in Table 1.

[実施例5]
<触媒調製>
組成式がMo0.59Sb0.21Nb0.26/SiO(40重量%)で示される酸化物触媒を次のようにして調製した。
水349gにヘプタモリブデン酸アンモニウム12g、酸化アンチモン(III)5.7g、30重量%過酸化水素水4.5gを添加し、油浴を用いて115℃で1時間、大気下で還流して反応させ、モリブデン−アンチモン−過酸化水素原料液を得た。
水126.4gにヘプタモリブデン酸アンモニウム21.1gを添加し、モリブデン水溶液を得た。
[Example 5]
<Catalyst preparation>
Composition formula was prepared by an oxide catalyst represented by Mo 1 V 0.59 Sb 0.21 Nb 0.26 O n / SiO 2 (40 wt%) as follows.
To 349 g of water, 12 g of ammonium heptamolybdate, 5.7 g of antimony (III) oxide, and 4.5 g of 30% by weight hydrogen peroxide were added, and the reaction was refluxed at 115 ° C. for 1 hour using an oil bath. Thus, a molybdenum-antimony-hydrogen peroxide raw material liquid was obtained.
21.1 g of ammonium heptamolybdate was added to 126.4 g of water to obtain an aqueous molybdenum solution.

水569gにメタバナジン酸アンモニウム13g、30重量%過酸化水素水32.5gを添加し、バナジウム−過酸化水素水溶液を得た。
水46.9gにNb換算で76重量%を含有するニオブ酸8.5g、シュウ酸二水和物16gを加え、攪拌下、60℃にて加熱して溶解させた後、30℃にて冷却してニオブ−シュウ酸水溶液を得た。該ニオブ−シュウ酸水溶液に30重量%過酸化水素水11gを添加して、ニオブ−シュウ酸−過酸化水素水溶液を得た。
上記モリブデン−アンチモン−過酸化水素原料液に、該モリブデン水溶液、該バナジウム−過酸化水素水溶液、該ニオブ−シュウ酸−過酸化水素水溶液を添加したのち、続けてシリカ含有量30重量%のシリカゾルを109g添加し、空気雰囲気下、30分間撹拌して原料調合液を得た。
To 569 g of water, 13 g of ammonium metavanadate and 32.5 g of 30 wt% hydrogen peroxide water were added to obtain a vanadium-hydrogen peroxide aqueous solution.
8.5 g of niobic acid containing 76% by weight in terms of Nb 2 O 5 and 16 g of oxalic acid dihydrate were added to 46.9 g of water, and the mixture was dissolved by heating at 60 ° C. with stirring. To obtain a niobium-oxalic acid aqueous solution. To the niobium-oxalic acid aqueous solution, 11 g of 30 wt% hydrogen peroxide water was added to obtain a niobium-oxalic acid-hydrogen peroxide aqueous solution.
After adding the molybdenum aqueous solution, the vanadium hydrogen peroxide aqueous solution, and the niobium oxalic acid hydrogen peroxide aqueous solution to the molybdenum-antimony-hydrogen peroxide raw material solution, a silica sol having a silica content of 30% by weight is subsequently added. 109 g was added and stirred for 30 minutes in an air atmosphere to obtain a raw material preparation solution.

得られた原料調合液を遠心式噴霧乾燥器を用い、入口温度230℃と出口温度120℃の条件で乾燥して微小球状の乾燥粉体を得た。得られた乾燥粉体100gを石英容器に充填し、容器を回転させながら600(ml/min)の窒素ガス流通下、600℃で2時間焼成して酸化物触媒を得た。酸化物触媒の組成と主要な製法因子を表1に記載した。
得られた酸化物触媒は、X線回折図において、回折角(2θ)が7.8±0.3°、8.9±0.3°、22.1±0.3°、27.1±0.3°、28.1±0.3°、35.2±0.3°、36.1±0.3°および45.2±0.3°の位置にピークを示し、R=0.46であった。
The obtained raw material mixture was dried using a centrifugal spray dryer under conditions of an inlet temperature of 230 ° C. and an outlet temperature of 120 ° C. to obtain a fine spherical dry powder. 100 g of the obtained dry powder was filled in a quartz container and calcined at 600 ° C. for 2 hours under a nitrogen gas flow of 600 (ml / min) while rotating the container to obtain an oxide catalyst. Table 1 shows the composition of the oxide catalyst and the main production factors.
In the X-ray diffraction pattern, the obtained oxide catalyst has diffraction angles (2θ) of 7.8 ± 0.3 °, 8.9 ± 0.3 °, 22.1 ± 0.3 °, 27.1. Peaks are shown at positions of ± 0.3 °, 28.1 ± 0.3 °, 35.2 ± 0.3 °, 36.1 ± 0.3 ° and 45.2 ± 0.3 °, and R = 0.46.

<プロパンのアンモ酸化反応試験>
得られた酸化物触媒についてプロパンのアンモ酸化反応試験を、酸化物触媒W=0.25g、流量F=3.0(ml/min)にして接触時間を1.97(g・s/ml)とした以外は実施例1と同じ条件下にて行った。得られた結果を表1に示す。
<Propane Ammoxidation Test>
With respect to the obtained oxide catalyst, the propane ammoxidation reaction test was performed using an oxide catalyst W = 0.25 g, a flow rate F = 3.0 (ml / min), and a contact time of 1.97 (g · s / ml). The process was performed under the same conditions as in Example 1 except that. The obtained results are shown in Table 1.

[実施例6]
<触媒調製>
組成式がMo0.52Sb0.23Nb0.26/SiO(40重量%)で示される酸化物触媒を次のようにして調製した。
水436gにヘプタモリブデン酸アンモニウム15g、酸化アンチモン(III)7.2g、30重量%過酸化水素水5.7gを添加し、油浴を用いて115℃で1時間、大気下で還流して反応させ、モリブデン−アンチモン−過酸化水素原料液を得た。
水137.7gにヘプタモリブデン酸アンモニウム23gを添加し、モリブデン水溶液を得た。
[Example 6]
<Catalyst preparation>
Composition formula was prepared by an oxide catalyst represented by Mo 1 V 0.52 Sb 0.23 Nb 0.26 O n / SiO 2 (40 wt%) as follows.
To 436 g of water, 15 g of ammonium heptamolybdate, 7.2 g of antimony (III) oxide, and 5.7 g of 30% by weight hydrogen peroxide solution were added, and the reaction was refluxed at 115 ° C. for 1 hour using an oil bath. Thus, a molybdenum-antimony-hydrogen peroxide raw material liquid was obtained.
23 g of ammonium heptamolybdate was added to 137.7 g of water to obtain an aqueous molybdenum solution.

