JP2005203419A - Epitaxial wafer for light emitting element - Google Patents

Epitaxial wafer for light emitting element Download PDF

Info

Publication number
JP2005203419A
JP2005203419A JP2004005316A JP2004005316A JP2005203419A JP 2005203419 A JP2005203419 A JP 2005203419A JP 2004005316 A JP2004005316 A JP 2004005316A JP 2004005316 A JP2004005316 A JP 2004005316A JP 2005203419 A JP2005203419 A JP 2005203419A
Authority
JP
Japan
Prior art keywords
light emitting
light
layer
epitaxial wafer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004005316A
Other languages
Japanese (ja)
Inventor
Kazuyuki Iizuka
和幸 飯塚
Katsuya Akimoto
克弥 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2004005316A priority Critical patent/JP2005203419A/en
Publication of JP2005203419A publication Critical patent/JP2005203419A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epitaxial wafer structure for nitride compound semiconductor light emitting elements which comprises a light reflective multilayer film between a light emitting part and a substrate, and to provide a high light emission output at a light emitting wavelength of 400 nm or shorter and a good product yield. <P>SOLUTION: The epitaxial wafer for light emitting elements comprises a first nitride compound semiconductor layer 2 having a composition of GaN laminated on a substrate 1, a multilayer film reflective mirror semiconductor layer 3 composed of superlattices formed thereon, and a light emitting element structure 4 having a p- and n-type clad layers having a composition of Al<SB>x</SB>Ga<SB>1-x</SB>N (0<x≤1) formed thereon. The multilayer film reflective mirror semiconductor layer 3 is a laminate of at least two superlattices different in reflection wavelength to have a reflection wavelength band for light emitting wavelengths of 400 nm or less, and each superlattice is composed of a plurality of layers pairs, each composed of two kinds of semiconductor layers which have different refractive indexes and different optical absorption coefficients and a composition of Al<SB>x</SB>Ga<SB>1-x-y</SB>N (0≤x≤1, 0≤y≤1). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、発光素子用エピタキシャルウェハ、特に発光波長400nm以下の発光出力の高い半導体発光素子が得られる発光素子用エピタキシャルウェハに関するものである。   The present invention relates to an epitaxial wafer for light-emitting elements, and more particularly to an epitaxial wafer for light-emitting elements from which a semiconductor light-emitting element having a high emission output with an emission wavelength of 400 nm or less can be obtained.

GaN、AlGaN、GaInNなどの窒化物系化合物半導体は、赤色から紫外線の発光が可能な発光素子材料として注目を集めている。   Nitride-based compound semiconductors such as GaN, AlGaN, and GaInN are attracting attention as light-emitting element materials capable of emitting red to ultraviolet light.

半導体エピタキシャル成長において最も簡単な方法は、成長する半導体と同一材料からなる単結晶基板上にエピタキシャル成長させることである。しかしながら、窒化物系化合物半導体の単結晶基板を得ることが困難であったり、コストの面で産業的に用いられない等の理由により、異種材料基板上へ成長せざるを得ない状況が続いている。窒化物系化合物半導体の成長に用いる異種材料基板としては、サファイア、炭化珪素などが一般的であり、異種材料基板を用いることから窒化物系化合物半導体結晶中に結晶欠陥が発生する。   The simplest method in semiconductor epitaxial growth is to perform epitaxial growth on a single crystal substrate made of the same material as the semiconductor to be grown. However, there is a situation in which it is difficult to obtain a single crystal substrate of a nitride compound semiconductor or it is not used industrially in terms of cost, and thus it is necessary to grow on a different material substrate. Yes. As the dissimilar material substrate used for the growth of the nitride compound semiconductor, sapphire, silicon carbide and the like are generally used. Since the dissimilar material substrate is used, crystal defects are generated in the nitride compound semiconductor crystal.

窒化物系化合物半導体よりなる、レーザダイオード素子(LD)および発光ダイオード素子(LED)等の発光素子の輝度は、発光部の発光効率や素子外部への光の取り出し効率等に依存し、これらの効率をより高くすることでより高い輝度の発光素子を得ることができる。   The luminance of light emitting elements such as laser diode elements (LD) and light emitting diode elements (LEDs) made of nitride compound semiconductors depends on the light emission efficiency of the light emitting part, the light extraction efficiency to the outside of the element, etc. By increasing the efficiency, a light-emitting element with higher luminance can be obtained.

このうち、素子外部への光の取り出し効率を高める手段としては、光反射多層膜を設けることが最も有効なものの1つである(例えば、特許文献1、4参照)。発光部からの光は、光出射面に向かうものもあるが基板へ向かうものもあり、基板へ向かった光の多くは基板により吸収される。そこで、発光部と基板との間に光反射多層膜を設けることにより基板へ向かう光を反射させて出射面へと向かわせることが可能となる(例えば、特許文献1参照)。この光反射多層膜は異なる屈折率を有する2種類の材料膜を一対として適切な厚みで交互に積層したものからなる。   Among these, as a means for increasing the light extraction efficiency to the outside of the element, it is one of the most effective means to provide a light reflecting multilayer film (see, for example, Patent Documents 1 and 4). The light from the light emitting part may be directed to the light exit surface but may be directed to the substrate, and most of the light directed to the substrate is absorbed by the substrate. Therefore, by providing a light reflecting multilayer film between the light emitting unit and the substrate, it is possible to reflect the light directed toward the substrate and direct it toward the emission surface (see, for example, Patent Document 1). This light reflecting multilayer film is formed by alternately laminating two types of material films having different refractive indexes as a pair with an appropriate thickness.

