JP2005197315A - Method of manufacturing solid electrolytic capacitor - Google Patents

Method of manufacturing solid electrolytic capacitor Download PDF

Info

Publication number
JP2005197315A
JP2005197315A JP2003435834A JP2003435834A JP2005197315A JP 2005197315 A JP2005197315 A JP 2005197315A JP 2003435834 A JP2003435834 A JP 2003435834A JP 2003435834 A JP2003435834 A JP 2003435834A JP 2005197315 A JP2005197315 A JP 2005197315A
Authority
JP
Japan
Prior art keywords
capacitor element
solid electrolytic
electrode foil
electrolytic capacitor
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003435834A
Other languages
Japanese (ja)
Inventor
Kazuhiro Higuchi
和浩 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2003435834A priority Critical patent/JP2005197315A/en
Publication of JP2005197315A publication Critical patent/JP2005197315A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor having good electrostatic capacitance characteristics. <P>SOLUTION: A method of manufacturing the solid electrolytic capacitor includes steps of: impregnating a capacitor element in which an anode electrode foil and a cathode electrode foil are wound through a separator with a 3, 4-ethylenedioxythiophene; impregnating with an oxidizing agent solution; generating a polyethylenedoxythiophene in the capacitor element by a chemical polymerization; and housing the capacitor element in a sheathing case. In the method, immediately after the capacitor element is heated, since the capacitor element is impregnated with the 3, 4-ethylenedioxythiophene solution, the electrostatic capacitance characteristics are excellent. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、固体電解コンデンサの製造方法にかかり、特に導電性ポリマーを電解質に用いた固体電解コンデンサの製造方法に関する。   The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly to a method for manufacturing a solid electrolytic capacitor using a conductive polymer as an electrolyte.

電解コンデンサは、タンタル、アルミニウム等の弁作用金属からなるとともに微細孔やエッチングピットを備える陽極電極の表面に、誘電体となる酸化皮膜層を形成し、この酸化皮膜層から電極を引き出した構成からなる。そして、酸化皮膜層からの電極の引出しは、導電性を有する電解質層により行っている。したがって、電解コンデンサにおいては電解質層が真の陰極を担うことになる。このような真の陰極として機能する電解質層は、酸化皮膜層との密着性、緻密性、均一性などが求められる。特に、陽極電極の微細孔やエッチングピットの内部における密着性が電気的な特性に大きな影響を及ぼしており、従来数々の電解質層が提案されている。   An electrolytic capacitor is made of a valve action metal such as tantalum or aluminum, and has a structure in which an oxide film layer serving as a dielectric is formed on the surface of an anode electrode having fine holes and etching pits, and an electrode is drawn from the oxide film layer. Become. And extraction of the electrode from an oxide film layer is performed by the electrolyte layer which has electroconductivity. Therefore, in the electrolytic capacitor, the electrolyte layer serves as a true cathode. Such an electrolyte layer functioning as a true cathode is required to have adhesion, denseness, and uniformity with the oxide film layer. In particular, the adhesion within the fine holes of the anode electrode and the etching pits has a great influence on the electrical characteristics, and a number of electrolyte layers have been proposed in the past.

ところで、近年、電子機器のデジタル化、高周波化に伴い、小型大容量で高周波領域でのインピーダンスの低いコンデンサが要求されている。   By the way, in recent years, with the digitization and high frequency of electronic equipment, a capacitor having a small size and a large capacity and a low impedance in a high frequency region is required.

