JP2005200736A - Method for producing aqueous solution comprising indium ion and bivalent tin ion - Google Patents

Method for producing aqueous solution comprising indium ion and bivalent tin ion Download PDF

Info

Publication number
JP2005200736A
JP2005200736A JP2004010242A JP2004010242A JP2005200736A JP 2005200736 A JP2005200736 A JP 2005200736A JP 2004010242 A JP2004010242 A JP 2004010242A JP 2004010242 A JP2004010242 A JP 2004010242A JP 2005200736 A JP2005200736 A JP 2005200736A
Authority
JP
Japan
Prior art keywords
tin
ions
aqueous solution
tin ions
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004010242A
Other languages
Japanese (ja)
Other versions
JP4474925B2 (en
Inventor
Kazuya Koyama
和也 小山
Shinji Fujiwara
進治 藤原
Kunio Saegusa
邦夫 三枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Sumitomo Chemical Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Sumitomo Chemical Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004010242A priority Critical patent/JP4474925B2/en
Priority to TW94100770A priority patent/TW200535252A/en
Priority to US11/033,899 priority patent/US20050155870A1/en
Priority to KR1020050004573A priority patent/KR20050076650A/en
Priority to CNA2005100090827A priority patent/CN1673416A/en
Publication of JP2005200736A publication Critical patent/JP2005200736A/en
Application granted granted Critical
Publication of JP4474925B2 publication Critical patent/JP4474925B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method where, from an acid aqueous solution comprising In<SP>3+</SP>and Sn<SP>4+</SP>and in which the content of Sn<SP>4+</SP>exceeds 50 wt.% in all tin ions, an aqueous solution comprising In<SP>3+</SP>and Sn<SP>2+</SP>and in which the content of Sn<SP>2+</SP>is ≥50 wt.% in all tin ions is easily produced without substantially increasing the tin ions. <P>SOLUTION: In the method for producing an aqueous solution comprising In<SP>3+</SP>and Sn<SP>2+</SP>and in which the content of Sn<SP>2+</SP>is ≥50 wt.% in all tin ions, an acid aqueous solution comprising In<SP>3+</SP>and Sn<SP>4+</SP>and in which the content of Sn<SP>4+</SP>exceeds 50 wt.% in all tin ions is subjected to electrolysis treatment to deposit Sn<SP>4+</SP>as metallic tin. At that time, electric current by a quantity of half or above the quantity of the electric current to deposit Sn<SP>4+</SP>as metallic tin in such a manner that the content of Sn<SP>2+</SP>in the acid aqueous solution reaches ≥50 wt.% in all the tin ions is made to flow so as to perform electrolytic treatment, and the metallic tin is dissolved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、インジウムイオンと2価錫イオンとを含有する水溶液の製造方法に関する。   The present invention relates to a method for producing an aqueous solution containing indium ions and divalent tin ions.

インジウムイオンと2価錫イオンとを含有する水溶液は、酸化インジウム−酸化錫固溶体(以下「ITO」ということがある。)の焼結体の製造用に用いられる。ITO焼結体はITO薄膜をスパッタ法により製造するためのターゲットとして用いられている。ITO薄膜は、高い導電性と優れた透明性を有するために、液晶ディスプレイ用の透明導電膜として利用されている。   An aqueous solution containing indium ions and divalent tin ions is used for producing a sintered body of an indium oxide-tin oxide solid solution (hereinafter sometimes referred to as “ITO”). The ITO sintered body is used as a target for producing an ITO thin film by sputtering. An ITO thin film is used as a transparent conductive film for a liquid crystal display because it has high conductivity and excellent transparency.

ITO焼結体をスパッタ法用のターゲットとして使用すると、スパッタを行うに従ってITO焼結体は消耗していくが、均一に消耗していくのではなく、局所的に消耗していく。消耗が進むとITO焼結体を貫通する穴が形成されるので、その前にITO焼結体は新品と交換される。そして、相当の残存部分のあるITO焼結体を、そのまま廃棄するのではなく、リサイクルすることが提案されており、従来から、ITO焼結体を酸で溶解し、インジウムイオンと4価錫イオンとを含有する酸性水溶液を得て、それをITO焼結体の原料として用いることが提案されている(例えば、特許文献1参照。)。   When an ITO sintered body is used as a target for sputtering, the ITO sintered body is consumed as sputtering is performed, but is not consumed uniformly but locally. As wear progresses, a hole penetrating the ITO sintered body is formed, and before that, the ITO sintered body is replaced with a new one. And it has been proposed to recycle rather than discard the ITO sintered body having a considerable remaining portion as it is, and conventionally, the ITO sintered body is dissolved with an acid, indium ions and tetravalent tin ions. It has been proposed to obtain an acidic aqueous solution containing the above and use it as a raw material for an ITO sintered body (see, for example, Patent Document 1).

このITO焼結体を酸で溶解することにより得られ、インジウムイオンと錫イオンとを含有する酸性水溶液からITO焼結体を製造するために、該酸性水溶液にアンモニア水等のアルカリ水溶液を加えてインジウムと錫の水酸化物の沈澱を生成させ、得られた沈澱を焼成してITO粉末とし、そのITO粉末をプレス成形し、得られた成形体を焼結してITO焼結体を製造する方法が知られている(例えば、特許文献1参照。)。しかしながら、前記酸性水溶液を用いてITO焼結体を製造すると、焼結体密度が十分高くないという問題点があった。   In order to produce an ITO sintered body from an acidic aqueous solution containing indium ions and tin ions obtained by dissolving the ITO sintered body with an acid, an alkaline aqueous solution such as ammonia water is added to the acidic aqueous solution. A precipitate of indium and tin hydroxide is generated, and the resulting precipitate is baked into an ITO powder. The ITO powder is press-molded, and the obtained molded body is sintered to produce an ITO sintered body. A method is known (for example, refer to Patent Document 1). However, when an ITO sintered body is produced using the acidic aqueous solution, there is a problem that the density of the sintered body is not sufficiently high.