また、従来のサファイア基板上にエピタキシャル成長で作製した窒化物系化合物半導体素子では、まずサファイア基板上に高品質のGaN層を形成し、その上に直ちに発光素子構造を形成するか(例えば、特許文献2参照)、あるいはバッファ層(低温成長層)の上に多層膜反射層が形成される(例えば、特許文献3参照)。
特開2003−107241号公報(段落番号0040、図4) 特開2000−261037号公報(段落番号0036、図1) 特開2003−101141号公報(段落番号0037、0046、図1) 特開平9−232631号公報(段落番号0006、0038、図1)
In addition, in a nitride compound semiconductor device fabricated by epitaxial growth on a conventional sapphire substrate, first, a high-quality GaN layer is formed on the sapphire substrate, and a light-emitting device structure is immediately formed thereon (for example, Patent Literature 2), or a multilayer reflective layer is formed on the buffer layer (low temperature growth layer) (see, for example, Patent Document 3).
Japanese Patent Laying-Open No. 2003-107241 (paragraph number 0040, FIG. 4) JP 2000-261037 A (paragraph number 0036, FIG. 1) JP 2003-101141 A (paragraph numbers 0037 and 0046, FIG. 1) JP-A-9-232631 (paragraph numbers 0006 and 0038, FIG. 1)

上述したように、従来のサファイア基板上にエピタキシャル成長で作製した窒化物系化合物半導体素子では、多くの場合、まずサファイア基板上に高品質のGaN層を形成し、その上に発光素子構造を形成していた。しかし、発光波長が400nm以下になると光がGaN層で吸収され、外部量子効率が低下してしまう。   As described above, in a nitride compound semiconductor device fabricated by epitaxial growth on a conventional sapphire substrate, in many cases, a high quality GaN layer is first formed on the sapphire substrate, and a light emitting device structure is formed thereon. It was. However, when the emission wavelength is 400 nm or less, the light is absorbed by the GaN layer and the external quantum efficiency is lowered.

また、サファイア基板上に400nm以下において光吸収の影響を抑える為に、サファイア基板上にAlGaN等の400nm以下の発光波長においても吸収の起こらないより高いバンドギャップエネルギーを有する層を形成することも可能であるが、AlGaN層をサファイア基板上にエピタキシャル成長すると結晶欠陥がGaN層よりも多数発生する。サファイア基板上に高品質のAlGaN層を成長させる研究もなされているが、AlGaN結晶中の欠陥を低減する為に複雑なプロセス工程を必要とする。また、サファイア基板上に結晶欠陥の少ないGaNを成長させ、その上にAlGaNを成長させ発光素子構造を形成した後に、レーザ剥離や研磨等によってサファイア基板/GaN層を発光素子から剥がす方法も行なわれているが、複雑なプロセスを有する為にコストがかかり産業的に不向きである。   In addition, in order to suppress the influence of light absorption at 400 nm or less on the sapphire substrate, it is also possible to form a layer having higher band gap energy that does not absorb even at an emission wavelength of 400 nm or less such as AlGaN on the sapphire substrate However, when the AlGaN layer is epitaxially grown on the sapphire substrate, a larger number of crystal defects are generated than in the GaN layer. Research has also been conducted to grow high quality AlGaN layers on sapphire substrates, but complex process steps are required to reduce defects in AlGaN crystals. Another method is to grow GaN with few crystal defects on a sapphire substrate, grow AlGaN on the sapphire substrate to form a light emitting device structure, and then peel the sapphire substrate / GaN layer from the light emitting device by laser peeling or polishing. However, since it has a complicated process, it is expensive and industrially unsuitable.

そこで、従来のサファイア基板上の窒化物系化合物半導体素子に対して、高い発光出力を有し、且つ複雑なプロセスを要さずに、発光波長400nm以下の窒化物系化合物半導体発光素子を製造し得る発光素子用エピタキシャルウェハの構造が望まれる。   Therefore, a nitride compound semiconductor light emitting device having a high emission output and a light emission wavelength of 400 nm or less is manufactured without requiring a complicated process compared to a conventional nitride compound semiconductor device on a sapphire substrate. The structure of the obtained epitaxial wafer for light emitting elements is desired.

この要請の解決には、素子外部への光の取り出し効率を高める手段として、上記光反射多層膜を設けることが最も有効であり、発光部と基板との間に光反射多層膜を設けることにより基板へ向かう光を反射させて出射面へと向かわせることが可能となる。   In order to solve this requirement, it is most effective to provide the light reflecting multilayer film as a means for increasing the light extraction efficiency to the outside of the element. By providing the light reflecting multilayer film between the light emitting part and the substrate, It becomes possible to reflect the light which goes to a board | substrate, and to make it go to an output surface.

この光反射多層膜は異なる屈折率を有する2種類の材料膜を一対として適切な厚みで交互に積層したものからなるが、全ての層を単一の周期で積層するとその反射スペクトルが狭帯域となって反射波長領域が狭くなる。反射波長領域が狭くなると、結晶成長速度等の変動により反射波長が発光波長からずれやすくなって製品歩留りが悪くなる。   This light-reflective multilayer film is composed of two types of material films having different refractive indexes, which are alternately laminated with appropriate thicknesses. However, when all the layers are laminated in a single cycle, the reflection spectrum becomes a narrow band. Thus, the reflection wavelength region is narrowed. When the reflection wavelength region becomes narrow, the reflection wavelength tends to deviate from the emission wavelength due to fluctuations in the crystal growth rate and the like, resulting in poor product yield.

そこで、本発明の目的は、上記課題を解決し、発光部と基板との間に光反射多層膜を設けた構造で、発光波長400nm以下での高い発光出力を可能とする、製品歩留りの良い、窒化物系化合物半導体発光素子用のエピタキシャルウェハの構造を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide a high light output at a light emission wavelength of 400 nm or less with a structure in which a light reflecting multilayer film is provided between a light emitting part and a substrate, and a good product yield. An object of the present invention is to provide an epitaxial wafer structure for a nitride-based compound semiconductor light emitting device.