これらの要求に対して、陰極箔と陽極箔をセパレータを介して巻回したコンデンサ素子を金属ケースに収納し、封口ゴムによって封止する巻回型の電解コンデンサによって、小型大容量を実現することができる。そして、低インピーダンスに対しては、電解質として固体電解質を用いることで対応することができる。このような固体電解質としては、7、7、8、8−テトラシアノキノジメタン(TCNQ)錯体、ポリピロール、ポリチオフエン等の高導電性を有する導電性ポリマーが知られている。そして、現在では反応速度が緩やかで、かつ陽極電極の酸化皮膜層との密着性に優れたポリエチレンジオキシチオフェン(PEDT)に着目し(特許文献1参照)、その結果、陽極電極箔と陰極電極箔とを、セパレータを介して巻回したコンデンサ素子に、モノマーと酸化剤とを含浸し、その後緩やかに起きるモノマーと酸化剤との化学重合反応で固体電解質であるポリエチレンジオキシチオフェンをコンデンサ素子内部で生成させる固体電解コンデンサが実現されている(特許文献2参照)。
特開平2−15611号公報 特開平10−340829号公報
In response to these requirements, a capacitor element in which a cathode foil and an anode foil are wound through a separator is housed in a metal case, and a small and large capacity is realized by a wound type electrolytic capacitor that is sealed with a sealing rubber. Can do. And it can respond to low impedance by using a solid electrolyte as an electrolyte. As such a solid electrolyte, conductive polymers having high conductivity such as 7,7,8,8-tetracyanoquinodimethane (TCNQ) complex, polypyrrole, polythiophene and the like are known. Attention is now focused on polyethylenedioxythiophene (PEDT), which has a slow reaction rate and excellent adhesion to the oxide film layer of the anode electrode (see Patent Document 1), and as a result, the anode electrode foil and the cathode electrode Capacitor element wound with foil through a separator is impregnated with monomer and oxidant, and then polyethylenedioxythiophene, which is a solid electrolyte, is generated by a chemical polymerization reaction between the monomer and oxidant that occurs slowly. (See Patent Document 2).
JP-A-2-15611 Japanese Patent Laid-Open No. 10-340829

ところで、近年、電子情報機器はデジタル化され、さらにこれらの電子情報機器の心臓部であるマイクロプロセッサの駆動周波数の高速化が進んでいる。これに伴って、消費電力の増大化が進み、発熱による信頼性の問題が顕在化してきたため、その対策として駆動電圧の低減化が図られてきた。 By the way, in recent years, electronic information devices have been digitized, and the driving frequency of the microprocessor which is the heart of these electronic information devices has been increased. Along with this, the power consumption has been increasing and the problem of reliability due to heat generation has become obvious. Therefore, the drive voltage has been reduced as a countermeasure.

上記駆動電圧の低減化を図るため、マイクロプロセッサに高精度な電力を供給する電源の出力側コンデンサには、ESRの低いコンデンサが多数用いられている。このような低ESR特性を有するコンデンサとして、上述したような固体電解コンデンサが用いられている。 In order to reduce the drive voltage, a large number of capacitors having low ESR are used as output-side capacitors of a power supply that supplies highly accurate power to the microprocessor. As the capacitor having such a low ESR characteristic, the solid electrolytic capacitor as described above is used.

しかしながら、マイクロプロセッサの駆動周波数の高速化は著しく、それに伴って消費電力がさらに増大し、コンデンサからの供給電力のさらなる増大化が求められ、このために固体電解コンデンサには大容量化が要求されている。
However, the increase in the driving frequency of the microprocessor is remarkable, and as a result, the power consumption further increases, and further increase in the power supplied from the capacitor is required. ing.

そこで、本発明は、前述のような問題点を解決するために、静電容量の高い固体電解コンデンサの製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor having a high capacitance in order to solve the above-described problems.

本発明の固体電解コンデンサの製造方法は、陽極電極箔と陰極電極箔とをセパレータを介して巻回したコンデンサ素子に、3,4−エチレンジオキシチオフェンを含浸した後、酸化剤溶液を含浸し、化学重合でコンデンサ素子内にポリエチレンジオキシチオフェンを生成した後、コンデンサ素子を外装ケースに収納する固体電解コンデンサの製造方法において、コンデンサ素子を加熱した直後、3,4−エチレンジオキシチオフェン溶液を含浸することを特徴としている。
そして、加熱温度が100℃以上であることを特徴としている。
The method for producing a solid electrolytic capacitor according to the present invention includes impregnating an oxidant solution after impregnating 3,4-ethylenedioxythiophene into a capacitor element in which an anode electrode foil and a cathode electrode foil are wound through a separator. In a method for producing a solid electrolytic capacitor in which polyethylene dioxythiophene is produced in a capacitor element by chemical polymerization and then the capacitor element is housed in an outer case, immediately after heating the capacitor element, a 3,4-ethylenedioxythiophene solution is added. It is characterized by impregnation.
And it is characterized by heating temperature being 100 degreeC or more.