特開平7−247162号公報JP 7-247162 A

ここで、本発明者らは、インジウムイオンと錫イオンとを含有する水溶液に含有される錫イオンのうち、2価の錫イオンが全錫イオンのうちの50重量%以上である場合において、この水溶液から前記のようにインジウムと錫の水酸化物の沈澱を生成させて製造されたITO焼結体の密度が高くなることを見出していた(特願2003−319439)。そして、ITO焼結体を酸で溶解することにより得られる酸性水溶液に含有される錫イオンは主に4価であるので、この4価の錫イオンの少なくとも一部を2価の錫イオンとして、前記酸性水溶液から、インジウムイオンと主に2価である錫イオンとを含有する水溶液を製造する方法が課題であり、本発明者らは、前記酸性水溶液に金属錫を加え、式(1)
Sn+Sn4+→2Sn2+ (1)
により4価錫イオンを減少させ、2価錫イオンを増加させ、インジウムイオンと錫イオンとを含有し、2価錫イオンが全錫イオンのうち50重量%以上である水溶液を製造する方法を提案していたが、この製造方法によれば、酸性水溶液中の錫イオンの量が増加し、インジウムイオンに対する錫イオンの量が増加するという問題点があった。
Here, in the case where the divalent tin ion is 50% by weight or more of the total tin ions among the tin ions contained in the aqueous solution containing indium ions and tin ions, It has been found that the density of an ITO sintered body produced by generating a precipitate of indium and tin hydroxide from an aqueous solution as described above is increased (Japanese Patent Application No. 2003-319439). And since the tin ion contained in the acidic aqueous solution obtained by dissolving the ITO sintered body with an acid is mainly tetravalent, at least a part of this tetravalent tin ion is used as a divalent tin ion. There is a problem of a method for producing an aqueous solution containing indium ions and mainly divalent tin ions from the acidic aqueous solution. The present inventors added metal tin to the acidic aqueous solution, and the formula (1)
Sn + Sn 4+ → 2Sn 2+ (1)
Proposes a method for producing an aqueous solution in which tetravalent tin ions are decreased, divalent tin ions are increased, indium ions and tin ions are contained, and the divalent tin ions are 50% by weight or more of the total tin ions. However, according to this production method, there is a problem that the amount of tin ions in the acidic aqueous solution increases and the amount of tin ions relative to indium ions increases.

そこで本発明の目的は、インジウムイオンと4価錫イオンとを含有し、4価錫イオンの含有量が全錫イオンのうちの50重量%を超える酸性水溶液から、インジウムイオンと2価錫イオンを含有し、2価錫イオンの含有量が全錫イオンのうちの50重量%以上である水溶液を、錫イオンを実質的に増加させることなく簡便に製造する方法を提供することにある。   Therefore, an object of the present invention is to provide indium ions and divalent tin ions from an acidic aqueous solution containing indium ions and tetravalent tin ions, and the content of tetravalent tin ions exceeds 50% by weight of the total tin ions. An object of the present invention is to provide a method for easily producing an aqueous solution containing 50% by weight or more of total tin ions and containing divalent tin ions without substantially increasing tin ions.

本発明者らは、前記課題について鋭意検討した結果、インジウムイオンと4価錫イオンとを含有し、4価の錫イオンの含有量が全錫イオンのうちの50重量%を超える酸性水溶液に必要な量の電流を流して電解処理を行うことにより4価の錫イオンを金属錫として析出させ、金属錫を溶解させることによって、簡便に、インジウムイオンと2価錫イオンを含有し、2価錫イオンの含有量が全錫イオンのうちの50重量%以上である水溶液が得られることを見出し、本発明を完成させるに至った。   As a result of intensive studies on the above problems, the present inventors need an acidic aqueous solution containing indium ions and tetravalent tin ions, and the content of tetravalent tin ions exceeds 50% by weight of the total tin ions. Electrolytic treatment with an appropriate amount of electric current causes tetravalent tin ions to precipitate as metallic tin and dissolves the metallic tin, thereby containing indium ions and divalent tin ions in a simple manner. It has been found that an aqueous solution having an ion content of 50% by weight or more of the total tin ions can be obtained, and the present invention has been completed.

すなわち本発明は、インジウムイオンと4価錫イオンとを含有し、4価錫イオンの含有量が全錫イオンのうちの50重量%を超える酸性水溶液に電解処理を行うことにより4価の錫イオンを金属錫として析出させ、このとき2価錫イオンの酸性水溶液中の含有量が全錫イオンのうちの50重量%以上となるように4価錫イオンを金属錫として析出させ得る電流量の半分以上の量の電流を流して電解処理を行い、金属錫を溶解させることを特徴とするインジウムイオンと2価錫イオンを含有し、2価錫イオンの含有量が全錫イオンのうちの50重量%以上である水溶液の製造方法を提供する。   That is, the present invention provides indium ions and tetravalent tin ions, and the tetravalent tin ions are obtained by performing an electrolytic treatment on an acidic aqueous solution in which the content of tetravalent tin ions exceeds 50% by weight of the total tin ions. Is deposited as metallic tin, and at this time, half of the current amount capable of precipitating tetravalent tin ions as metallic tin so that the content of divalent tin ions in the acidic aqueous solution is 50% by weight or more of the total tin ions An indium ion and a divalent tin ion are characterized in that the electrolytic treatment is carried out by flowing an electric current of the above amount to dissolve metallic tin, and the content of the divalent tin ion is 50% of the total tin ions The manufacturing method of the aqueous solution which is more than% is provided.

本発明の製造方法により得られるインジウム含有水溶液は、4価の錫イオン含有量が少なく、ITO焼結体製造用のITO粉末を製造する原料水溶液として使用した場合、高い密度のITO焼結体を与えるITO粉末が得られ、高い密度のITO焼結体は透明導電膜を製造するためのスパッタのターゲット用として好適なので、本発明は工業的に極めて有用である。   The indium-containing aqueous solution obtained by the production method of the present invention has a low tetravalent tin ion content, and when used as a raw material aqueous solution for producing ITO powder for producing an ITO sintered body, a high-density ITO sintered body is used. Since the ITO powder to be provided is obtained, and the ITO sintered body having a high density is suitable as a sputtering target for producing a transparent conductive film, the present invention is extremely useful industrially.