上記目的を達成するため、本発明は、次のように構成したものである。   In order to achieve the above object, the present invention is configured as follows.

請求項1の発明は、基板上に、組成がGaNから成る第一の窒化物系化合物半導体層を積層し、その上に超格子からなる半導体多層膜反射鏡層を形成し、その上に、組成がAlxGa1-xN(0<x≦1)から成るp型およびn型のクラッド層を有する発光素子構造を形成した発光素子用エピタキシャルウェハにおいて、上記半導体多層膜反射鏡層が、400nm以下の発光波長に対する反射波長帯域を持つべく、少なくとも2種類以上の反射波長の異なる超格子の積層体からなり、各超格子が、それぞれ屈折率および光吸収係数が異なり、組成がAlxGa1-x-yN(0≦x≦1、0≦y≦1)である2種類の半導体層を一対とする複数層から構成されていることを特徴とする。 In the first aspect of the present invention, a first nitride-based compound semiconductor layer composed of GaN is stacked on a substrate, and a semiconductor multilayer mirror layer composed of a superlattice is formed thereon, on which In an epitaxial wafer for a light emitting device in which a light emitting device structure having a p-type and an n-type cladding layer having a composition of Al x Ga 1-x N (0 <x ≦ 1) is formed, the semiconductor multilayer reflector layer includes: In order to have a reflection wavelength band for an emission wavelength of 400 nm or less, it is composed of a laminate of at least two types of superlattices having different reflection wavelengths, each superlattice having a different refractive index and light absorption coefficient, and a composition of Al x Ga. 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) is composed of a plurality of layers including a pair of two semiconductor layers.

請求項2の発明は、請求項1記載の発光素子用エピタキシャルウェハにおいて、上記第一の窒化物系化合物半導体層の転位密度が7.0×108cm-2以下であることを特徴とする。 According to a second aspect of the present invention, in the epitaxial wafer for a light emitting device according to the first aspect, the dislocation density of the first nitride-based compound semiconductor layer is 7.0 × 10 8 cm −2 or less. .

請求項3の発明は、請求項1記載の発光素子用エピタキシャルウェハにおいて、上記半導体多層膜反射鏡層の各超格子がAlGaNとGaNを一対とする複数層から成ることを特徴とする。   According to a third aspect of the present invention, in the epitaxial wafer for a light emitting device according to the first aspect, each superlattice of the semiconductor multilayer film reflecting mirror layer is composed of a plurality of layers of a pair of AlGaN and GaN.

本発明の発光素子用エピタキシャルウェハは、サファイア等の基板上に成長した高品質なGaN層上に、超格子構造からなる半導体反射鏡を少なくとも2種類以上形成し、それらの半導体反射鏡上に窒化物系化合物半導体からなる発光素子構造を形成したものであり、基板側へ出力された400nm以下の発光波長を有効に反射することができ、基板での吸収がなくなるため、発光出力の高い半導体発光素子を得ることができるものである。   In the epitaxial wafer for light emitting device of the present invention, at least two kinds of semiconductor reflectors having a superlattice structure are formed on a high-quality GaN layer grown on a substrate such as sapphire, and nitriding is performed on these semiconductor reflectors. A light emitting device structure made of a compound compound semiconductor is formed, which can effectively reflect an emission wavelength of 400 nm or less outputted to the substrate side, and eliminates absorption at the substrate, so that semiconductor light emission with high emission output is achieved. An element can be obtained.

GaN系半導体発光ダイオードにおいては、反射波長帯域の広い半導体多層膜反射鏡層を形成することが困難な為、2種類以上の半導体多層膜反射鏡層を形成することが有効である。また、本発明の発光素子用エピタキシャルウェハは、剥離等の複雑な工程を含まないので、生産歩留り良く製造することができる。   In a GaN-based semiconductor light-emitting diode, it is difficult to form a semiconductor multilayer film reflector layer having a wide reflection wavelength band, so it is effective to form two or more types of semiconductor multilayer film reflector layers. Moreover, since the epitaxial wafer for light emitting devices of the present invention does not include complicated processes such as peeling, it can be manufactured with a high production yield.

要するに、本発明の発光素子用エピタキシャルウェハによれば、GaN層で吸収の起こる365nm以下の波長で、内部量子効率および外部量子効率の高い発光素子を製造することができる。   In short, according to the epitaxial wafer for light emitting device of the present invention, a light emitting device having high internal quantum efficiency and high external quantum efficiency can be manufactured at a wavelength of 365 nm or less where absorption occurs in the GaN layer.

以下、本発明を図示の実施の形態に基づいて説明する。   Hereinafter, the present invention will be described based on the illustrated embodiments.

上記構成の発光素子用エピタキシャルウェハの断面の概略を図1に示す。この発光素子用エピタキシャルウェハは、基板1上に、組成がGaNから成る第一の窒化物系化合物半導体層2を積層し、その上に超格子からなる半導体多層膜反射鏡層3を形成し、その上に、組成がAlxGa1-xN(0<x≦1)から成るp型およびn型のクラッド層を有する発光素子構造4を形成した構造となっている。そして、上記半導体多層膜反射鏡層3は、400nm以下の発光波長に対する反射波長帯域を持つべく、少なくとも2種類以上の反射波長の異なる超格子の積層体からなり、各超格子が、それぞれ屈折率および光吸収係数が異なり、組成がAlxGa1-x-yN(0≦x≦1、0≦y≦1)である2種類の半導体層を一対とする複数層から構成されている。 An outline of a cross section of the epitaxial wafer for a light emitting device having the above-described configuration is shown in FIG. In this epitaxial wafer for light-emitting elements, a first nitride-based compound semiconductor layer 2 composed of GaN is stacked on a substrate 1, and a semiconductor multilayer reflector layer 3 composed of a superlattice is formed thereon, A light emitting element structure 4 having p-type and n-type cladding layers having a composition of Al x Ga 1-x N (0 <x ≦ 1) is formed thereon. The semiconductor multilayer mirror layer 3 is composed of a laminate of at least two types of superlattices having different reflection wavelengths so as to have a reflection wavelength band with respect to an emission wavelength of 400 nm or less, and each superlattice has a refractive index. The light absorption coefficient is different, and the composition is composed of a plurality of layers each including a pair of two semiconductor layers having a composition of Al x Ga 1 -xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1).