本発明の固体電解コンデンサについて説明する。アルミニウム等の弁作用金属からなり表面に酸化皮膜層が形成された陽極電極箔と、陰極電極箔とを、セパレータを介して巻回してコンデンサ素子を形成する。そして、このコンデンサ素子のセパレータに導電性ポリマーを保持している。   The solid electrolytic capacitor of the present invention will be described. An anode electrode foil made of a valve action metal such as aluminum and having an oxide film layer formed on the surface thereof and a cathode electrode foil are wound through a separator to form a capacitor element. The conductive polymer is held in the separator of the capacitor element.

陽極電極箔は、アルミニウム等の弁作用金属からなり、陽極電極箔の表面には、アジピン酸アンモニウム等の水溶液中で電圧を印加して誘電体となる酸化皮膜層を形成している。陰極電極箔は、陽極電極箔と同様にアルミニウム等からなり、表面にエッチング処理が施されているものを用いる。   The anode electrode foil is made of a valve action metal such as aluminum, and an oxide film layer serving as a dielectric is formed on the surface of the anode electrode foil by applying a voltage in an aqueous solution of ammonium adipate or the like. The cathode electrode foil is made of aluminum or the like like the anode electrode foil, and the surface is subjected to etching treatment.

陽極電極箔及び陰極電極箔にはそれぞれの電極を外部に接続するための陽極引出し手段、陰極引出し手段が、ステッチ、超音波溶接等の公知の手段により接続されている。これらの電極引出し手段は、巻回したコンデンサ素子の端面から導出される。   Anode extraction means and cathode extraction means for connecting the respective electrodes to the outside are connected to the anode electrode foil and the cathode electrode foil by known means such as stitching and ultrasonic welding. These electrode lead-out means are led out from the end face of the wound capacitor element.

コンデンサ素子は、上記の陽極電極箔と陰極電極箔とを、セパレータを間に挟むようにして巻き取って形成している。両極電極箔の寸法は、製造する固体電解コンデンサの仕様に応じて任意であり、セパレータも両極電極箔の寸法に応じてこれよりやや大きい幅寸法のものを用いればよい。   The capacitor element is formed by winding the anode electrode foil and the cathode electrode foil with a separator interposed therebetween. The dimensions of the bipolar electrode foil are arbitrary depending on the specifications of the solid electrolytic capacitor to be manufactured, and the separator having a slightly larger width may be used depending on the dimensions of the bipolar electrode foil.

このコンデンサ素子内にポリエチレンジオキシチオフェン(PEDT)を形成する。このPEDTは、モノマーである3,4−エチレンジオキシチオフェン(EDT)を酸化剤であるp−トルエンスルホン酸第二鉄で重合させて得ることができる。重合はEDT溶液をコンデンサ素子に含浸した後、酸化剤溶液を含浸し、その後に加熱して行う。   Polyethylenedioxythiophene (PEDT) is formed in the capacitor element. This PEDT can be obtained by polymerizing 3,4-ethylenedioxythiophene (EDT) as a monomer with ferric p-toluenesulfonate as an oxidizing agent. Polymerization is performed by impregnating the capacitor element with the EDT solution, then impregnating with the oxidant solution, and then heating.

そして、この導電性ポリマーを形成したコンデンサ素子を有底筒状の金属ケースに収納し、封口ゴムで加締め封止して固体電解コンデンサが形成される。   Then, the capacitor element in which the conductive polymer is formed is housed in a bottomed cylindrical metal case, and is swaged and sealed with a sealing rubber to form a solid electrolytic capacitor.

ここで、本発明においては、コンデンサ素子を加熱した直後、すなわち加熱した温度の10℃低い温度に冷える前に、EDT溶液を含浸する。ここでコンデンサ素子を加熱した後にEDT溶液を含浸すると、含浸した際にEDT溶液が瞬時に加熱されてEDTのみがコンデンサ素子内に残留し、その残留状態がその後の重合過程に好適であるため、良好な状態でPEDTが形成され、静電容量特性が向上する。そして、この際の加熱温度が100℃以上で特性の向上は顕著である。   Here, in the present invention, the EDT solution is impregnated immediately after the capacitor element is heated, that is, before the capacitor element is cooled to a temperature lower by 10 ° C. than the heated temperature. If the EDT solution is impregnated after heating the capacitor element here, the EDT solution is instantaneously heated when impregnated, and only the EDT remains in the capacitor element, and the residual state is suitable for the subsequent polymerization process. PEDT is formed in a good state, and the capacitance characteristics are improved. And the improvement of a characteristic is remarkable when the heating temperature in this case is 100 degreeC or more.