水630gにメタバナジン酸アンモニウム13g、30重量%過酸化水素水33gを添加し、バナジウム−過酸化水素水溶液を得た。
水57.7gにNb換算で76重量%を含有するニオブ酸9.8g、シュウ酸二水和物18.5gを加え、攪拌下、60℃にて加熱して溶解させた後、30℃にて冷却してニオブ−シュウ酸水溶液を得た。該ニオブ−シュウ酸水溶液に30重量%過酸化水素水12.8gを添加して、ニオブ−シュウ酸−過酸化水素水溶液を得た。
上記モリブデン−アンチモン−過酸化水素原料液に、該モリブデン水溶液、該バナジウム−過酸化水素水溶液、該ニオブ−シュウ酸−過酸化水素水溶液を添加したのち、続けてシリカ含有量30重量%のシリカゾルを124g添加し、空気雰囲気下、30分間撹拌して原料調合液を得た。
13 g of ammonium metavanadate and 33 g of 30% by weight hydrogen peroxide water were added to 630 g of water to obtain a vanadium-hydrogen peroxide aqueous solution.
After adding 9.8 g of niobic acid containing 76% by weight in terms of Nb 2 O 5 and 18.5 g of oxalic acid dihydrate to 57.7 g of water, the mixture was heated and dissolved at 60 ° C. with stirring. The mixture was cooled at 30 ° C. to obtain a niobium-oxalic acid aqueous solution. To the niobium-oxalic acid aqueous solution was added 12.8 g of 30% by weight hydrogen peroxide water to obtain a niobium-oxalic acid-hydrogen peroxide aqueous solution.
After adding the molybdenum aqueous solution, the vanadium hydrogen peroxide aqueous solution, and the niobium oxalic acid hydrogen peroxide aqueous solution to the molybdenum-antimony-hydrogen peroxide raw material solution, a silica sol having a silica content of 30% by weight is subsequently added. 124 g was added and stirred for 30 minutes in an air atmosphere to obtain a raw material mixture.

得られた原料調合液を遠心式噴霧乾燥器を用い、入口温度230℃と出口温度120℃の条件で乾燥して微小球状の乾燥粉体を得た。得られた乾燥粉体100gを石英容器に充填し、容器を回転させながら600(ml/min)の窒素ガス流通下、600℃で2時間焼成して酸化物触媒を得た。酸化物触媒の組成と主要な製法因子を表1に記載した。
得られた酸化物触媒は、X線回折図において、回折角(2θ)が7.8±0.3°、8.9±0.3°、22.1±0.3°、27.1±0.3°、28.1±0.3°、35.2±0.3°、36.1±0.3°および45.2±0.3°の位置にピークを示し、R=0.40であった。
The obtained raw material mixture was dried using a centrifugal spray dryer under conditions of an inlet temperature of 230 ° C. and an outlet temperature of 120 ° C. to obtain a fine spherical dry powder. 100 g of the obtained dry powder was filled in a quartz container and calcined at 600 ° C. for 2 hours under a nitrogen gas flow of 600 (ml / min) while rotating the container to obtain an oxide catalyst. Table 1 shows the composition of the oxide catalyst and the main production factors.
In the X-ray diffraction pattern, the obtained oxide catalyst has diffraction angles (2θ) of 7.8 ± 0.3 °, 8.9 ± 0.3 °, 22.1 ± 0.3 °, 27.1. Peaks are shown at positions of ± 0.3 °, 28.1 ± 0.3 °, 35.2 ± 0.3 °, 36.1 ± 0.3 ° and 45.2 ± 0.3 °, and R = It was 0.40.

<プロパンのアンモ酸化反応試験>
得られた酸化物触媒についてプロパンのアンモ酸化反応試験を、酸化物触媒W=0.25g、流量F=3.0(ml/min)にして接触時間を1.97(g・s/ml)とした以外は実施例1と同じ条件下にて行った。得られた結果を表1に示す。
<Propane Ammoxidation Test>
With respect to the obtained oxide catalyst, the propane ammoxidation reaction test was performed using an oxide catalyst W = 0.25 g, a flow rate F = 3.0 (ml / min), and a contact time of 1.97 (g · s / ml). The process was performed under the same conditions as in Example 1 except that. The obtained results are shown in Table 1.

[比較例1]
<触媒調製>
組成式がMo0.83Sb0.52Nb0.90/SiO(40重量%)で示される酸化物触媒を次のようにして調製した。
水616gにヘプタモリブデン酸アンモニウム21.2g、酸化アンチモン(III)10.3g、30重量%過酸化水素水8.0gを添加し、油浴を用いて115℃で1時間、大気下で還流して反応させ、モリブデン−アンチモン−過酸化水素原料液を得た。
水16.4gにヘプタモリブデン酸アンモニウム2.7gを添加し、モリブデン水溶液を得た。
[Comparative Example 1]
<Catalyst preparation>
Composition formula was prepared by an oxide catalyst represented by Mo 1 V 0.83 Sb 0.52 Nb 0.90 O n / SiO 2 (40 wt%) as follows.
Add 21.2 g of ammonium heptamolybdate, 10.3 g of antimony (III) oxide, and 8.0 g of 30% by weight hydrogen peroxide water to 616 g of water, and reflux in the atmosphere at 115 ° C. for 1 hour using an oil bath. To obtain a molybdenum-antimony-hydrogen peroxide raw material solution.
To 16.4 g of water, 2.7 g of ammonium heptamolybdate was added to obtain an aqueous molybdenum solution.

水627gにメタバナジン酸アンモニウム13.1g、30重量%過酸化水素水33gを添加し、バナジウム−過酸化水素水溶液を得た。
水125.2gにNb換算で76重量%を含有するニオブ酸21.3g、シュウ酸二水和物40gを加え、攪拌下、60℃にて加熱して溶解させた後、30℃にて冷却してニオブ−シュウ酸水溶液を得た。該ニオブ−シュウ酸水溶液に30重量%過酸化水素水27.7gを添加して、ニオブ−シュウ酸−過酸化水素水溶液を得た。
上記モリブデン−アンチモン−過酸化水素原料液に、該モリブデン水溶液、該バナジウム−過酸化水素水溶液、該ニオブ−シュウ酸−過酸化水素水溶液を添加したのち、続けてシリカ含有量30重量%のシリカゾルを125g添加し、空気雰囲気下、30分間撹拌して原料調合液を得た。
To 627 g of water, 13.1 g of ammonium metavanadate and 33 g of 30 wt% hydrogen peroxide water were added to obtain a vanadium-hydrogen peroxide aqueous solution.
After adding 21.3 g of niobic acid containing 76% by weight in terms of Nb 2 O 5 and 40 g of oxalic acid dihydrate to 125.2 g of water, the mixture was dissolved by heating at 60 ° C. with stirring. To obtain a niobium-oxalic acid aqueous solution. To the niobium-oxalic acid aqueous solution, 27.7 g of 30 wt% aqueous hydrogen peroxide was added to obtain a niobium-oxalic acid-hydrogen peroxide aqueous solution.
After adding the molybdenum aqueous solution, the vanadium hydrogen peroxide aqueous solution, and the niobium oxalic acid hydrogen peroxide aqueous solution to the molybdenum-antimony-hydrogen peroxide raw material solution, a silica sol having a silica content of 30% by weight is subsequently added. 125 g was added and stirred for 30 minutes in an air atmosphere to obtain a raw material mixture.

