JP2005191288A - Electrochemical device and method for manufacturing the same - Google Patents

Electrochemical device and method for manufacturing the same Download PDF

Info

Publication number
JP2005191288A
JP2005191288A JP2003430925A JP2003430925A JP2005191288A JP 2005191288 A JP2005191288 A JP 2005191288A JP 2003430925 A JP2003430925 A JP 2003430925A JP 2003430925 A JP2003430925 A JP 2003430925A JP 2005191288 A JP2005191288 A JP 2005191288A
Authority
JP
Japan
Prior art keywords
polymer layer
liquid crystalline
thermoplastic polymer
crystalline polymer
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003430925A
Other languages
Japanese (ja)
Other versions
JP4419568B2 (en
Inventor
Sachiko Hirabayashi
幸子 平林
Takeru Suzuki
長 鈴木
Satoru Maruyama
哲 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2003430925A priority Critical patent/JP4419568B2/en
Publication of JP2005191288A publication Critical patent/JP2005191288A/en
Application granted granted Critical
Publication of JP4419568B2 publication Critical patent/JP4419568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrochemical device wherein short-circuiting due to contact between collectors does not easily occur during the sealing process and the heat generating element is less affected by heat, and to provide a method for manufacturing the same. <P>SOLUTION: The electrochemical device comprises a pair of plate-type collectors 20 and 21, a power generating element 10 sandwiched in between the collectors 20 and 21 so that a first electrode 12 contacts with the collector 20 and a second electrode 13 contacts with the collector 21, and frame-type sealing members 30 for hermetically sealing the power generating element 10 in between the collectors 20 and 21 by filling up the gaps around the peripheries of the collectors 20 and 21. The sealing members 30 each has a pair of thermoplastic polymer layer 31 and 35 for sandwiching liquid crystal polymer layers 33 and 33 in between. The thermoplastic polymer layers 31 are heat-sealed to the peripheries at the both ends of the collector 20, and the thermoplastic polymer layers 35 are heat-sealed to the peripheries at the both ends of the collector 21. The melting point of the thermoplastic polymer layers 31 and 35 is lower than that of the liquid crystal polymer layers 33. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電気二重層キャパシタやリチウム二次電池等の電気化学デバイス及びこれら電気化学デバイスの製造方法に関する。   The present invention relates to electrochemical devices such as electric double layer capacitors and lithium secondary batteries, and methods for producing these electrochemical devices.

従来、電気二重層キャパシタやリチウム二次電池等の電気化学デバイスが、携帯電話、PDA等に広く使用されている。   Conventionally, electrochemical devices such as electric double layer capacitors and lithium secondary batteries have been widely used in mobile phones, PDAs and the like.

このような電気化学デバイスとして、一対の電極とこれらに挟まれる電解質とを含む発電要素を、この発電要素よりも大きな一対の集電体で挟み、集電体の周縁部間を熱可塑性の封口材でシールした構造の電気化学デバイスが考案されている。   As such an electrochemical device, a power generation element including a pair of electrodes and an electrolyte sandwiched between them is sandwiched between a pair of current collectors larger than the power generation element, and a thermoplastic sealing is provided between the peripheral portions of the current collector. An electrochemical device having a structure sealed with a material has been devised.

このような電気化学デバイスの封口材としては、例えば、高密度ポリエチレンシートの両面に、高密度ポリエチレンシートよりも低融点でかつ不飽和カルボン酸等で変性されたエチレン共重合体シートを積層したポリオレフィン製の封口材が知られている(特許文献1参照)。   As a sealing material for such an electrochemical device, for example, a polyolefin in which an ethylene copolymer sheet having a melting point lower than that of a high-density polyethylene sheet and modified with an unsaturated carboxylic acid or the like is laminated on both surfaces of the high-density polyethylene sheet. The sealing material made from manufacturing is known (refer patent document 1).

また、これ以外にも、ポリイソブチレン変性ポリエチレン(特許文献2参照)、変性ポリプロピレン、変性ポリエチレン(特許文献3)、微粒子フィラーを含有する酸変性ポリオレフィン(特許文献4)等からなるポリオレフィン製の封口材が知られている。   In addition to this, a polyolefin sealing material comprising polyisobutylene-modified polyethylene (see Patent Document 2), modified polypropylene, modified polyethylene (Patent Document 3), acid-modified polyolefin containing fine particle filler (Patent Document 4), and the like. It has been known.

一方、液晶性高分子製の封口材も知られている(特許文献5)。
特開昭62−154469号公報 特開平2−234344号公報 特開平4−121947号公報 特開平6−349462号公報 特開2003−92092号公報
On the other hand, a sealing material made of a liquid crystalline polymer is also known (Patent Document 5).
Japanese Patent Laid-Open No. 62-154469 JP-A-2-234344 JP-A-4-121947 JP-A-6-349462 JP 2003-92092 A

しかしながら、ポリオレフィン製の封口材を用いた電気化学デバイスでは、封口時に封口材が溶融しすぎて集電体同士が接触し、電気化学デバイスがショートする場合があった。一方、液晶性高分子製の封口材を用いた電気化学デバイスでは、封口材の溶融温度が高くなるため、封口時の熱によって発電要素に悪影響を与える場合があった。   However, in the electrochemical device using the sealing material made of polyolefin, the sealing material may be melted too much at the time of sealing, the current collectors may come into contact with each other, and the electrochemical device may be short-circuited. On the other hand, in an electrochemical device using a sealing material made of a liquid crystalline polymer, since the melting temperature of the sealing material becomes high, the power generation element may be adversely affected by heat at the time of sealing.

本発明は上記課題に鑑みてなされたものであり、封口時において集電体同士の接触によるショートが起こりにくく、かつ、封口時において発電要素に対して熱による悪影響を与えにくい電気化学デバイス及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an electrochemical device that does not easily cause a short circuit due to contact between current collectors at the time of sealing, and that does not easily exert an adverse effect due to heat on a power generation element at the time of sealing, and An object is to provide a manufacturing method.

本発明に係る電気化学デバイスは、互いに対向する一対の板状の集電体と、第一電極、第二電極及びこれらの電極間に設けられた電解質を有し第一電極が一方の集電体と接し第二電極が他方の集電体と接するように集電体間に挟まれた発電要素と、一方の集電体の周縁部と他方の集電体の周縁部との隙間を塞いで発電要素を集電体間に密封するための枠状の封口材と、を備えている。そして、この封口材は、液晶性高分子層及び液晶性高分子層を挟むように設けられた一対の熱可塑性高分子層を有し、一方の熱可塑性高分子層は一方の集電体の周縁部に熱融着され、他方の熱可塑性高分子層は他方の集電体の周縁部に熱融着され、これら一対の熱可塑性高分子層の溶融温度は液晶性高分子層の溶融温度よりも低い。   An electrochemical device according to the present invention includes a pair of plate-like current collectors facing each other, a first electrode, a second electrode, and an electrolyte provided between these electrodes, and the first electrode is one of the current collectors. The power generation element sandwiched between the current collectors so that the second electrode is in contact with the other current collector and the gap between the peripheral edge of one current collector and the peripheral edge of the other current collector And a frame-shaped sealing material for sealing the power generating element between the current collectors. The sealing material has a liquid crystalline polymer layer and a pair of thermoplastic polymer layers provided so as to sandwich the liquid crystalline polymer layer, and one thermoplastic polymer layer is formed of one current collector. The other thermoplastic polymer layer is heat-sealed to the periphery of the other current collector, and the melting temperature of the pair of thermoplastic polymer layers is the melting temperature of the liquid crystalline polymer layer. Lower than.

ここで、「液晶性高分子」とは、強い高分子鎖間相互作用によって溶融状態で液晶性、すなわち、高分子鎖が配向する特性を示すサーモトロピック性の高分子である。このような液晶性高分子の層は、一般的な熱可塑性高分子と比べて高耐熱性、低線膨張率、高絶縁性、低吸湿性および高ガスバリアー性を示す。   Here, the “liquid crystalline polymer” is a thermotropic polymer that exhibits liquid crystallinity in a molten state, that is, a property in which the polymer chain is oriented, by strong interaction between polymer chains. Such a liquid crystal polymer layer exhibits high heat resistance, low linear expansion coefficient, high insulation, low hygroscopicity, and high gas barrier properties as compared with general thermoplastic polymers.

本発明によれば、封口材において、一対の熱可塑性高分子層間に、これらの熱可塑性高分子層に比して溶融し難い液晶性高分子層が介在する。このため、封口時に加熱しすぎて熱可塑性高分子層が過度に溶融した場合等においてもこの液晶性高分子層が邪魔となって集電体同士が接触しにくくなる。したがって、集電体のショートによる不良が低減され、電気化学デバイスの歩留まりや信頼性が高くなる。   According to the present invention, in the sealing material, a liquid crystalline polymer layer that is hard to melt as compared to these thermoplastic polymer layers is interposed between a pair of thermoplastic polymer layers. For this reason, even when the thermoplastic polymer layer is excessively melted at the time of sealing and the thermoplastic polymer layer is excessively melted, the liquid crystalline polymer layer becomes a hindrance and the current collectors are hardly brought into contact with each other. Therefore, defects due to short-circuit of the current collector are reduced, and the yield and reliability of the electrochemical device are increased.

また、封口材は、液晶性高分子層よりも溶融温度が低い熱可塑性高分子層を有し、この熱可塑性高分子層により封口材が両集電体と熱融着されている。したがって、封口時の封口材の加熱温度を、液晶性高分子層を直接集電体に熱融着させる場合に比べて低くすることができる。したがって、封口時に発電要素が熱による悪影響を受けにくい。   Further, the sealing material has a thermoplastic polymer layer having a melting temperature lower than that of the liquid crystalline polymer layer, and the sealing material is heat-sealed with both current collectors by this thermoplastic polymer layer. Therefore, the heating temperature of the sealing material at the time of sealing can be lowered as compared with the case where the liquid crystalline polymer layer is directly heat-sealed to the current collector. Therefore, the power generation element is not easily affected by heat during sealing.

さらに、液晶性高分子層は、他の高分子材料に比べて水蒸気透過率や酸素透過率が十分に低い。したがって、電気化学デバイスの信頼性が向上し、寿命を長くできる。   Furthermore, the liquid crystalline polymer layer has a sufficiently low water vapor transmission rate and oxygen transmission rate compared to other polymer materials. Therefore, the reliability of the electrochemical device is improved and the lifetime can be extended.

ここで、液晶性高分子層の溶融温度が180〜350℃であると、ポリオレフィン等の熱可塑性高分子層のヒートシールの際に、集電体同士がショートすることを十分に抑止できる。   Here, when the melting temperature of the liquid crystalline polymer layer is 180 to 350 ° C., it is possible to sufficiently prevent the current collectors from being short-circuited when the thermoplastic polymer layer such as polyolefin is heat-sealed.

また、液晶性高分子層の水蒸気透過率が1g/(m・24hr・100μm)以下であり、酸素透過率が10mL/(m・24hr・100μm)であると、十分なガスバリア性が得られて、電気化学素子の信頼性が十分に向上する。 In addition, when the water vapor permeability of the liquid crystalline polymer layer is 1 g / (m 2 · 24 hr · 100 µm) or less and the oxygen permeability is 10 mL / (m 2 · 24 hr · 100 µm), sufficient gas barrier properties are obtained. As a result, the reliability of the electrochemical device is sufficiently improved.

ここで、液晶性高分子層としては、液晶ポリエステルを含む材料からなることが好ましい。   Here, the liquid crystalline polymer layer is preferably made of a material containing liquid crystal polyester.

一方、熱可塑性高分子層の溶融温度が90〜200℃であると、封口材の熱融着時の熱による発電要素に対するダメージの低減に優れ、また、十分な耐熱性を有することとなる。   On the other hand, when the melting temperature of the thermoplastic polymer layer is 90 to 200 ° C., it is excellent in reducing damage to the power generation element due to heat at the time of heat-sealing the sealing material, and has sufficient heat resistance.

特に、液晶性高分子層の溶融温度が180〜350℃であり、熱可塑性高分子層の溶融温度が90〜200℃であると、封口材の熱融着時の熱による発電要素に対するダメージの低減と、集電体同士のショートの抑制とを、いずれも高いレベルで両立できる。液晶性高分子は、一般の熱可塑性高分子よりも溶融温度が高い材料であり、熱可塑性高分子層の溶融温度範囲すなわち発電素子への熱ダメージの少ない温度範囲ではこの液晶性高分子は溶融し難く、これによって集電体同士のショートを防止することができる。そのため、上述の温度条件において、液晶性高分子層の溶融温度は熱可塑性高分子層の溶融温度よりも高い。   In particular, when the melting temperature of the liquid crystalline polymer layer is 180 to 350 ° C. and the melting temperature of the thermoplastic polymer layer is 90 to 200 ° C., damage to the power generation element due to heat at the time of heat sealing the sealing material is reduced. Both reduction and suppression of short-circuit between current collectors can be achieved at a high level. The liquid crystalline polymer is a material having a melting temperature higher than that of a general thermoplastic polymer, and the liquid crystalline polymer is melted in the melting temperature range of the thermoplastic polymer layer, that is, the temperature range in which thermal damage to the power generation element is small. It is difficult to prevent short circuit between the current collectors. Therefore, in the above-described temperature condition, the melting temperature of the liquid crystalline polymer layer is higher than the melting temperature of the thermoplastic polymer layer.

また、熱可塑性高分子層が0.65N/mm(1/15kg/mm)以上の接着強度で集電体と接着していると、シール性を十分に発揮すると共に、電気化学デバイスの機械的強度が高くなる。ここで、本特許請求の範囲及び本明細書における接着強度とは、JIS K6848で定められる接着強度である。   Further, when the thermoplastic polymer layer is bonded to the current collector with an adhesive strength of 0.65 N / mm (1/15 kg / mm) or more, the sealing performance is sufficiently exhibited and the mechanical properties of the electrochemical device are increased. Strength increases. Here, the adhesive strength in the claims and the specification is an adhesive strength defined by JIS K6848.

ここで、熱可塑性高分子層としては、ポリオレフィンを含む材料からなることが好ましい。   Here, the thermoplastic polymer layer is preferably made of a material containing polyolefin.

また、熱可塑性高分子層と液晶性高分子層とは、接着層により接着されていることができる。この構成では、封口材の製造が容易である。   Further, the thermoplastic polymer layer and the liquid crystalline polymer layer can be bonded by an adhesive layer. With this configuration, the sealing material can be easily manufactured.

また、熱可塑性高分子層と液晶性高分子層とは互いに熱融着されていてもよい。この場合も、封口材の製造が容易である。   Further, the thermoplastic polymer layer and the liquid crystalline polymer layer may be thermally fused to each other. Also in this case, the sealing material can be easily manufactured.

ところで、液晶性高分子層の溶融温度と、集電体と熱融着する熱可塑性高分子層の溶融温度の差が大きい場合には、液晶性高分子層と熱可塑性高分子層との熱融着が難しい場合がある。   By the way, when there is a large difference between the melting temperature of the liquid crystalline polymer layer and the melting temperature of the thermoplastic polymer layer that is thermally fused with the current collector, the heat of the liquid crystalline polymer layer and the thermoplastic polymer layer is reduced. Fusion may be difficult.