この発光素子用エピタキシャルウェハは、次のような(a)〜(c)の3工程にて製造することができる。   This epitaxial wafer for light-emitting elements can be manufactured in the following three steps (a) to (c).

工程(a)では、基板1上に、組成がGaNから成る第一の窒化物系化合物半導体層2を積層させる。この第一の窒化物系化合物半導体層2の最終的な転位密度は7.0×108cm-2以下とする。 In step (a), a first nitride-based compound semiconductor layer 2 having a composition of GaN is stacked on the substrate 1. The final dislocation density of the first nitride-based compound semiconductor layer 2 is 7.0 × 10 8 cm −2 or less.

工程(b)では、上記第一の窒化物系化合物半導体層2上に、屈折率および光吸収係数が異なり、組成がAlxGa1-x-yN(0≦x≦1、0≦y≦1)である2種類の半導体層を一対とする複数層から成る超格子を、少なくとも2種類以上積層して、半導体多層膜反射鏡層3を構成する。 In the step (b), the refractive index and the light absorption coefficient are different on the first nitride compound semiconductor layer 2 and the composition is Al x Ga 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1). The semiconductor multilayer mirror layer 3 is formed by stacking at least two types of superlattices composed of a plurality of layers each including two types of semiconductor layers.

工程(c)では、上記半導体多層膜反射鏡層3上に、組成がAlxGa1-x-yN(0<x≦1、0≦y≦1)から成るp型およびn型のクラッド層を有する発光素子構造4を形成する。 In the step (c), p-type and n-type clad layers having a composition of Al x Ga 1-xy N (0 <x ≦ 1, 0 ≦ y ≦ 1) are formed on the semiconductor multilayer reflector layer 3. A light emitting element structure 4 having the same is formed.

次に、上記発光素子用エピタキシャルウェハ及びこれを用いた窒化物系化合物半導体発光素子の製造する実施例について説明する。なお、以下の実施例は図1の基板1としてサファイア基板5を用いているが、基板1として窒化物系化合物半導体、炭化珪素、珪素、あるいは酸化物材料等からなる単結晶基板を用いた場合においても同様の結果を得ている。   Next, an example of manufacturing the epitaxial wafer for a light emitting device and a nitride compound semiconductor light emitting device using the same will be described. In the following embodiments, a sapphire substrate 5 is used as the substrate 1 in FIG. 1, but a single crystal substrate made of a nitride compound semiconductor, silicon carbide, silicon, or an oxide material is used as the substrate 1. The same result is obtained in.

Ga、Alの原料として、トリメチルガリウム(TMG)、トリメチルアルミニウム(TMA)を使用した。また、n型およびp型のドーパントであるSi、Mgについて、それぞれモノシランガス、シクロペンタジエニルマグネシウム(CpMg)、N原料としてアンモニア(NH3)を使用し、MOVPE(有機金属気相成長)装置を用いてエピタキシャル成長を行った。
[実施例1]
まず、図2(a)に示すように、第一の窒化物系化合物半導体層として良質のn型GaN層6を4.0μm成長さた。その際のn型GaN層6のエピタキシャルウェハ表面での転位密度は、3.4×108cm-2であった。
As raw materials for Ga and Al, trimethylgallium (TMG) and trimethylaluminum (TMA) were used. For Si and Mg, which are n-type and p-type dopants, monosilane gas, cyclopentadienylmagnesium (CpMg), and ammonia (NH 3 ) as the N raw material, respectively, a MOVPE (organometallic vapor phase epitaxy) apparatus is used. Epitaxial growth was performed using this.
[Example 1]
First, as shown in FIG. 2A, a high-quality n-type GaN layer 6 was grown as a first nitride compound semiconductor layer by 4.0 μm. At that time, the dislocation density on the epitaxial wafer surface of the n-type GaN layer 6 was 3.4 × 10 8 cm −2 .

さらに図2(b)に示すように、n型GaN層6上に、400nm以下の発光波長に対する反射波長帯域を持つべく、反射波長の異なる2種類の超格子を積層して半導体多層膜反射鏡層7を構成した。この半導体多層膜反射鏡層7の一方の超格子は、n型AlGaNとn型GaNの対(Al0.35Ga0.65N(32.5nm)/GaN(31.4nm))を30ペア積層した多層膜とし、他方の超格子はn型AlGaNとn型GaNの対(Al0.35Ga0.65N(34.4nm)/GaN(33.3nm))を30ペア積層した多層膜とした。 Further, as shown in FIG. 2 (b), two types of superlattices having different reflection wavelengths are laminated on the n-type GaN layer 6 so as to have a reflection wavelength band for an emission wavelength of 400 nm or less. Layer 7 was constructed. One superlattice of the semiconductor multilayer reflector layer 7 is a multilayer film in which 30 pairs of n-type AlGaN and n-type GaN pairs (Al 0.35 Ga 0.65 N (32.5 nm) / GaN (31.4 nm)) are stacked. The other superlattice was a multilayer film in which 30 pairs of n-type AlGaN and n-type GaN pairs (Al 0.35 Ga 0.65 N (34.4 nm) / GaN (33.3 nm)) were stacked.