得られた原料調合液を遠心式噴霧乾燥器を用い、入口温度230℃と出口温度120℃の条件で乾燥して微小球状の乾燥粉体を得た。得られた乾燥粉体100gを石英容器に充填し、容器を回転させながら600(ml/min)の空気流通下、250℃で1時間前焼成後、容器を回転させながら600(ml/min)の窒素ガス流通下、600℃で2時間焼成して酸化物触媒を得た。酸化物触媒の組成と主要な製法因子を表1に記載した。
得られた酸化物触媒に関し、CuKα線をX線源として得られたX線回折図を図3に示す。得られた酸化物触媒は、X線回折図において、回折角(2θ)が7.8±0.3°、8.9±0.3°、22.1±0.3°、27.1±0.3°、28.1±0.3°、35.2±0.3°、36.1±0.3°および45.2±0.3°の位置にピークを示したが、7.8±0.3°、8.9±0.3°にはピークを示さなかった。R=0.89であった。
The obtained raw material mixture was dried using a centrifugal spray dryer under conditions of an inlet temperature of 230 ° C. and an outlet temperature of 120 ° C. to obtain a fine spherical dry powder. 100 g of the obtained dry powder is filled into a quartz container, pre-baked at 250 ° C. for 1 hour under an air flow of 600 (ml / min) while rotating the container, and then 600 (ml / min) while rotating the container. Was then calcined at 600 ° C. for 2 hours under a nitrogen gas flow to obtain an oxide catalyst. Table 1 shows the composition of the oxide catalyst and the main production factors.
FIG. 3 shows an X-ray diffraction diagram of the obtained oxide catalyst obtained using CuKα rays as an X-ray source. In the X-ray diffraction pattern, the obtained oxide catalyst has diffraction angles (2θ) of 7.8 ± 0.3 °, 8.9 ± 0.3 °, 22.1 ± 0.3 °, 27.1. Peaks were shown at the positions of ± 0.3 °, 28.1 ± 0.3 °, 35.2 ± 0.3 °, 36.1 ± 0.3 ° and 45.2 ± 0.3 °. No peaks were shown at 7.8 ± 0.3 ° and 8.9 ± 0.3 °. R = 0.89.

<プロパンのアンモ酸化反応試験>
得られた酸化物触媒についてプロパンのアンモ酸化反応試験を、酸化物触媒W=0.35g、流量F=2.0(ml/min)にして接触時間を4.14(g・s/ml)とした以外は実施例1と同じ条件下にて行った。得られた結果を表1に示す。
<Propane Ammoxidation Test>
With respect to the obtained oxide catalyst, propane ammoxidation reaction test was performed using an oxide catalyst W = 0.35 g, a flow rate F = 2.0 (ml / min), and a contact time of 4.14 (g · s / ml). The process was performed under the same conditions as in Example 1 except that. The obtained results are shown in Table 1.

[比較例2]
<触媒調製>
組成式がMo0.44Sb0.15Nb0.18/SiO(40重量%)で示される酸化物触媒を次のようにして調製した。
水291gにヘプタモリブデン酸アンモニウム10g、酸化アンチモン(III)4.8g、30重量%過酸化水素水3.8gを添加し、油浴を用いて115℃で1時間、大気下で還流して反応させ、モリブデン−アンチモン−過酸化水素原料液を得た。
水174.8gにヘプタモリブデン酸アンモニウム29.1gを添加し、モリブデン水溶液を得た。
[Comparative Example 2]
<Catalyst preparation>
Composition formula was prepared by an oxide catalyst represented by Mo 1 V 0.44 Sb 0.15 Nb 0.18 O n / SiO 2 (40 wt%) as follows.
To 291 g of water, 10 g of ammonium heptamolybdate, 4.8 g of antimony (III) oxide, and 3.8 g of 30% by weight hydrogen peroxide were added, and the reaction was refluxed at 115 ° C. for 1 hour using an oil bath. Thus, a molybdenum-antimony-hydrogen peroxide raw material liquid was obtained.
29.1 g of ammonium heptamolybdate was added to 174.8 g of water to obtain an aqueous molybdenum solution.

水542gにメタバナジン酸アンモニウム11.4g、30重量%過酸化水素水28.5gを添加し、バナジウム−過酸化水素水溶液を得た。
水41gにNb換算で76重量%を含有するニオブ酸7g、シュウ酸二水和物13.1gを加え、攪拌下、60℃にて加熱して溶解させた後、30℃にて冷却してニオブ−シュウ酸水溶液を得た。該ニオブ−シュウ酸水溶液に30重量%過酸化水素水9gを添加して、ニオブ−シュウ酸−過酸化水素水溶液を得た。
上記モリブデン−アンチモン−過酸化水素原料液に、該モリブデン水溶液、該バナジウム−過酸化水素水溶液、該ニオブ−シュウ酸−過酸化水素水溶液を添加したのち、続けてシリカ含有量30重量%のシリカゾルを113g添加し、空気雰囲気下、30分間撹拌して原料調合液を得た。
11.4 g of ammonium metavanadate and 28.5 g of 30 wt% aqueous hydrogen peroxide were added to 542 g of water to obtain a vanadium-hydrogen peroxide aqueous solution.
7 g of niobic acid containing 76% by weight in terms of Nb 2 O 5 and 13.1 g of oxalic acid dihydrate were added to 41 g of water, and dissolved by heating at 60 ° C. with stirring. Upon cooling, a niobium-oxalic acid aqueous solution was obtained. 9 g of 30 wt% aqueous hydrogen peroxide was added to the niobium-oxalic acid aqueous solution to obtain a niobium-oxalic acid-hydrogen peroxide aqueous solution.
After adding the molybdenum aqueous solution, the vanadium hydrogen peroxide aqueous solution, and the niobium oxalic acid hydrogen peroxide aqueous solution to the molybdenum-antimony-hydrogen peroxide raw material solution, a silica sol having a silica content of 30% by weight is subsequently added. 113g was added and it stirred for 30 minutes under air atmosphere, and obtained the raw material preparation liquid.

得られた原料調合液を遠心式噴霧乾燥器を用い、入口温度230℃と出口温度120℃の条件で乾燥して微小球状の乾燥粉体を得た。得られた乾燥粉体100gを石英容器に充填し、容器を回転させながら600(ml/min)の空気流通下、250℃で1時間前焼成後、容器を回転させながら600(ml/min)の窒素ガス流通下、600℃で2時間焼成して酸化物触媒を得た。酸化物触媒の組成と主要な製法因子を表1に記載した。
得られた酸化物触媒は、X線回折図において、回折角(2θ)が7.8±0.3°、8.9±0.3°、22.1±0.3°、27.1±0.3°、28.1±0.3°、35.2±0.3°、36.1±0.3°および45.2±0.3°の位置にピークを示したが、7.8±0.3°、8.9±0.3°にはピークを示さなかった。R=0.83であった。
The obtained raw material mixture was dried using a centrifugal spray dryer under conditions of an inlet temperature of 230 ° C. and an outlet temperature of 120 ° C. to obtain a fine spherical dry powder. 100 g of the obtained dry powder is filled into a quartz container, pre-baked at 250 ° C. for 1 hour under an air flow of 600 (ml / min) while rotating the container, and then 600 (ml / min) while rotating the container. Was then calcined at 600 ° C. for 2 hours under a nitrogen gas flow to obtain an oxide catalyst. Table 1 shows the composition of the oxide catalyst and the main production factors.
In the X-ray diffraction pattern, the obtained oxide catalyst has diffraction angles (2θ) of 7.8 ± 0.3 °, 8.9 ± 0.3 °, 22.1 ± 0.3 °, 27.1. Peaks were shown at the positions of ± 0.3 °, 28.1 ± 0.3 °, 35.2 ± 0.3 °, 36.1 ± 0.3 ° and 45.2 ± 0.3 °. No peaks were shown at 7.8 ± 0.3 ° and 8.9 ± 0.3 °. R = 0.83.

<プロパンのアンモ酸化反応試験>
得られた酸化物触媒についてプロパンのアンモ酸化反応試験を、酸化物触媒W=0.35g、流量F=2.0(ml/min)にして接触時間を4.14(g・s/ml)とした以外は実施例1と同じ条件下にて行った。得られた結果を表1に示す。
<Propane Ammoxidation Test>
With respect to the obtained oxide catalyst, propane ammoxidation reaction test was performed using an oxide catalyst W = 0.35 g, a flow rate F = 2.0 (ml / min), and a contact time of 4.14 (g · s / ml). The process was performed under the same conditions as in Example 1 except that. The obtained results are shown in Table 1.