そこで、熱可塑性高分子層は、溶融温度がそれぞれ異なる熱可塑性高分子製の複数のサブ層の積層体であり、この積層体は、各サブ層の溶融温度が液晶性高分子層から集電体に向かって低くなるように積層されていることが好ましい。   Therefore, the thermoplastic polymer layer is a laminate of a plurality of sub-layers made of thermoplastic polymers each having a different melting temperature, and this laminate has a current collecting current from the liquid crystalline polymer layer. It is preferable that the layers are laminated so as to become lower toward the body.

この場合には、液晶性高分子層と熱可塑性高分子層との溶融温度を近づけられるので液晶性高分子層と熱可塑性高分子層との接着性を高められる一方、集電体を熱可塑性高分子層と熱融着する際の温度を十分低くすることができるので熱可塑性高分子層と集電体との熱融着時の発電要素の熱ダメージも抑えることができる。   In this case, since the melting temperature of the liquid crystalline polymer layer and the thermoplastic polymer layer can be brought close to each other, the adhesion between the liquid crystalline polymer layer and the thermoplastic polymer layer can be improved, while the current collector is made thermoplastic. Since the temperature at the time of heat-sealing with the polymer layer can be sufficiently lowered, heat damage of the power generation element at the time of heat-sealing between the thermoplastic polymer layer and the current collector can also be suppressed.

また、封口材の液晶性高分子層は熱可塑性高分子製の粒子を含み、熱可塑性高分子層と熱可塑性高分子製の粒子とが熱融着していてもよい。   Further, the liquid crystalline polymer layer of the sealing material may include particles made of thermoplastic polymer, and the thermoplastic polymer layer and the particles made of thermoplastic polymer may be heat-sealed.

このような構成の電気化学デバイスは、液晶性高分子層中に熱可塑性高分子製の粒子が分散されかつ厚み方向の両表面にこの粒子が露出された枠状の封口材前駆体を用意し、この封口材前駆体を集電体間に挟んで熱融着させることにより得ることができる。こうすると、封口材前駆体中の熱可塑性高分子製の粒子が溶融し、集電体と液晶性高分子層との間に熱可塑性高分子層が形成されて封口材となる。このような封口材前駆体は低コストに製造できる。   An electrochemical device having such a structure is prepared by preparing a frame-shaped sealing material precursor in which thermoplastic polymer particles are dispersed in a liquid crystalline polymer layer and the particles are exposed on both surfaces in the thickness direction. The sealing material precursor can be obtained by being sandwiched between current collectors and thermally fused. In this way, the thermoplastic polymer particles in the sealing material precursor are melted, and a thermoplastic polymer layer is formed between the current collector and the liquid crystalline polymer layer to form a sealing material. Such a sealing material precursor can be manufactured at low cost.

また、液晶性高分子層には液晶性高分子層から延びて集電体と熱融着され熱可塑性高分子層の外側端面を取り囲む第一突条部が設けられ、第一突条部は液晶性高分子製であることが好ましい。   The liquid crystalline polymer layer is provided with a first ridge extending from the liquid crystalline polymer layer and thermally fused to the current collector and surrounding the outer end surface of the thermoplastic polymer layer. It is preferably made of a liquid crystalline polymer.

これによれば、熱可塑性高分子層が外部に露出しないので、ガスバリア性を向上できる。   According to this, the gas barrier property can be improved because the thermoplastic polymer layer is not exposed to the outside.

ここで、第一突起部は、さらに集電体の端面に熱融着されたことが好ましい。   Here, it is preferable that the first protrusion is further thermally fused to the end face of the current collector.

これにより、液晶性高分子と集電体とが熱融着される場所が発電要素から遠くなるので、第一突条部の熱融着の際における発電要素に対する熱の影響が少ない。   Thereby, since the place where the liquid crystalline polymer and the current collector are heat-sealed is far from the power generation element, there is little influence of heat on the power generation element during the heat fusion of the first protrusion.

一方、熱可塑性高分子層は、さらに集電体の端面上にまで設けられており、液晶性高分子層には、液晶性高分子層から延びるとともにこの熱可塑性高分子層を挟んで集電体の端面を取り囲む液晶性高分子製の第二突条部が設けられてもよい。   On the other hand, the thermoplastic polymer layer is further provided on the end face of the current collector. The liquid crystal polymer layer extends from the liquid crystal polymer layer and sandwiches the thermoplastic polymer layer to collect current. A second ridge portion made of a liquid crystalline polymer surrounding the end surface of the body may be provided.

この場合、さらに端面を利用して封口材を接着するので、電気二重層キャパシタの機械的強度を十分に高めることができる。   In this case, since the sealing material is further bonded using the end face, the mechanical strength of the electric double layer capacitor can be sufficiently increased.

ここで、第二突条部は、さらに、集電体の外側面の周縁部に熱融着されることが好ましい。   Here, it is preferable that the second protrusion is further heat-sealed to the peripheral edge of the outer side surface of the current collector.

この場合、熱可塑性高分子層が外部に露出しないので、ガスバリア性が向上する。   In this case, since the thermoplastic polymer layer is not exposed to the outside, the gas barrier property is improved.

本発明に係る電気化学デバイスの製造方法は、第一電極、第二電極及びこれらの電極間に設けられた電解質を有する発電要素と、一対の板状の集電体と、枠状の封口材と、を用意する工程と、一方の集電体が発電要素の第一電極と接し、他方の集電体が発電要素の第二電極と接し、封口材が発電要素を取り囲むような配置で、一対の板状の集電体の間に発電要素及び封口材を挟む工程と、集電体の外側主面における封口材と対向する部分を加熱する工程と、を備えている。   A method for producing an electrochemical device according to the present invention includes a first electrode, a second electrode, and a power generation element having an electrolyte provided between these electrodes, a pair of plate-like current collectors, and a frame-shaped sealing material And a step of preparing one current collector in contact with the first electrode of the power generation element, the other current collector in contact with the second electrode of the power generation element, and an arrangement in which the sealing material surrounds the power generation element, A step of sandwiching the power generation element and the sealing material between the pair of plate-like current collectors, and a step of heating a portion of the outer main surface of the current collector facing the sealing material.

ここで、枠状の封口材は、液晶性高分子層及び液晶性高分子層を枠の厚み方向に挟むように設けられた一対の熱可塑性高分子層を有し、一対の熱可塑性高分子層の溶融温度は液晶性高分子層の溶融温度よりも低い。   Here, the frame-shaped sealing material has a pair of thermoplastic polymer layers provided so as to sandwich the liquid crystalline polymer layer and the liquid crystalline polymer layer in the thickness direction of the frame. The melting temperature of the layer is lower than the melting temperature of the liquid crystalline polymer layer.

本発明によれば、上述の構成の電気化学デバイスを好適に製造できる。   According to the present invention, the electrochemical device having the above-described configuration can be suitably manufactured.

本発明によれば、封口時において集電体同士の接触によるショートが起こりにくく、かつ、封口時において発電要素に対して熱による悪影響を与えにくい電気化学デバイス及びその製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the short circuit by the contact of collectors does not occur easily at the time of sealing, and the electrochemical device which does not have a bad influence by heat with respect to a power generation element at the time of sealing, and its manufacturing method are provided.

以下、図面を参照しながら本発明に係る電気化学デバイスの好適な実施形態について詳細に説明する。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する。   Hereinafter, preferred embodiments of an electrochemical device according to the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.

(第一実施形態)
まず、図1及び図2を参照して、本発明に係る第一実施形態の電気化学デバイスとしての電気二重層キャパシタ1について説明する。
(First embodiment)
First, with reference to FIG.1 and FIG.2, the electric double layer capacitor 1 as an electrochemical device of 1st embodiment which concerns on this invention is demonstrated.

この電気二重層キャパシタ1は、主として、発電要素10と、この発電要素10を挟んで対向し外部電極及び外装体として機能する一対の板状の集電体20,21と、集電体20の周縁部20aと集電体21の周縁部21aとの隙間を塞いで発電要素10を集電体20,21間に密封する枠状の封口材30とを有する。   The electric double layer capacitor 1 mainly includes a power generation element 10, a pair of plate-like current collectors 20, 21 that are opposed to each other with the power generation element 10 interposed therebetween and function as external electrodes and an exterior body. A frame-shaped sealing member 30 that closes the gap between the peripheral edge portion 20 a and the peripheral edge portion 21 a of the current collector 21 and seals the power generation element 10 between the current collectors 20 and 21 is provided.

発電要素10は、互いに対向する正極としての第一電極12及び負極としての第二電極13と、これら第一電極12及び第二電極13の間に隣接して配置されるセパレータ14と、第一電極12、第二電極13、及び、セパレータ14中に含有される電解質を含む電解質溶液(図示せず)と、を有している。   The power generation element 10 includes a first electrode 12 as a positive electrode and a second electrode 13 as a negative electrode facing each other, a separator 14 disposed adjacent to the first electrode 12 and the second electrode 13, An electrode 12, a second electrode 13, and an electrolyte solution (not shown) containing an electrolyte contained in the separator 14.

第一電極12、第二電極13は、電子伝導性の多孔体である。第一電極12、第二電極13の構成材料は、特に限定されず、公知の電気二重層キャパシタに用いられている炭素電極等の分極性電極を構成する多孔体層として使用されているものと同様の材料を使用することができる。例えば、原料炭(例えば、石油系重質油の流動接触分解装置のボトム油や減圧蒸留装置の残さ油を原料油とするディレードコーカーより製造された石油コークス等)を賦活処理することにより得られる炭素材料(例えば、活性炭)を構成材料の主成分としているものを使用することができる。その他の条件(バインダー等の炭素材料以外の構成材料の種類とその含有量)も特に限定されるものではない。例えば、炭素粉末に導電性を付与するための導電性補助剤(カーボンブラック等)や、バインダー(ポリテトラフルオロエチレン(PTFE)等)が添加されていてもよい。   The first electrode 12 and the second electrode 13 are electron conductive porous bodies. The constituent material of the first electrode 12 and the second electrode 13 is not particularly limited, and is used as a porous layer constituting a polarizable electrode such as a carbon electrode used in a known electric double layer capacitor. Similar materials can be used. For example, it is obtained by activating treatment of raw coal (for example, petroleum coke produced from a delayed coker using a bottom oil of a fluid catalytic cracking apparatus of heavy petroleum oil or a residual oil of a vacuum distillation apparatus as a raw oil). What has a carbon material (for example, activated carbon) as a main component of a constituent material can be used. Other conditions (types and contents of constituent materials other than carbon materials such as binder) are not particularly limited. For example, a conductive auxiliary agent (carbon black or the like) for imparting conductivity to the carbon powder or a binder (polytetrafluoroethylene (PTFE) or the like) may be added.

第一電極12及び第二電極13の間に配置されるセパレータ14は、電気絶縁性の多孔体から形成されていれば特に限定されず、公知の電気二重層キャパシタに用いられているセパレータを使用することができる。例えば、電気絶縁性の多孔体としては、ポリエチレン、ポリプロピレン等のポリオレフィンからなるフィルムの積層体や上記樹脂の混合物の延伸膜、或いは、セルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が挙げられる。   The separator 14 disposed between the first electrode 12 and the second electrode 13 is not particularly limited as long as it is formed of an electrically insulating porous body, and a separator used for a known electric double layer capacitor is used. can do. For example, as the electrically insulating porous body, at least one selected from the group consisting of a laminate of films made of polyolefin such as polyethylene and polypropylene, a stretched film of a mixture of the above resins, or cellulose, polyester and polypropylene Examples thereof include a fiber nonwoven fabric made of a constituent material.

ここで、第一電極12と第二電極13とによるショートを抑制すべく、セパレータ14
の大きさを電極12,13の主表面の面積よりも大きくし、セパレータ14の端部を電極12,13の端面から突出させることが好ましい。このとき、セパレータ14の端面は、封口材30から離間されていることが好ましい。
Here, in order to suppress a short circuit between the first electrode 12 and the second electrode 13, a separator 14 is used.
Is larger than the area of the main surface of the electrodes 12 and 13, and the end of the separator 14 is preferably protruded from the end surfaces of the electrodes 12 and 13. At this time, the end face of the separator 14 is preferably separated from the sealing material 30.

電解質溶液は、第一電極12、第二電極13、及び、セパレータ14の孔の内部に含有されている。電解質溶液は、特に限定されず、公知の電気二重層キャパシタに用いられている電解質溶液(電解質塩の水溶液、有機溶媒を使用した電解質塩の溶液)を使用することができる。ただし、電解質塩の水溶液は電気化学的に分解電圧が低く、電気二重層キャパシタ1の耐用電圧が低く制限されてしまうので、有機溶媒を使用する電解質溶液(非水電解質溶液)であることが好ましい。   The electrolyte solution is contained in the holes of the first electrode 12, the second electrode 13, and the separator 14. The electrolyte solution is not particularly limited, and an electrolyte solution (an electrolyte salt aqueous solution or an electrolyte salt solution using an organic solvent) used in a known electric double layer capacitor can be used. However, the aqueous solution of the electrolyte salt is electrochemically low in decomposition voltage, and the withstand voltage of the electric double layer capacitor 1 is limited to be low. Therefore, the electrolyte solution is preferably an electrolyte solution (nonaqueous electrolyte solution) using an organic solvent. .

なお、本実施形態において、電解質溶液は液状の状態以外にゲル化剤を添加することにより得られるゲル状電解質であってもよい。また、電解質溶液に代えて、固体電解質(固体高分子電解質又はイオン伝導性無機材料からなる電解質)が含有されていてもよい。   In the present embodiment, the electrolyte solution may be a gel electrolyte obtained by adding a gelling agent in addition to the liquid state. Further, instead of the electrolyte solution, a solid electrolyte (a solid polymer electrolyte or an electrolyte made of an ion conductive inorganic material) may be contained.

集電体20,21は、発電要素10の第一電極12、第二電極13の主表面の面積よりも大きな面積を有する矩形板状の導電材料である。これらの集電体20,21は、下側の集電体21が第二電極13と面接触し、上側の集電体20が第一電極12と面接触するように、上下から発電要素10を挟んでいる。集電体20,21の材料は、電荷の移動を充分に行うことができる良導体であれば特に限定されず、公知の電気二重層キャパシタに用いられている集電体を使用することができる。   The current collectors 20 and 21 are rectangular plate-like conductive materials having an area larger than the areas of the main surfaces of the first electrode 12 and the second electrode 13 of the power generation element 10. These current collectors 20, 21 have a power generation element 10 from above and below such that the lower current collector 21 is in surface contact with the second electrode 13 and the upper current collector 20 is in surface contact with the first electrode 12. Is sandwiched. The material of the current collectors 20 and 21 is not particularly limited as long as it is a good conductor capable of sufficiently transferring charges, and a current collector used in a known electric double layer capacitor can be used.

非水電解質の場合の集電体の材料としては、耐食性に富む導電性の材料が使用でき、例えば、アルミニウム、チタン等の金属箔が利用できる。金属箔の厚みは、例えば、10〜100μm程度である。   As a material for the current collector in the case of a non-aqueous electrolyte, a conductive material rich in corrosion resistance can be used. For example, a metal foil such as aluminum or titanium can be used. The thickness of the metal foil is, for example, about 10 to 100 μm.