次に、図2(c)に示すように、半導体多層膜反射鏡層7上に、発光素子構造4を構築した。すなわち、n型AlxGa1-xN(x=0.1)コンタクト層兼クラッド層8(厚さ1μm)、GaN/AlxGa1-xN(x=0.1)多重量子井戸活性層9(GaNの厚さ2nm、Al0.10Ga0.90Nの厚さ4nm)、p型AlxGa1-xN(x=0.1)クラッド層10(厚さ0.5μm)を順次形成した。 Next, as shown in FIG. 2C, a light emitting element structure 4 was constructed on the semiconductor multilayer reflector layer 7. That is, n-type Al x Ga 1-x N (x = 0.1) contact layer / cladding layer 8 (thickness 1 μm), GaN / Al x Ga 1-x N (x = 0.1) multiple quantum well activity Layer 9 (GaN thickness 2 nm, Al 0.10 Ga 0.90 N thickness 4 nm) and p-type Al x Ga 1-x N (x = 0.1) cladding layer 10 (thickness 0.5 μm) were sequentially formed. .

上記により得られた発光素子用エピタキシャルウェハに対し、図2(d)に示すように、その表面をRIE(Reactive Ion Etching)により部分的に除去し、n型AlGaNコンタクト層兼クラッド層8の一部を露出させて電極11を形成し、p型AlGaNクラッド層10上に電極12を形成して、発光ダイオード(LED)A(実施例1)を作製した。   As shown in FIG. 2D, the surface of the epitaxial wafer for light-emitting element obtained as described above is partially removed by RIE (Reactive Ion Etching), and one of the n-type AlGaN contact layer / cladding layer 8 is removed. The electrode 11 was formed by exposing the portion, and the electrode 12 was formed on the p-type AlGaN cladding layer 10 to fabricate a light emitting diode (LED) A (Example 1).

また比較のため、上記発光ダイオードAにおいて半導体多層膜反射鏡層7を有さない発光ダイオードB(比較例1)も同様に作製した(図3)。   For comparison, a light-emitting diode B (Comparative Example 1) that does not have the semiconductor multilayer reflector layer 7 in the light-emitting diode A was also manufactured in the same manner (FIG. 3).

また更なる比較のため、図4に示すように、第一の窒化物系化合物半導体層としてn型GaN層6の代わりにn型Al0.10Ga0.90N層16を5.0μm成長させた後、上記発光ダイオードAと同様の構造で発光ダイオードC(比較例2)を作製した。その際の第一の窒化物半導体層であるAlGaN層16の転位密度は5.0×109cm-2であった。 For further comparison, as shown in FIG. 4, after growing an n-type Al 0.10 Ga 0.90 N layer 16 as a first nitride-based compound semiconductor layer instead of the n-type GaN layer 6 by 5.0 μm, A light emitting diode C (Comparative Example 2) was fabricated with the same structure as the light emitting diode A. At that time, the dislocation density of the AlGaN layer 16 as the first nitride semiconductor layer was 5.0 × 10 9 cm −2 .

以上のチップサイズの同じ発光ダイオードA、B、Cそれぞれについて20mAの電流を通電したところ、発光波長が354nmで、発光出力がそれぞれ、発光ダイオードA(実施例1)は1.5mW、発光ダイオードB、C(比較例1、2)は0.010mW、0.065mWであった。   When a current of 20 mA was applied to each of the light emitting diodes A, B and C having the same chip size, the light emission wavelength was 354 nm, the light emission output was 1.5 mW for the light emitting diode A (Example 1), and the light emitting diode B , C (Comparative Examples 1 and 2) were 0.010 mW and 0.065 mW.

発光ダイオードB(比較例1)の発光出力が低い理由は、発光ダイオードBでは半導体多層膜反射鏡層7を有していない為、第一の半導体層のn型GaN層6において光の吸収が起こり、外部へ取り出される光の効率が低下した為であると考えられる(外部量子効率の低下)。   The reason why the light emission output of the light emitting diode B (Comparative Example 1) is low is that the light emitting diode B does not have the semiconductor multilayer reflector layer 7, and therefore the n-type GaN layer 6 of the first semiconductor layer absorbs light. This is considered to be because the efficiency of light that occurs and is extracted to the outside is reduced (decrease in external quantum efficiency).

また発光ダイオードC(比較例2)の発光出力が低い理由は、次のように考えられる。すなわち発光ダイオードC(比較例2)では、サファイア基板5上に直接にn型AlGaN層16を成長させている為に、n型AlGaN層16内に結晶欠陥である転位が5.0×109cm-2と多数発生してしまった。結晶内の転位は非発光再結合中心として働くことが知られている。その結果、発光素子内の活性層(発光層)である多重量子井戸活性層9で電子が発光に寄与せずに非発光再結合し、発光出力が低下したものと考えられる(内部量子効率の低下)。 Further, the reason why the light emission output of the light emitting diode C (Comparative Example 2) is low is considered as follows. That is, in the light emitting diode C (Comparative Example 2), since the n-type AlGaN layer 16 is grown directly on the sapphire substrate 5, dislocations that are crystal defects in the n-type AlGaN layer 16 are 5.0 × 10 9. A large number of cm- 2 occurred. It is known that dislocations in crystals work as non-radiative recombination centers. As a result, it is considered that electrons do not contribute to light emission in the multi-quantum well active layer 9 which is an active layer (light emitting layer) in the light emitting element, recombine without emitting light, and light output is reduced (internal quantum efficiency). Decline).

それらに対して、本発明の発光ダイオードA(実施例1)では、1.5mWという高い発光出力が得られている。その理由として、半導体多層膜反射鏡層7を有することで、光を半導体多層膜反射鏡層7で400nm以下の発光波長を有効に反射して外部へ光を取り出すことによって、第一の半導体層のn型GaN層6における光の吸収を低減し、外部量子効率を向上させている。また、サファイア基板5上に高品質(低転位密度)のn型GaN層6を成長し、その上に、半導体多層膜反射鏡層7、n型AlGaNクラッド層8、GaN/AlGaN多重量子井戸活性層9、p型Al0.10Ga0.90Nクラッド層10と積層してLED構造を形成している。高品質なn型GaN層6の結晶性は、その上に成長する各層へも受け継がれる為に、多重量子井戸活性層(発光層)9での転位も少なく発光に寄与しない電子を低減し、内部量子効率を向上させている。その結果、発光ダイオードAでは、高い発光出力が得られたものと考えられる。 In contrast, the light emitting diode A of the present invention (Example 1) has a high light output of 1.5 mW. The reason for this is that by having the semiconductor multilayer reflector layer 7, light is effectively reflected by the semiconductor multilayer reflector layer 7 at an emission wavelength of 400 nm or less, and the light is extracted to the outside. The absorption of light in the n-type GaN layer 6 is reduced, and the external quantum efficiency is improved. Further, a high-quality (low dislocation density) n-type GaN layer 6 is grown on the sapphire substrate 5, on which a semiconductor multilayer reflector layer 7, an n-type AlGaN cladding layer 8, and GaN / AlGaN multiple quantum well activity. Layer 9 and p-type Al 0.10 Ga 0.90 N cladding layer 10 are stacked to form an LED structure. Since the crystallinity of the high-quality n-type GaN layer 6 is inherited by each layer grown thereon, the number of dislocations in the multiple quantum well active layer (light emitting layer) 9 is small, and electrons that do not contribute to light emission are reduced. The internal quantum efficiency is improved. As a result, the light emitting diode A is considered to have obtained a high light output.

次に、半導体多層膜反射鏡層7を備える図2の発光ダイオード用エピタキシャルウェハにおいて、第一の窒化物系化合物半導体層であるn型GaN層6の転位密度を変化させ、転位密度が、3.4×108cm-2(実施例1記載の発光ダイオードA)、5.2×108cm-2、7.1×108cm-2、8.3×108cm-2、1.1×109cm-2である時のLEDの発光出力を調べた。これらのLEDに20mA通電した際の発光出力と窒化物系化合物半導体層(n型GaN層6)の転位密度との関係を図5に示す。 Next, in the epitaxial wafer for light emitting diodes of FIG. 2 provided with the semiconductor multilayer reflector layer 7, the dislocation density of the n-type GaN layer 6 which is the first nitride-based compound semiconductor layer is changed so that the dislocation density is 3 4 × 10 8 cm −2 (light-emitting diode A described in Example 1), 5.2 × 10 8 cm −2 , 7.1 × 10 8 cm −2 , 8.3 × 10 8 cm −2 , 1 The light emission output of the LED at 1 × 10 9 cm −2 was examined. FIG. 5 shows the relationship between the light emission output when 20 mA is applied to these LEDs and the dislocation density of the nitride-based compound semiconductor layer (n-type GaN layer 6).

図5から、第一の窒化物系化合物半導体層(n型GaN層6)の転位密度が減るにつれて転位密度が6.5〜8.0×108cm-2の範囲で急激に発光出力が向上していることが分かった。たとえ半導体多層膜反射鏡層7によって外部量子効率を向上させたとしても、第一の窒化物系化合物半導体層(n型GaN層6)で高品質な結晶が得られないと、その上に成長するLEDの各層においても転位が多く結晶中に含まれることによって、多重量子井戸活性層(発光層)9での非発光再結合が支配的になり(内部量子効率の低下)、発光出力が低下したと考えられる。 From FIG. 5, as the dislocation density of the first nitride-based compound semiconductor layer (n-type GaN layer 6) decreases, the light emission output rapidly increases in the range of dislocation density of 6.5 to 8.0 × 10 8 cm −2. It turns out that it is improving. Even if the external quantum efficiency is improved by the semiconductor multilayer reflector layer 7, if a high-quality crystal is not obtained in the first nitride compound semiconductor layer (n-type GaN layer 6), it grows on it. In each LED layer, too many dislocations are included in the crystal, so that non-radiative recombination in the multiple quantum well active layer (light emitting layer) 9 becomes dominant (decrease in internal quantum efficiency) and light emission output decreases. It is thought that.

よって、第一の窒化物系化合物半導体層2の最終的な転位密度は5.0×108cm-2以下であることが良いことが分かる。
[実施例2]
実施例1記載の発光ダイオードAにおける半導体多層膜反射鏡層7として、図6に示すように、n型AlGaNとn型GaNの対からなる多層膜を、第一の半導体多層膜層71((32.5nm)/GaN(31.4nm))と、第二の半導体多層膜層72(Al0.35Ga0.65N(34.4nm)/GaN(33.3nm))と、第三の半導体多層膜層73(Al0.35Ga0.65N(36.3nm)/GaN(35.1nm))の3種類とし、それぞれ30ペア積層した。
Therefore, it can be seen that the final dislocation density of the first nitride-based compound semiconductor layer 2 is preferably 5.0 × 10 8 cm −2 or less.
[Example 2]
As the semiconductor multilayer reflector layer 7 in the light-emitting diode A described in Example 1, as shown in FIG. 6, a multilayer film composed of a pair of n-type AlGaN and n-type GaN is used as the first semiconductor multilayer film layer 71 (( 32.5 nm) / GaN (31.4 nm)), second semiconductor multilayer film layer 72 (Al 0.35 Ga 0.65 N (34.4 nm) / GaN (33.3 nm)), and third semiconductor multilayer film layer Three types of 73 (Al 0.35 Ga 0.65 N (36.3 nm) / GaN (35.1 nm)) and 30 pairs were laminated.

そのようにして作製した発光ダイオードD(実施例2)に20mAの電流を通電したところ、発光波長354nmで発光出力がそれぞれ、2.2mWと、発光ダイオードAよりも発光効率が向上した。   When a current of 20 mA was passed through the light-emitting diode D (Example 2) produced in this way, the light emission output was 2.2 mW at a light emission wavelength of 354 nm, which was higher than that of the light-emitting diode A.

GaN系半導体においてAlGaN/GaNの対で半導体多層膜反射層を作成する場合、GaN層上に成長したAlGaN層の臨界膜厚の関係上、AlGaN層中のAl組成を小さくしなければならない。AlGaN層中のAl組成が小さいと、AlGaN層とGaN層の屈折率差が小さくなり反射波長帯域が狭くなるという問題点がある。その問題点に対して、本実施例2においては、発光ダイオード内に3種類の狙いとなる波長の異なる半導体多層膜反射鏡層を形成し、反射波長帯域を広くした結果、発光効率が向上したものと考えられる。GaN系半導体発光ダイオードにおいては、反射波長帯域の広い半導体多層膜反射鏡層を形成することが困難な為、本発明のように2種類以上の超格子から成る半導体多層膜反射鏡層を形成することが有効であると考えられる。   When a semiconductor multilayer reflective layer is formed with an AlGaN / GaN pair in a GaN-based semiconductor, the Al composition in the AlGaN layer must be reduced due to the critical film thickness of the AlGaN layer grown on the GaN layer. If the Al composition in the AlGaN layer is small, there is a problem in that the difference in refractive index between the AlGaN layer and the GaN layer is small and the reflection wavelength band is narrowed. For this problem, in Example 2, three types of target semiconductor multilayer reflector layers with different wavelengths were formed in the light-emitting diode, and the reflection wavelength band was widened, resulting in improved luminous efficiency. It is considered a thing. In a GaN-based semiconductor light-emitting diode, since it is difficult to form a semiconductor multilayer reflector layer having a wide reflection wavelength band, a semiconductor multilayer reflector layer composed of two or more types of superlattices is formed as in the present invention. Is considered effective.

本発明における発光素子用エピタキシャルウェハの構造を示す概略図である。It is the schematic which shows the structure of the epitaxial wafer for light emitting elements in this invention. 本発明の実施例に係る発光ダイオードの製造工程を示す図である。It is a figure which shows the manufacturing process of the light emitting diode which concerns on the Example of this invention. 比較例1の発光ダイオードの断面構造を示す概略図である。6 is a schematic view showing a cross-sectional structure of a light emitting diode of Comparative Example 1. FIG. 比較例2の発光ダイオードの断面構造を示す概略図である。6 is a schematic view showing a cross-sectional structure of a light emitting diode of Comparative Example 2. FIG. 発光ダイオードにおける転位密度と発光出力の関係を示す図である。It is a figure which shows the relationship between the dislocation density and light emission output in a light emitting diode. 本発明の他の実施例に係る発光ダイオードの断面構造を示す概略図である。It is the schematic which shows the cross-section of the light emitting diode which concerns on the other Example of this invention.

符号の説明Explanation of symbols

1 基板
2 第一の窒化物系化合物半導体層
3 半導体多層膜反射鏡層
4 発光素子構造
5 サファイア基板
6 n型GaN層
7 半導体多層膜反射鏡層
8 コンタクト層兼クラッド層
9 多重量子井戸活性層
10 クラッド層
11、12 電極
71 半導体多層膜層
72 半導体多層膜層
73 半導体多層膜層
16 n型AlGaN層
DESCRIPTION OF SYMBOLS 1 Substrate 2 First nitride compound semiconductor layer 3 Semiconductor multilayer film reflector layer 4 Light emitting element structure 5 Sapphire substrate 6 n-type GaN layer 7 Semiconductor multilayer film reflector layer 8 Contact layer / cladding layer 9 Multiple quantum well active layer DESCRIPTION OF SYMBOLS 10 Cladding layer 11, 12 Electrode 71 Semiconductor multilayer film layer 72 Semiconductor multilayer film layer 73 Semiconductor multilayer film layer 16 n-type AlGaN layer

Claims (3)

基板上に、組成がGaNから成る第一の窒化物系化合物半導体層を積層し、その上に超格子からなる半導体多層膜反射鏡層を形成し、その上に、組成がAlxGa1-xN(0<x≦1)から成るp型およびn型のクラッド層を有する発光素子構造を形成した発光素子用エピタキシャルウェハにおいて、
上記半導体多層膜反射鏡層が、400nm以下の発光波長に対する反射波長帯域を持つべく、少なくとも2種類以上の反射波長の異なる超格子の積層体からなり、各超格子が、それぞれ屈折率および光吸収係数が異なり、組成がAlxGa1-x-yN(0≦x≦1、0≦y≦1)である2種類の半導体層を一対とする複数層から構成されていることを特徴とする発光素子用エピタキシャルウェハ。
A first nitride-based compound semiconductor layer composed of GaN is stacked on a substrate, and a semiconductor multilayer reflector layer composed of a superlattice is formed thereon, on which a composition of Al x Ga 1− In an epitaxial wafer for a light-emitting element in which a light-emitting element structure having p-type and n-type cladding layers made of xN (0 <x ≦ 1) is formed,
The semiconductor multilayer reflector layer is composed of a laminate of at least two types of superlattices having different reflection wavelengths so that the reflection wavelength band with respect to an emission wavelength of 400 nm or less is included, and each superlattice has a refractive index and light absorption. Light emission characterized in that it is composed of a plurality of layers of two types of semiconductor layers having different coefficients and having a composition of Al x Ga 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1). Epitaxial wafer for devices.
請求項1記載の発光素子用エピタキシャルウェハにおいて、
上記第一の窒化物系化合物半導体層の転位密度が7.0×108cm-2以下であることを特徴とする発光素子用エピタキシャルウェハ。
In the epitaxial wafer for light emitting elements according to claim 1,
An epitaxial wafer for a light emitting device, wherein the dislocation density of the first nitride-based compound semiconductor layer is 7.0 × 10 8 cm −2 or less.
請求項1記載の発光素子用エピタキシャルウェハにおいて、
上記半導体多層膜反射鏡層の各超格子がAlGaNとGaNを一対とする複数層から成ることを特徴とする発光素子用エピタキシャルウェハ。
In the epitaxial wafer for light emitting elements according to claim 1,
An epitaxial wafer for a light-emitting element, wherein each superlattice of the semiconductor multilayer mirror layer is composed of a plurality of layers of a pair of AlGaN and GaN.
JP2004005316A 2004-01-13 2004-01-13 Epitaxial wafer for light emitting element Pending JP2005203419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004005316A JP2005203419A (en) 2004-01-13 2004-01-13 Epitaxial wafer for light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004005316A JP2005203419A (en) 2004-01-13 2004-01-13 Epitaxial wafer for light emitting element