[実施例7]
<触媒調製>
組成式がMo0.58Sb0.32Nb0.16/SiO(40重量%)で示される酸化物触媒を次のようにして調製した。
水300gにヘプタモリブデン酸アンモニウム23.2g、メタバナジン酸アンモニウム8.9g、酸化アンチモン(III)5.2gを添加し、油浴を用いて95℃で1時間、大気下で還流して反応させ、モリブデン−バナジウム−アンチモン原料液を得た。
水21gにNb換算で76重量%を含有するニオブ酸3.7g、シュウ酸二水和物7gを加え、攪拌下、60℃にて加熱して溶解させた後、30℃にて冷却してニオブ−シュウ酸水溶液を得た。該ニオブ−シュウ酸水溶液に30重量%過酸化水素水6.3g、酸化アンチモン(III)0.96gを添加して、ニオブ−アンチモン−シュウ酸−過酸化水素水溶液を得た。
[Example 7]
<Catalyst preparation>
Composition formula was prepared by an oxide catalyst represented by Mo 1 V 0.58 Sb 0.32 Nb 0.16 O n / SiO 2 (40 wt%) as follows.
To 300 g of water, 23.2 g of ammonium heptamolybdate, 8.9 g of ammonium metavanadate, and 5.2 g of antimony (III) oxide were added, and the mixture was reacted by refluxing in the atmosphere at 95 ° C. for 1 hour using an oil bath. A molybdenum-vanadium-antimony raw material solution was obtained.
To 21 g of water, 3.7 g of niobic acid containing 76% by weight in terms of Nb 2 O 5 and 7 g of oxalic acid dihydrate were added and dissolved by heating at 60 ° C. with stirring. Upon cooling, a niobium-oxalic acid aqueous solution was obtained. To the niobium-oxalic acid aqueous solution, 6.3 g of 30% by weight hydrogen peroxide water and 0.96 g of antimony (III) oxide were added to obtain a niobium-antimony-oxalic acid-hydrogen peroxide aqueous solution.

上記モリブデン−バナジウム−アンチモン原料液を60℃に冷却し、シリカ含有量30重量%のシリカゾルを77g、続いて50℃に冷却して30重量%過酸化水素水6gを添加し、30分間撹拌した。引き続いて50℃にてニオブ−アンチモン−シュウ酸−過酸化水素水溶液を添加し、150分間撹拌して原料調合液を得た。これらの操作は空気雰囲気下にて行った。
得られた原料調合液を遠心式噴霧乾燥器を用い、入口温度230℃と出口温度120℃の条件で乾燥して微小球状の乾燥粉体を得た。得られた乾燥粉体100gを石英容器に充填し、容器を回転させながら600(ml/min)の窒素ガス流通下、600℃で2時間焼成して酸化物触媒を得た。酸化物触媒の組成と主要な製法因子を表1に記載した。
The molybdenum-vanadium-antimony raw material liquid was cooled to 60 ° C., 77 g of silica sol having a silica content of 30 wt% was added, and then cooled to 50 ° C. and 6 g of 30 wt% hydrogen peroxide water was added and stirred for 30 minutes. . Subsequently, a niobium-antimony-oxalic acid-hydrogen peroxide aqueous solution was added at 50 ° C. and stirred for 150 minutes to obtain a raw material preparation solution. These operations were performed in an air atmosphere.
The obtained raw material mixture was dried using a centrifugal spray dryer under conditions of an inlet temperature of 230 ° C. and an outlet temperature of 120 ° C. to obtain a fine spherical dry powder. 100 g of the obtained dry powder was filled in a quartz container and calcined at 600 ° C. for 2 hours under a nitrogen gas flow of 600 (ml / min) while rotating the container to obtain an oxide catalyst. Table 1 shows the composition of the oxide catalyst and the main production factors.

得られた酸化物触媒は、X線回折図において、回折角(2θ)が7.8±0.3°、8.9±0.3°、22.1±0.3°、27.1±0.3°、28.1±0.3°、35.2±0.3°、36.1±0.3°および45.2±0.3°の位置にピークを示し、R=0.27であった。
<プロパンのアンモ酸化反応試験>
得られた酸化物触媒についてプロパンのアンモ酸化反応試験を、酸化物触媒W=0.25g、流量F=3.0(ml/min)にして接触時間を1.97(g・s/ml)とした以外は実施例1と同じ条件下にて行った。得られた結果を表1に示す。
In the X-ray diffraction pattern, the obtained oxide catalyst has diffraction angles (2θ) of 7.8 ± 0.3 °, 8.9 ± 0.3 °, 22.1 ± 0.3 °, 27.1. Peaks are shown at positions of ± 0.3 °, 28.1 ± 0.3 °, 35.2 ± 0.3 °, 36.1 ± 0.3 ° and 45.2 ± 0.3 °, and R = It was 0.27.
<Propane Ammoxidation Test>
With respect to the obtained oxide catalyst, the propane ammoxidation reaction test was performed using an oxide catalyst W = 0.25 g, a flow rate F = 3.0 (ml / min), and a contact time of 1.97 (g · s / ml). The process was performed under the same conditions as in Example 1 except that. The obtained results are shown in Table 1.

[比較例3]
<触媒調製>
組成式がMo0.68Sb0.18Nb0.09/SiO(40重量%)で示される酸化物触媒を次のようにして調製した。
水300gにヘプタモリブデン酸アンモニウム18.4g、メタバナジン酸アンモニウム8.3g、酸化アンチモン(III)2.1gを添加し、油浴を用いて95℃で1時間、大気下で還流して反応させ、モリブデン−バナジウム−アンチモン原料液を得た。
水9.6gにNb換算で76重量%を含有するニオブ酸1.6g、シュウ酸二水和物3.1gを加え、攪拌下、60℃にて加熱して溶解させた後、30℃にて冷却してニオブ−シュウ酸水溶液を得た。該ニオブ−シュウ酸水溶液に30重量%過酸化水素水3.1g、酸化アンチモン(III)0.6gを添加して、ニオブ−アンチモン−シュウ酸−過酸化水素水溶液を得た。
[Comparative Example 3]
<Catalyst preparation>
Composition formula was prepared by an oxide catalyst represented by Mo 1 V 0.68 Sb 0.18 Nb 0.09 O n / SiO 2 (40 wt%) as follows.
18.4 g of ammonium heptamolybdate, 8.3 g of ammonium metavanadate, and 2.1 g of antimony (III) oxide were added to 300 g of water, and the mixture was reacted by refluxing in the atmosphere at 95 ° C. for 1 hour using an oil bath. A molybdenum-vanadium-antimony raw material solution was obtained.
After adding 1.6 g of niobic acid containing 76 wt% in terms of Nb 2 O 5 and 3.1 g of oxalic acid dihydrate to 9.6 g of water, the mixture was heated and dissolved at 60 ° C. with stirring. The mixture was cooled at 30 ° C. to obtain a niobium-oxalic acid aqueous solution. To the niobium-oxalic acid aqueous solution, 30 g by weight of hydrogen peroxide solution 3.1 g and antimony (III) oxide 0.6 g were added to obtain a niobium-antimony-oxalic acid-hydrogen peroxide aqueous solution.