封口材30は、発電要素10の周囲を取り囲む枠状形状を呈し、集電体20,21の周縁部20a,21a間の隙間を塞ぐように配されており、集電体20,21間に発電要素10を密封するものである。この封口材30は、集電体20,21に平行な5層構造を有している。具体的には、封口材30は、枠(層)の厚み方向に上から順に熱可塑性高分子層31/接着層32/液晶性高分子層33/接着層34/熱可塑性高分子層35の5層構造を有している。   The sealing material 30 has a frame shape surrounding the power generation element 10, and is disposed so as to close the gap between the peripheral portions 20 a and 21 a of the current collectors 20 and 21, and between the current collectors 20 and 21. The power generation element 10 is sealed. The sealing material 30 has a five-layer structure parallel to the current collectors 20 and 21. Specifically, the sealing material 30 is composed of a thermoplastic polymer layer 31 / an adhesive layer 32 / a liquid crystalline polymer layer 33 / an adhesive layer 34 / a thermoplastic polymer layer 35 in order from the top in the thickness direction of the frame (layer). It has a five-layer structure.

また、この枠状の封口材30の外側端面30aは、図1及び図2に示すように、集電体20,21の端面20b、21bと同一面を形成している。さらに、集電体20の主面に対して垂直な方向から見た時の封口材の幅W(図1及び図2参照)は、0.2〜20mm程度、好ましくは、1〜10mm程度とされている。   Further, the outer end surface 30a of the frame-shaped sealing material 30 forms the same surface as the end surfaces 20b and 21b of the current collectors 20 and 21, as shown in FIGS. Furthermore, the width W (see FIGS. 1 and 2) of the sealing material when viewed from a direction perpendicular to the main surface of the current collector 20 is about 0.2 to 20 mm, preferably about 1 to 10 mm. Has been.

図1に戻って、熱可塑性高分子層31は、集電体20の周縁部20aにおける内側面(集電体21に近い側の面)20c上に形成される一方、熱可塑性高分子層35は、集電体21の周縁部21aにおける内側面(集電体21に近い側の面)21c上に形成され、熱可塑性高分子層31,35は互いに対向している。   Returning to FIG. 1, the thermoplastic polymer layer 31 is formed on the inner side surface (the surface closer to the current collector 21) 20 c in the peripheral edge portion 20 a of the current collector 20, while the thermoplastic polymer layer 35. Is formed on the inner side surface (surface on the side close to the current collector 21) 21c in the peripheral edge portion 21a of the current collector 21, and the thermoplastic polymer layers 31 and 35 face each other.

これらの熱可塑性高分子層31,35は、熱融着によってそれぞれ集電体20,21の周縁部20a,21aの内側面20c,21cに強固に接着されている。熱可塑性高分子層31,35と集電体20,21との接着強度は、特に限定されないが、0.65N/mm((1/15)kg/mm)以上であることが、電気二重層キャパシタ2の機械的強度を高める点やシール性の面から好ましい。   These thermoplastic polymer layers 31 and 35 are firmly bonded to the inner side surfaces 20c and 21c of the peripheral portions 20a and 21a of the current collectors 20 and 21 by thermal fusion, respectively. The adhesive strength between the thermoplastic polymer layers 31 and 35 and the current collectors 20 and 21 is not particularly limited, but it is 0.65 N / mm ((1/15) kg / mm) or more. This is preferable from the standpoint of increasing the mechanical strength of the capacitor 2 and the sealing property.

ここで、熱可塑性高分子層31,35の熱可塑性高分子は、液晶性高分子層33(詳しくは後述)の液晶性高分子よりも溶融温度が低い熱可塑性高分子であれば特に限定されず、ポリオレフィン、ポリエステル、ポリフッ化ビニリデンおよびその共重合体等のフッ素樹脂等が挙げられる。特に、熱可塑性高分子層31,35の熱可塑性高分子として、経済性、ヒートシール性、化学的安定性、水分透過性等の観点からポリオレフィンが好ましい。ポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、酸変性ポリエチレン、およびこれらを含む共重合体等が挙げられる。これらの熱可塑性高分子は、単独または二種以上組合わせて使用することができる。また、この熱可塑性高分子には、さらにその性能を高めるため、必要に応じて公知の添加剤を含有させることもできる。   Here, the thermoplastic polymer of the thermoplastic polymer layers 31 and 35 is not particularly limited as long as it is a thermoplastic polymer having a melting temperature lower than that of the liquid crystalline polymer of the liquid crystalline polymer layer 33 (described later in detail). Examples thereof include fluororesins such as polyolefin, polyester, polyvinylidene fluoride and copolymers thereof. In particular, as the thermoplastic polymer of the thermoplastic polymer layers 31 and 35, polyolefin is preferable from the viewpoints of economy, heat sealability, chemical stability, moisture permeability, and the like. Examples of the polyolefin include polyethylene, polypropylene, acid-modified polyethylene, and copolymers containing these. These thermoplastic polymers can be used alone or in combination of two or more. Moreover, in order to further improve the performance of the thermoplastic polymer, known additives can be contained as necessary.

熱可塑性高分子層31、35の厚みは、2〜50μm程度が好ましく、5〜20μm程度がより好ましい。また、熱可塑性高分子層31,35の溶融温度が、90〜200℃であると、発電要素10に与える熱の影響を十分少なくし、かつ、十分な耐熱性を有することができるので好ましい。   The thickness of the thermoplastic polymer layers 31 and 35 is preferably about 2 to 50 μm, and more preferably about 5 to 20 μm. Moreover, it is preferable that the melting temperature of the thermoplastic polymer layers 31 and 35 is 90 to 200 ° C. because the influence of heat on the power generation element 10 can be sufficiently reduced and sufficient heat resistance can be obtained.

一方、液晶性高分子層33は、熱可塑性高分子層31と熱可塑性高分子層35との間に設けられている。液晶性高分子層33の液晶性高分子は、強い高分子間相互作用によって溶融状態で液晶性、すなわち、高分子が配向する特性を示すサーモトロピック性の高分子である。
このような液晶性高分子としては、例えば、全芳香族系や半芳香族系等の液晶ポリエステルが挙げられる。
On the other hand, the liquid crystalline polymer layer 33 is provided between the thermoplastic polymer layer 31 and the thermoplastic polymer layer 35. The liquid crystalline polymer of the liquid crystalline polymer layer 33 is a thermotropic polymer that exhibits liquid crystallinity in a molten state, that is, a property in which the polymer is aligned, due to strong interaction between polymers.
Examples of such a liquid crystalline polymer include fully aromatic and semi-aromatic liquid crystal polyesters.

全芳香系ポリエステルとしては、芳香族ジカルボン酸と芳香族ジオールと芳香族ヒドロキシカルボン酸との組合せからなるもの、異種の芳香族ヒドロキシカルボン酸の組合せからなるもの、芳香族ジカルボン酸と核置換芳香族ジオールとの組合せからなるものが挙げられる。また、半芳香族系ポリエステルとしては、ポリエチレンテレフタレートなどのポリエステルに芳香族ヒドロキシカルボン酸を反応させて得られるもの等が挙げられる。ここで、例えば上述の芳香族ジカルボン酸、芳香族ジオール、及び、芳香族ヒドロキシカルボン酸の代わりに、それらのエステル形成性誘導体を使用しても良い。   The wholly aromatic polyester includes a combination of an aromatic dicarboxylic acid, an aromatic diol and an aromatic hydroxycarboxylic acid, a combination of different types of aromatic hydroxycarboxylic acids, an aromatic dicarboxylic acid and a nucleus-substituted aromatic. The thing which consists of a combination with diol is mentioned. Examples of the semi-aromatic polyester include those obtained by reacting an aromatic hydroxycarboxylic acid with a polyester such as polyethylene terephthalate. Here, for example, instead of the above-described aromatic dicarboxylic acid, aromatic diol, and aromatic hydroxycarboxylic acid, their ester-forming derivatives may be used.

このような液晶性高分子から形成される液晶性高分子層33は、低吸湿性であり、耐薬品性が良好であり、さらに、耐熱性が高く、また、概ね400℃以下の温度で異方性溶融体を形成する。   The liquid crystalline polymer layer 33 formed from such a liquid crystalline polymer has low hygroscopicity, good chemical resistance, high heat resistance, and a temperature difference of approximately 400 ° C. or lower. An isotropic melt is formed.

また、液晶性高分子層33の耐熱性は、主として分子鎖中の芳香環の割合に依存する。例えば、主鎖がフェニレン基で構成されている液晶性高分子の溶融温度は概ね260〜350℃であり、主鎖にナフタレン骨格を導入した液晶性高分子の溶融温度は概ね190〜270℃であり、主鎖にエチレン基が導入された液晶性高分子の溶融温度は概ね60〜230℃程度となる。本実施形態では、特に、溶融温度が180℃〜350℃程度の液晶性高分子を用いることが好ましい。   Further, the heat resistance of the liquid crystalline polymer layer 33 mainly depends on the ratio of aromatic rings in the molecular chain. For example, the melting temperature of a liquid crystalline polymer whose main chain is composed of a phenylene group is approximately 260 to 350 ° C., and the melting temperature of a liquid crystalline polymer having a naphthalene skeleton introduced into the main chain is approximately 190 to 270 ° C. The melting temperature of the liquid crystalline polymer having an ethylene group introduced into the main chain is about 60 to 230 ° C. In the present embodiment, it is particularly preferable to use a liquid crystalline polymer having a melting temperature of about 180 ° C. to 350 ° C.

液晶性高分子層33は、液晶性高分子のみからなっても良いが、液晶性高分子に加えて、他の高分子材料等を含む液晶性高分子組成物からなってもよい。他の樹脂としては、例えば、エポキシ器含有エチレン共重合体等の熱可塑性樹脂が挙げられる。混合比率は、例えば、液晶性高分子56〜99重量%に対して、他の高分子材料44〜1重量%である。また、この液晶性高分子には、さらにその性能を高めるため、必要に応じて公知の添加剤を含有させることもできる。   The liquid crystalline polymer layer 33 may be composed of only the liquid crystalline polymer, but may be composed of a liquid crystalline polymer composition containing other polymer materials in addition to the liquid crystalline polymer. As other resin, thermoplastic resins, such as an epoxy-unit-containing ethylene copolymer, are mentioned, for example. The mixing ratio is, for example, 44 to 1% by weight of the other polymer material with respect to 56 to 99% by weight of the liquid crystalline polymer. Moreover, in order to further improve the performance, this liquid crystalline polymer can contain a known additive as required.

液晶性高分子層33の厚みは、5μm以上が好ましく、20μm以上がより好ましい。   The thickness of the liquid crystalline polymer layer 33 is preferably 5 μm or more, and more preferably 20 μm or more.

ここで、このような液晶性高分子層33のガス透過性について説明する。   Here, the gas permeability of the liquid crystalline polymer layer 33 will be described.

例えば、図3に液晶性高分子の一例としての液晶ポリエステル高分子組成物の層の水蒸気透過率及び酸素透過率の一例(特開1997−77960号公報)を、図4に、液晶性高分子以外の熱可塑性高分子の層の水蒸気透過率及び酸素透過率の一例(瓜生俊之、堀江一之、白石振作共著、ポリマー材料(材料テクノロジー16)、東京大学出版会、1984年11月発行)を示す。   For example, FIG. 3 shows an example of a water vapor transmission rate and an oxygen transmission rate of a layer of a liquid crystal polyester polymer composition as an example of a liquid crystalline polymer (Japanese Patent Laid-Open No. 1997-77960), and FIG. An example of water vapor permeability and oxygen permeability of other thermoplastic polymer layers (Toshiyuki Mibu, Kazuyuki Horie, Hansaku Shiraishi, Polymer Materials (Material Technology 16), The University of Tokyo Press, published in November 1984) Show.

ここで、液晶ポリエステル組成物G−1は、(a)以下の(1)式に示すような構造単位を有し溶融温度が324℃である粒子状の全芳香族ポリエステルを77重量%、及び(b)住友化学工業(株)製ボンドファースト 7Mを23重量%含む液晶性高分子組成物である。また、液晶ポリエステル組成物G−4は、(a)以下の(2)式に示す構造単位を有し溶融温度が270℃の粒子状の全芳香族ポリエステルを87重量%、(b)住友化学工業(株)製ボンドファースト 20Bを13重量%含む液晶性高分子組成物である。

Figure 2005191288
Figure 2005191288
これにより、液晶性高分子層は、他の高分子層に比して群を抜いて水蒸気透過率や酸素透過率が低いことが理解される。 Here, the liquid crystal polyester composition G-1 is (a) 77% by weight of a particulate wholly aromatic polyester having a structural unit represented by the following formula (1) and having a melting temperature of 324 ° C., and (B) A liquid crystalline polymer composition containing 23% by weight of Bond First 7M manufactured by Sumitomo Chemical Co., Ltd. In addition, the liquid crystal polyester composition G-4 is (a) 87% by weight of particulate wholly aromatic polyester having a structural unit represented by the following formula (2) and having a melting temperature of 270 ° C., and (b) Sumitomo Chemical. It is a liquid crystalline polymer composition containing 13% by weight of Bond First 20B manufactured by Kogyo Co., Ltd.
Figure 2005191288
Figure 2005191288
Thereby, it is understood that the liquid crystalline polymer layer has a lower water vapor transmission rate and oxygen transmission rate than other polymer layers.

本実施形態では、液晶性高分子層33として、水蒸気透過率が1g/(m・24hr・100μm)以下であり、酸素透過率が10mL/(m・24hr・100μm)であるものを用いると、十分なガスバリア性が得られて、電気化学デバイスの信頼性が十分に向上する。 In the present embodiment, the liquid crystalline polymer layer 33 having a water vapor transmission rate of 1 g / (m 2 · 24 hr · 100 μm) or less and an oxygen transmission rate of 10 mL / (m 2 · 24 hr · 100 μm) is used. As a result, a sufficient gas barrier property is obtained, and the reliability of the electrochemical device is sufficiently improved.

続いて、図1に戻って、接着層32は熱可塑性高分子層31と液晶性高分子層33とを接着し、接着層34は熱可塑性高分子層35と液晶性高分子層33とを接着している。一般的に液晶性高分子層33は溶融温度が高く例えばポリオレフィン等からなる溶融温度の低い熱可塑性高分子層31との接着性が十分でない場合が多い。したがって、このような接着層32、34を用いることにより、液晶性高分子層33と熱可塑性高分子層31,35とを十分強固に接着できる。   Subsequently, returning to FIG. 1, the adhesive layer 32 bonds the thermoplastic polymer layer 31 and the liquid crystalline polymer layer 33, and the adhesive layer 34 connects the thermoplastic polymer layer 35 and the liquid crystalline polymer layer 33. Glued. In general, the liquid crystalline polymer layer 33 is often insufficient in adhesiveness with the thermoplastic polymer layer 31 having a high melting temperature, for example, a polyolefin having a low melting temperature. Therefore, by using such adhesive layers 32 and 34, the liquid crystalline polymer layer 33 and the thermoplastic polymer layers 31 and 35 can be bonded sufficiently firmly.