本発明の製造方法においては、インジウムイオンと4価錫イオンとを含有し、4価の錫イオンの含有量が全錫イオンのうちの50重量%を超える酸性水溶液(以下、単に「酸性液」ということがある。)に電解処理を行うことにより金属錫を析出させ、金属錫を溶解させることにより、全錫イオンの中で2価の錫イオンの含有量が50重量%以上である水溶液であってインジウムイオンと2価錫イオンとを含有する水溶液を製造する。ここで、電解処理における電流量は、2価錫イオンの酸性水溶液中の含有量が全錫イオンのうちの50重量%以上となるように4価錫イオンを金属錫として析出させ得る電流量の半分以上の量である。   In the production method of the present invention, an acidic aqueous solution (hereinafter simply referred to as “acidic solution”) containing indium ions and tetravalent tin ions, and the content of tetravalent tin ions exceeds 50 wt% of the total tin ions. In an aqueous solution in which the content of divalent tin ions is 50% by weight or more in the total tin ions by precipitating metal tin by electrolytic treatment and dissolving metal tin. An aqueous solution containing indium ions and divalent tin ions is produced. Here, the amount of current in the electrolytic treatment is such that the amount of tetravalent tin ions can be precipitated as metallic tin so that the content of divalent tin ions in the acidic aqueous solution is 50% by weight or more of the total tin ions. The amount is more than half.

本発明の製造方法において用いる電極の材質は、アノード電極としては不溶性の白金、寸法安定性電極および炭素板が好ましく、カソード電極としては錫、銅、チタンおよび白金が好ましい。   The material of the electrode used in the production method of the present invention is preferably insoluble platinum, a dimensionally stable electrode and a carbon plate as the anode electrode, and tin, copper, titanium and platinum as the cathode electrode.

電解を開始すると、金属錫がカソード電極の上に通常は析出する。ただし、電流密度が低く、酸性液の温度が高い場合は、金属錫の析出が目視では観察されず、析出した金属錫が直ちに溶解してしまうことがあるが、本発明の製造方法においては、金属錫の析出は目視で観察されない場合も含む。また、金属錫の析出とともに、金属錫の溶解も同時に進行することがある。   When electrolysis is initiated, metallic tin usually deposits on the cathode electrode. However, when the current density is low and the temperature of the acidic solution is high, the precipitation of metallic tin is not visually observed, and the precipitated metallic tin may be immediately dissolved, but in the production method of the present invention, The precipitation of metallic tin includes the case where it is not visually observed. Moreover, dissolution of metallic tin may proceed simultaneously with the precipitation of metallic tin.

電解処理の電流密度としては50Am-2以上2000Am-2以下の範囲が好ましく、さらに好ましくは100Am-2以上1500Am-2以下の範囲である。電流密度が2000Am-2を超える場合にはカソードから水素ガスが発生して安全上好ましくなく、30Am-2を下回る場合には金属錫を析出させるために長時間を要し工業的には生産効率の観点から好ましくない。電解処理の方法としては定電流法を用いることが好ましい。 Preferably in the range of 50 Am -2 least 2000Am -2 or less as a current density of the electrolytic process, and more preferably in the range of 100 Am -2 least 1500Am -2 or less. Current density without safety preferably hydrogen gas is generated from the cathode in the case of more than 2000Am -2, industrially production efficiency requires a long time to deposit a metal tin when below 30 Am -2 From the viewpoint of It is preferable to use a constant current method as an electrolytic treatment method.

酸性液に塩酸が含まれる場合は、アノード電極から塩素ガスが発生することがある。このような場合には、アノード電極からの塩素ガス発生を防止する方法として、陽イオン交換膜で仕切られた電解槽のアノード電極側の硫酸水溶液と、カソード電極側のインジウムイオンと錫イオンとを含有する酸性液に電流を流して電解処理することが好ましい。   When hydrochloric acid is contained in the acidic liquid, chlorine gas may be generated from the anode electrode. In such a case, as a method for preventing the generation of chlorine gas from the anode electrode, an aqueous sulfuric acid solution on the anode electrode side of the electrolytic cell partitioned by a cation exchange membrane, and indium ions and tin ions on the cathode electrode side are used. It is preferable to perform an electrolytic treatment by passing an electric current through the acidic liquid contained.

2価の錫イオンは空気中の酸素によって徐々に4価の錫イオンに酸化されるので、電解処理時の雰囲気はN2、Ar等の不活性ガス雰囲気とすることが好ましく、不活性ガス雰囲気中で酸性液を撹拌しながら行うことがさらに好ましい。 Since divalent tin ions are gradually oxidized to tetravalent tin ions by oxygen in the air, the atmosphere during the electrolytic treatment is preferably an inert gas atmosphere such as N 2 or Ar, and an inert gas atmosphere It is further preferable to carry out the stirring while stirring the acidic liquid.

また、電解処理時の水溶液の温度は必ずしも限定されず、通常工業的に実施される範囲において任意に選ぶことができる。通常は0℃以上80℃以下で行う。   Moreover, the temperature of the aqueous solution at the time of electrolytic treatment is not necessarily limited, and can be arbitrarily selected within a range that is usually industrially implemented. Usually, it is performed at 0 ° C. or higher and 80 ° C. or lower.

電解処理におけるカソード電位としては、標準水素電極基準で好ましくは−0.6V以上、より好ましくは−0.45V以上、さらにに好ましくは−0.4V以上である。電位が−0.6Vを下回るとカソード水素ガスが発生して安全上好ましくない。   The cathode potential in the electrolytic treatment is preferably −0.6 V or more, more preferably −0.45 V or more, and further preferably −0.4 V or more, based on a standard hydrogen electrode. When the potential is less than −0.6 V, cathode hydrogen gas is generated, which is not preferable for safety.

この電解処理において流す電流量は、2価錫イオンの酸性水溶液中の含有量が全錫イオンのうちの50重量%以上となるように4価錫イオンを金属錫として析出させ得る電流量の半分以上の量である。具体的には、まず、酸性液中の4価錫イオンのうち、全錫イオンに対する4価錫イオンの割合が50重量%未満まで減少させる量の4価錫イオンを金属錫に還元するために必要な電流量を求める。そして、電流量としては、前記電流量の0.5倍以上10倍以下の範囲が好ましく、0.5倍以上5倍以下がさらに好ましい。電流量が多過ぎると、金属錫に続いて金属インジウムが析出する。電解処理を停止して放置すれば、析出した金属インジウムは酸性液に全量溶解させることができるので、全量の溶解が終了すれば酸性液中のインジウムイオン濃度は電解処理前から変化しないものの、エネルギー効率が低くなるので、電流量が多すぎる場合は好ましくない。この電解処理が終了した段階で、酸性液中の全錫イオン中の2価錫イオンの割合がすでに50重量%以上に到達することもある。また、電解処理が終了した段階で析出している金属錫は、全部がカソード上に存在することもあれば、また一部が液中に遊離した状態で存在することもある。   The amount of current that flows in this electrolytic treatment is half of the amount of current that can deposit tetravalent tin ions as metallic tin such that the content of divalent tin ions in the acidic aqueous solution is 50% by weight or more of the total tin ions. This is the amount. Specifically, first, in order to reduce the amount of tetravalent tin ions in the acidic solution so that the ratio of the tetravalent tin ions to the total tin ions is reduced to less than 50% by weight to metal tin. Obtain the required amount of current. The current amount is preferably in the range of 0.5 to 10 times the current amount, more preferably 0.5 to 5 times. When the amount of current is too large, metal indium is deposited following metal tin. If the electrolytic treatment is stopped and allowed to stand, the entire amount of precipitated metal indium can be dissolved in the acidic solution. Therefore, when the dissolution of the entire amount is completed, the concentration of indium ions in the acidic solution does not change from before the electrolytic treatment. Since efficiency becomes low, it is not preferable when there is too much electric current. At the stage where this electrolytic treatment is completed, the proportion of divalent tin ions in the total tin ions in the acidic solution may already reach 50% by weight or more. Further, the metal tin deposited at the stage of completion of the electrolytic treatment may be present entirely on the cathode, or may be present in a state where a part thereof is liberated in the liquid.