本発明の固体電解コンデンサの製造方法は、陽極電極箔と陰極電極箔とをセパレータを介して巻回したコンデンサ素子に、3,4−エチレンジオキシチオフェンを含浸した後、酸化剤溶液を含浸し、化学重合でコンデンサ素子内にポリエチレンジオキシチオフェンを生成した後、コンデンサ素子を外装ケースに収納する固体電解コンデンサの製造方法において、コンデンサ素子を加熱した後、3,4−エチレンジオキシチオフェン溶液を含浸するので、静電容量特性が良好である。     The method for producing a solid electrolytic capacitor according to the present invention includes impregnating an oxidant solution after impregnating 3,4-ethylenedioxythiophene into a capacitor element in which an anode electrode foil and a cathode electrode foil are wound through a separator. In a method for producing a solid electrolytic capacitor in which polyethylene dioxythiophene is produced in a capacitor element by chemical polymerization and then the capacitor element is housed in an outer case, the capacitor element is heated, and then a 3,4-ethylenedioxythiophene solution is added. Since it is impregnated, the capacitance characteristics are good.

次に本発明の固体電解コンデンサの製造方法について具体的に説明する。
陽極電極箔及び陰極電極箔は、弁作用金属、例えばアルミニウム、タンタルからなり、その表面には予めエッチング処理が施されて表面積が拡大されている。陽極電極箔については、更に化成処理が施され、表面に酸化アルミニウムからなる酸化皮膜層が形成されている。この陽極電極箔及び陰極電極箔を、セパレータを介して巻回し、コンデンサ素子を得る。
Next, the manufacturing method of the solid electrolytic capacitor of this invention is demonstrated concretely.
The anode electrode foil and the cathode electrode foil are made of a valve metal, such as aluminum or tantalum, and the surface thereof is preliminarily etched to increase the surface area. The anode electrode foil is further subjected to chemical conversion treatment, and an oxide film layer made of aluminum oxide is formed on the surface. The anode electrode foil and the cathode electrode foil are wound through a separator to obtain a capacitor element.

次いで、コンデンサ素子に、EDTと酸化剤とを含浸する。酸化剤は、p−トルエンスルホン酸第二鉄のブタノール溶液を用い、150℃、1時間加熱重合して、導電性ポリマーであるPEDTを生成する。   Next, the capacitor element is impregnated with EDT and an oxidizing agent. As the oxidizing agent, a butanol solution of ferric p-toluenesulfonate is used and polymerized by heating at 150 ° C. for 1 hour to produce PEDT which is a conductive polymer.

このようにして陽極電極箔と陰極電極箔の間に介在したセパレータに導電性ポリマー層が形成されたコンデンサ素子は、有底筒状のケースに収納され、ブチルゴムからなる封口ゴムで封止して固体電解コンデンサを形成する。定格は4WV−560μFである。   Thus, the capacitor element in which the conductive polymer layer is formed on the separator interposed between the anode electrode foil and the cathode electrode foil is housed in a bottomed cylindrical case and sealed with a sealing rubber made of butyl rubber. A solid electrolytic capacitor is formed. The rating is 4WV-560μF.

ここで、実施例として、EDTエタノール溶液を含浸する前にコンデンサ素子を加熱とした。   Here, as an example, the capacitor element was heated before being impregnated with the EDT ethanol solution.

次に、これらの固体電解コンデンサの初期特性を(表1)に示す。   Next, initial characteristics of these solid electrolytic capacitors are shown in (Table 1).