接着層32、34の材料としては、熱可塑性高分子層31,35と液晶性高分子層33とを十分に接着できるものなら特に限定されないが、例えば、ウレタン系、エポキシ系、エステル系、エーテル系、アクリル系、オレフィン系の接着剤や、ウレタン化ポリエーテル、ウレタン化ポリエステル等の複合系接着剤等の硬化性樹脂の硬化物、すなわち、塗布後に化学反応により硬化して熱可塑性高分子層31,35と液晶性高分子層33とを結合させるものを好適に使用できる。   The material of the adhesive layers 32 and 34 is not particularly limited as long as it can sufficiently bond the thermoplastic polymer layers 31 and 35 and the liquid crystal polymer layer 33. For example, urethane, epoxy, ester, ether Cured products of curable resins such as adhesives based on acrylic, acrylic and olefin, and composite adhesives such as urethanized polyether and urethanized polyester, that is, a thermoplastic polymer layer cured by chemical reaction after application What couple | bonds 31 and 35 and the liquid crystalline polymer layer 33 can be used conveniently.

ここで、接着層32、34の厚みはなるべく薄いほうが好ましく、例えば、0.5〜3μmである。   Here, the adhesive layers 32 and 34 are preferably as thin as possible, for example, 0.5 to 3 μm.

(電気二重層キャパシタの製造方法)
次に、図5(a)、図5(b)及び図6を参照して、上述した電気二重層キャパシタ1の製造方法の一例について説明する。
(Method for manufacturing electric double layer capacitor)
Next, an example of a method for manufacturing the electric double layer capacitor 1 described above will be described with reference to FIGS.

まず、図5(a)に示す一対の集電体20,21を用意する。これらの集電体20,21は、例えば、アルミニウム等の導電性の金属箔を所定の大きさの矩形状に切断することにより形成できる。   First, a pair of current collectors 20 and 21 shown in FIG. These current collectors 20 and 21 can be formed, for example, by cutting a conductive metal foil such as aluminum into a rectangular shape having a predetermined size.

次に、各集電体20,21の主表面の中央部分に、シート状の第一電極12、第二電極13をそれぞれ形成する。これら第一電極12、第二電極13の形成方法は、特に限定されず、公知の電気二重層キャパシタ1の製造に採用されている公知の薄膜製造技術を用いることができる。   Next, the sheet-like first electrode 12 and the second electrode 13 are respectively formed at the central portion of the main surface of each of the current collectors 20 and 21. The formation method of these 1st electrode 12 and the 2nd electrode 13 is not specifically limited, The well-known thin film manufacturing technique employ | adopted for manufacture of the well-known electric double layer capacitor 1 can be used.

例えば、第一電極12、第二電極13が炭素電極(分極性電極)の場合、公知の方法により賦活処理済みの活性炭等の炭素材料を用いてシート状の電極を作製することができる。具体的には、例えば、炭素材料を5〜100μm程度に粉砕し粒度を整えた後、例えば炭素粉末に導電性を付与するための導電性補助剤(カーボンブラック等)と、例えば結着剤と、例えば、MIBK等の有機溶媒とを添加し混練してペーストを得、このペーストを各集電体20,21上に塗布し乾燥すればよい。塗布は、メタルマスク印刷、ドクターブレード法、ロールプレス法などを利用できる。   For example, when the first electrode 12 and the second electrode 13 are carbon electrodes (polarizable electrodes), a sheet-like electrode can be produced using a carbon material such as activated carbon that has been activated by a known method. Specifically, for example, after pulverizing the carbon material to about 5 to 100 μm and adjusting the particle size, for example, a conductive auxiliary agent (carbon black or the like) for imparting conductivity to the carbon powder, for example, a binder, For example, an organic solvent such as MIBK may be added and kneaded to obtain a paste, and this paste may be applied to each of the current collectors 20 and 21 and dried. Application can be performed by metal mask printing, a doctor blade method, a roll press method, or the like.

ここで、上記の導電性補助剤としては、カーボンブラックの他、アセチレンブラック、粉末グラファイトなどを用いることができ、また、結着剤としては、ポリテトラフルオロエチレンの他、ポリフッ化ビニリデン、フッ素ゴムなどを使用することができる。   Here, as the conductive auxiliary agent, acetylene black, powdered graphite, etc. can be used in addition to carbon black, and as the binder, in addition to polytetrafluoroethylene, polyvinylidene fluoride, fluororubber Etc. can be used.

なお、集電体20,21上にペーストを塗布することにより第一電極12、第二電極13を形成する代わりに、シート状の電極を形成しこれを集電体20,21上に積層してもよい。   Instead of forming the first electrode 12 and the second electrode 13 by applying a paste on the current collectors 20 and 21, sheet-like electrodes are formed and laminated on the current collectors 20 and 21. May be.

次に、セパレータ14を準備する。このセパレータ14は、紙等の多孔質性の絶縁材料を所定の大きさに切ることにより形成できる。ここで、セパレータ14の主表面の面積を、第一電極12、第二電極13よりも大きくする。   Next, the separator 14 is prepared. The separator 14 can be formed by cutting a porous insulating material such as paper into a predetermined size. Here, the area of the main surface of the separator 14 is made larger than that of the first electrode 12 and the second electrode 13.

続いて、枠状の封口材30を用意する。まず、集電体20,21と同サイズの矩形の熱可塑性高分子シートを2枚と、集電体20,21と同サイズの矩形の液晶性高分子シートを1枚用意する。そして、液晶性高分子シートの両主面に接着剤を塗布した上で、この液晶性高分子シートを熱可塑性高分子シートで上下から挟んで3枚を一体化する。その後、一体化されたシートの第一電極12、第二電極13に対応する中央部分を積層方向に切り抜いて、熱可塑性高分子層31/接着層32/液晶性高分子層33/接着層34/熱可塑性高分子層35の構造の枠状の封口材30を得る。   Subsequently, a frame-shaped sealing material 30 is prepared. First, two rectangular thermoplastic polymer sheets having the same size as the current collectors 20 and 21 and one rectangular liquid crystal polymer sheet having the same size as the current collectors 20 and 21 are prepared. And after apply | coating an adhesive agent to both the main surfaces of a liquid crystalline polymer sheet, this liquid crystalline polymer sheet is pinched | interposed from the upper and lower sides with a thermoplastic polymer sheet, and three sheets are integrated. Then, the central part corresponding to the 1st electrode 12 of the integrated sheet | seat and the 2nd electrode 13 is cut out in the lamination direction, and the thermoplastic polymer layer 31 / adhesion layer 32 / liquid crystalline polymer layer 33 / adhesion layer 34 is cut out. / The frame-shaped sealing material 30 having the structure of the thermoplastic polymer layer 35 is obtained.

続いて、図5(b)に示すように、このようにして得た枠状の封口材30を、集電体21の周縁部21aに載置する。そして、これら封口材30と集電体21とを定盤91及びヒータ92で挟んで熱融着することにより封口材30を集電体21に固定する。ここで、ヒータ92は、集電体21に接触するようにし、集電体21を介して封口材30の熱可塑性高分子層35を加熱して集電体21の周縁部21aと封口材30とを熱融着する。このとき、ヒータ92の温度を、封口材30の熱可塑性高分子層35が溶融し、かつ、液晶性高分子層33が溶融しない温度に制御する。   Subsequently, as shown in FIG. 5B, the frame-shaped sealing material 30 obtained in this way is placed on the peripheral portion 21 a of the current collector 21. Then, the sealing material 30 and the current collector 21 are sandwiched between the surface plate 91 and the heater 92 and heat-sealed to fix the sealing material 30 to the current collector 21. Here, the heater 92 is brought into contact with the current collector 21, and the thermoplastic polymer layer 35 of the sealing material 30 is heated via the current collector 21, and the peripheral portion 21 a of the current collector 21 and the sealing material 30. And heat-sealing. At this time, the temperature of the heater 92 is controlled to a temperature at which the thermoplastic polymer layer 35 of the sealing material 30 is melted and the liquid crystalline polymer layer 33 is not melted.

続いて、集電体21に形成された第二電極13に上記の電解質溶液を滴下し、他方の集電体20に形成された第一電極12にも電解液を滴下する。   Subsequently, the electrolyte solution is dropped onto the second electrode 13 formed on the current collector 21, and the electrolyte is also dropped onto the first electrode 12 formed on the other current collector 20.

さらに続いて、図6に示すように、第二電極13上にセパレータ14を積層し、セパレータ14上にも電解質溶液を滴下する。   Subsequently, as shown in FIG. 6, the separator 14 is laminated on the second electrode 13, and the electrolyte solution is dropped on the separator 14.

次に、他方の集電体20を、第一電極12が上述のセパレータ14と対面すると共に、集電体20の周縁部20aが枠状の封口材30と接するように集電体21に積層して積層構造体とする。   Next, the other current collector 20 is laminated on the current collector 21 so that the first electrode 12 faces the separator 14 and the peripheral portion 20a of the current collector 20 is in contact with the frame-shaped sealing material 30. Thus, a laminated structure is obtained.

その後、真空容器内で真空に引きながら、定盤93上に載置した積層構造体を上からヒータ98で挟んで熱融着する。ここで、ヒータ98は、封口材30の熱可塑性高分子層31の表面形状に対応する枠状形状を有し、集電体20を介して封口材30の熱可塑性高分子層31を溶融させて集電体20の周縁部20aと封口材30とを熱融着して封口し、図1に示す電気二重層キャパシタ1を得る。このとき、ヒータ98の温度を、封口材30の熱可塑性高分子層31が溶融し、かつ、液晶性高分子層33が溶融しない温度に制御する。   Thereafter, the laminated structure placed on the surface plate 93 is sandwiched between the heaters 98 from above and heat-sealed while being evacuated in a vacuum vessel. Here, the heater 98 has a frame shape corresponding to the surface shape of the thermoplastic polymer layer 31 of the sealing material 30, and melts the thermoplastic polymer layer 31 of the sealing material 30 via the current collector 20. Then, the peripheral portion 20a of the current collector 20 and the sealing material 30 are heat-sealed and sealed to obtain the electric double layer capacitor 1 shown in FIG. At this time, the temperature of the heater 98 is controlled to a temperature at which the thermoplastic polymer layer 31 of the sealing material 30 is melted and the liquid crystalline polymer layer 33 is not melted.

このとき、ヒータ98が集電体20の中央部に接触しないので、発電要素10の温度上昇が抑制され、発電要素10、特に電解質の劣化等や蒸発等を防止できる。   At this time, since the heater 98 does not come into contact with the central portion of the current collector 20, the temperature rise of the power generation element 10 is suppressed, and deterioration or evaporation of the power generation element 10, particularly electrolyte, can be prevented.

以上の工程により、本実施形態に係る電気二重層キャパシタ1の製造工程が終了する。   The manufacturing process of the electric double layer capacitor 1 according to this embodiment is completed through the above processes.

このような電気二重層キャパシタ1によれば、封口材30は、熱可塑性高分子層31,35、及び、これら熱可塑性高分子層31,35間に挟まれ熱可塑性高分子層31,35よりも溶融温度が低い液晶性高分子層33を備えている。このため、熱可塑性高分子層31,35を集電体20,21に熱融着する際の封口材30の加熱温度を、溶融温度の高い液晶性高分子層33を直接集電体20,21に熱融着させる場合に比べて低くすることができる。これにより、封口時に発電要素10が熱による悪影響を受けにくい。   According to such an electric double layer capacitor 1, the sealing material 30 is sandwiched between the thermoplastic polymer layers 31, 35 and the thermoplastic polymer layers 31, 35, from the thermoplastic polymer layers 31, 35. Is also provided with a liquid crystalline polymer layer 33 having a low melting temperature. For this reason, the heating temperature of the sealing material 30 when the thermoplastic polymer layers 31 and 35 are heat-sealed to the current collectors 20 and 21 is changed, and the liquid crystalline polymer layer 33 having a high melting temperature is directly connected to the current collectors 20 and Compared with the case of heat-sealing to 21, it can be made low. Thereby, the electric power generation element 10 is hard to receive the bad influence by heat at the time of sealing.

また、集電体20,21間を封口する時に封口材30が過度に高温になった場合等においても、集電体20,21間に、熱可塑性高分子層31,35に比して溶融し難い液晶性高分子層33が介在することとなる。したがって、この液晶性高分子層33が邪魔となって集電体20,21同士が接触しにくくなる。   Further, even when the sealing material 30 becomes excessively high when sealing the current collectors 20 and 21, the melting between the current collectors 20 and 21 is greater than that of the thermoplastic polymer layers 31 and 35. A liquid crystalline polymer layer 33 that is difficult to intervene is interposed. Therefore, the liquid crystalline polymer layer 33 becomes an obstacle and makes it difficult for the current collectors 20 and 21 to contact each other.

さらに、液晶性高分子層は、他の熱可塑性高分子等に比べて水蒸気透過率や酸素透過率が十分に低い。したがって、水蒸気や酸素の進入による発電要素10の劣化や、高温にさらされた場合の電解質溶液の蒸発等が抑制されるので、信頼性の高い電気二重層キャパシタ1が提供されている。   Furthermore, the liquid crystalline polymer layer has a sufficiently low water vapor transmission rate and oxygen transmission rate compared to other thermoplastic polymers. Therefore, deterioration of the power generation element 10 due to the ingress of water vapor or oxygen, evaporation of the electrolyte solution when exposed to a high temperature, and the like are suppressed, so that the highly reliable electric double layer capacitor 1 is provided.

これにより、本実施形態の電気二重層キャパシタ1は集電体20,21間のショートが起こりにくくなるので歩留まりを高くでき、また薄型化が可能となる。さらに、熱による悪影響を受けにくいので信頼性の向上や長寿命化ができる。なお、ヒータを用いずに超音波溶接等により封口してもよく、同様の作用効果を生じる。   As a result, the electric double layer capacitor 1 of the present embodiment is less likely to cause a short circuit between the current collectors 20 and 21, so that the yield can be increased and the thickness can be reduced. Furthermore, since it is less susceptible to the adverse effects of heat, it can improve reliability and extend its life. In addition, you may seal by ultrasonic welding etc., without using a heater, and the same effect is produced.

(第二実施形態)
続いて、図7を参照して、第二実施形態に係る電気二重層キャパシタ2について説明する。本実施形態に係る電気二重層キャパシタ2が、第一実施形態に係る電気二重層キャパシタ1と異なる点は封口材30に代えて封口材40を備えている点であり、この封口材40が封口材30と異なる点は、接着層32、34を有さず、熱可塑性高分子層31、35が液晶性高分子層33にそれぞれ熱融着されている点である。
(Second embodiment)
Subsequently, the electric double layer capacitor 2 according to the second embodiment will be described with reference to FIG. The electric double layer capacitor 2 according to the present embodiment is different from the electric double layer capacitor 1 according to the first embodiment in that a sealing material 40 is provided instead of the sealing material 30, and the sealing material 40 is a sealing material. The difference from the material 30 is that the thermoplastic polymer layers 31 and 35 are thermally fused to the liquid crystalline polymer layer 33 without the adhesive layers 32 and 34.