次に、析出した金属錫を溶解し、酸性液中に残存する4価錫イオンを(1)式に従って2価錫イオンに還元する。なお、金属錫の溶解は、電解処理を停止した直後に自然に始まる。
Sn+Sn4+→2Sn2+ (1)
ここで、析出した金属錫を用いずに、析出した金属錫を酸性液から分離し、別途用意した金属錫を酸性液に加えて溶解させてもよいが、析出した金属錫を用いた方が、酸性液中の錫イオンの量が、電解処理前と変化することが無いので、好ましい。
Next, the deposited metal tin is dissolved, and tetravalent tin ions remaining in the acidic liquid are reduced to divalent tin ions according to the formula (1). The dissolution of metallic tin starts spontaneously immediately after the electrolytic treatment is stopped.
Sn + Sn 4+ → 2Sn 2+ (1)
Here, without using the precipitated metallic tin, the precipitated metallic tin may be separated from the acidic liquid, and separately prepared metallic tin may be added to the acidic liquid and dissolved, but it is better to use the precipitated metallic tin. The amount of tin ions in the acidic solution is preferable because it does not change from that before the electrolytic treatment.

金属錫の溶解による還元処理はN2、Ar等の不活性ガス雰囲気中で行うことが好ましく、不活性ガス雰囲気中で酸性液を撹拌しながら行うことがさらに好ましい。 The reduction treatment by dissolving metallic tin is preferably performed in an inert gas atmosphere such as N 2 or Ar, and more preferably performed in an inert gas atmosphere while stirring the acidic liquid.

この金属錫の溶解の際の温度は必ずしも限定されず、通常工業的に実施される範囲において任意に選ぶことができる。通常は0℃以上90℃以下で行うが、温度が高い方が金属錫の溶解による4価の錫イオンの還元が促進されるため好ましい。また、金属錫の溶解による還元処理の時間は、反応温度や最終的に得ようとするインジウムイオンと錫イオンを含有する水溶液中の錫イオン中の2価錫イオンの割合によっても依存するので必ずしも限定されないが、通常は1時間以上、好ましくは3時間以上、より好ましくは5時間以上である。   The temperature at the time of dissolution of the metal tin is not necessarily limited, and can be arbitrarily selected within a range that is usually industrially implemented. Usually, the temperature is 0 ° C. or more and 90 ° C. or less, but a higher temperature is preferable because reduction of tetravalent tin ions by dissolution of metallic tin is promoted. Further, the time for reduction treatment by dissolution of metallic tin depends on the reaction temperature and the ratio of divalent tin ions in the tin ions in the aqueous solution containing indium ions and tin ions to be finally obtained. Although not limited, it is usually 1 hour or longer, preferably 3 hours or longer, more preferably 5 hours or longer.

金属錫の溶解による還元処理後には、一部の金属錫は未溶解の状態で残存することがあるが、このような金属錫は還元処理後のインジウムイオンと錫イオンを含有する水溶液から分離する。   After the reduction treatment by dissolving metallic tin, some metallic tin may remain in an undissolved state. Such metallic tin is separated from the aqueous solution containing indium ions and tin ions after the reduction treatment. .

また、上述のような1回の電解処理と1回の金属錫溶解操作のみではなく、例えば電解操作と金属錫溶解操作の繰り返しを何回かに実施して行っても何ら支障はない。   Further, not only one electrolytic treatment and one metal tin melting operation as described above, but also, for example, the electrolytic operation and the metal tin melting operation are repeated several times and there is no problem.

以上のようにして得られたインジウムイオンと錫イオンを含有する水溶液の錫イオン中の2価錫イオンの割合は、50重量%以上、好ましくは70重量%以上、さらに好ましくは80重量%以上である。   The ratio of divalent tin ions in the tin ions of the aqueous solution containing indium ions and tin ions obtained as described above is 50% by weight or more, preferably 70% by weight or more, more preferably 80% by weight or more. is there.

以上のように、本発明の製造方法によれば、酸性液中の錫イオンの量を増加させることなく、酸性液中の4価錫イオンを2価錫イオンに変化させ、インジウムイオンと2価錫イオンを含有し、2価錫イオンの含有量が全錫イオンのうちの50重量%以上である水溶液を製造することができる。   As described above, according to the production method of the present invention, the tetravalent tin ion in the acidic liquid is changed to the divalent tin ion without increasing the amount of tin ions in the acidic liquid, and indium ions and divalent ions are changed. An aqueous solution containing tin ions and having a divalent tin ion content of 50% by weight or more of the total tin ions can be produced.

なお、以上のようにして得られたインジウムイオンと2価錫イオンを含む水溶液に、必要であればさらに2価錫イオンを含んだ水溶液を添加、またはインジウムイオンを含んだ水溶液を添加して、インジウムと錫濃度を調整することができる。この際のインジウムと錫の濃度は、最終的に得ようとするITO粉末に含有される錫量に応じて、インジウムイオン濃度との関係で決定すれば良く、酸化物に換算した場合に酸化インジウムと酸化錫の合計量に対する錫の量は2〜20重量%で、通常は10〜20重量%である。   If necessary, an aqueous solution containing divalent tin ions is added to the aqueous solution containing indium ions and divalent tin ions, or an aqueous solution containing indium ions is added. Indium and tin concentrations can be adjusted. The concentration of indium and tin at this time may be determined in relation to the concentration of indium ions in accordance with the amount of tin contained in the ITO powder to be finally obtained. And the amount of tin with respect to the total amount of tin oxide is 2 to 20% by weight, usually 10 to 20% by weight.

得られたインジウムと2価の錫イオンを含む水溶液は、例えば空気中に放置することによって、容易に酸化され4価の錫イオンに変化する。従って、水溶液は密栓して、不活性雰囲気中で保存することが好ましい。   The obtained aqueous solution containing indium and divalent tin ions is easily oxidized and converted into tetravalent tin ions, for example, by leaving it in air. Therefore, the aqueous solution is preferably sealed and stored in an inert atmosphere.

本発明の製造方法において、インジウムイオンと錫イオンを含む水溶液としては、例えば、ITO、水酸化インジウム−水酸化錫混合物等を酸水溶液、例えば塩酸水溶液に溶解させた、インジウムイオンと4価の錫イオンを含む水溶液が挙げられ、工業的には、ITO粉末の中で品質規格から外れた製品、ITO焼結体で品質規格から外れた製品、ITO焼結体の研削くず、あるいはスパッタリングに使用した使用済みITOターゲットから取り出されたITO焼結体を塩酸に溶解したインジウムイオンと錫イオンを含有する水溶液を用いることができる。以下、ITOの使用済みターゲットを用いた方法に関して説明する。   In the production method of the present invention, examples of the aqueous solution containing indium ions and tin ions include indium ions and tetravalent tin obtained by dissolving ITO, an indium hydroxide-tin hydroxide mixture, etc. in an acid aqueous solution, for example, a hydrochloric acid aqueous solution. An aqueous solution containing ions can be mentioned, and industrially, it was used for products that were out of quality standards in ITO powder, products that were out of quality standards with ITO sintered bodies, grinding scraps of ITO sintered bodies, or sputtering. An aqueous solution containing indium ions and tin ions obtained by dissolving an ITO sintered body taken out from a used ITO target in hydrochloric acid can be used. Hereinafter, a method using an ITO used target will be described.

使用済みITOターゲットは、ITO焼結体が銅製のバッキングプレートにインジウム半田等により貼付された状態で回収されるため、150〜200℃程度に加熱してITO焼結体をバッキングプレートから剥離する。剥離して取り出したITO焼結体にはバッキングプレートとの接合に使用したインジウム半田等が付着残留している場合がある。インジウム半田にはCu、Pb等の不純物が含まれている場合があり、また、ITO焼結体表面にSi、Al、Fe等を含有する異物が付着している場合があるため、酸を用いて洗浄し、インジウム半田や異物等を除去しておくことが好ましい。   Since the used ITO target is recovered in a state where the ITO sintered body is attached to a copper backing plate with indium solder or the like, it is heated to about 150 to 200 ° C. to peel the ITO sintered body from the backing plate. Indium solder or the like used for bonding to the backing plate may remain attached to the ITO sintered body taken off and removed. Indium solder may contain impurities such as Cu and Pb, and foreign substances containing Si, Al, Fe, etc. may adhere to the surface of the ITO sintered body. It is preferable to remove the indium solder, foreign matters, etc.

ITO焼結体は、酸への溶解速度を向上させるために予め粉砕することが好ましい。粉砕方法としては特に限定されないが、工業的に通常用いられるジョークラッシャー、ロールクラッシャー、ディスクミル、振動ミル等を用いることができ、これら粉砕機の被粉砕物に接触する部分の材質としてはアルミナ、ジルコニア、タングステンカーバイド等のセラミックスが好ましい。粉砕機の材質が金属の場合は、粉砕後のITO焼結体にその金属が付着して汚染が生じ、ITO焼結体を溶解して作製した溶解液(以下、単に溶解液ということがある。)から金属不純物を除去することが必要となるので好ましくない。粉砕後のITO焼結体の大きさとしては必ずしも限定されないが、好ましくは20mm以下、更に好ましくは2mm以下、最も好ましくは0.5mm以下である。   The ITO sintered body is preferably pulverized in advance in order to improve the dissolution rate in acid. The crushing method is not particularly limited, but industrially commonly used jaw crusher, roll crusher, disk mill, vibration mill, etc. can be used. Ceramics such as zirconia and tungsten carbide are preferred. When the material of the pulverizer is a metal, the metal adheres to the pulverized ITO sintered body to cause contamination, and a solution prepared by dissolving the ITO sintered body (hereinafter sometimes simply referred to as a solution) .) Is not preferable because it is necessary to remove metal impurities. The size of the ITO sintered body after pulverization is not necessarily limited, but is preferably 20 mm or less, more preferably 2 mm or less, and most preferably 0.5 mm or less.

ITO焼結体を溶解するための酸としては塩酸、硫酸、硝酸等が挙げられるが、ITOの溶解速度が速い塩酸が好ましく、以下塩酸を用いた場合について説明する。溶解方法は特に限定されないが、反応容器に塩酸と粉砕後のITO焼結体とを仕込み撹拌する等の方法を例示することができる。   Examples of the acid for dissolving the ITO sintered body include hydrochloric acid, sulfuric acid, nitric acid and the like, but hydrochloric acid having a high dissolution rate of ITO is preferable, and the case where hydrochloric acid is used will be described below. The dissolution method is not particularly limited, and examples thereof include a method of charging and stirring hydrochloric acid and the pulverized ITO sintered body in a reaction vessel.

ITO焼結体を酸により溶解するときの温度、時間は特に限定されず、工業的に有利な温度、時間を選択することができ、温度としては通常は40℃以上100℃以下、好ましくは60℃以上80℃以下の温度範囲、溶解時間としては通常は100時間以内、好ましくは50時間以内、さらに好ましくは24時間以内である。ITO焼結体を溶解して得られた溶解液のインジウムの濃度は50g/L以上350g/L以下が好ましく、100g/L以上350g/L以下がさらに好ましい。   The temperature and time for dissolving the ITO sintered body with an acid are not particularly limited, and industrially advantageous temperature and time can be selected. The temperature is usually 40 ° C. or more and 100 ° C. or less, preferably 60 The temperature range from 0 ° C. to 80 ° C. and the dissolution time are usually within 100 hours, preferably within 50 hours, and more preferably within 24 hours. The concentration of indium in the solution obtained by dissolving the ITO sintered body is preferably 50 g / L or more and 350 g / L or less, and more preferably 100 g / L or more and 350 g / L or less.