上記モリブデン−バナジウム−アンチモン原料液を60℃に冷却してシリカ含有量30重量%のシリカゾルを57g、続いて50℃に冷却して30重量%過酸化水素水2.5gを添加し、30分間撹拌した。引き続いて50℃にてニオブ−アンチモン−シュウ酸−過酸化水素水溶液を添加し、150分間撹拌して原料調合液を得た。これらの操作は空気雰囲気下にて行った。
得られた原料調合液を遠心式噴霧乾燥器を用い、入口温度230℃と出口温度120℃の条件で乾燥して微小球状の乾燥粉体を得た。得られた乾燥粉体100gを石英容器に充填し、容器を回転させながら600(ml/min)の窒素ガス流通下、600℃で2時間焼成して酸化物触媒を得た。酸化物触媒の組成と主要な製法因子を表1に記載した。
The molybdenum-vanadium-antimony raw material solution is cooled to 60 ° C. and silica sol having a silica content of 30% by weight is added to 57 g, followed by cooling to 50 ° C. and 2.5 g of 30% by weight hydrogen peroxide water are added for 30 minutes. Stir. Subsequently, a niobium-antimony-oxalic acid-hydrogen peroxide aqueous solution was added at 50 ° C. and stirred for 150 minutes to obtain a raw material preparation solution. These operations were performed in an air atmosphere.
The obtained raw material mixture was dried using a centrifugal spray dryer under conditions of an inlet temperature of 230 ° C. and an outlet temperature of 120 ° C. to obtain a fine spherical dry powder. 100 g of the obtained dry powder was filled in a quartz container and calcined at 600 ° C. for 2 hours under a nitrogen gas flow of 600 (ml / min) while rotating the container to obtain an oxide catalyst. Table 1 shows the composition of the oxide catalyst and the main production factors.

得られた酸化物触媒は、X線回折図において、回折角(2θ)が22.1±0.3°、28.1±0.3°、35.2±0.3°、36.1±0.3°および45.2±0.3°の位置にピークを示したが、7.8±0.3°、8.9±0.3°、27.1±0.3°にはピークを示さず、R=0であった。
<プロパンのアンモ酸化反応試験>
得られた酸化物触媒についてプロパンのアンモ酸化反応試験を、酸化物触媒W=0.35g、流量F=2.0(ml/min)にして接触時間を4.14(g・s/ml)とした以外は実施例1と同じ条件下にて行った。得られた結果を表1に示す。
In the X-ray diffraction pattern, the obtained oxide catalyst has diffraction angles (2θ) of 22.1 ± 0.3 °, 28.1 ± 0.3 °, 35.2 ± 0.3 °, 36.1. Peaks were shown at ± 0.3 ° and 45.2 ± 0.3 °, but at 7.8 ± 0.3 °, 8.9 ± 0.3 °, and 27.1 ± 0.3 °. Did not show a peak and R = 0.
<Propane Ammoxidation Test>
With respect to the obtained oxide catalyst, propane ammoxidation reaction test was performed using an oxide catalyst W = 0.35 g, a flow rate F = 2.0 (ml / min), and a contact time of 4.14 (g · s / ml). The process was performed under the same conditions as in Example 1 except that. The obtained results are shown in Table 1.

[実施例8]
<触媒調製>
組成式がMo0.54Sb0.37Nb0.16/SiO/SiO(24重量%)で示される酸化物触媒を、シリカ含有量30重量%のシリカゾルを37g用いた以外は実施例7の触媒調製を反復して、酸化物触媒を調製した。酸化物触媒の組成と主要な製法因子を表1に記載した。
得られた酸化物触媒は、X線回折図において、回折角(2θ)が7.8±0.3°、8.9±0.3°、22.1±0.3°、27.1±0.3°、28.1±0.3°、35.2±0.3°、36.1±0.3°および45.2±0.3°の位置にピークを示し、R=0.48であった。
[Example 8]
<Catalyst preparation>
The oxide catalyst composition formula represented by Mo 1 V 0.54 Sb 0.37 Nb 0.16 O n / SiO 2 / SiO 2 (24 wt%) was used 37g silica content of 30 wt% silica sol Except for the above, the catalyst preparation of Example 7 was repeated to prepare an oxide catalyst. Table 1 shows the composition of the oxide catalyst and the main production factors.
In the X-ray diffraction pattern, the obtained oxide catalyst has diffraction angles (2θ) of 7.8 ± 0.3 °, 8.9 ± 0.3 °, 22.1 ± 0.3 °, 27.1. Peaks are shown at positions of ± 0.3 °, 28.1 ± 0.3 °, 35.2 ± 0.3 °, 36.1 ± 0.3 ° and 45.2 ± 0.3 °, and R = 0.48.

<プロパンのアンモ酸化反応試験>
得られた酸化物触媒についてプロパンのアンモ酸化反応試験を、酸化物触媒W=0.25g、流量F=3.0(ml/min)にして接触時間を1.97(g・s/ml)とした以外は実施例1と同じ条件下にて行った。得られた結果を表1に示す。
<Propane Ammoxidation Test>
With respect to the obtained oxide catalyst, the propane ammoxidation reaction test was performed using an oxide catalyst W = 0.25 g, a flow rate F = 3.0 (ml / min), and a contact time of 1.97 (g · s / ml). The process was performed under the same conditions as in Example 1 except that. The obtained results are shown in Table 1.

[比較例4]
組成式がMo0.68Sb0.18Nb0.09/SiO/SiO(24重量%)で示される酸化物触媒を、シリカ含有量30重量%のシリカゾルを27g用いた以外は比較例3の触媒調製を反復して、酸化物触媒を調製した。酸化物触媒の組成と主要な製法因子を表1に記載した。
得られた酸化物触媒は、X線回折図において、回折角(2θ)が22.1±0.3°、28.1±0.3°、35.2±0.3°、36.1±0.3°および45.2±0.3°の位置にピークを示したが、7.8±0.3°、8.9±0.3°、27.1±0.3°にはピークを示さず、R=0であった。
[Comparative Example 4]
The oxide catalyst composition formula represented by Mo 1 V 0.68 Sb 0.18 Nb 0.09 O n / SiO 2 / SiO 2 (24 wt%) was used 27g silica content of 30 wt% silica sol Except for the above, the catalyst preparation of Comparative Example 3 was repeated to prepare an oxide catalyst. Table 1 shows the composition of the oxide catalyst and the main production factors.
In the X-ray diffraction pattern, the obtained oxide catalyst has diffraction angles (2θ) of 22.1 ± 0.3 °, 28.1 ± 0.3 °, 35.2 ± 0.3 °, 36.1. Peaks were shown at ± 0.3 ° and 45.2 ± 0.3 °, but at 7.8 ± 0.3 °, 8.9 ± 0.3 °, and 27.1 ± 0.3 °. Did not show a peak and R = 0.

<プロパンのアンモ酸化反応試験>
得られた酸化物触媒についてプロパンのアンモ酸化反応試験を、酸化物触媒W=0.35g、流量F=2.0(ml/min)にして接触時間を4.14(g・s/ml)とした以外は実施例1と同じ条件下にて行った。得られた結果を表1に示す。
<Propane Ammoxidation Test>
With respect to the obtained oxide catalyst, propane ammoxidation reaction test was performed using an oxide catalyst W = 0.35 g, a flow rate F = 2.0 (ml / min), and a contact time of 4.14 (g · s / ml). The process was performed under the same conditions as in Example 1 except that. The obtained results are shown in Table 1.