ここで、熱可塑性高分子層31は、集電体20の周縁部20aに熱融着された低温溶融熱可塑性高分子層(サブ層)31L、及び液晶性高分子層33に熱融着された高温溶融熱可塑性高分子層(サブ層)31Hを有している。また、熱可塑性高分子層35は、集電体21の周縁部20aに熱融着された低温溶融熱可塑性高分子層35L、及び液晶性高分子層33に熱融着された高温溶融熱可塑性高分子層35Hを有している。   Here, the thermoplastic polymer layer 31 is thermally fused to the low-temperature melt thermoplastic polymer layer (sublayer) 31L and the liquid crystalline polymer layer 33 that are thermally fused to the peripheral portion 20a of the current collector 20. And a high temperature melt thermoplastic polymer layer (sublayer) 31H. The thermoplastic polymer layer 35 includes a low-temperature melt thermoplastic polymer layer 35L thermally fused to the peripheral portion 20a of the current collector 21 and a high-temperature melt thermoplastic polymer thermally fused to the liquid crystalline polymer layer 33. It has a polymer layer 35H.

低温溶融熱可塑性高分子層31Lと高温溶融熱可塑性高分子層31Hとは互いに熱融着され、低温溶融熱可塑性高分子層35Lと高温溶融熱可塑性高分子層35Hとは互いに熱融着されている。   The low temperature melt thermoplastic polymer layer 31L and the high temperature melt thermoplastic polymer layer 31H are thermally fused to each other, and the low temperature melt thermoplastic polymer layer 35L and the high temperature melt thermoplastic polymer layer 35H are thermally fused to each other. Yes.

ここで、本実施形態では、高温溶融熱可塑性高分子層31H、35Hの溶融温度は、低温溶融熱可塑性高分子層31L、35Lの溶融温度より高く、かつ液晶性高分子層33の溶融温度よりも低い。   Here, in the present embodiment, the melting temperature of the high-temperature melting thermoplastic polymer layers 31H and 35H is higher than the melting temperature of the low-temperature melting thermoplastic polymer layers 31L and 35L and higher than the melting temperature of the liquid crystalline polymer layer 33. Is also low.

すなわち、熱可塑性高分子層31は、溶融温度が互いに異なる低温溶融熱可塑性高分子層31L及び高温溶融熱可塑性高分子層31Hの積層体であり、熱可塑性高分子層35は、溶融温度が互いに異なる低温溶融熱可塑性高分子層35L及び高温溶融熱可塑性高分子層35Hの積層体である。これらの積層体においては、高温溶融熱可塑性高分子層31H、35H、及び低温溶融熱可塑性高分子層31L、35Lは、溶融温度が液晶性高分子層33から集電体20,21に向かって低くなるように積層されている。   That is, the thermoplastic polymer layer 31 is a laminate of a low-temperature melt thermoplastic polymer layer 31L and a high-temperature melt thermoplastic polymer layer 31H having different melting temperatures, and the thermoplastic polymer layer 35 has a melt temperature of each other. It is a laminate of different low temperature melt thermoplastic polymer layers 35L and high temperature melt thermoplastic polymer layers 35H. In these laminates, the high temperature melt thermoplastic polymer layers 31H and 35H and the low temperature melt thermoplastic polymer layers 31L and 35L have melting temperatures from the liquid crystalline polymer layer 33 toward the current collectors 20 and 21. They are stacked so that they are low.

低温溶融熱可塑性高分子層31L,35L及び高温溶融熱可塑性高分子層31H,35Hを構成する熱可塑性高分子としては、上述の溶融温度の条件を満たせば特に限定されず、第一実施形態で記載した熱可塑性高分子を使用できる。   The thermoplastic polymer constituting the low-temperature melt thermoplastic polymer layers 31L and 35L and the high-temperature melt thermoplastic polymer layers 31H and 35H is not particularly limited as long as the above melting temperature condition is satisfied. The thermoplastic polymers described can be used.

例えば、低温溶融熱可塑性高分子層31L、35Lの材料として酸変性ポリオレフィンを、高温溶融熱可塑性高分子層31H、35Hの材料として酸変性されていないポリオレフィンを用いることが好適である。   For example, it is preferable to use an acid-modified polyolefin as a material for the low-temperature melt thermoplastic polymer layers 31L and 35L and a non-acid-modified polyolefin as a material for the high-temperature melt thermoplastic polymer layers 31H and 35H.

このような封口材40は次のようにして製造できる。すなわち、液晶性高分子シートの両面に液晶性高分子よりも溶融温度の低い熱可塑性高分子シートを積層し、液晶性高分子が溶融する程度の温度でこれらを熱融着して、液晶性高分子層33の両面に高温溶融熱可塑性高分子層31H、35Hがそれぞれ熱融着した積層体を形成する。その後、この積層体の高温溶融熱可塑性高分子層31H、35H上に、高温溶融熱可塑性高分子層31H、35Hよりも溶融温度の低い熱可塑性高分子シートをそれぞれ積層し、高温溶融熱可塑性高分子層31H、35Hが溶融する程度の温度でこれらを熱融着し、低温溶融熱可塑性高分子層31L、35Lを形成する。   Such a sealing material 40 can be manufactured as follows. That is, a thermoplastic polymer sheet having a melting temperature lower than that of the liquid crystalline polymer is laminated on both surfaces of the liquid crystalline polymer sheet, and these are thermally fused at a temperature at which the liquid crystalline polymer is melted. A laminate in which the high-temperature melt thermoplastic polymer layers 31H and 35H are thermally fused on both surfaces of the polymer layer 33 is formed. Thereafter, a thermoplastic polymer sheet having a melting temperature lower than that of the high-temperature melt thermoplastic polymer layers 31H and 35H is laminated on the high-temperature melt thermoplastic polymer layers 31H and 35H of the laminate, respectively. These are thermally fused at a temperature at which the molecular layers 31H and 35H are melted to form the low-temperature melt thermoplastic polymer layers 31L and 35L.

このような電気二重層キャパシタ2によっても、第一実施形態と同様の作用効果を示す。さらに、熱可塑性高分子層と液晶性高分子層とは溶融温度が大きく異なるので熱融着しにくい場合が多いが、本実施形態では、例えば、液晶性高分子層33と、熱可塑性高分子層31の内の高温溶融熱可塑性高分子層31Hとの溶融温度を近づけられるので液晶性高分子層33と熱可塑性高分子層31との接着性を高められる一方、集電体20を熱可塑性高分子層31の内の低温溶融熱可塑性高分子層31Lとを熱融着する際の温度は十分低くできるので熱可塑性高分子層31と集電体20との熱融着時の発電要素10の熱ダメージも抑えることができる。   Such an electric double layer capacitor 2 also exhibits the same effect as the first embodiment. Further, since the thermoplastic polymer layer and the liquid crystalline polymer layer have different melting temperatures, heat fusion is often difficult. In this embodiment, for example, the liquid crystalline polymer layer 33 and the thermoplastic polymer layer Since the melting temperature of the high-temperature molten thermoplastic polymer layer 31H in the layer 31 can be made close, the adhesion between the liquid crystalline polymer layer 33 and the thermoplastic polymer layer 31 can be improved, while the current collector 20 is made thermoplastic. Since the temperature at which the low-melting thermoplastic polymer layer 31L in the polymer layer 31 is heat-sealed can be sufficiently low, the power generation element 10 at the time of heat-sealing the thermoplastic polymer layer 31 and the current collector 20 The heat damage of can also be suppressed.

もちろん、低温溶融熱可塑性高分子層31Lの溶融温度と、高温溶融熱可塑性高分子層31Hの溶融温度との差もそれほど大きくなくならないので、これらも互いに十分強固に熱融着できる。   Of course, the difference between the melting temperature of the low-temperature melting thermoplastic polymer layer 31L and the melting temperature of the high-temperature melting thermoplastic polymer layer 31H does not become so large, and these can be heat-sealed sufficiently firmly to each other.

なお、本実施形態では、熱可塑性高分子層31を2層としているが、液晶性高分子層の溶融温度が特に高い場合には温度差の互いに異なる3層以上の構成としても良く、また、液晶性高分子を含む樹脂の種類等に応じて、熱可塑性高分子層31,35をそれぞれ単層としても動作は可能である。   In the present embodiment, the thermoplastic polymer layer 31 has two layers. However, when the melting temperature of the liquid crystalline polymer layer is particularly high, the thermoplastic polymer layer 31 may have three or more layers having different temperature differences. Operation is possible even if each of the thermoplastic polymer layers 31 and 35 is a single layer depending on the type of resin containing the liquid crystalline polymer.

(第三実施形態)
続いて、図8を参照して、第三実施形態に係る電気二重層キャパシタ3について説明する。本実施形態に係る電気二重層キャパシタ3が第二実施形態に係る電気二重層キャパシタ2と異なる点は、封口材40に代えて封口材50を備えている点であり、封口材50が封口材40と異なる点は、熱可塑性高分子層31が単層であり、かつ、液晶性高分子層33内に熱可塑性高分子製の粒子36が多数分散している点である。この粒子36は、熱可塑性高分子層31と同じ熱可塑性高分子から形成されている。また、粒子36の一部は熱可塑性高分子層31と熱融着している。
(Third embodiment)
Next, the electric double layer capacitor 3 according to the third embodiment will be described with reference to FIG. The electric double layer capacitor 3 according to this embodiment is different from the electric double layer capacitor 2 according to the second embodiment in that a sealing material 50 is provided instead of the sealing material 40, and the sealing material 50 is a sealing material. The difference from 40 is that the thermoplastic polymer layer 31 is a single layer and a large number of thermoplastic polymer particles 36 are dispersed in the liquid crystalline polymer layer 33. The particles 36 are formed from the same thermoplastic polymer as the thermoplastic polymer layer 31. A part of the particles 36 is thermally fused with the thermoplastic polymer layer 31.

このような電気二重層キャパシタ3は、熱可塑性高分子製の粒子36が液晶性高分子層33中に多数分散された材料からなり、少なくとも粒子36の一部が表面に露出した枠状の封口材前駆シートを形成し、この封口材前駆シートを集電体20,21間に挟んで熱融着することにより形成できる。このとき、集電体20,21に熱をかけることにより、この前駆シート中の熱可塑性高分子の粒子36が溶融して集電体20,21との間に熱可塑性高分子層31を形成する。   Such an electric double layer capacitor 3 is made of a material in which a large number of thermoplastic polymer particles 36 are dispersed in a liquid crystalline polymer layer 33, and at least a part of the particles 36 are exposed on the surface. A material precursor sheet is formed, and the sealing material precursor sheet is sandwiched between the current collectors 20 and 21 and heat-sealed. At this time, by applying heat to the current collectors 20, 21, the thermoplastic polymer particles 36 in the precursor sheet melt and form a thermoplastic polymer layer 31 between the current collectors 20, 21. To do.

このような実施形態でも上述と同様の作用効果を奏する。また、封口材前駆シートの製造は比較的低コストで可能である。   Such an embodiment also has the same effects as described above. Further, the sealing material precursor sheet can be manufactured at a relatively low cost.

(第四実施形態)
続いて、図9を参照して、第四実施形態に係る電気二重層キャパシタ4について説明する。本実施形態に係る電気二重層キャパシタ4が第一実施形態に係る電気二重層キャパシタ1と異なる点は、封口材30に代えて封口材60を備えている点であり、封口材60が封口材30と異なる点は、第一実施形態の封口材30の外側端部に、更に熱可塑性高分子層31、35をそれぞれ封止するための第一突条部37,38が設けられた点である。
(Fourth embodiment)
Next, the electric double layer capacitor 4 according to the fourth embodiment will be described with reference to FIG. The electric double layer capacitor 4 according to the present embodiment is different from the electric double layer capacitor 1 according to the first embodiment in that a sealing material 60 is provided instead of the sealing material 30, and the sealing material 60 is the sealing material. 30 is different from the first embodiment in that first protrusions 37 and 38 for sealing the thermoplastic polymer layers 31 and 35 are provided on the outer end of the sealing material 30 of the first embodiment. is there.

第一突条部37,38は、液晶性高分子層33の外側端部の上下面からそれぞれ突出し集電体20,21の内側面20c,21cまでそれぞれ延びて集電体20,21に熱融着されている。また、これら第一突状部37,38は、それぞれ熱可塑性高分子層31,35の外側端面31c、35cを全周に亘って取り囲んでいる。さらに、第一突条部37,38は、液晶性高分子層33の液晶性高分子と同じ液晶性高分子から形成されている。   The first protrusions 37 and 38 protrude from the upper and lower surfaces of the outer end portion of the liquid crystalline polymer layer 33 and extend to the inner side surfaces 20c and 21c of the current collectors 20 and 21, respectively. It is fused. The first protrusions 37 and 38 surround the outer end faces 31c and 35c of the thermoplastic polymer layers 31 and 35, respectively, over the entire circumference. Further, the first protrusions 37 and 38 are formed of the same liquid crystalline polymer as the liquid crystalline polymer of the liquid crystalline polymer layer 33.

ここで、第一突条部37の外側端面は、集電体20,21の端面20b,21bと同一平面を形成している。   Here, the outer end surface of the first protrusion portion 37 forms the same plane as the end surfaces 20 b and 21 b of the current collectors 20 and 21.

また、第一突条部37,38の内側端面は、液晶性高分子層33から離れた側が電気化学デバイス4の端面に近づくように傾斜されており、第一突条部37,38は、電気化学デバイス4の垂直断面において(図9参照)、液晶性高分子層33から集電体20,21に向かってそれぞれ先細とされている。   Further, the inner end faces of the first protrusions 37 and 38 are inclined so that the side away from the liquid crystalline polymer layer 33 approaches the end face of the electrochemical device 4, and the first protrusions 37 and 38 are In the vertical cross section of the electrochemical device 4 (see FIG. 9), the taper is tapered from the liquid crystalline polymer layer 33 toward the current collectors 20 and 21, respectively.

熱可塑性高分子層31,35の端面31c,35cは、第一突条部37,38の内側端面に対応して傾斜している。そして、熱可塑性高分子層31,35の端面31c、35cは、この端面31c,35c上まで延びて形成された接着層32,34により第一突条部37,37と接着されている。   The end faces 31c, 35c of the thermoplastic polymer layers 31, 35 are inclined corresponding to the inner end faces of the first protrusions 37, 38. The end surfaces 31c and 35c of the thermoplastic polymer layers 31 and 35 are bonded to the first protrusions 37 and 37 by adhesive layers 32 and 34 formed to extend onto the end surfaces 31c and 35c.

第一突条部37,38の先端と集電体20,21との熱融着は、熱可塑性高分子層31,35と集電体20,21との熱融着の終了後、集電体20,21の最端部に、300℃程度のヒータを接触させることにより行うことができる。   The heat fusion between the tips of the first protrusions 37 and 38 and the current collectors 20 and 21 is performed after the heat fusion between the thermoplastic polymer layers 31 and 35 and the current collectors 20 and 21 is completed. This can be done by bringing a heater at about 300 ° C. into contact with the outermost ends of the bodies 20 and 21.