こうして得られた溶解液には、未溶解のITO焼結体破片や粉砕機の部材から混入したセラミックス粒子が残存する場合もあるが、その場合には濾過等の固液分離によりそれらの固体を除去して液のみを回収する。   In the solution thus obtained, ceramic particles mixed from undissolved ITO sintered body fragments and pulverizer members may remain. In that case, these solids are separated by solid-liquid separation such as filtration. Remove and collect only liquid.

この様にして得られたインジウムと錫イオンを含む水溶液には不純物として例えば、Zr、Al、Si、Fe等が含まれる場合があり、この場合にはカチオン交換樹脂、アニオン交換樹脂等のイオン交換樹脂と接触させて、これら不純物を除去する工程を含む製造方法が好ましい。特に、ITO焼結体を粉砕し溶解して得られる溶解液を用いる場合は、不純物としてZr、Al、Si、Fe等が含まれる可能性が高く、イオン交換樹脂と接触させて、これら不純物を除去する工程を含む製造方法が好ましい。この不純物除去の工程は、後述する還元処理の後に行っても何ら差し支えはない。   The aqueous solution containing indium and tin ions thus obtained may contain, for example, Zr, Al, Si, Fe, etc. as impurities. In this case, ion exchange such as cation exchange resin, anion exchange resin, etc. A production method including a step of removing these impurities by contacting with a resin is preferable. In particular, when using a solution obtained by crushing and dissolving an ITO sintered body, there is a high possibility that Zr, Al, Si, Fe, etc. are contained as impurities, and these impurities are brought into contact with an ion exchange resin. A production method including a removing step is preferable. This impurity removal step may be performed after the reduction treatment described later.

このようにして得られたITO溶解液中に含まれる錫イオンの価数は4価であり、塩化インジウムと塩化第2錫を純水に溶解させて得られる水溶液と同等なイオン種を含むものである。   The valence of tin ions contained in the ITO solution thus obtained is tetravalent and contains ionic species equivalent to an aqueous solution obtained by dissolving indium chloride and stannic chloride in pure water. .

次に本発明を実施例によりさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

インジウムイオンと4価錫イオンを含有する酸性液としては、以下のものを使用した。なお、いずれ酸性液も2価錫イオンは殆ど含まれていなかった。
(酸性液A)インジウムイオンと4価錫イオンとを含有する酸性液としては、使用済みITOターゲットをジョークラッシャーにて約1〜4mmに粉砕し、濃度35重量%の塩酸水溶液にて溶解して得た水溶液を純水で希釈して、陽イオン交換樹脂と接触させて不純物Zrを除去し、インジウムイオン濃度=159.6g/L、4価錫イオン濃度=14.8g/Lの酸性液とした。
As the acidic liquid containing indium ions and tetravalent tin ions, the following were used. In any case, the acid solution contained almost no divalent tin ions.
(Acid liquid A) As an acidic liquid containing indium ions and tetravalent tin ions, a used ITO target is crushed to about 1 to 4 mm by a jaw crusher and dissolved in a hydrochloric acid aqueous solution having a concentration of 35% by weight. The obtained aqueous solution was diluted with pure water and contacted with a cation exchange resin to remove impurities Zr, and an acidic solution having an indium ion concentration = 159.6 g / L, a tetravalent tin ion concentration = 14.8 g / L, did.

(酸性液B)金属インジウムを35重量%塩酸水溶液に溶解した酸性液に、塩化第2錫5水和物(SnCl4・5H2O)を添加し、インジウムイオン濃度=334.7g/L、4価錫イオン濃度=36.3g/Lのインジウムイオンと4価錫イオンを含有する酸性液を作製した。 (Acid solution B) Stannic chloride pentahydrate (SnCl 4 .5H 2 O) was added to an acid solution in which metallic indium was dissolved in a 35 wt% hydrochloric acid aqueous solution, and the indium ion concentration = 334.7 g / L, An acidic liquid containing indium ions having a tetravalent tin ion concentration of 36.3 g / L and tetravalent tin ions was prepared.

(酸性液C)金属インジウムを35重量%塩酸水溶液に溶解した酸性液に、塩化第2錫5水和物(SnCl4・5H2O)を添加し、インジウムイオン濃度=346.2g/L、4価錫イオン濃度=36.5g/Lのインジウムイオンと4価錫イオンを含有する酸性液を作製した。 (Acid solution C) Stannic chloride pentahydrate (SnCl 4 .5H 2 O) was added to an acid solution in which metallic indium was dissolved in a 35 wt% hydrochloric acid aqueous solution, and the indium ion concentration = 346.2 g / L, An acidic liquid containing indium ions and tetravalent tin ions having a tetravalent tin ion concentration of 36.5 g / L was prepared.

(酸性液D)使用済みITOターゲットをジョークラッシャーにて約1〜4mmに粉砕し、35重量%塩酸水溶液に溶解し、インジウムイオン濃度=333.4g/L、4価錫イオン濃度=34.3g/Lのインジウムイオンと4価錫イオンを含有する酸性液を作製した。 (Acid solution D) A used ITO target is crushed to about 1 to 4 mm with a jaw crusher and dissolved in a 35 wt% hydrochloric acid aqueous solution. Indium ion concentration = 333.4 g / L, tetravalent tin ion concentration = 34.3 g An acidic liquid containing / L indium ions and tetravalent tin ions was prepared.

酸性液中のインジウムイオン濃度はICP発光法によって、全錫イオン濃度(2価+4価錫イオン濃度)はよう素滴定法あるいはICP発光法によって、2価錫イオン濃度はよう素滴定法によって分析測定した。   The indium ion concentration in the acidic solution is analyzed by ICP emission method, the total tin ion concentration (divalent + tetravalent tin ion concentration) is analyzed by iodine titration method or ICP emission method, and the divalent tin ion concentration is analyzed by iodine titration method. did.

実施例1
陽イオン交換膜で仕切られた電解槽内のカソード電極側に酸性液Aを50mL仕込み、N2を酸性液に吹き込んで撹拌した。また、アノード電極側には1規定のH2SO4水溶液を50mL仕込んだ。電解処理は、カソード電極として36mm×25mmの銅板、アノード電極として30mm×20mmの白金板を用いて、電流密度400Am-2で室温(約25℃)にて55分間行った。次いで、電解処理を停止して5時間放置し、インジウムイオン濃度が157g/L、全錫イオン濃度が10.5g/L、2価錫イオン濃度が6.4g/L、の酸性液が得られた。この酸性液の錫イオン中の2価錫イオンの割合は61重量%であった。
Example 1
50 mL of acidic liquid A was charged on the cathode electrode side in the electrolytic cell partitioned by the cation exchange membrane, and N 2 was blown into the acidic liquid and stirred. Further, 50 mL of a 1N aqueous solution of H 2 SO 4 was charged on the anode electrode side. The electrolytic treatment was performed for 55 minutes at room temperature (about 25 ° C.) at a current density of 400 Am −2 using a 36 mm × 25 mm copper plate as the cathode electrode and a 30 mm × 20 mm platinum plate as the anode electrode. Next, the electrolytic treatment was stopped and left for 5 hours to obtain an acidic solution having an indium ion concentration of 157 g / L, a total tin ion concentration of 10.5 g / L, and a divalent tin ion concentration of 6.4 g / L. It was. The proportion of divalent tin ions in the tin ions of this acidic liquid was 61% by weight.

実施例2
陽イオン交換膜で仕切られた電解槽内のカソード電極側に酸性液Bを50mL仕込み、N2を吹き込んで撹拌した。また、アノード電極側には1規定のH2SO4水溶液を50ml仕込んだ。電解処理は、カソード電極として36mm×25mmの銅板、アノード電極として30mm×20mmの白金板を用いて、電流密度600Am-2で室温(約25℃)にて1.5分間行った。次いで、電解処理を停止して5時間放置し、インジウムイオン濃度が331g/L、全錫イオン濃度が34.7g/L、2価錫イオン濃度が29.8g/Lの酸性液が得られた。この水溶液の錫イオン中の2価錫イオンの割合は86重量%であった。
Example 2
50 mL of acidic liquid B was charged on the cathode electrode side in the electrolytic cell partitioned by the cation exchange membrane, and N 2 was blown into the electrolytic cell and stirred. Further, 50 ml of 1N aqueous H 2 SO 4 solution was charged on the anode electrode side. The electrolytic treatment was performed for 1.5 minutes at room temperature (about 25 ° C.) at a current density of 600 Am −2 using a 36 mm × 25 mm copper plate as the cathode electrode and a 30 mm × 20 mm platinum plate as the anode electrode. Next, the electrolytic treatment was stopped and left for 5 hours to obtain an acidic solution having an indium ion concentration of 331 g / L, a total tin ion concentration of 34.7 g / L, and a divalent tin ion concentration of 29.8 g / L. . The proportion of divalent tin ions in the tin ions of this aqueous solution was 86% by weight.

実施例3
陽イオン交換膜で仕切られた電解槽内のカソード電極側に酸性液Cを100mL仕込み、N2ガスを200mL/分で吹き込んだ。また、アノード電極側には1規定のH2SO4水溶液を100ml仕込んだ。電解処理は、アノード電極として38mm×30mmのSn板、カソード電極として38mm×30mmの白金板を用いて、電流密度350Am-2で室温(約25℃)にて4時間行った。次いで、電解処理を停止して4時間放置し、インジウムイオン濃度が287.5g/L、全錫イオン濃度が31.1g/L、2価錫イオン濃度が31.0g/Lの酸性液が得られた。この水溶液の錫イオン中の2価錫イオンの割合は99重量%を超えるものであった。また、この酸性液中の不純物濃度をICP発光装置で分析した結果、Al、Si、Fe、Cu、Znは1重量ppm未満で、Pbは2重量ppm未満であった。
Example 3
100 mL of acidic liquid C was charged to the cathode electrode side in the electrolytic cell partitioned by the cation exchange membrane, and N 2 gas was blown at 200 mL / min. Further, 100 ml of 1N aqueous H 2 SO 4 solution was charged on the anode electrode side. The electrolytic treatment was performed at room temperature (about 25 ° C.) for 4 hours at a current density of 350 Am −2 using a 38 mm × 30 mm Sn plate as the anode electrode and a 38 mm × 30 mm platinum plate as the cathode electrode. Next, the electrolytic treatment was stopped and left for 4 hours to obtain an acidic solution having an indium ion concentration of 287.5 g / L, a total tin ion concentration of 31.1 g / L, and a divalent tin ion concentration of 31.0 g / L. It was. The proportion of divalent tin ions in the tin ions of this aqueous solution exceeded 99% by weight. Moreover, as a result of analyzing the impurity concentration in this acidic solution with an ICP light emitting device, Al, Si, Fe, Cu, and Zn were less than 1 ppm by weight, and Pb was less than 2 ppm by weight.

実施例4
陽イオン交換膜で仕切られた電解槽内のカソード電極側に水溶液Dを100mL仕込み撹拌した。この際カソード室内にはNガスを200mL/分で吹き込んだ。また、アノード電極側には1規定のH2SO4水溶液を100ml仕込んだ。電解処理は、アノード電極として38mm×30mmのSn板、カソード電極として38mm×30mmの白金板を用いて、電流密度260Am-2で室温(約25℃)にて35分間行った。さらに電流密度310Am-2で235分間電解処理した。次いで、電解処理を停止して4時間放置し、インジウムイオン濃度が289.6g/L、全錫イオン濃度が28.6g/L、2価錫イオン濃度が27.5g/Lの酸性液が得られた。この酸性液の錫イオン中の2価錫イオンの割合は96重量%であった。
Example 4
100 mL of the aqueous solution D was charged and stirred on the cathode electrode side in the electrolytic cell partitioned by the cation exchange membrane. At this time, N 2 gas was blown into the cathode chamber at 200 mL / min. Further, 100 ml of 1N aqueous H 2 SO 4 solution was charged on the anode electrode side. The electrolytic treatment was performed for 35 minutes at room temperature (about 25 ° C.) at a current density of 260 Am −2 using a 38 mm × 30 mm Sn plate as the anode electrode and a 38 mm × 30 mm platinum plate as the cathode electrode. Further, electrolytic treatment was performed at a current density of 310 Am -2 for 235 minutes. Next, the electrolytic treatment was stopped and left for 4 hours to obtain an acidic solution having an indium ion concentration of 289.6 g / L, a total tin ion concentration of 28.6 g / L, and a divalent tin ion concentration of 27.5 g / L. It was. The ratio of divalent tin ions in the tin ions of this acidic liquid was 96% by weight.

Claims (4)

インジウムイオンと4価錫イオンとを含有し、4価錫イオンの含有量が全錫イオンのうちの50重量%を超える酸性水溶液に電解処理を行うことにより4価の錫イオンを金属錫として析出させ、このとき2価錫イオンの酸性水溶液中の含有量が全錫イオンのうちの50重量%以上となるように4価錫イオンを金属錫として析出させ得る電流量の半分以上の量の電流を流して電解処理を行い、金属錫を溶解させることを特徴とするインジウムイオンと2価錫イオンを含有し、2価錫イオンの含有量が全錫イオンのうちの50重量%以上である水溶液の製造方法。   Electrolytic treatment is performed on an acidic aqueous solution containing indium ions and tetravalent tin ions, and the content of tetravalent tin ions exceeds 50% by weight of the total tin ions, thereby depositing tetravalent tin ions as metallic tin. At this time, a current having an amount more than half of the amount of current capable of precipitating tetravalent tin ions as metallic tin so that the content of divalent tin ions in the acidic aqueous solution is 50% by weight or more of the total tin ions. An aqueous solution containing indium ions and divalent tin ions, wherein the tin is dissolved, and the content of divalent tin ions is 50% by weight or more of the total tin ions Manufacturing method. 電解処理における電流密度が、50Am-2以上2000Am-2以下の範囲である請求項1記載の製造方法。 The manufacturing method according to claim 1, wherein the current density in the electrolytic treatment is in a range of 50 Am −2 to 2000 Am −2 . 電解処理を、陽イオン交換膜で仕切られた電解槽のアノード電極側の硫酸水溶液、カソード電極側のインジウムイオンと4価錫イオンとを含有する酸性水溶液に電流を流して行う請求項1または2に記載の製造方法。   The electrolytic treatment is carried out by passing an electric current through an aqueous sulfuric acid solution on the anode electrode side of the electrolytic cell partitioned by a cation exchange membrane and an acidic aqueous solution containing indium ions and tetravalent tin ions on the cathode electrode side. The manufacturing method as described in. インジウムイオンと4価錫イオンとを含有する酸性水溶液が、インジウムと錫と酸素とを含有する化合物を塩酸に溶解して得られる酸性水溶液である請求項1〜3のいずれかに記載の製造方法。
The production method according to any one of claims 1 to 3, wherein the acidic aqueous solution containing indium ions and tetravalent tin ions is an acidic aqueous solution obtained by dissolving a compound containing indium, tin and oxygen in hydrochloric acid. .
JP2004010242A 2004-01-19 2004-01-19 Method for producing an aqueous solution containing indium ions and divalent tin ions Expired - Lifetime JP4474925B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004010242A JP4474925B2 (en) 2004-01-19 2004-01-19 Method for producing an aqueous solution containing indium ions and divalent tin ions
TW94100770A TW200535252A (en) 2004-01-19 2005-01-11 Method for producing indium-containing aqueous solution
US11/033,899 US20050155870A1 (en) 2004-01-19 2005-01-13 Method for producing indium-containing aqueous solution
KR1020050004573A KR20050076650A (en) 2004-01-19 2005-01-18 Method for producing indium-containing aqueous solution
CNA2005100090827A CN1673416A (en) 2004-01-19 2005-01-19 Method for producing indium-containing aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004010242A JP4474925B2 (en) 2004-01-19 2004-01-19 Method for producing an aqueous solution containing indium ions and divalent tin ions

Publications (2)

Publication Number Publication Date
JP2005200736A true JP2005200736A (en) 2005-07-28
JP4474925B2 JP4474925B2 (en) 2010-06-09

Family

ID=34823029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004010242A Expired - Lifetime JP4474925B2 (en) 2004-01-19 2004-01-19 Method for producing an aqueous solution containing indium ions and divalent tin ions

Country Status (1)

Country Link
JP (1) JP4474925B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140133443A (en) * 2013-05-09 2014-11-19 가부시키가이샤 에바라 세이사꾸쇼 Sn ALLOY PLATING APPARATUS AND Sn ALLOY PLATING METHOD

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140133443A (en) * 2013-05-09 2014-11-19 가부시키가이샤 에바라 세이사꾸쇼 Sn ALLOY PLATING APPARATUS AND Sn ALLOY PLATING METHOD
KR101965919B1 (en) 2013-05-09 2019-04-04 가부시키가이샤 에바라 세이사꾸쇼 Sn ALLOY PLATING APPARATUS AND Sn ALLOY PLATING METHOD

Also Published As

Publication number Publication date
JP4474925B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP4647695B2 (en) Method for recovering valuable metals from ITO scrap
JP5043027B2 (en) Recovery method of valuable metals from ITO scrap
US8685226B2 (en) Method of recovering valuable metal from scrap containing conductive oxide
US8308933B2 (en) Method of recovering valuable metals from IZO scrap
US8308934B2 (en) Method of recovering valuable metals from IZO scrap
US20100101964A1 (en) Method of Recovering Valuable Metal from Scrap Containing Conductive Oxide
WO2008053619A1 (en) Method for collection of valuable metal from ito scrap
WO2008053620A1 (en) Method for collection of valuable metal from ito scrap
JPH07145432A (en) Recovering method of indium
WO2014112198A1 (en) Method for recovering indium-tin alloy from ito target scrap and methods for producing indium oxide-tin oxide powder and ito target
JP2009035778A (en) Method for recovering tin
US20050155870A1 (en) Method for producing indium-containing aqueous solution
JP5217480B2 (en) Recovery method of crude indium
JP4474925B2 (en) Method for producing an aqueous solution containing indium ions and divalent tin ions
JP4527743B2 (en) Method for producing ruthenium metal powder
JP5339762B2 (en) Method for producing indium metal
JP2011052261A (en) Electrolytic pulverization method of scrap containing conductive metal oxide
JP5471735B2 (en) Method for removing tin and thallium and method for purifying indium
JP2005200735A (en) Method of producing indium-containing aqueous solution
JP2004099975A (en) Process for recovering ruthenium and/or iridium
JP2007070650A (en) Method for producing ruthenium oxide and method for producing ruthenium powder
JP2007084432A (en) Method for recovering indium hydroxide or indium
JP2005179072A (en) Method of preparing aqueous solution containing indium ion and bivalent tin ion
JP2012153985A (en) Electrolytic pulverization method for scrap containing conductive metal oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080124

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100301

R150 Certificate of patent or registration of utility model

Ref document number: 4474925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term