(表1)
┌──────┬─────────┬───────────┐
│ │ 加熱温度(℃) │ 静電容量(μF) │
├──────┼─────────┼───────────┤
│ 実施例1 │ 100 │ 570 │
├──────┼─────────┼───────────┤
│ 実施例2 │ 120 │ 575 │
├──────┼─────────┼───────────┤
│ 実施例3 │ 150 │ 600 │
├──────┼─────────┼───────────┤
│ 実施例4 │ 180 │ 605 │
├──────┼─────────┼───────────┤
│ 従来例 │ − │ 565 │
└──────┴─────────┴───────────┘
(Table 1)
┌──────┬─────────┬───────────┐
│ │ Heating temperature (℃) │ Capacitance (μF) │
├──────┼─────────┼───────────┤
│ Example 1 │ 100 │ 570 │
├──────┼─────────┼───────────┤
│ Example 2 │ 120 │ 575 │
├──────┼─────────┼───────────┤
│ Example 3 │ 150 │ 600 │
├──────┼─────────┼───────────┤
│ Example 4 │ 180 │ 605 │
├──────┼─────────┼───────────┤
│ Conventional example │-│ 565 │
└──────┴─────────┴───────────┘

以上のように、100℃以上加熱した実施例は従来例に比べて、静電容量は増大し、特に120℃以上過熱すると静電容量は5%増大している。


As described above, the example heated at 100 ° C. or more has a higher capacitance than the conventional example, and the capacitance increases by 5% when overheated at 120 ° C. or more.


Claims (2)

陽極電極箔と陰極電極箔とをセパレータを介して巻回したコンデンサ素子に、3,4−エチレンジオキシチオフェンを含浸した後、酸化剤溶液を含浸し、化学重合でコンデンサ素子内にポリエチレンジオキシチオフェンを生成した後、コンデンサ素子を外装ケースに収納する固体電解コンデンサの製造方法において、コンデンサ素子を加熱した直後、3,4−エチレンジオキシチオフェン溶液を含浸する固体電解コンデンサの製造方法。 A capacitor element in which an anode electrode foil and a cathode electrode foil are wound through a separator is impregnated with 3,4-ethylenedioxythiophene, and then impregnated with an oxidant solution, and polyethylene dioxy is incorporated into the capacitor element by chemical polymerization. In the method for producing a solid electrolytic capacitor in which a capacitor element is housed in an outer case after thiophene is produced, the method for producing a solid electrolytic capacitor in which a 3,4-ethylenedioxythiophene solution is impregnated immediately after the capacitor element is heated. 加熱温度が100℃以上であることを特徴とする請求項1記載の固体電解コンデンサの製造方法。



The method for producing a solid electrolytic capacitor according to claim 1, wherein the heating temperature is 100 ° C. or higher.



JP2003435834A 2003-12-26 2003-12-26 Method of manufacturing solid electrolytic capacitor Pending JP2005197315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003435834A JP2005197315A (en) 2003-12-26 2003-12-26 Method of manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003435834A JP2005197315A (en) 2003-12-26 2003-12-26 Method of manufacturing solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2005197315A true JP2005197315A (en) 2005-07-21

Family

ID=34815784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003435834A Pending JP2005197315A (en) 2003-12-26 2003-12-26 Method of manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2005197315A (en)

Similar Documents

Publication Publication Date Title
JP4285523B2 (en) Electrode foil for solid electrolytic capacitor and manufacturing method thereof
WO2004030004A1 (en) Solid electrolytic capacitor
JP4381136B2 (en) Solid electrolytic capacitor
JP2005197315A (en) Method of manufacturing solid electrolytic capacitor
JP2005197313A (en) Method of manufacturing solid electrolytic capacitor
JP2005109053A (en) Solid electrolytic capacitor
JP2005109276A (en) Solid electrolytic capacitor
JP2005109277A (en) Solid electrolytic capacitor
JP2007019542A (en) Cathode electrode foil for solid electrolytic capacitor
JP2005109272A (en) Solid electrolytic capacitor
JP2009252913A (en) Method of manufacturing solid electrolytic capacitor
JP2005197314A (en) Method of manufacturing solid electrolytic capacitor
JP2005109278A (en) Solid electrolytic capacitor
JP2005197310A (en) Solid electrolytic capacitor
JP2004128048A (en) Solid electrolytic capacitor
JP2005197311A (en) Solid electrolytic capacitor
JP4363022B2 (en) Manufacturing method of solid electrolytic capacitor
JP4114700B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2005197312A (en) Solid electrolytic capacitor
JP2005109270A (en) Solid electrolytic capacitor
JP2005109275A (en) Solid electrolytic capacitor
JP2005109271A (en) Solid electrolytic capacitor
JP2010278200A (en) Solid electrolytic capacitor
JP2765440B2 (en) Method for manufacturing solid electrolytic capacitor
JP2004319646A (en) Electrolytic capacitor and method of manufacturing thereof