このような実施形態の電気二重層キャパシタ4によれば、第一実施形態と同様の作用効果を奏する。さらに、第一突条部37,38が、熱可塑性高分子層31,35をそれぞれ封止している、すなわち、電気二重層キャパシタ4の端面において熱可塑性高分子層31,35が露出しないので、封口材60を介した電気二重層キャパシタ4の内と外との間のガスの透過はすべて液晶性高分子層33や第一突条部37を介してのみなされる。したがって、電気二重層キャパシタ4のガスバリア性が更に向上し、より信頼性が高くなる。   According to the electric double layer capacitor 4 of such embodiment, there exists an effect similar to 1st embodiment. Furthermore, the first protrusions 37 and 38 seal the thermoplastic polymer layers 31 and 35, respectively, that is, the thermoplastic polymer layers 31 and 35 are not exposed at the end face of the electric double layer capacitor 4. The gas permeation between the inside and outside of the electric double layer capacitor 4 through the sealing material 60 is all made only through the liquid crystalline polymer layer 33 and the first protrusion 37. Therefore, the gas barrier property of the electric double layer capacitor 4 is further improved, and the reliability is further increased.

また、第一突条部37,38が集電体20,21の端面20b,21bに近い部分にそれぞれ熱融着されているので、この第一突条部37,38を集電体20,21に熱融着する際に、発電要素10にそれほど熱による悪影響を与えない。   In addition, since the first protrusions 37 and 38 are thermally fused to the portions near the end faces 20b and 21b of the current collectors 20 and 21, respectively, the first protrusions 37 and 38 are connected to the current collectors 20 and 21. When heat-sealing to 21, the power generation element 10 is not adversely affected by heat.

(第五実施形態)
続いて、図10を参照して、第五実施形態に係る電気二重層キャパシタ5について説明する。本実施形態に係る電気二重層キャパシタ5が第四実施形態に係る電気二重層キャパシタ4と異なる点は、封口材60に代えて封口材70を備えている点であり、封口材70と封口材60とが異なる点は、第一突条部37,38がさらに突出して集電体20,21の端面20b、21bに熱融着している点である。第一突条部37,38は、それぞれ集電体20,21の端面20b,21bの全周に亘って熱融着されている。
(Fifth embodiment)
Then, with reference to FIG. 10, the electric double layer capacitor 5 which concerns on 5th embodiment is demonstrated. The electric double layer capacitor 5 according to this embodiment is different from the electric double layer capacitor 4 according to the fourth embodiment in that a sealing material 70 is provided instead of the sealing material 60, and the sealing material 70 and the sealing material are provided. The difference from 60 is that the first protrusions 37 and 38 further protrude and are thermally fused to the end faces 20b and 21b of the current collectors 20 and 21. The first protrusions 37 and 38 are heat-sealed over the entire circumferences of the end surfaces 20b and 21b of the current collectors 20 and 21, respectively.

このような実施形態によっても、第四実施形態と同様の作用効果を奏する。さらに、集電体20,21の内、発電要素10から最も遠い部分、すなわち、集電体20,21の端面20b、21bに液晶性高分子製の第一突条部37,38がそれぞれ熱融着されているので、この熱融着による発電要素10への悪影響を十分抑止できる。また、第一突条部37,38が端面20b,21b全体に亘って熱融着されているので、第四実施形態に比して接着面積を大きくでき、ガスバリア性能及び機械的強度が強くなる。   Also by such embodiment, there exists an effect similar to 4th embodiment. Furthermore, the first protrusions 37 and 38 made of a liquid crystalline polymer are heated at portions farthest from the power generation element 10 among the current collectors 20 and 21, that is, end surfaces 20b and 21b of the current collectors 20 and 21, respectively. Since they are fused, the adverse effect on the power generation element 10 due to the thermal fusion can be sufficiently suppressed. Further, since the first protrusions 37 and 38 are heat-sealed over the entire end surfaces 20b and 21b, the bonding area can be increased as compared with the fourth embodiment, and the gas barrier performance and mechanical strength are enhanced. .

このような電気二重層キャパシタ5は、予め封口材70の第一突条部37,38を、集電体20,21間に挟み込むと端面20b,21bに接触する形状としておき、熱可塑性高分子層31,35の熱融着後に、第一突条部37,38を例えば300℃程度で熱融着することにより形成できる。   In such an electric double layer capacitor 5, the first protrusions 37 and 38 of the sealing material 70 are preliminarily formed so as to come into contact with the end surfaces 20 b and 21 b when sandwiched between the current collectors 20 and 21. After the layers 31 and 35 are heat-sealed, the first protrusions 37 and 38 can be formed by heat-sealing at about 300 ° C., for example.

(第六実施形態)
続いて、図11を参照して、第六実施形態に係る電気二重層キャパシタ6について説明する。本実施形態に係る電気二重層キャパシタ6が第一実施形態に係る電気二重層キャパシタ1と異なる点は、封口材30に代えて封口材80を備えている点であり、封口材80が封口材30と異なる点は、封口材80が、集電体20,21の周縁部20a、21aの内側面20c,21cだけでなく、集電体20,21の端面20b、21bにも熱融着している点である。
(Sixth embodiment)
Next, the electric double layer capacitor 6 according to the sixth embodiment will be described with reference to FIG. The electric double layer capacitor 6 according to the present embodiment is different from the electric double layer capacitor 1 according to the first embodiment in that a sealing material 80 is provided instead of the sealing material 30, and the sealing material 80 is a sealing material. The sealing material 80 is heat-sealed not only to the inner side surfaces 20c and 21c of the peripheral portions 20a and 21a of the current collectors 20 and 21, but also to the end surfaces 20b and 21b of the current collectors 20 and 21. It is a point.

具体的には、この封口材80において、熱可塑性高分子層31,35は、集電体20,21の周縁部20b,21aの内側面20c,21c上から端面20b,21b上までに亘ってそれぞれ形成されている。   Specifically, in the sealing material 80, the thermoplastic polymer layers 31 and 35 extend from the inner side surfaces 20c and 21c of the peripheral portions 20b and 21a of the current collectors 20 and 21 to the end surfaces 20b and 21b. Each is formed.

また、液晶性高分子層33には、液晶性高分子層33から突出して、熱可塑性高分子層31,35をそれぞれ挟んで集電体20,21の端面20b,21bを全周に亘って取り囲む第二突条部39a,39bが設けられている。第二突条部39a,39bは液晶性高分子層33の液晶性高分子と同じ液晶性高分子から形成されている。   Further, the liquid crystalline polymer layer 33 protrudes from the liquid crystalline polymer layer 33, and the end surfaces 20b and 21b of the current collectors 20 and 21 are provided over the entire circumference with the thermoplastic polymer layers 31 and 35 interposed therebetween, respectively. Surrounding second ridges 39a and 39b are provided. The second protrusions 39 a and 39 b are formed of the same liquid crystalline polymer as the liquid crystalline polymer of the liquid crystalline polymer layer 33.

接着層32,34は、さらに、それぞれ、第二突条部39aと熱可塑性高分子層31との間、第二突条部39bと熱可塑性高分子層35との間にまで延びており、それぞれ、第二突条部39aと熱可塑性高分子層31、第二突条部39bと熱可塑性高分子層35とを接着している。   The adhesive layers 32 and 34 further extend between the second ridge 39a and the thermoplastic polymer layer 31, and between the second ridge 39b and the thermoplastic polymer layer 35, respectively. The second protrusion 39a and the thermoplastic polymer layer 31, and the second protrusion 39b and the thermoplastic polymer layer 35 are bonded to each other.

このような実施形態の電気二重層キャパシタ6によっても、第一実施形態と同様の作用効果を奏する。さらに、集電体20,21の端面20b,21bを利用して封口材80を熱融着するので、接着強度が高まり電気二重層キャパシタ6の機械的強度を十分に高めることができる。   Also with the electric double layer capacitor 6 of such an embodiment, there exists an effect similar to 1st embodiment. Furthermore, since the sealing material 80 is heat-sealed using the end faces 20b and 21b of the current collectors 20 and 21, the adhesive strength is increased and the mechanical strength of the electric double layer capacitor 6 can be sufficiently increased.

(第七実施形態)
続いて、図12を参照して、第七実施形態に係る電気二重層キャパシタ7について説明する。本実施形態に係る電気二重層キャパシタ7が第六実施形態に係る電気二重層キャパシタ6と異なる点は、封口材80に代えて封口材90を備える点であり、封口材90が封口材80と異なる点は、第二突条部39a,39bがさらに突出して集電体20,21の周縁部20a、21aの外側面20d,21dに全周に亘ってそれぞれ熱融着されている点である。
(Seventh embodiment)
Then, with reference to FIG. 12, the electric double layer capacitor 7 which concerns on 7th embodiment is demonstrated. The electric double layer capacitor 7 according to the present embodiment is different from the electric double layer capacitor 6 according to the sixth embodiment in that a sealing material 90 is provided instead of the sealing material 80, and the sealing material 90 is different from the sealing material 80. The difference is that the second protrusions 39a and 39b further protrude and are thermally fused to the outer peripheral surfaces 20d and 21d of the peripheral portions 20a and 21a of the current collectors 20 and 21 over the entire circumference. .

このような実施形態によっても、第六実施形態と同様の作用効果を奏する。さらに、熱可塑性高分子層31が外部に露出しないので、封口材90を介したガスの透過は、すべて、液晶性高分子層33や第二突条部39a,39bを介して行われることとなる。したがって、ガスバリア性が極めて高くなる。   Also by such embodiment, there exists an effect similar to 6th embodiment. Furthermore, since the thermoplastic polymer layer 31 is not exposed to the outside, all gas permeation through the sealing material 90 is performed through the liquid crystalline polymer layer 33 and the second protrusions 39a and 39b. Become. Therefore, the gas barrier property becomes extremely high.

このような電気二重層キャパシタ7は、予め封口材90の第二突条部39a,39bを、集電体20,21間に挟み込むと集電体20,21の外側面20d,21dに接触する形状としておき、熱可塑性高分子層31,35の熱融着後に、第二突条部39a,39bを例えば300℃程度で集電体に熱融着することにより形成できる。   Such an electric double layer capacitor 7 comes into contact with the outer side surfaces 20d and 21d of the current collectors 20 and 21 when the second protrusions 39a and 39b of the sealing material 90 are sandwiched between the current collectors 20 and 21 in advance. The second protrusions 39a and 39b can be formed on the current collector at about 300 ° C. after heat fusion of the thermoplastic polymer layers 31 and 35.

以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。   The preferred embodiment of the present invention has been described in detail above, but the present invention is not limited to the above embodiment.

例えば、上記実施形態においては、本発明を電気二重層キャパシタに適用した場合に好適な構成について説明したが、本発明は電気二重層キャパシタに限定されるものではなく、例えば、シュードキャパシタ、レドックスキャパシタ等の他の電気化学キャパシタに適用可能である。   For example, in the above-described embodiment, a configuration suitable for the case where the present invention is applied to an electric double layer capacitor has been described. However, the present invention is not limited to an electric double layer capacitor. For example, a pseudo capacitor or a redox capacitor is used. It is applicable to other electrochemical capacitors.

また、第四〜第七実施形態では、熱可塑性高分子層31,35と液晶性高分子層33とが接着層32,34によって接着されているが、第二実施形態のように、熱可塑性高分子層31、35と液晶性高分子層33とが互いに熱融着していても良い。この場合、もちろん、液晶性高分子層33は、溶融温度の異なる多層構造となっていても良い。   In the fourth to seventh embodiments, the thermoplastic polymer layers 31 and 35 and the liquid crystalline polymer layer 33 are bonded to each other by the adhesive layers 32 and 34. However, as in the second embodiment, the thermoplastic polymer layers 31 and 35 are bonded to each other. The polymer layers 31 and 35 and the liquid crystalline polymer layer 33 may be thermally fused to each other. In this case, of course, the liquid crystalline polymer layer 33 may have a multilayer structure with different melting temperatures.

更に、上記実施形態の説明においては、本発明を電気化学キャパシタ(特に電気二重層キャパシタ)に適用した場合に好適な構成について説明したが、本発明はこれに限定されるものではなく、リチウムイオン二次電池等をはじめとする各種二次電池にも適用可能である。この場合には、第一電極(正極)12となる多孔体層には、リチウムイオン二次電池等の二次電池の正極に使用可能な電極活物質が含有される。また、第二電極(負極)13となる多孔体層には、リチウムイオン二次電池等の二次電池の負極に使用可能な電極活物質が含有される。この場合、第一電極12に接触する集電体には、耐食性の点からアルミニウム、チタン等を用いることが好ましく、第二電極13に接触する集電体には、リチウムと合金を形成しない観点から、銅、ニッケル等を用いることが好ましい。   Furthermore, in the description of the above embodiment, a configuration suitable when the present invention is applied to an electrochemical capacitor (particularly an electric double layer capacitor) has been described. However, the present invention is not limited to this, and lithium ion The present invention can also be applied to various secondary batteries including secondary batteries. In this case, the porous layer that becomes the first electrode (positive electrode) 12 contains an electrode active material that can be used for the positive electrode of a secondary battery such as a lithium ion secondary battery. Moreover, the porous body layer used as the 2nd electrode (negative electrode) 13 contains the electrode active material which can be used for the negative electrodes of secondary batteries, such as a lithium ion secondary battery. In this case, it is preferable to use aluminum, titanium or the like for the current collector in contact with the first electrode 12 from the viewpoint of corrosion resistance, and the current collector in contact with the second electrode 13 has a viewpoint of not forming an alloy with lithium. Therefore, it is preferable to use copper, nickel or the like.

次に、実施例に基づいて、本発明の効果をより具体的に説明する。   Next, based on an Example, the effect of this invention is demonstrated more concretely.

(実施例1)
以下の手順により、図9に示した電気二重層キャパシタ4と同様の構成を有する実施例1の電気二重層キャパシタを作製した。
Example 1
The electric double layer capacitor of Example 1 having the same configuration as that of the electric double layer capacitor 4 shown in FIG. 9 was produced by the following procedure.

まず、電極を有する集電体を一対作製した。   First, a pair of current collectors having electrodes was prepared.

集電体としては、アルミニウム箔(厚み50μm)を所定の矩形状に切断したものを採用し、これら集電体上に電極を形成した。具体的には、賦活処理した活性炭(比表面積2000m/g、クラレケミカル製BP−20)を80重量%、バインダーとしてのフッ素ゴム(デュポン社製、Viton−GF)を10重量%、導電助剤としてのアセチレンブラック(電気化学工業製、DENKABLACK)を10重量%を、所定量のメチルイソブチルケトンに混合・混練してペースト化し、メタルマスク法で集電体の主面の中央部に塗布し、乾燥して電極とした。電極の乾燥後の厚みは50μmであった。この電極を2枚作成した。 As the current collector, an aluminum foil (thickness: 50 μm) cut into a predetermined rectangular shape was adopted, and electrodes were formed on these current collectors. Specifically, activated carbon (specific surface area 2000 m 2 / g, BP-20 manufactured by Kuraray Chemical Co., Ltd.) 80% by weight, fluororubber (DuPont, Viton-GF) 10% by weight, conductive assistant 10% by weight of acetylene black (DENKABLACK, manufactured by Denki Kagaku Kogyo Co., Ltd.) as an agent is mixed and kneaded with a predetermined amount of methyl isobutyl ketone to form a paste. The electrode was dried. The thickness of the electrode after drying was 50 μm. Two electrodes were prepared.

次に、セパレータを用意した。このセパレータは、厚み50μmの紙(ニッポン高度紙工業製、TF4050)を、電極の主表面の面積よりも大きく切り出すことにより形成した。   Next, a separator was prepared. This separator was formed by cutting a paper having a thickness of 50 μm (manufactured by Nippon Kogyo Paper Industries, TF4050) larger than the area of the main surface of the electrode.