[実施例9]
<モリブデン飛散実験>
内径25mmのバイコールガラス流動用型反応管に、実施例5で得られた酸化物触媒50gを充填し、反応温度500℃(内温)と反応圧力6.87MPa(ゲージ圧)の条件下に、ヘリウム:水蒸気のモル比=1:3の混合ガスを、接触時間7.0(=W/F×60×273/(273+T)×((P×0.102+0.101)/0.101))(g・s/ml)となるよう、流量F(ml/min)で流通させた。
未反応触媒および48時間連続反応後の触媒をそれぞれ5g、日陶科学(株)製ニット−自動乳鉢ANM1000型を用いて2時間粉砕した後、塩ビ製リング(30mm錠剤成型用:外径38mm、内径31mm、厚さ5mm)を用いて錠剤に成型した(成型圧:245GPa、成型圧加圧時間:65秒)。得られた錠剤をリガク(株)製RIX3000型蛍光X線分析装置(管球:Rh)を用いて、錠剤中のモリブデン量の分析を行った。結果を表2に示す。
[Example 9]
<Molybdenum scattering experiment>
A reaction tube for flowing Vycor glass having an inner diameter of 25 mm was filled with 50 g of the oxide catalyst obtained in Example 5, and the reaction temperature was 500 ° C. (inner temperature) and the reaction pressure was 6.87 MPa (gauge pressure). Helium: water vapor molar ratio = 1: 3 mixed gas, contact time 7.0 (= W / F × 60 × 273 / (273 + T) × ((P × 0.102 + 0.101) /0.101)) It was made to distribute | circulate with the flow volume F (ml / min) so that it might become (g * s / ml).
5 g each of unreacted catalyst and the catalyst after 48 hours of continuous reaction were pulverized for 2 hours using a knit-automatic mortar ANM1000 manufactured by Nisto Kagaku Co., Ltd., and then a vinyl chloride ring (for 30 mm tablet molding: outer diameter 38 mm, It was molded into a tablet using an inner diameter of 31 mm and a thickness of 5 mm (molding pressure: 245 GPa, molding pressure pressing time: 65 seconds). The obtained tablets were analyzed for the amount of molybdenum in the tablets using a RIX3000 type fluorescent X-ray analyzer (tube: Rh) manufactured by Rigaku Corporation. The results are shown in Table 2.

[比較例5]
組成式がMo0.3Sb0.25Nb0.15/SiO(40重量%)で示される酸化物触媒を次のように調製した。
水616.4gにヘプタモリブデン酸アンモニウム21.2g、酸化アンチモン(III)8.6g、30重量%過酸化水素水6.7gを添加し、油浴を用いて115℃で1時間、大気下で還流して反応させ、モリブデン−アンチモン−過酸化水素原料液を得た。
水121.7gにヘプタモリブデン酸アンモニウム20.3gを添加し、モリブデン水溶液を得た。
[Comparative Example 5]
Composition formula was prepared oxide catalyst represented by Mo 1 V 0.3 Sb 0.25 Nb 0.15 O n / SiO 2 (40 wt%) as follows.
To 616.4 g of water, 21.2 g of ammonium heptamolybdate, 8.6 g of antimony (III) oxide, and 6.7 g of 30% by weight hydrogen peroxide water were added, and the oil bath was used at 115 ° C. for 1 hour in the air. The mixture was reacted under reflux to obtain a molybdenum-antimony-hydrogen peroxide raw material liquid.
20.3 g of ammonium heptamolybdate was added to 121.7 g of water to obtain an aqueous molybdenum solution.

水391.7gにメタバナジン酸アンモニウム8.2g、30重量%過酸化水素水20.6gを添加し、バナジウム−過酸化水素水溶液を得た。
水24.1gにNb換算で76重量%を含有するニオブ酸6.2g、シュウ酸二水和物11.6gを加え、攪拌下、60℃にて加熱して溶解させた後、30℃にて冷却してニオブ−シュウ酸水溶液を得た。該ニオブ−シュウ酸水溶液に30重量%過酸化水素水8gを添加して、ニオブ−シュウ酸−過酸化水素水溶液を得た。
上記モリブデン−アンチモン−過酸化水素原料液に、該モリブデン水溶液、該バナジウム−過酸化水素水溶液、該ニオブ−シュウ酸−過酸化水素水溶液を添加したのち、続けてシリカ含有量30重量%のシリカゾルを120g添加し、空気雰囲気下、30分間撹拌して原料調合液を得た。
To 391.7 g of water, 8.2 g of ammonium metavanadate and 20.6 g of 30 wt% hydrogen peroxide water were added to obtain a vanadium-hydrogen peroxide aqueous solution.
After adding 6.2 g of niobic acid containing 76% by weight in terms of Nb 2 O 5 and 11.6 g of oxalic acid dihydrate to 24.1 g of water, the mixture was heated and dissolved at 60 ° C. with stirring. The mixture was cooled at 30 ° C. to obtain a niobium-oxalic acid aqueous solution. To the niobium-oxalic acid aqueous solution, 8 g of 30 wt% hydrogen peroxide water was added to obtain a niobium-oxalic acid-hydrogen peroxide aqueous solution.
After adding the molybdenum aqueous solution, the vanadium hydrogen peroxide aqueous solution, and the niobium oxalic acid hydrogen peroxide aqueous solution to the molybdenum-antimony-hydrogen peroxide raw material solution, a silica sol having a silica content of 30% by weight is subsequently added. 120 g was added and stirred for 30 minutes in an air atmosphere to obtain a raw material preparation solution.

得られた原料調合液を遠心式噴霧乾燥器を用い、入口温度230℃と出口温度120℃の条件で乾燥して微小球状の乾燥粉体を得た。得られた乾燥粉体100gを石英容器に充填し、容器を回転させながら600(ml/min)の窒素ガス流通下、600℃で2時間焼成して酸化物触媒を得た。
<モリブデン飛散実験>得られた酸化物触媒50gを、実施例10と同じ条件下にてモリブデンの飛散実験を行った。得られた結果を表2に示す。
The obtained raw material mixture was dried using a centrifugal spray dryer under conditions of an inlet temperature of 230 ° C. and an outlet temperature of 120 ° C. to obtain a fine spherical dry powder. 100 g of the obtained dry powder was filled in a quartz container and calcined at 600 ° C. for 2 hours under a nitrogen gas flow of 600 (ml / min) while rotating the container to obtain an oxide catalyst.
<Molybdenum Scattering Experiment> A molybdenum scattering experiment was conducted on 50 g of the obtained oxide catalyst under the same conditions as in Example 10. The obtained results are shown in Table 2.

[実施例10]
実施例1で得られた触媒について、プロパンの酸化反応試験を行った。酸化物触媒W=0.35gを内径4mmの固定床型反応管に充填し、反応温度T=380℃、プロパン:酸素:水蒸気:ヘリウム=1:3:14:10のモル比の混合ガスを流量F=2.0(ml/min)で流した。このとき圧力Pはゲージ圧で0MPaであった。接触時間は4.14(g・s/ml)である。反応ガスの分析はオンラインガスクロマトグラフィーで行った。得られた結果を表3に示す。
[Example 10]
The catalyst obtained in Example 1 was subjected to a propane oxidation reaction test. An oxide catalyst W = 0.35 g was charged into a fixed bed type reaction tube having an inner diameter of 4 mm, and a mixed gas having a reaction temperature T = 380 ° C. and a propane: oxygen: water vapor: helium = 1: 3: 14: 10 molar ratio. The flow rate was F = 2.0 (ml / min). At this time, the pressure P was 0 MPa as a gauge pressure. The contact time is 4.14 (g · s / ml). Analysis of the reaction gas was performed by on-line gas chromatography. The obtained results are shown in Table 3.

[比較例6]
比較例1で得られた触媒について、プロパンの酸化反応試験を行った。酸化物触媒W=0.35gを内径4mmの固定床型反応管に充填し、反応温度T=380℃、プロパン:酸素:水蒸気:ヘリウム=1:3:14:10のモル比の混合ガスを流量F=2.0(ml/min)で流した。このとき圧力Pはゲージ圧で0MPaであった。接触時間は4.14(g・s/ml)である。反応ガスの分析はオンラインガスクロマトグラフィーで行った。得られた結果を表3に示す。
[Comparative Example 6]
The catalyst obtained in Comparative Example 1 was subjected to a propane oxidation reaction test. An oxide catalyst W = 0.35 g was charged into a fixed bed type reaction tube having an inner diameter of 4 mm, and a mixed gas having a reaction temperature T = 380 ° C. and a propane: oxygen: water vapor: helium = 1: 3: 14: 10 molar ratio. The flow rate was F = 2.0 (ml / min). At this time, the pressure P was 0 MPa as a gauge pressure. The contact time is 4.14 (g · s / ml). Analysis of the reaction gas was performed by on-line gas chromatography. The obtained results are shown in Table 3.

Figure 2005211844
Figure 2005211844

Figure 2005211844
Figure 2005211844

Figure 2005211844
Figure 2005211844

本発明は、不飽和ニトリルまたは不飽和カルボン酸の製造触媒として好適である。   The present invention is suitable as a production catalyst for unsaturated nitriles or unsaturated carboxylic acids.

実施例1で得られた酸化物触媒のX線回折図。2 is an X-ray diffraction pattern of the oxide catalyst obtained in Example 1. FIG. ピーク強度比の求め方を説明するための、図1のX線回折図の回折角(2θ)25〜30°の範囲の拡大図。The enlarged view of the range of diffraction angle (2 (theta)) 25-30 degrees of the X-ray-diffraction figure of FIG. 1 for demonstrating how to obtain | require a peak intensity ratio. 比較例1で得られた酸化物触媒のX線回折図。2 is an X-ray diffraction pattern of the oxide catalyst obtained in Comparative Example 1. FIG.

符号の説明Explanation of symbols

A1:CuKα線をX線源として得られるX線回折図において、回折角(2θ)が27.1±0.3°の位置に観測されるピークの頂点
A2:CuKα線をX線源として得られるX線回折図において、回折角(2θ)が28.1±0.3°の位置に観測されるピークの頂点
B1:回折角(2θ)が26.4゜±0.3゜の範囲の範囲において、X線回折図の曲線が最小の強度値を示す点
B2:回折角(2θ)が27.6゜±0.3゜の範囲の範囲において、X線回折図の曲線が最小の強度値を示す点
B3:回折角(2θ)が28.8゜±0.3゜の範囲において、X線回折図の曲線が最小の強度値を示す点
C1:上記頂点A1から2θ軸に向かって下ろした垂線と、上記点B1とB2とを結ぶ線分の交点
C2:上記頂点A2から2θ軸に向かって下ろした垂線と、上記点B2とB1とを結ぶ線分の交点
A1: In the X-ray diffraction diagram obtained using CuKα rays as an X-ray source, the peak apex observed at a diffraction angle (2θ) of 27.1 ± 0.3 ° A2: Obtaining CuKα rays as an X-ray source In the X-ray diffraction diagram, the peak apex observed at a diffraction angle (2θ) of 28.1 ± 0.3 ° B1: The diffraction angle (2θ) is in the range of 26.4 ° ± 0.3 ° Point where the curve of the X-ray diffractogram shows the minimum intensity value in the range B2: The curve of the X-ray diffractogram shows the minimum intensity in the range where the diffraction angle (2θ) is in the range of 27.6 ° ± 0.3 ° Point B3: Point where the diffraction angle (2θ) is 28.8 ° ± 0.3 ° and the curve of the X-ray diffraction diagram shows the minimum intensity value C1: From the vertex A1 toward the 2θ axis Intersection of the line connecting the perpendicular line and the points B1 and B2 C2: down from the vertex A2 toward the 2θ axis And the vertical line, the intersection of a line connecting the above points B2 and B1

Claims (6)

プロパンまたはイソブタンの気相接触アンモ酸化反応による不飽和ニトリルの製造、または気相接触酸化反応による不飽和カルボン酸の製造に用いられる化学式(I)で示される成分組成を有する酸化物触媒であって、CuKα線をX線源として得られるX線回折図において、回折角(2θ)が22.1±0.3°、28.1±0.3°、36.1±0.3°および45.2±0.3°の位置、または7.8±0.3°、8.9±0.3°、22.1±0.3°、27.1±0.3°、35.2±0.3°および45.2±0.3°の位置、または7.8±0.3°、8.9±0.3°、22.1±0.3°、27.1±0.3°、28.1±0.3°、35.2±0.3°、36.1±0.3°および45.2±0.3°の位置に回折ピークをもつことを特徴とする酸化物触媒。
MoSbNb (I)
(式中、ZはW、Cr、Ti、Al、Ta、Zr、Hf、Mn、Re、Fe、Ru、Co、Rh、Ni、Pd、Pt、Zn、B、Ga、In、Ge、Sn、P、Pb、Bi、Y、希土類元素およびアルカリ土類金属から選ばれる少なくとも1種の元素を表す。a、b、c、dおよびnはMo1原子あたりの原子比を表す。1.0≦(a+b+c)≦2.0であり、a、b、c、dは各々0.01≦a≦1.0、0.01≦b≦1.0、0.01≦c≦1.0、0≦d≦1.0であり、そしてnは構成金属の酸化状態によって決まる原子比である。)
An oxide catalyst having a component composition represented by the chemical formula (I) used for the production of an unsaturated nitrile by a gas phase catalytic ammoxidation reaction of propane or isobutane, or an unsaturated carboxylic acid by a gas phase catalytic oxidation reaction, In an X-ray diffraction diagram obtained using CuKα rays as an X-ray source, diffraction angles (2θ) are 22.1 ± 0.3 °, 28.1 ± 0.3 °, 36.1 ± 0.3 ° and 45 .2 ± 0.3 ° position, or 7.8 ± 0.3 °, 8.9 ± 0.3 °, 22.1 ± 0.3 °, 27.1 ± 0.3 °, 35.2 ± 0.3 ° and 45.2 ± 0.3 ° positions, or 7.8 ± 0.3 °, 8.9 ± 0.3 °, 22.1 ± 0.3 °, 27.1 ± 0 Characterized by having diffraction peaks at positions of 3 °, 28.1 ± 0.3 °, 35.2 ± 0.3 °, 36.1 ± 0.3 ° and 45.2 ± 0.3 °. Acid Fluoride catalyst.
Mo 1 V a Sb b Nb c Z d O n (I)
(Wherein, Z is W, Cr, Ti, Al, Ta, Zr, Hf, Mn, Re, Fe, Ru, Co, Rh, Ni, Pd, Pt, Zn, B, Ga, In, Ge, Sn, It represents at least one element selected from P, Pb, Bi, Y, rare earth elements and alkaline earth metals, a, b, c, d and n represent atomic ratios per Mo atom, 1.0 ≦ ( a + b + c) ≦ 2.0, and a, b, c, and d are 0.01 ≦ a ≦ 1.0, 0.01 ≦ b ≦ 1.0, 0.01 ≦ c ≦ 1.0, and 0 ≦, respectively. d ≦ 1.0, and n is an atomic ratio determined by the oxidation state of the constituent metals.)
シリカ担体を含有する成分組成が化学式(I)で示される酸化物触媒であって、該シリカ担体の含有量が、該酸化物触媒とSiO換算の該シリカ担体との合計重量に対し、10〜60重量%であることを特徴とする請求項1に記載の酸化物触媒。 The component composition containing the silica support is an oxide catalyst represented by the chemical formula (I), and the content of the silica support is 10 with respect to the total weight of the oxide catalyst and the silica support in terms of SiO 2. The oxide catalyst according to claim 1, characterized in that it is -60 wt%. 成分組成が化学式(I)で示される酸化物触媒の成分を有する原料調合液から得られる乾燥粉体を実質的に酸素を含まないガス雰囲気下、500〜700℃で焼成されて製造されることを特徴とする請求項1又は2に記載の酸化物触媒。 A dry powder obtained from a raw material preparation liquid having an oxide catalyst component represented by the chemical formula (I) is calcined at 500 to 700 ° C. in a gas atmosphere substantially free of oxygen. The oxide catalyst according to claim 1 or 2. 成分組成が化学式(I)で示される酸化物触媒が、ヒドロキシル基含有化合物および/またはジカルボン酸化合物を含む原料調合液を用いて製造されることを特徴とする請求項1から3のいずれかに記載の酸化物触媒。 4. The oxide catalyst having a component composition represented by the chemical formula (I) is produced using a raw material preparation liquid containing a hydroxyl group-containing compound and / or a dicarboxylic acid compound. The oxide catalyst as described. プロパンまたはイソブタンの気相接触アンモ酸化反応によって不飽和ニトリルを製造する方法において、請求項1から4のいずれかに記載の酸化物触媒を用いることを特徴とする不飽和ニトリルの製造方法。 5. A process for producing an unsaturated nitrile using the oxide catalyst according to claim 1 in a process for producing an unsaturated nitrile by a gas phase catalytic ammoxidation reaction of propane or isobutane. プロパンまたはイソブタンの気相接触酸化反応によって不飽和カルボン酸を製造する方法において、請求項1から4のいずれかに記載の酸化物触媒を用いることを特徴とする不飽和カルボン酸の製造方法。 In the method to manufacture unsaturated carboxylic acid by the vapor-phase catalytic oxidation reaction of propane or isobutane, the oxide catalyst in any one of Claim 1 to 4 is used, The manufacturing method of unsaturated carboxylic acid characterized by the above-mentioned.
JP2004024577A 2004-01-30 2004-01-30 Oxide catalyst Expired - Lifetime JP4455081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004024577A JP4455081B2 (en) 2004-01-30 2004-01-30 Oxide catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004024577A JP4455081B2 (en) 2004-01-30 2004-01-30 Oxide catalyst

Publications (2)

Publication Number Publication Date
JP2005211844A true JP2005211844A (en) 2005-08-11
JP4455081B2 JP4455081B2 (en) 2010-04-21

Family

ID=34907222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004024577A Expired - Lifetime JP4455081B2 (en) 2004-01-30 2004-01-30 Oxide catalyst

Country Status (1)

Country Link
JP (1) JP4455081B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119376A1 (en) * 2006-03-20 2007-10-25 Asahi Kasei Chemicals Corporation Oxidation or ammoxydation catalyst and method of preparing the same
JP2007301470A (en) * 2006-05-11 2007-11-22 Asahi Kasei Chemicals Corp Improved catalyst
JP2007326034A (en) * 2006-06-07 2007-12-20 Asahi Kasei Chemicals Corp Catalyst for oxidation reaction or amm oxidation reaction
JP2011183268A (en) * 2010-03-05 2011-09-22 Mitsubishi Rayon Co Ltd Method for producing catalyst for methacrylic acid production
JP2012031124A (en) * 2010-08-02 2012-02-16 Asahi Kasei Chemicals Corp Method of producing acrylonitrile

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119376A1 (en) * 2006-03-20 2007-10-25 Asahi Kasei Chemicals Corporation Oxidation or ammoxydation catalyst and method of preparing the same
KR100999983B1 (en) 2006-03-20 2010-12-13 아사히 가세이 케미칼즈 가부시키가이샤 Oxidation or ammoxydation catalyst and method of preparing the same
US7919430B2 (en) 2006-03-20 2011-04-05 Asahi Kasei Chemicals Corporation Catalyst for oxidation or ammoxidation, and process for producing the same
JP5190994B2 (en) * 2006-03-20 2013-04-24 旭化成ケミカルズ株式会社 Oxidation or ammoxidation catalyst and method for producing the same
JP2007301470A (en) * 2006-05-11 2007-11-22 Asahi Kasei Chemicals Corp Improved catalyst
JP4743620B2 (en) * 2006-05-11 2011-08-10 旭化成ケミカルズ株式会社 Improved catalyst
JP2007326034A (en) * 2006-06-07 2007-12-20 Asahi Kasei Chemicals Corp Catalyst for oxidation reaction or amm oxidation reaction
JP2011183268A (en) * 2010-03-05 2011-09-22 Mitsubishi Rayon Co Ltd Method for producing catalyst for methacrylic acid production
JP2012031124A (en) * 2010-08-02 2012-02-16 Asahi Kasei Chemicals Corp Method of producing acrylonitrile

Also Published As

Publication number Publication date
JP4455081B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
JP4530595B2 (en) Oxide catalyst for oxidation or ammoxidation
US6610629B2 (en) Process for producing an oxide catalyst for oxidation or ammoxidation
EP2550098B1 (en) Attrition resistant mixed metal oxide ammoxidation catalysts
JP5483818B2 (en) Fluid bed catalyst for acrylonitrile production and process for producing acrylonitrile
JP5011176B2 (en) Catalyst for synthesizing acrylonitrile and method for producing acrylonitrile
JPWO2012060175A1 (en) Oxide catalyst, method for producing oxide catalyst, method for producing unsaturated acid, and method for producing unsaturated nitrile
JP4174852B2 (en) Acrylic acid production method
US8034737B2 (en) Catalyst for producing acrylonitrile and process for producing acrylonitrile
JP5694727B2 (en) Method for producing unsaturated acid or unsaturated nitrile
TWI501810B (en) Production method of unsaturated nitrile
JP6526062B2 (en) Improved selective ammoxidation catalyst
JP4187837B2 (en) Method for producing catalyst for producing unsaturated nitrile
JP4455081B2 (en) Oxide catalyst
JP5427580B2 (en) Composite metal oxide catalyst and method for producing the same
JP4049363B2 (en) Alkane oxidation catalyst, production method thereof, and production method of unsaturated oxygen-containing compound
JP4666334B2 (en) Method for producing oxide catalyst for oxidation or ammoxidation
JP4212154B2 (en) Catalyst and method for producing unsaturated nitrile using the same
JP4823950B2 (en) Method for producing catalyst for acrylonitrile production
JP4187856B2 (en) Catalyst and method for producing unsaturated nitrile using the same
JP4761461B2 (en) Nb-based oxide catalyst and method for producing unsaturated compound using the same
JP2007326036A (en) Oxide catalyst for oxidation or amm oxidation
JP4226120B2 (en) Catalyst and method for producing unsaturated nitrile using the same
JP2004066024A (en) Oxide catalyst
JP4180317B2 (en) Method for producing oxidation reaction catalyst
JP4318331B2 (en) Catalyst and method for producing unsaturated nitrile using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4455081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term