Publications (1)

Publication Number Publication Date
JP2005203419A true JP2005203419A (en) 2005-07-28

Family

ID=34819684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004005316A Pending JP2005203419A (en) 2004-01-13 2004-01-13 Epitaxial wafer for light emitting element

Country Status (1)

Country Link
JP (1) JP2005203419A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311317A (en) * 2007-06-12 2008-12-25 Eudyna Devices Inc Semiconductor light-emitting element
JP2013506287A (en) * 2009-09-24 2013-02-21 スウェディセ アクチボラゲット Avalanche type photodiode
CN103296045A (en) * 2012-02-24 2013-09-11 华夏光股份有限公司 Light-emitting diode device
KR20140071800A (en) * 2012-12-04 2014-06-12 엘지이노텍 주식회사 Light Emitting Device
KR20150131526A (en) * 2014-05-15 2015-11-25 엘지이노텍 주식회사 Light emitting device and ultraviolet light emitting device package having the same
US10651249B2 (en) 2012-11-20 2020-05-12 Lg Display Co., Ltd. Organic light emitting diode display device and method of fabricating the same
CN112271190A (en) * 2020-10-30 2021-01-26 杭州数通光电有限公司 Continuous wavelength chip and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311317A (en) * 2007-06-12 2008-12-25 Eudyna Devices Inc Semiconductor light-emitting element
JP2013506287A (en) * 2009-09-24 2013-02-21 スウェディセ アクチボラゲット Avalanche type photodiode
CN103296045A (en) * 2012-02-24 2013-09-11 华夏光股份有限公司 Light-emitting diode device
US10651249B2 (en) 2012-11-20 2020-05-12 Lg Display Co., Ltd. Organic light emitting diode display device and method of fabricating the same
KR20140071800A (en) * 2012-12-04 2014-06-12 엘지이노텍 주식회사 Light Emitting Device
KR102066609B1 (en) * 2012-12-04 2020-03-02 엘지이노텍 주식회사 Light Emitting Device
KR20150131526A (en) * 2014-05-15 2015-11-25 엘지이노텍 주식회사 Light emitting device and ultraviolet light emitting device package having the same
KR102212793B1 (en) * 2014-05-15 2021-02-05 엘지이노텍 주식회사 Light emitting device and ultraviolet light emitting device package having the same
CN112271190A (en) * 2020-10-30 2021-01-26 杭州数通光电有限公司 Continuous wavelength chip and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6548834B2 (en) Semiconductor light emitting element
JP3505357B2 (en) Gallium nitride based semiconductor device and method of manufacturing the same
KR101646064B1 (en) Method of manufacture for nitride semiconductor light emitting element, wafer, and nitride semiconductor light emitting element
JPWO2008153130A1 (en) Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor
JP2008117922A (en) Semiconductor light-emitting element, and its manufacturing method
JP2001160627A5 (en)
JP2011054982A (en) GaN III-V COMPOUND SEMICONDUCTOR LIGHT EMITTING DEVICE, AND METHOD FOR MANUFACTURING THE SAME
JP2002246698A (en) Nitride semiconductor light-emitting device and method of manufacturing the same
JP2001168385A (en) Iii nitride compound semiconductor element and iii nitride compound semiconductor light emitting element
JP2003069075A (en) Gallium nitride compound semiconductor device
WO2015146069A1 (en) Light emitting diode element
JP2002084000A (en) Iii group nitride based compound light emitting semiconductor element
JPH10229217A (en) Semiconductor light emitting element
JP3545197B2 (en) Semiconductor device and method of manufacturing the same
JP2002043618A (en) Method for manufacturing nitride semiconductor
JP2007165405A (en) Light emitting diode
JPH05206513A (en) Semiconductor light-emitting element
JP2005209925A (en) Lamination semiconductor substrate
JP2005203419A (en) Epitaxial wafer for light emitting element
JP2004048076A (en) Semiconductor element and its manufacturing method
JP3753948B2 (en) Group III nitride compound semiconductor manufacturing method and group III nitride compound semiconductor device
JP2004014587A (en) Nitride compound semiconductor epitaxial wafer and light emitting element
KR101560952B1 (en) Epitaxial wafer for light-emitting diodes
JPH11191635A (en) Gallium nitride compound semiconductor light-emitting element
JP7205474B2 (en) Template substrate, electronic device, light-emitting device, template substrate manufacturing method, and electronic device manufacturing method