続いて、第四実施形態(図9参照)の封口材60のような枠状の封口材を用意した。まず、集電体と同じ平面形状の矩形の液晶性高分子シート(住友化学製、エコノール)を一枚用意し、さらに、集電体よりやや平面形状が小さい熱可塑性高分子シートとしての酸変性高密度ポリエチレンシート(厚み20μm)を2枚用意した。   Then, the frame-shaped sealing material like the sealing material 60 of 4th embodiment (refer FIG. 9) was prepared. First, prepare a rectangular liquid crystalline polymer sheet (Econol, manufactured by Sumitomo Chemical Co., Ltd.) that has the same planar shape as the current collector, and then acid-modify as a thermoplastic polymer sheet that has a slightly smaller planar shape than the current collector. Two high density polyethylene sheets (thickness 20 μm) were prepared.

この液晶性高分子シートには、厚み方向の両表面の縁に沿って高さ20μmの先細の突条部(第一突条部37に対応)を形成した。この液晶性高分子シートの突条部を除く部分の厚みは100μmであった。したがって、突条部の部分の全厚みは140μmであった。   In this liquid crystalline polymer sheet, a tapered protrusion (corresponding to the first protrusion 37) having a height of 20 μm was formed along the edges of both surfaces in the thickness direction. The thickness of the liquid crystal polymer sheet excluding the protrusions was 100 μm. Therefore, the total thickness of the protrusion portion was 140 μm.

そして、液晶性高分子シートの両表面にウレタン接着剤を塗布した後、酸変性高密度ポリエチレンシートを積層して張り合わせて一体化し、電極に対応する中央部を切り抜いて、酸変性高密度ポリエチレン層/ウレタン接着層(1〜2μm程度)/液晶性高分子層/ウレタン接着層(1〜2μm程度)/酸変性高密度ポリエチレン層の構造の枠状の封口材とした。この封口材の両表面の縁には、液晶性高分子製の突条部の頂面が露出していた。   Then, after applying urethane adhesive on both surfaces of the liquid crystalline polymer sheet, the acid-modified high-density polyethylene sheet is laminated and laminated together, and the center part corresponding to the electrode is cut out, and the acid-modified high-density polyethylene layer A frame-shaped sealing material having a structure of: / urethane adhesive layer (about 1 to 2 μm) / liquid crystalline polymer layer / urethane adhesive layer (about 1 to 2 μm) / acid-modified high-density polyethylene layer. The top surfaces of the protrusions made of liquid crystalline polymer were exposed at the edges of both surfaces of the sealing material.

続いて、一方の集電体における電極が形成された面の周縁部上に、電極を取り囲むように枠状の封口材を載置し、集電体側から封口材を加熱して熱可塑性高分子層を溶融し封口材と一方の集電体とを130℃で熱融着した。続いて、この集電体の電極に適当量の電解質溶液を滴下し、この電極の上にセパレータを積層し、さらに、セパレータ上に適当量の電解質溶液を滴下した。電解質溶液としては、4フッ化トリエチルメチルアンモニウム塩のプロピレンカーボネート溶液に1.8mol/Lの濃度に溶解させたものを用いた。   Subsequently, a frame-shaped sealing material is placed on the periphery of the surface of the current collector on which the electrode is formed so as to surround the electrode, and the sealing material is heated from the current collector side to thermoplastic polymer. The layer was melted and the sealing material and one of the current collectors were heat-sealed at 130 ° C. Subsequently, an appropriate amount of electrolyte solution was dropped onto the electrode of the current collector, a separator was stacked on the electrode, and an appropriate amount of electrolyte solution was further dropped onto the separator. As the electrolyte solution, a solution of triethylmethylammonium tetrafluoride salt dissolved in propylene carbonate at a concentration of 1.8 mol / L was used.

続いて、他方の集電体の電極上にも適当量の電解質溶液を滴下した。そして、他方の集電体を、一方の集電体と重ね合わせた。このとき、他方の集電体の電極がセパレータと接触し、また、他方の集電体の周縁部が、枠状の封口材と重なるようにした。   Subsequently, an appropriate amount of the electrolyte solution was also dropped on the electrode of the other current collector. Then, the other current collector was superposed on one current collector. At this time, the electrode of the other current collector was in contact with the separator, and the peripheral portion of the other current collector was overlapped with the frame-shaped sealing material.

続いて、真空雰囲気下で、集電体に対して封口材の形状に対応する枠状のヒータを押し当てて、封口材の熱可塑性高分子層を130℃で溶融して封口し、その後さらに、突条部を300℃で熱融着して電気二重層キャパシタを完成させた。ここでは、このような電気二重層キャパシタを10個得た。   Subsequently, in a vacuum atmosphere, a frame-shaped heater corresponding to the shape of the sealing material is pressed against the current collector, and the thermoplastic polymer layer of the sealing material is melted at 130 ° C. and then sealed. The protrusions were thermally fused at 300 ° C. to complete an electric double layer capacitor. Here, ten such electric double layer capacitors were obtained.

これらの電気二重層キャパシタの抵抗を測定したところ、10個ともショートしておらず、内部抵抗は5.5〜6.0Ω、放電容量は60mFですべて良品であった。   When the resistances of these electric double layer capacitors were measured, none of them were short-circuited, the internal resistance was 5.5 to 6.0Ω, the discharge capacity was 60 mF, and all were good products.

さらに、温度25℃、湿度90%の恒湿槽に1000h保存し、放電容量を測定したところ、すべて58〜60mFであり、容量保持率は96%以上であった。   Furthermore, when it stored for 1000 hours in the constant humidity tank of temperature 25 degreeC and humidity 90%, and measured the discharge capacity, they were all 58-60 mF and the capacity | capacitance retention rate was 96% or more.

(実施例2)
実施例2では、ウレタンの接着層に代えて、酸変性していないポリエチレン層(2〜3μm)を有し、このポリエチレン層の一方の面が液晶性高分子層に300℃で熱融着され、他方の面が酸変性高密度ポリエチレン層に130℃で熱融着された封口材を用いる以外は実施例1と同様にして、電気二重層キャパシタを10個作製した。
(Example 2)
In Example 2, instead of the urethane adhesive layer, an acid-modified polyethylene layer (2 to 3 μm) was provided, and one surface of this polyethylene layer was thermally fused to the liquid crystalline polymer layer at 300 ° C. Ten electric double layer capacitors were produced in the same manner as in Example 1 except that a sealing material whose other surface was heat-sealed to an acid-modified high-density polyethylene layer at 130 ° C. was used.

これらの電気二重層キャパシタの抵抗を測定したところ、10個ともショートしておらず、内部抵抗は5.5〜6.0Ω、放電容量は60mFですべて良品であった。   When the resistances of these electric double layer capacitors were measured, none of them were short-circuited, the internal resistance was 5.5 to 6.0Ω, the discharge capacity was 60 mF, and all were good products.

さらに、温度25℃、湿度90%の恒湿槽に1000h保存し、放電容量を測定したところ、すべて58〜60mFであり、容量保持率は96%以上であった。   Furthermore, when it stored for 1000 hours in the constant humidity tank of temperature 25 degreeC and humidity 90%, and measured the discharge capacity, they were all 58-60 mF and the capacity | capacitance retention rate was 96% or more.

(実施例3)
実施例3では、第五実施形態における電気二重層キャパシタ5と同様の電気二重層キャパシタを作製した。具体的には、集電体間に挟み込むと、酸変性高密度ポリエチレンシート(図10の熱可塑性高分子層31に対応)の外側端面を取り囲みかつ集電体の端面と接触する突条部(図10の第一突条部37,38に対応)を有する封口材を用い、この封口材で集電体20,21間を封口した後にさらに、突条部と集電体の端部とを300℃で熱融着する以外は実施例1と同様にして、電気二重層キャパシタを10個作製した。
(Example 3)
In Example 3, an electric double layer capacitor similar to the electric double layer capacitor 5 in the fifth embodiment was produced. Specifically, when sandwiched between current collectors, a protrusion (see FIG. 10) that surrounds the outer end surface of the acid-modified high-density polyethylene sheet (corresponding to the thermoplastic polymer layer 31 in FIG. 10) and contacts the end surface of the current collector 10 is used. After sealing the current collectors 20 and 21 with this sealing material, the protrusions and the ends of the current collectors are further connected. Ten electric double layer capacitors were produced in the same manner as in Example 1 except that heat fusion was performed at 300 ° C.

これらの電気二重層キャパシタの抵抗を測定したところ、10個ともショートとしておらず、内部抵抗は5.5〜6.0Ω、放電容量は60mFですべて良品であった。   When the resistances of these electric double layer capacitors were measured, none of them were short-circuited, the internal resistance was 5.5 to 6.0Ω, the discharge capacity was 60 mF, and all were good products.

さらに、温度25℃、湿度90%の恒湿槽に1000h保存し、放電容量を測定したところ、すべて59〜60mFであり、容量保持率は96%以上であった。   Furthermore, when stored in a constant humidity bath at a temperature of 25 ° C. and a humidity of 90% for 1000 hours and measured for discharge capacity, all were 59 to 60 mF and the capacity retention was 96% or more.

(実施例4)
実施例4では、ウレタンの接着層に代えて、酸変性していないポリエチレン層(2〜3μm)を有し、このポリエチレン層の一方の面が液晶性高分子層に300℃で熱融着され、他方の面が酸変性高密度ポリエチレン層に130℃で熱融着された封口材を用いる以外は実施例3と同様にして、電気二重層キャパシタを10個作製した。
Example 4
In Example 4, in place of the urethane adhesive layer, an acid-modified polyethylene layer (2 to 3 μm) was provided, and one surface of this polyethylene layer was thermally fused to the liquid crystalline polymer layer at 300 ° C. Ten electric double layer capacitors were produced in the same manner as in Example 3 except that a sealing material whose other surface was heat-sealed to an acid-modified high-density polyethylene layer at 130 ° C. was used.

これらの電気二重層キャパシタの抵抗を測定したところ、10個ともショートしておらず、内部抵抗は5.5〜6.0Ω、放電容量は60mFですべて良品であった。   When the resistances of these electric double layer capacitors were measured, none of them were short-circuited, the internal resistance was 5.5 to 6.0Ω, the discharge capacity was 60 mF, and all were good products.

さらに、温度25℃、湿度90%の恒湿槽に1000h保存し、放電容量を測定したところ、すべて59〜60mFであり、容量保持率は96%以上であった。   Furthermore, when it stored for 1000 hours in the constant humidity tank of temperature 25 degreeC and humidity 90%, and measured the discharge capacity, all were 59-60 mF and the capacity | capacitance retention rate was 96% or more.

(比較例1)
比較例1では、単層の酸変性ポリエチレンフィルム(厚さ150μm)からなる封口材を用いる以外は実施例1と同様にして電気二重層キャパシタを10個得た。
(Comparative Example 1)
In Comparative Example 1, ten electric double layer capacitors were obtained in the same manner as in Example 1 except that a sealing material composed of a single-layer acid-modified polyethylene film (thickness 150 μm) was used.

これらの電気二重層キャパシタの抵抗を測定したところ、10個中5個がショートしていた。   When the resistance of these electric double layer capacitors was measured, 5 out of 10 were short-circuited.

さらに、良品5個を温度25℃、湿度90%の恒湿槽に1000h保存し、放電容量を測定したところ、すべて30mFであり、容量保持率は50%以上であった。   Furthermore, when 5 non-defective products were stored in a constant humidity bath at a temperature of 25 ° C. and a humidity of 90% for 1000 hours and the discharge capacity was measured, all were 30 mF, and the capacity retention was 50% or more.

(比較例2)
比較例2では、単層の液晶性高分子(住友化学製、エコノール)(厚さ150μm)からなる封口材を用い、熱融着温度を300℃とする以外は実施例1と同様にして電気二重層キャパシタを10個得た。
(Comparative Example 2)
In Comparative Example 2, a sealing material made of a single-layer liquid crystalline polymer (Econol, manufactured by Sumitomo Chemical Co., Ltd.) (thickness: 150 μm) was used, and the electrical properties were the same as in Example 1 except that the heat fusion temperature was 300 ° C. Ten double layer capacitors were obtained.

これらの電気二重層キャパシタの抵抗を測定したところ、10個中全10個がショートしていた。   When the resistance of these electric double layer capacitors was measured, all 10 out of 10 were short-circuited.

これらの電気二重層キャパシタを解析したところ、発電要素に熱負荷がかかりすぎて短絡していることが判明した。   Analysis of these electric double layer capacitors revealed that the power generation element was overheated and shorted.

図1は、本発明の第一実施形態に係る電気二重層キャパシタの断面図である。FIG. 1 is a cross-sectional view of the electric double layer capacitor according to the first embodiment of the present invention. 図2は、図1の電気二重層キャパシタの上面図である。FIG. 2 is a top view of the electric double layer capacitor of FIG. 図3は、液晶性高分子を含む樹脂の水蒸気透過率及び酸素透過率の一例を示す表である。FIG. 3 is a table showing an example of water vapor transmission rate and oxygen transmission rate of a resin containing a liquid crystalline polymer. 図4は、液晶性高分子を含まない高分子の水蒸気透過率及び酸素透過率の一例を示す表であるFIG. 4 is a table showing an example of water vapor transmission rate and oxygen transmission rate of a polymer that does not contain a liquid crystalline polymer. 図5(a)、及び図5(b)は、図1の電気二重層キャパシタの製造方法を説明する断面図である。5 (a) and 5 (b) are cross-sectional views illustrating a method for manufacturing the electric double layer capacitor of FIG. 図6は、図1の電気二重層キャパシタの製造方法を説明する図5(b)に続く断面図である。FIG. 6 is a cross-sectional view subsequent to FIG. 5B for explaining the manufacturing method of the electric double layer capacitor of FIG. 図7は、本発明の第二実施形態に係る電気二重層キャパシタの断面図である。FIG. 7 is a cross-sectional view of the electric double layer capacitor according to the second embodiment of the present invention. 図8は、本発明の第三実施形態に係る電気二重層キャパシタの断面図である。FIG. 8 is a cross-sectional view of the electric double layer capacitor according to the third embodiment of the present invention. 図9は、本発明の第四実施形態に係る電気二重層キャパシタの断面図である。FIG. 9 is a cross-sectional view of an electric double layer capacitor according to the fourth embodiment of the present invention. 図10は、本発明の第五実施形態に係る電気二重層キャパシタの断面図である。FIG. 10 is a cross-sectional view of an electric double layer capacitor according to a fifth embodiment of the present invention. 図11は、本発明の第六実施形態に係る電気二重層キャパシタの断面図である。FIG. 11 is a cross-sectional view of the electric double layer capacitor according to the sixth embodiment of the present invention. 図12は、本発明の第七実施形態に係る電気二重層キャパシタの断面図である。FIG. 12 is a cross-sectional view of the electric double layer capacitor according to the seventh embodiment of the present invention.

符号の説明Explanation of symbols

1…電気二重層キャパシタ(電気化学デバイス)、10…発電要素、12…第一電極、13…第二電極、20,21…集電体、20a,21a…周縁部、20b,21b…端面、20c,21c…内側面、20d,21d…外側面、33…液晶性高分子層、31,35…熱可塑性高分子層、31L,35L…低温溶融熱可塑性高分子層(サブ層)、35H,35H…高温溶融熱可塑性高分子層(サブ層)、36…粒子、37,38…第一突条部、39a,39b…第二突条部、32,34…接着層、30,40,50,60,70,80,90…封口材。   DESCRIPTION OF SYMBOLS 1 ... Electric double layer capacitor (electrochemical device), 10 ... Electric power generation element, 12 ... First electrode, 13 ... Second electrode, 20, 21 ... Current collector, 20a, 21a ... Peripheral part, 20b, 21b ... End face 20c, 21c ... inner side surface, 20d, 21d ... outer side surface, 33 ... liquid crystalline polymer layer, 31, 35 ... thermoplastic polymer layer, 31L, 35L ... low temperature melt thermoplastic polymer layer (sub-layer), 35H, 35H: High-temperature melt thermoplastic polymer layer (sublayer), 36: Particles, 37, 38 ... First ridge, 39a, 39b ... Second ridge, 32, 34 ... Adhesive layer, 30, 40, 50 , 60, 70, 80, 90 ... sealing material.

Claims (16)

互いに対向する一対の板状の集電体と、
第一電極、第二電極及びこれらの電極間に設けられた電解質を有し、前記第一電極が一方の前記集電体と接し前記第二電極が他方の前記集電体と接するように前記集電体間に挟まれた発電要素と、
一方の前記集電体の周縁部と他方の前記集電体の周縁部との隙間を塞いで前記発電要素を前記集電体間に密封するための枠状の封口材と、を備え、
前記封口材は、液晶性高分子層及び前記液晶性高分子層を挟むように設けられた一対の熱可塑性高分子層を有し、
一方の前記熱可塑性高分子層は一方の前記集電体の周縁部に熱融着され、他方の前記熱可塑性高分子層は他方の前記集電体の周縁部に熱融着され、前記一対の熱可塑性高分子層の溶融温度は前記液晶性高分子層の溶融温度よりも低い電気化学デバイス。
A pair of plate-like current collectors facing each other;
A first electrode, a second electrode, and an electrolyte provided between the electrodes, wherein the first electrode is in contact with one of the current collectors and the second electrode is in contact with the other current collector. A power generation element sandwiched between current collectors;
A frame-shaped sealing material for sealing a gap between the peripheral edge of one current collector and the peripheral edge of the other current collector to seal the power generating element between the current collectors;
The sealing material has a liquid crystal polymer layer and a pair of thermoplastic polymer layers provided so as to sandwich the liquid crystal polymer layer,
One of the thermoplastic polymer layers is heat-sealed to the peripheral portion of one of the current collectors, and the other thermoplastic polymer layer is heat-sealed to the peripheral portion of the other current collector, An electrochemical device in which the melting temperature of the thermoplastic polymer layer is lower than the melting temperature of the liquid crystalline polymer layer.
前記液晶性高分子層の溶融温度は180〜350℃である請求項1の電気化学デバイス。   The electrochemical device according to claim 1, wherein the liquid crystalline polymer layer has a melting temperature of 180 to 350 ° C. 前記液晶性高分子層の水蒸気透過率は1g/(m・24hr・100μm)以下であり、前記液晶性高分子層の酸素透過率は10mL/(m・24hr・100μm)である請求項1又は2の電気化学デバイス。 The water vapor permeability of the liquid crystalline polymer layer is 1 g / (m 2 · 24 hr · 100 µm) or less, and the oxygen permeability of the liquid crystalline polymer layer is 10 mL / (m 2 · 24 hr · 100 µm). 1 or 2 electrochemical devices. 前記液晶性高分子層は液晶ポリエステルを含む液晶性高分子から形成された請求項1〜3の何れか一項に記載の電気化学デバイス。   The electrochemical device according to any one of claims 1 to 3, wherein the liquid crystalline polymer layer is formed of a liquid crystalline polymer containing liquid crystalline polyester. 前記熱可塑性高分子層の溶融温度は90〜200℃である請求項1〜4の何れか一項に記載の電気化学デバイス。   The electrochemical device according to any one of claims 1 to 4, wherein a melting temperature of the thermoplastic polymer layer is 90 to 200 ° C. 前記熱可塑性高分子層は0.65N/mm以上の接着強度で前記集電体と接着している請求項1〜5の何れか一項に記載の電気化学デバイス。   The electrochemical device according to any one of claims 1 to 5, wherein the thermoplastic polymer layer is bonded to the current collector with an adhesive strength of 0.65 N / mm or more. 前記熱可塑性高分子層はポリオレフィンを含む熱可塑性高分子から形成された請求項1〜6の何れか一項に記載の電気化学デバイス。   The electrochemical device according to claim 1, wherein the thermoplastic polymer layer is formed from a thermoplastic polymer containing polyolefin. 前記熱可塑性高分子層と前記液晶性高分子層とが、接着層により接着されている請求項1〜7の何れか一項に記載の電気化学デバイス。   The electrochemical device according to any one of claims 1 to 7, wherein the thermoplastic polymer layer and the liquid crystalline polymer layer are bonded by an adhesive layer. 前記熱可塑性高分子層と前記液晶性高分子層とが、互いに熱融着されている請求項1〜7の何れか一項に記載の電気化学デバイス。   The electrochemical device according to any one of claims 1 to 7, wherein the thermoplastic polymer layer and the liquid crystalline polymer layer are thermally fused to each other. 前記熱可塑性高分子層は、溶融温度がそれぞれ異なる熱可塑性高分子製の複数のサブ層の積層体であり、前記積層体は、各サブ層の溶融温度が前記液晶性高分子層から前記集電体に向かって低くなるように積層されている請求項9の何れか一項に記載の電気化学デバイス。   The thermoplastic polymer layer is a laminate of a plurality of sub-layers made of thermoplastic polymers having different melting temperatures, and the laminate has a melting temperature of each sub-layer from the liquid crystalline polymer layer. The electrochemical device according to claim 9, wherein the electrochemical device is stacked so as to become lower toward the electric body. 前記液晶性高分子層は熱可塑性高分子製の粒子を含み、前記熱可塑性高分子層と前記熱可塑性高分子製の粒子とが熱融着している請求項1〜8の何れか一項に記載の電気化学デバイス。   The liquid crystal polymer layer includes particles made of a thermoplastic polymer, and the thermoplastic polymer layer and the particles made of the thermoplastic polymer are heat-sealed. The electrochemical device according to 1. 前記液晶性高分子層には、前記液晶性高分子層から延びて前記集電体に熱融着され前記熱可塑性高分子層の外側端面を取り囲む第一突条部が設けられ、前記第一突条部は液晶性高分子製である請求項1〜11の何れか一項に記載の電気化学デバイス。   The liquid crystalline polymer layer is provided with a first protrusion that extends from the liquid crystalline polymer layer and is thermally fused to the current collector and surrounds an outer end surface of the thermoplastic polymer layer. The electrochemical device according to any one of claims 1 to 11, wherein the protrusion is made of a liquid crystalline polymer. 前記第一突条部は、前記集電体の端面に熱融着された請求項12の電気化学デバイス。   The electrochemical device according to claim 12, wherein the first protrusion is thermally fused to an end face of the current collector. 前記熱可塑性高分子層は、さらに前記集電体の端面上にまで設けられており、
前記液晶性高分子層には、前記液晶性高分子層から延びると共に前記熱可塑性高分子層を挟んで前記集電体の端面を取り囲む液晶性高分子製の第二突条部が設けられた請求項1〜11の電気化学デバイス。
The thermoplastic polymer layer is further provided on the end face of the current collector,
The liquid crystalline polymer layer is provided with a second protrusion made of a liquid crystalline polymer that extends from the liquid crystalline polymer layer and surrounds the end face of the current collector with the thermoplastic polymer layer interposed therebetween. The electrochemical device according to claim 1.
前記第二突条部は、さらに、前記集電体の外側面の周縁部に熱融着された請求項14の何れか一項に記載の電気化学デバイス。   The electrochemical device according to claim 14, wherein the second protrusion is further heat-sealed to a peripheral edge of the outer surface of the current collector. 第一電極、第二電極及びこれらの電極間に設けられた電解質を有する発電要素と、一対の板状の集電体と、枠状の封口材と、を用意する工程と、
一方の前記集電体が前記発電要素の前記第一電極と接し、他方の前記集電体が前記発電要素の前記第二電極と接し、前記封口材が前記発電要素を取り囲むような配置で、前記一対の板状の集電体の間に前記発電要素及び前記封口材を挟む工程と、
前記集電体の外側主面における前記封口材と対向する部分を加熱する工程と、を備え、
前記枠状の封口材は、液晶性高分子層及び前記液晶性高分子層を前記枠の厚み方向に挟むように設けられた一対の熱可塑性高分子層を有し、前記一対の熱可塑性高分子層の溶融温度は前記液晶性高分子層の溶融温度よりも低い電気化学デバイスの製造方法。
A step of preparing a first electrode, a second electrode and a power generation element having an electrolyte provided between these electrodes, a pair of plate-like current collectors, and a frame-shaped sealing material;
One current collector is in contact with the first electrode of the power generation element, the other current collector is in contact with the second electrode of the power generation element, and the sealing material surrounds the power generation element, Sandwiching the power generation element and the sealing material between the pair of plate-like current collectors;
Heating the portion facing the sealing material on the outer main surface of the current collector,
The frame-shaped sealing material has a pair of thermoplastic polymer layers provided so as to sandwich the liquid crystalline polymer layer and the liquid crystalline polymer layer in the thickness direction of the frame. The method for producing an electrochemical device, wherein the melting temperature of the molecular layer is lower than the melting temperature of the liquid crystalline polymer layer.
JP2003430925A 2003-12-25 2003-12-25 Electrochemical device and method for producing electrochemical device Expired - Fee Related JP4419568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003430925A JP4419568B2 (en) 2003-12-25 2003-12-25 Electrochemical device and method for producing electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003430925A JP4419568B2 (en) 2003-12-25 2003-12-25 Electrochemical device and method for producing electrochemical device

Publications (2)

Publication Number Publication Date
JP2005191288A true JP2005191288A (en) 2005-07-14
JP4419568B2 JP4419568B2 (en) 2010-02-24

Family

ID=34789153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003430925A Expired - Fee Related JP4419568B2 (en) 2003-12-25 2003-12-25 Electrochemical device and method for producing electrochemical device

Country Status (1)

Country Link
JP (1) JP4419568B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029556A1 (en) * 2010-09-03 2012-03-08 日本電気株式会社 Non-aqueous secondary battery and method for manufacturing non-aqueous secondary battery
WO2012153866A1 (en) * 2011-05-11 2012-11-15 日本電気株式会社 Nonaqueous-secondary-battery layered structure and nonaqueous-secondary-battery layering method
US20140079984A1 (en) * 2011-05-11 2014-03-20 Hiroshi Kajitani Non-aqueous secondary battery, mounted unit, and method for manufacturing non-aqueous secondary battery
JP2014107275A (en) * 2012-11-29 2014-06-09 Swatch Group Research & Development Ltd Electrochemical cell
JP2016134199A (en) * 2015-01-15 2016-07-25 株式会社半導体エネルギー研究所 Secondary battery
CN105814729A (en) * 2013-12-19 2016-07-27 罗伯特·博世有限公司 Electronic component and production method for producing an electronic component
US20180026236A1 (en) * 2016-07-20 2018-01-25 Samsung Sdi Co., Ltd. Flexible rechargeable battery
JP2019145521A (en) * 2019-04-29 2019-08-29 株式会社半導体エネルギー研究所 Electronic apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103190015A (en) * 2010-09-03 2013-07-03 日本电气株式会社 Non-aqueous secondary battery and method for manufacturing non-aqueous secondary battery
JPWO2012029556A1 (en) * 2010-09-03 2013-10-28 日本電気株式会社 Non-aqueous secondary battery and method for producing non-aqueous secondary battery
WO2012029556A1 (en) * 2010-09-03 2012-03-08 日本電気株式会社 Non-aqueous secondary battery and method for manufacturing non-aqueous secondary battery
US9287533B2 (en) 2011-05-11 2016-03-15 Nec Corporation Non-aqueous secondary battery, mounted unit, and method for manufacturing non-aqueous secondary battery
WO2012153866A1 (en) * 2011-05-11 2012-11-15 日本電気株式会社 Nonaqueous-secondary-battery layered structure and nonaqueous-secondary-battery layering method
US20140079984A1 (en) * 2011-05-11 2014-03-20 Hiroshi Kajitani Non-aqueous secondary battery, mounted unit, and method for manufacturing non-aqueous secondary battery
US20140087235A1 (en) * 2011-05-11 2014-03-27 Hiroshi Kajitani Nonaqueous-secondary-battery layered structure and nonaqueous-secondary-battery layering method
JP2014107275A (en) * 2012-11-29 2014-06-09 Swatch Group Research & Development Ltd Electrochemical cell
JP2015187989A (en) * 2012-11-29 2015-10-29 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド electrochemical cell
CN105814729A (en) * 2013-12-19 2016-07-27 罗伯特·博世有限公司 Electronic component and production method for producing an electronic component
JP2016134199A (en) * 2015-01-15 2016-07-25 株式会社半導体エネルギー研究所 Secondary battery
US20180026236A1 (en) * 2016-07-20 2018-01-25 Samsung Sdi Co., Ltd. Flexible rechargeable battery
US11043722B2 (en) * 2016-07-20 2021-06-22 Samsung Sdi Co., Ltd. Flexible rechargeable battery
JP2019145521A (en) * 2019-04-29 2019-08-29 株式会社半導体エネルギー研究所 Electronic apparatus

Also Published As

Publication number Publication date
JP4419568B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
JP3422745B2 (en) Electric double layer capacitor
JP3497448B2 (en) Electric double layer capacitors and batteries
WO2000026976A1 (en) Non-aqueous electrolytic cell and production method therefor
US7256099B2 (en) Method of producing electrochemical device, and the electrochemical device
JP4753369B2 (en) Stacked electrochemical device
US7704635B2 (en) Electrochemical device and method of manufacturing electrochemical device
WO2017033514A1 (en) Electrochemical device
JP2019140345A (en) Electrochemical device
JP4419568B2 (en) Electrochemical device and method for producing electrochemical device
JP2006186220A (en) Electrochemical device
JP2005209819A (en) Electrochemical device and its manufacturing method
JP4986241B2 (en) Electrochemical device and manufacturing method thereof
JP2004335889A (en) Electrochemical capacitor
JP4956777B2 (en) Bipolar battery, battery pack and vehicle equipped with these batteries
JP2005071658A (en) Flat electrochemical cell and its manufacturing method
JP2007287724A (en) Laminated electrochemical device
JP2004253562A (en) Electrochemical capacitor
JP6335938B2 (en) Bipolar lithium ion battery having improved hermeticity and associated manufacturing method
JP2010278455A (en) Electrochemical device
JP6666096B2 (en) Power storage device
JP5098859B2 (en) Electric double layer capacitor
JP2006303269A (en) Electric double layer capacitor and electric double layer capacitor module
JP4595465B2 (en) Electrochemical devices
JP2019057473A (en) Electrochemical cell
WO2023120171A1 (en) Power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4419568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees